arXiv:1808.03884v1 [cs.DC] 12 Aug 2018

A Basic Compositional Model for Spiking Neural Networks

Nancy Lynch Cameron Musco
MIT Microsoft Research
lynch@csail.mit.edu camusco@microsoft.com

August 14, 2018

1 Introduction

This paper is part of a project on developing an algorithmic theory of brain networks, based on
stochastic Spiking Neural Network (SNN) models. Inspired by tasks that seem to be solved in actual
brains, we are defining abstract problems to be solved by these networks. In our work so far, we
have developed models and algorithms for the Winner-Take-All problem from computational neu-
roscience [LMP17a,Mus18], and problems of similarity detection and neural coding [LMP17h]. We
plan to consider many other problems and networks, including both static networks and networks
that learn.

This paper is about basic theory for the stochastic SNN model. In particular, we define a simple
version of the model. This version assumes that the neurons’ only state is a Boolean, indicating
whether the neuron is firing or not. In later work, we plan to develop variants of the model with
more elaborate state; we expect that our results should extend to these variants as well, but this
remains to be worked out. We also define an external behavior notion for SNNs, which can be used
for stating requirements to be satisfied by the networks.

We then define a composition operator for SNNs. We prove that our external behavior notion is
“compositional”, in the sense that the external behavior of a composed network depends only on
the external behaviors of the component networks. We also define a hiding operator that reclassifies
some output behavior of an SNN as internal. We give basic results for hiding.

Finally, we give a formal definition of a problem to be solved by an SNN, and give basic results
showing how composition and hiding of networks affect the problems that they solve. We illustrate
our definitions with three examples: building a circuit out of gates, building an “Attention” network
out of a “Winner-Take-All” network and a “Filter” network, and a toy example involving combining
two networks in a cyclic fashion.

2 The Model

For our model definitions, we first specify the structure of our networks. Then we describe how the
networks execute; this involves defining individual (non-probabilistic) executions and then defining
probabilistic behavior. Next we define the external behavior of a network. Finally, we give two
examples: a Boolean circuit and a Winner-Take-All network.

2.1 Network structure

Assume a universal set U of neuron names. A firing pattern for a set V' C U of neuron names is a
mapping from V to {0,1}. Here, 1 represents “firing” and 0 represents “not firing”.
A neural network N consists of:

e N, a subset of U, partitioned into input neurons N;,, output neurons N,,:, and internal
(auxiliary) neurons Nj,:. We sometimes write Ng,; as shorthand for N;, U Ny, and N, as
shorthand for Nyy: U Nipe. (Here, lc stands for “locally controlled”)..

Each neuron u € N has an associated bias, bias(u) € R; this can be any real number,
positive, negative, or 0.

e I a set of directed edges between neurons. We permit self-loops.

Each edge e has a weight, weight(e), which is a nonzero real number.
e [y, an initial firing pattern for the set Nj. of non-input neurons.

We assume that input neurons have no incoming edges, not even self-loops. Output neurons may
have incoming or outgoing edges, or both.

2.2 Executions and probabilistic executions
2.2.1 Executions and traces

A configuration of a neural network N is a firing pattern for N, the set of all the neurons in the
network. We consider several related definitions:

e An input configuration is a firing pattern for the input neurons, Nj,. An output configuration
is a firing pattern for the output neurons, Ny:. An internal configuration is a firing pattern
for the internal neurons, Nj,;.

e A non-input configuration is a firing pattern for the internal and output neurons, V.
e An external configuration is a firing pattern for the input and output neurons, Neg:.

We define projections of configurations onto subsets of IN. Thus, if C' is a configuration and
M C N, then C[M is the firing pattern for M obtained by projecting C' onto the neurons in
M. In particular, we have C[Nj;, for the projection of C' on the input neurons, C'[Ny,; for the
output neurons, C'[N;y,; for the internal neurons, C[N, for the external neurons, and C'[N;. for
the non-input neurons.

An initial configuration is a configuration C' such that C[N;. = Fy. The values for the input
neurons are arbitrary.

An execution « of N is a (finite or infinite) sequence of configurations, Cp, Cy, ..., where Cj is
an initial configuration. The length of a finite execution o = Cy, C1, ..., Cy, length(a), is defined to
be t. The length of an infinite execution is defined to be co.

We define projections of executions: If o = Cp, 4, ... is an execution of N and M C N, then
a| M is the sequence Co[M, C1[M, We define an M-execution of N to be a[M for any execution
a of N. Note that an M-execution restricts the initial firing states of only the non-input neurons
that are in M, that is, the neurons in M N Ny.. We define an input execution to be an M-execution
where M = N;j,, and similarly for an output execution, an internal execution, an external execution,
and a locally-controlled execution (or lc-execution) .

For an execution «, we sometimes write trace(a) to denote af Ny, the projection of o on the
external neurons. We define a trace of N to the the trace of any execution of «.

If ~y is any finite M-execution, for M C N, then we define A(7) to be the set of executions « of
N such that v is a prefix of a[M. This means that o can have any firing states for the neurons
that are not in M, except for the initial states of neurons in N., which are determined by Fy. We
will often consider the special case where M = N, i.e., where v is a trace of N.

Lemma 1 Let oy and as be finite executions of N.
1. If neither ay nor ay is an extension of the other, then A(ay) and A(ag) are disjoint.

2. If oy is an extension of ag, then A(ay) C A(ag).

2.2.2 Probabilistic executions

We define a unique “probabilistic execution” for any particular infinite input execution B;,. For-
mally, such a probabilistic execution is a probability distribution P on the sample space of infinite
executions « of the network such that a[N;, = Bi,; we say that such executions are consistent
with Bin. Note that all of these executions have the same initial configuration, call it Cy. This is
constructed from the 0 element of §;, and the initial non-input firing pattern for the network, Fy.

The o-algebra of measurable sets is generated from the “cones”, each of which is the set of
infinite executions that extend a particular finite execution. Formally, if « is a finite execution
such that a[N;, is a prefix of f;,, then the “cone” of « is simply A(«), as defined earlier. The
other measurable sets in the o-algebra are obtained by starting from these cones and closing under
countable union, countable intersection, and complement.

Now we define the probabilities for the measurable sets. We start by explicitly defining the
probabilities for the cones, P(A(«)). Based on these, we can derive the probabilities of the other
measurable sets in a unique way, using general measure extension theorems. Segala presents a
similar construction for probabilistic executions in his PhD thesis, Chapter 4 [Seg95].

We compute the probabilities P(A(«)) recursively based on the length of a (which is here always
assumed to be consistent with S;,):

1. « is of length 0.
Then « consists of just the initial configuration Cp; define P(A(a)) = 1.

2. « is of length ¢, t > 0.
Let o be the length-(t — 1) prefix of a. We determine the probability ¢ of extending o' to «.
Then the probability P(A(«)) is simply P(A(a)) % gq.
Let C be the final configuration of o and C’ the final configuration of o’. Then for each
neuron u € N, separately, use C’ and the weights of u’s incoming edges to compute the
potential and then the firing probability for neuron . In more detail: For each u, we first
calculate a potential, pot,,, defined as

Z C'(v)weight(v,u) — bias(u).
(viu)eE

We then convert pot,, to a firing probability p, using the standard sigmoid function:

1

Pu = 14_'_ e—pOtu/)"

where) is a positive real number “temperature” parameter.! > We combine all those prob-
abilities to compute the probability of generating C' from C’: for each u € Nj. such that

! We assume a standard sigmoid function. However, the results of this paper don’t appear to depend much on
the precise function definition. Different functions could be used, subject to some basic constraints.

2 We will try to generalize our model to include other state besides just firing status. For example, we might
remember history of firing, or history of incoming potentials.

C(u) = 1, use the calculated probability p,, and for each u € Nj. for which C'(u) = 0, use

1 — py. The product
H Pu X H (1 - pu)
uEN;:C(u)=1 UEN;:C'(u)=0

is the probability of generating C' from C’, which is the needed probability ¢ of extending o’
to a.

We will often consider conditional probabilities of the form P(A(a;)|A(az)). Because we use
a sigmoid function, we know that P(A(asz)) cannot be 0, and so this conditional probability is
actually defined.?

From now on in this subsection, we assume a particular S;, and P. The following lemma follows
immediately from Lemma 1.

Lemma 2 Let o; and oo be finite executions of N that are consistent with Biy,.

1. If neither ay nor asy is an extension of the other, then P(A(aq)|A(az)) = 0.

. . P(A
2. If aq is an extension of ag, then P(A(a1)|A(ag)) = %.
So we can easily compute the conditional probabilities from the absolute probabilities. Con-
versely, we can easily compute the absolute probabilities from the conditional ones, by unwinding
the recursive definition above:

Lemma 3 Let a be a length-t execution of N, t > 0. Let o, 0 < i < t be the successive prefizes
of a (so that oy = o). Then

P(A(a)) = P(A(a1)| A(ao)) x P(A(a2)|A(a)) -+ x P(A(cy)|Aeu-1)).

Notice in the above expression, we did not start with a term for P(«p). This is not needed because
we are considering only traces in which «q is obtained from fB;, and the initial assignment Fj. So
ag is determined, and P(ag) = 1.

Since we can compute the conditional and absolute probabilities from each other, either can be
used to characterize the probabilistic execution.

Tree representation: The probabilistic execution for f;, can be visualized as an infinite tree
of configurations, where the tree nodes at level ¢ represent the configurations that might occur at
time t (with the given input execution). The configuration at the root of the tree is the initial
configuration Cy. Each infinite branch of the tree represents an infinite execution of the network,
and finite initial portions of branches represent finite executions. If « is a finite branch in the
tree, then we can associate the probability P(A(«)) with the node at the end of the branch; this
is simply the probability of reaching the node during probabilistic operation of the network, using
the inputs from ;.

3 One useful property of our sigmoid functions is that the probabilities are never exactly 0 or 1, which makes it
unnecessary to worry about 0-probability sets when conditioning. We have to be careful to retain this property if we
consider different functions.

2.2.3 Probabilistic traces

Now we define a unique “probabilistic trace” for any particular infinite input execution 5;,. For-
mally, such a probabilistic trace is a probability distribution @ on the sample space of infinite traces
B of the network such that B[N;, = Bi. All of these traces have the same initial configuration,
constructed from the 0 element of 3;,, and the initial output firing pattern for the network, Fi| Noy;.

The basic measurable sets are the sets of traces that extend a particular finite trace. For a
particular finite trace 5, we define

B(B) = {trace(a) : B is a prefix of trace(a)}

To define probabilities for the sets B(3), we rely on the probabilistic execution for 3;,. If 8 is a
finite trace of A/, then A(j) has already been defined. Then define the probability of B(3) to be
simply P(A(f)).

The following lemma expands the probability P(A(/3)) in terms of probabilities for the relevant
executions.

Lemma 4 If 3 is a finite trace of N, then
AB) = | Ala), and P(A(B)) = P(A(a)).
a:trace(a)=0 a:trace(a)=0

The next lemma describes conditional probabilities for one-step extensions:

Lemma 5 Let a be a finite execution of N of length > 0 that is consistent with B;,. Suppose o' is
its one-step prefir. Let B = trace(a) = a[Negt, and ' = trace(a’) = o/ [Negt. Then o, B, and [’
are also consistent with Bin,* and

1. A(a) € A(e), and P(A(a)|A())) = pigiahh-

2. A(a) C A(B), and P(A(a)|A(B)) = B4l

3. Ala) C A(B), and P(A(a)A(8)) = B@)

4. A(e) C A(B), and P(A(a)|A(8")) = HE550.

5. A(B) C A(B'), and P(A(B)|A(B)) = w5

Lemma 6 Let o, o/, 3, and B’ be as in Lemma 5. Then

P(A(B) _ P(A(a)]A(8))
P(A(B)) P(A(B)IA(B)

Proof. By Lemma 5. U

P(A(e)|A(B)) = P(A(a)]A(B)) x

The next lemma gives some simple equivalent formulations of a one-step extension of traces, by
unwinding definitions in terms of executions.

Lemma 7 Suppose that B is a finite trace of length t > 0 that is consistent with B;,. Suppose that
B is the length-(t — 1) prefiz of 5. Then P(A(B)|A(B")) is equal to all of the following:

1. Za’:trace(a’):,b”(P(A(O/”A(B,)) X P(A(/B)|A(a,)))

4 As before, this means that their projections on N;,, are prefixes of Biy.

5

2. m Za’:trace(a’):ﬁ’ (P(A(O/)) x P(A(/B)|A(a,)))
3' P(Al(ﬁ/)) Eo/:trace(o/):,@’ P(A(O/)) Za;trace(a):ﬂ a/n,d o emtends o P(A(OZ)|A(O/))
4- P(Al(ﬁ’)) Za,a’:trace(oc)zﬂ,a’ is the length t—1prefiz of o P(A(")) x P(A(a)|A())).

J. m Za:trace(a)zﬁ P(A(Oé))

6 PAG)

- P(A(BY)”

We can also give a lemma about repeated conditioning, as for probabilistic executions:

Lemma 8 Let 8 be a length-t trace of N', t > 0. Let 3;, 0 < i < t, be the successive prefizes of 3
(so that By = B). Then

P(A(B)) = P(A(B1)]A(Bo)) x P(A(B2)[A(Br) - - - x P(A(B)|A(Be-1))-

As before, in the above expression, we did not use a separate term for P(fy). This is not needed
because we are considering only traces in which §y is obtained from [;, and the initial assignment
Fy. So fy is determined, and P(5p) = 1.

We will need some other easy facts about executions and traces, for example:

Lemma 9 Let o be a finite execution of N of length > 0, that is consistent with 3;,. Let o/ be the
one-step prefic of a and B = trace(a’). Then P(A(«)|A(B)) = P(A(a)|A(d))) x P(A()|A(B)).

Proof. By Lemma 5, we see that

P(A(a)|A(B) = = x

Lemma 10 1. Suppose that « is a finite execution of N that is consistent with ;. Then
P(A(a)) = P(A(a[Ni)).

2. Suppose that (3 is a finite trace of N that is consistent with Bi,. Then P(A(B)) = P(A(B[Nout)).

Proof. Since the input execution is already fixed at 5;,, the probability for « is just the probability
for the projection of o on the non-input neurons. Similarly for 5. O

2.3 External behavior of a network

So far we have talked about individual probabilistic traces, which depend on a fixed input execution.
Now we define the external behavior of a network, to capture its visible behavior for all possible
inputs. Later in the paper, in Section 5, we will show that our notion of external behavior is
compositional, which implies that the external behavior of N'! x A2 is unabiguously determined by

the external behavior of A1 and the external behavior of A/2.

Behavior Definition: Our definition of external behavior is based on the entire collection of
probabilities for the cones of all finite traces. Namely, the external behavior Beh(N) is the mapping
/ that maps each infinite input execution S, of N to the collection of probabilities {P(A(53))},
where f3 is a finite trace of N that is consistent with 3;,.°

Other definitions of external behavior might be possible. Any such definition would have to
assign some “behavior object” to each network. In general, we define two external behavior notions
B; and Bs to be equivalent provided that the following holds. Suppose that A and N/ are two
networks with the same input neurons and the same output neurons. Then Bi(N) = By(N’) if
and only if BQ(N) = B2 (N/)

In this paper, we find it useful to define a second, “auxiliary” external behavior notion, based
on one-step conditional probabilities. This will be useful in our proofs for compositionality.

Auxiliary Behavior Definition: Behy(N) is the mapping fo that maps each infinite input
execution S, of N to the collection of conditional probabilities {P(A(B)|A(8"))}, where 8 is a
finite trace of N with length > 0 that is consistent with f;,,, and £’ is the one-step prefix of j.

Lemma 11 The two behavior notions Beh and Behsy are equivalent.

Proof. Suppose that N and N’ are two networks with the same input neurons and the same output
neurons. We show that Beh and Behso are equivalent by arguing two directions separately:

1. If Beh(N') = Beh(N") then Behy(N) = Beho(N”). This follows because the conditional prob-
ability P(A(B)|A(8)) is determined as a function of the unconditional probabilities P(A(3))
and P(A(S')); see Lemma 5, Part 5.

2. If Behy(N) = Beha(N') then Beh(N) = Beh(N”). This follows because the unconditional
probability P(A(f)) is determined as a function of the conditional probabilities, see Lemma 8.

O

2.4 Examples

In this subsection we give two fundamental examples to illustrate our definitions so far.

2.4.1 Simple Boolean gate networks

Figure 1 depicts the structure of simple SNNs that represent and-gates, or-gates, and not-gates.
For completeness, we also include an SNN representing the identity computation.

We describe the operation of each of these types of networks, in turn. Fix a value A for the
temperature parameter of the sigmoid function. Fix an error probability §, 0 < § < 1. Assume for
each case below that the initial firing status for the non-input neurons is 0.

Throughout this section, we use the abbreviation L for the quantity /\ln(le‘;).

Identity network: This has one input neuron and one output neuron, connected by an edge
with weight w. The output neuron has bias b. We define b = L and w = 2L. Then we have
1-60 1
eb/>\ = —_——

- —1.
0 0

® Formally, this collection is a mapping from finite traces 8 to probabilities P(A(3)), but the use of two mappings
here may look slightly confusing.

2L

bias(y) =L bias(y) = 2k — 1)L

(b) k-input And

O

2L

(a) Identity

bias(a) =L
—2L

y) bias(y) =-L
(¢) k-input Or (d) Not

Figure 1: Networks representing simple Boolean gates

With these settings, we get potential —b and firing probability § when the input firing state is 0,
and potential w —b = b and firing probability 1 — ¢ when the input firing state is 1. More precisely,
consider just the input firing state at time 0. Whether it is O or 1, the probability that the output
firing state at time 1 is the same is exactly 1 — 6.

Our model also describes what happens with an arbitrary infinite input firing sequence, not just
the initial inputs. Let B;, be an arbitrary infinite firing sequence for the input neuron.

Let 3 be a trace of length ¢ > 1 that is consistent with 3;,. Suppose further that, for every ¢,
1 <t/ <t, the output status at time ¢’ in 3 is equal to the input status at time ¢’ — 1. Then by
repeated use of the argument above, we get that P(8) = (1 — §)!7L.

Now suppose that g is a length ¢ trace as above. Suppose that the output firing status at time ¢
in A is equal to the input status at time ¢ — 1, but the output status values for all earlier times is
arbitrary. Suppose that ' is the one-step prefix of 5. Then we can show that P(8|3) =1—4. It
follows that, for every time ¢ > 1, the probability that the output at time t is equal to the input at
time ¢t — 1 is 1 — 0. This uses the law of Total Probability, over all the possible length ¢t — 1 output
firing sequences.

k-input And network: This has k£ input neurons and one output neuron. Each input neuron
is connected to the output neuron by an edge with weight w. The output neuron has bias b. The
Identity network is a special case of this network, where k = 1.

The idea here is to treat this as a threshold problem, and set b and w so that being over or under
the threshold gives value 1 or 0, respectively, in each case with probability at least 1 — §. For a
k-input And network, the output neuron should fire with probability at least 1 — ¢ if all k£ input
neurons fire, and with probability at most ¢ if at most k — 1 input neurons fire.

The settings for b and w generalize those for the Identity network. Namely, define b = (2k — 1)L
and w = % = 2L. When all k£ input neurons fire, the potential is kw — b = L, and (expanding
L and plugging into the sigmoid function), the firing probability is just 1 — . When k& — 1 input
neurons fire, the potential is (k — 1)w — b = —L, and the firing probability is just 6. If fewer than
k — 1 fire, the potential and the firing probability are smaller. Similar claims about multi-round

8

computations to what we argued for the Identity network also hold for the And network.

k-input Or network: This has the same structure as the k-input And network. The k-input Or
network also generalizes the Identity network, which is the same as the 1-input Or network. Now
the output neuron should fire with probability at least 1 — § if one or more of the input neurons
fire, and with probability at most ¢ if no input neurons fire. This time we set b = L and w = 2L.
When one input neuron fires, the potential is w — b = L and the firing probability is 1 —§. If more
than one fire, then the firing probability is even greater. When no input neurons fire, the potential
is —b = —L, and the firing probability is §. Again, similar claims about multi-round computations
hold for the Or network.

Not network: This network has one input, one output, and one internal neuron, which acts as
an inhibitor for the output neuron.® The network contains two edges, one from the input neuron
to the internal neuron with weight w, and one from the internal neuron to the output neuron with
weight w’. The internal neuron has bias b and the output neuron has bias /.

The assembly consisting of the input and internal neurons acts like the identity gate, with settings
of b and w as before: b = L and w = 2L. So, for example, if we consider just the input firing state
at time 0. the probability that the internal neuron’s firing state at time 1 is the same is exactly
1-6.

Let b, the bias of the output neuron, be —L, and let w’, the weight of the outgoing edge of the
inhibitor, be —2L. Then if the inhibitor fires at time 1, the output fires at time 2 with probability
0, and if the inhibitor does not fire at time 1, the output fires at time 2 with probability 1 —J. This
yields probability 1 — & of correct inhibition, which then yields probabiity at least (1 — J)? that the
output at time 2 gives the correct answer for the Not-network. Similar claims about multi-round
computations also hold for the Not network, except that the Not network has a delay of 2 instead
of 1.

2.4.2 Winner-Take-All circuits

This example is a simple Winner-Take-All network for n inputs and n corresponding outputs. It is
based on a network presented in [LMP17a] and Chapter 5 of [Mus18]. Assume that some nonempty
subset of the input neurons fire, in a stable manner. The output firing behavior is supposed to
converge to a configuration in which exactly one of the outputs corresponding to the firing inputs
fires. We would like this convergence to occur quickly, in some fairly short time t.. And we would
like the resulting configuration to remain stable for a fairly long time ts. Figure 2 depicts the
structure of the network.

So fix B, to be an infinite input firing sequence, in which all the input configurations are the
same, and at least one input neuron is firing. Let P be the resulting probabilistic execution.
In [LMP17a,Mus18] we prove that, for certain values of t. and ts, the probability of convergence
within time ¢. to an output configuration that remains stable for time ¢, is at least 1 — 6.

The formal theorem statement is as follows. Here, y is the weighting factor used in the biases and
edge weights in the network, 0 is a bound on the failure probability, and ¢; and ¢y are particular
small constants.

Theorem 12 Assume v > ¢ log(”TtS). Then starting from any configuration, with probability >
1—0, the network converges, within time t. < ¢y lognlog(%), to a single firing output corresponding

SWe generally classify neurons into two categories: excitatory neurons, all of whose outgoing edges have positive
weights, and inhibitory neurons, whose outgoing edges have negative weights. However, this classification is not
needed for the results in this paper.

3y

bias(y;) = 3y

Figure 2: A basic Winner-Take-All network

to a firing input, and remains stable for time ts. c1 and co are universla constants, independent of
n,ts, and J.

The proof appears in [Mus18], based on work in [LMP17a]. The basic idea is that, when more
than one output is firing, both inhibitors are triggered to fire. When they both fire, they cause
each firing output to continue firing with probability % This serves to reduce the number of firing
outputs at a predictable rate. Once only a single output fires, only one inhibitor continues to fire;
its effect is sufficient to prevent other non-firing outputs from beginning to fire, but not sufficient
to stop the firing output from firing. All this, of course, is probabilistic.

Noting that the network is symmetric with respect to the n outputs. Therefore, we can refine
the theorem above to assert that, for any particular output neuron y; that corresponds to a firing
input neuron z;, the probability that y; is the eventual firing output neuron is at least 17_5.

3 Composition

In this section, we define composition of networks. We focus on composing two networks, but the
ideas should extend easily to any finite number of networks.

3.1 Composition of two networks

Networks that are composed must satisfy some basic compatibility requirements. These are anal-
ogous to those used for I/O automata and similar models. Namely, two networks A'! and A/ are
said to be compatible provided that:

1. No internal neuron of N'! is a neuron of N2.
2. No internal neuron of A2 is a neuron of N/1.

3. No neuron is an output neuron of both A" and N?2.

10

On the other hand, we are allowed to have common input neurons, and also output neurons of one
of the networks that are also input neurons of the other.” ® Assuming N'' and N? are compatible,
we define their composition N = N1 x N2 as follows:

e N, the set of neurons of A, is the union of N' and N2, which are the sets of neurons of
the two respective sub-networks. Note that common neurons are inserted only once. Each
neuron inherits its bias from its original sub-network. This definition of bias is unambiguous:
If a neuron belongs to both sub-networks, it must be an input of at least one of them, and
input neurons do not have biases.

Thus, when an input of one sub-network is combined with an output of the other sub-network,
the resulting neuron acquires the bias from its output “precursor”.

e F the set of edges, is defined as follows. If e is an edge from neuron u to neuron v in either
N1 or N2, then we include e also in N. Each edge inherits its weight from its original sub-
network. This definition of weight is unambiguous, since, as noted earlier, e cannot be an
edge of both sub-networks.

Thus, if the source neuron u is an input of both sub-networks, then it has edges in N to all
the nodes to which its “precursors” have edges in the two sub-networks. If u is an output of
N and an input of N2, then in A, it has all the incoming and outgoing edges it has in N
as well as the outgoing edges it has in N?.

On the other hand, the target neuron v cannot be an input of both networks since it has an
incoming edge in one of them. So v must be an output of one, say N, and an input of the
other, say N2. Then in A/, v has all the incoming and outgoing edges it had in N as well as
the outgoing edges it has in N2

e [}, the initial non-input firing pattern of N/, gets inherited directly from the two sub-networks’
initial non-input firing patterns. Since the two sub-networks have no non-input neurons in
common, this is well-defined.

In the composed network, the neurons retain their classification as input/output/internal, except
that a neuron that is an input of one sub-network and output of the other gets classified as an
output neuron of N.

The probabilistic executions and probabilistic traces of the new network N are defined as usual.
In Sections 4 and 5, we show how to relate these to the probabilistic executions and probabilistic
traces of Nt and N?.

Here are some basic lemmas analogous to those for general probabilistic executions and traces:
For these lemmas, fix AV = N x N? and a particular input execution f3;, of N, which yields a
particular probabilistic execution P.

Lemma 13 Let « be a finite execution of N of length > 0 that is consistent with B3;,. Suppose that
o' is its one-step prefir. Let 8 = trace(a) = a[Neyt and ' = trace(a’) = o[Negt. Let j € {1,2}.
Let o/ = a[N7, o/l = o/[N7, B9 = B[N, and B = B'[N7. Then

1. A(a?) C A(a), and P(A(a)|A(a")) = FE4C)

" In the brain setting, common input neurons for two different networks seem to make sense: the same neuron
might have two separate sets of outgoing edges (synapses), leading to different neurons in the two different networks.

8 We can prove from these requirements that A* and A2 cannot have any edge in common. For if they had a
common edge, then it would have to have the same source neuron and the same target neuron in both sub-networks.
Since the target neuron is shared, it would have to be an input neuron of at least one of the networks. But then that
network would then have an edge leading to one of its input neurons, which is forbidden by our network definition.

11

2. A(a?) C A(B7), and P(A(a?)|A(B7)) = %

3. A(o?) C A(Y), and P(A(?)|A(8")) = gl

4+ Al) C A(89), and P(A()|A(87)) = DAL,

A(B7) C A(BY), and P(A(B7)|A(87)) = F4E.

Lemma 14 Let o/, o/, 37, and 87 be as in Lemma 13. Then

P(A(B7)) _ P(A(?)|A(B7))

P(A(B7)) P(A(87)IA(BY))

Lemma 15 Let o be a finite execution of N of length > 0, that is consistent with B;,. Let o
be the one-step prefiz of o and B' = trace(o/). Let j € {1,2}. Then P(A(a[N;)|A(B'[NY)) =
P(A(a[Np,)JA(a/[N7)) x P(A(/[N7)|A(B'[N7)).

P(A(a?)|A(87)) = P(A(a?)|A(B7)) x

Proof. We have that
P(A(aN[)IA(B'[NY)) = P((A(a[N},) N A(B'[NY))|A(B'TNY)),
by basic conditional probability, which is equal to
P((A(a[N},) N A('[NT)[A(B'N7)),
because oz[NljC already fixes all the firing patterns for neurons in Nl]C This last expression is equal

to .)
P((A(a[Ni) N A(a’[NY)))
P(A(B'[N7)) ’

which is equal to
P((A(a[N},) N A(a'[N7))) . P(A(a[N7))
P(A(/[N7)) P(A(B'INT))
This last expression is equal to P(A(a[Nj;)\A('IN7)) x P(A(c/[N7)|A(B'[N7)), as needed. [

3.2 A special case: acyclic composition

An important special case of composition is acyclic composition, in which outputs of N are not
inputs to A''. That is, N'! may have inputs only from the outside world, and its outputs can go
to N1, A2, and the outside world. N2 may have inputs from the outside world and from A*, and
its outputs go just to N2 and the outside world. Formally, the definition of acyclic composition
is the same as the general definition of composition, except for the additional restriction that
N} NNZ, =0.

out —

3.3 Examples

Here we give three examples. The first two represent acyclic composition, and the third is a toy
example that involves cycles.

12

AND OR

TN\
\ Xy

X1
2L 2L

%NBI\ bias(y) = 3L

NOT
AND)

@

@ bias(a) = L

/_u (y) biask)=3L
(NOT) bias () = L 2

Figure 3: Composing four Boolean gate circuits into an Xor network

3.3.1 Boolean circuits

Figure 3 contains a circuit which is a composition of four Boolean gate circuits of the types described
in Section 2.4.1: two And networks, one Or network, and a Not network. We compose these
networks into a larger network that is intended to compute an Xor function.

In terms of binary composition operator, we can compose the four networks in three steps, as
follows:

1. Compose one of the And networks and the Not network to get a network with 2 inputs, 2
outputs, and 1 internal neuron, by identifying the output neuron of the And network with
the input neuron of the Not network. Note that the composed network has two outputs
because the And gate remains an output—the composition operator does not reclassify it
as an internal neuron. The composed network is intended to compute the Nand of the two
inputs (as well as the And).

2. Compose the network produced in Step 1 with the Or network to get a 2-input 3-output,
1-internal network, by identifying the the corresponding inputs in the two networks. The
resulting network has outputs corresponding to the Nand and the Or of the two inputs (as
well as the And).

3. Finally, compose the Nand network and the Or network with the second And network, by
identifying the Nand output neuron and the Or output neuron with the two input neurons
for the And network. The resulting network has an output corresponding to the Xor of the
two original inputs (as well as outputs for the first And, the Nand, and the Or).

To state a simple guarantee for this composed circuit, let’s assume that the inputs fire consistently,
in an unchanged firing pattern. Then, working from the previously-shown guarantees of the indi-
vidual networks, we can say that the probability that the final output neuron produces its required
Xor value at time 4 is at least (1 — §)°. We will say more about this later, in Section 4.2.

3.3.2 Attention using WTA

Figure 4 depicts the composition of our WTA network from Section 2.4.2 with a 2n-input n out-
put Filter network. The Filter network is, in turn, a composition of n disjoint And gates. The
composition is acyclic since information can flow from WTA to Filter but not vice versa.

13

WTA Network

\) k/ @ \"U

bias(a,) =.5y bias(a,) = 1.5y
3y /

bias(y) =3y [y

Filter Network

RYZ
G () G ()
2L 2L 2L 2L
AN
&) - 4 4
bias(y,) =3L bias(y,)=3L bias(y,) =3L

Figure 4: An Attention network built from a WTA network and a Filter network

The Filter network is designed to fire any of its outputs z; right after the corresponding wj
input fires, provided that its y; input (which is an output of the WTA) also fires. In this way, the
WTA network is used to select particular outputs for the Filter network to fire—those that are
“reinforced” by the inputs from the WTA.

When the WTA and Filter networks are composed, and the WTA inputs fire stably, with at
least one input firing, the WTA network should soon stabilize as we described in Section 2.4.2; to a
configuration with a single firing output y;, which is equally likely to be any of the n outputs. That
configuration should persist for a fairly long time. The detailed bounds are given in Theorem 12.
After the WTA stabilizes, it reinforces only a particular input w; for the Filter. From that point
on, the Filter’s z; outputs should mirror its w; inputs, and no other z outputs should fire. The
probability of such mirroring should be at least (1 — ¢’)™, if &' denotes the failure probability for
an And gate. (Recall the definition of ¢, from Example 2.4.2.) In this way, the composition can be
viewed as an “Attention” circuit, which pays attention to just a single input stream.

Note that the composed network behaves on two different time scales: the WTA takes some
time to converge, but after that, the responses to the selected intput stream will be essentially
immediate.

3.3.3 Cyclic composition

In this section we give a toy example, consisting of two networks that affect each other’s behavior
in a simple way. Throughout this section, we use the abbreviation L for the quantity /\ln(1 5),
just as we did in Section 2.4.1.

Figure 5 shows a network N'! with one input neuron x;, one output neuron z», and one internal
neuron aj. It has edges from z1 to aj, from a; to x2, and from x5 to itself (a self-loop). The biases
of a1 and xo are L and the weights on all edges are 2L.

Network N'! behaves so that, at any time ¢ > 1, the firing probability for the internal neuron a;
is exactly 1 — ¢ if a; fires at time ¢ — 1, and is exactly ¢ if a; does not fire at time ¢ — 1. This is as
for the Identity network in Section 2.4.1. The firing probability of the output neuron zs is:

e 0, if neither aq nor xs fires at time ¢ — 1.

14

e e bias(x,) =L bias(x,) =L

. . o, e
e bias(a;) =L @ bias(a,) =L 2L
2L | L2
S N @l ")
e bias(x;) = L e bias(x;) = L

bias(a,) =L bias(a,) =L
2L

Figure 5: A cyclic composition

e 1 —, if exactly one of a1 and x5 fires at time ¢t — 1.
o 1— (1_55)% if both a7 and 25 fire at time ¢t — 1.

Thus, if input z; fires, output xz2 will be likely to fire 2 times later (with probability at least
(1 — 6)?). Without any additional input firing, the firing of 3 is sustained only by the self-loop,
which means that the firing probability decreases steadily over time, by a factor of (1 —) at each
time. Eventually, the firing should “die out”.

Network N? is similar, replacing 1, a1, and x9 by x2, ag, and z1, respectively. However, we
omit the self-loop edge on x1. The biases are L and the weights on the two edges are 2L.

Network N2 behaves so that, at any time ¢ > 1, the firing probability for the internal neuron as
is exactly 1 — § if xo fires at time ¢ — 1, and is exactly d if xo does not fire at time ¢ — 1. Likewise,
the firing probability for the output neuron z; is exactly 1 — § if ao fires at time ¢ — 1 and § if
ay does not fire. Thus, if input zy fires, then output x; will be likely to fire 2 times later (with
probability at least (1 — §)2). However, the firing of x1 is not sustained.

Now consider the composition of A" and N?, identifying the output x5 of A" with the input xo
of N2, and the output =1 of A2 with the input 1 of N''. The behavior of the composition depends
on the starting firing pattern. Let us suppose that both a1 and a2 do not fire initially; we consider
the behavior for the various starting firing patterns for z1 and x5. We assume that § is “sufficiently
small”.

First, if neither x1 nor x9 fires at time 0, then with “high probability”, none of the four neurons
will fire for a long time. If one or both of x1 and x5 fire at time 0, then with “high probability”,
they will trigger all the neurons to fire and continue to fire for a long time. We give some details
in Section 5.4.1.

3.4 Compositionality definitions

We have defined a specific external behavior notion Beh for our networks. We have also allowed the
possibility of other external behavior notions. Here we define compositionality for general behavior
notions. Later in the paper, in Section 5.3, we will show that our particular behavior notion Beh
is compositional.

In general, we define an external behavior notion B to be compositional provided that the
following holds: Consider any four networks N, A2, N1, and N"?, where N'' and N"' have the
same sets of input and output neurons, N2 and A’ have the same sets of input and output neurons,

15

N1 and N2 are compatible, and "' and N2 are compatible. Suppose that B(N!) = B(NV"!) and
B(N?) = B(N"?). Then BN x N?) = B(N"' x N"?).

We show that, in general, if two external behavior definitions are equivalent and one is composi-
tional, then so is the other. This will provide us with a method that will be helpful in Section 5.3
for showing compositionality.

Theorem 16 If B and B’ are two equivalent external behavior notions for stochastic SNNs and B
is compositional, then also B’ is compositional.

Proof. Suppose that B and B’ are two external behavior notions and B is compositional. We show
that B’ is compositional. For this, consider any four networks N'', N2, N’ and N"2, where N/}
and N"! have the same sets of input and output neurons, N2 and N’ have the same sets of input
and output neurons, Nt and A2 are compatible, and N’! and N’? are compatible. Suppose that
B'(N1) = B (N"') and B'(N'') = B'(N"!). We must show that B'(N? x N'?) = B/ (Nt x N"2).
Since B and B’ are equivalent and B'(N') = B’(N"!), we have that B(N') = B(N"!). Likewise,
since B'(N?) = B'(N"?), we have that B(N?) = B(N"?). Since B is assumed to be compositional,
this implies that B(N? x N?) = B(N"! x N?). Then since B and B’ are equivalent, we get that
B'(N' x N?) = B' (Nt x N?), as needed. O

Lemma 17 An external behavior notion B is compositional if and only if, for all compatible pairs
of networks N'' and N2, BNt x N'?) is determined by B(N'') and B(N?).

Proof. Straightforward. (|

4 Theorems for Acyclic Composition

Our general composition results appear in Section 5. Those are a bit complicated, mainly because
of the possibility of connections in both directions between the sub-networks. Acyclic composition
is a very important special case of general composition, in fact, most interesting examples seem to
satisfy the acyclic restriction. Since the results for this case are much simpler, we present those
first.

For this section, fix the notation A= N x N2, and assume that we have no edges from N? to
N1, that is, that N} N N2, = 0.

In this section, and from now on in the paper, we will mostly avoid writing the cone notation A().
Thus, instead of P(A(f)), we will write just P(5). We hope this does not cause much confusion.

4.1 Compositionality

We have not formally defined “compositionality” for the special case of acyclic composition. So
instead of proving “compositionality” here, we will simply show how to express Beh(N) in terms
of Beh(N'') and Beh(N?).”

Specifically, we fix any particular input execution f;, of N, which generates a particular prob-
abilistic execution P of N. Then we consider an arbitrary finite trace 8 of N that is consistent
with B;,. We show how to express P(3) in terms of probability distributions P! and P? that are
generated by N and N?, respectively, from certain input executions.

We begin by deriving a simple expression for P(3), for an arbitrary finite trace 8 of N that is
consistent with 5;,.

9 We could, presumably, define compositionality for this special case as before but based on a modified definition
of compatibility—one that includes the extra acyclic condition. Then we could give a characterization similar to
Lemma 17 and use our result to show this version of compositionality. We leave this for later.

16

Lemma 18 Let (3 be a finite trace of N that is consistent with B;,. Then
P(B) = P(B[Nou) x P((B[Ngwt)|(B[N7,))-
Proof. Since B[Ny, is fixed, we have that

P(ﬂ) = P(ﬁ[Nout) = P((B((Nolut U N02ut>)

This last expression is equal to

P(ﬁ[Nolut) X P((/B(Ngut)‘(ﬂ(Nolut))

by basic conditional probability reasoning.
We have that

P((ﬁ ’VN02ut)|(/8 [Nc}ut)) = P((ﬁ ’VNgut”(/B[(Nolut n N?n)))7

because the behavior of N2 does not depend on neurons in N/ N2, And this is equal to

P((BTNGu)I(BI(NE))),

because Nl%L consists of N1 . N an plus some neurons in N;,, which are fixed in f3;,. Substituting

yields -
P(B) = P(B[Nyu) x P((BIN2,)(BINZ)),
as needed.]

Thus, Lemma 18 assumes an arbitrary input execution f3;, of A/, which generates a probability
distribution P. The Lemma expresses P((), for an arbitrary 3, in terms of the P-probabilities of
other finite traces. However, what we really need to do is to express P(/3) in terms of probability
distributions P! and P? that are generated by N'' and N2, respectively, from certain infinite input
executions for those respective sub-networks. We define these input executions and distributions
as follows.

e Input execution 8} and distribution P! for N':

Define the infinite input execution ﬁlln of N to be Sy (Niln, that is, the projection of the
given input execution on the inputs of A’

Then define P! to be the probability distribution that is generated by A'! from input execution
1

mn°
e Input execution 42, and distribution P? for N'2:

This is a bit more complicated, since the inputs to N2 depend not only on the external input
Bin, but on the outputs produced by N!.

Define the infinite input execution 5i2n of N2 as follows. First, note that NZ%I C N;UNL,, that

ut >
is, every input of N? is either an input of A/ or an output of N''. Define the firing patterns of
the neurons in NZ%ZﬁNm using S, that is, define ﬂ?n [(anﬂNm) = Bin (an And for the firing
patterns of the neurons in N2 N N2, use 3, that is, define 82 [(N2, N NL,) = B[(NZ, N NL,)

for times 0,...,length(/3) and the default 0 for all later times.

Then define P? to be the probability distribution that is generated by N2 from input execution
2

mn:*

17

Note that, in the second case above, the choice of the input execution B?n depends on the
particular trace 8 for which we are trying to express the P-probability. This is allowed because our
external behavior notion Beh for any network includes a probability distribution for every infinite
input execution of the network.

The next lemma restates the result of Lemma 18 in terms of the new probability distributions
P! and P2.

Lemma 19 Let 8 be a finite trace of N that is consistent with B;,. Then

P(B) = P'(B[Nou) x P*(B[Ngwy)-

out out

Proof. Fix 3, a finite trace of of N that is consistent with 3;,. By Lemma 18, we know that:

P(B) = P(B[Ngut) x P((BINou)I(BIN7,))-

It suffices to show that these two terms are equal to the corresponding terms in this lemma, that
is, that
P(p [Nolut) = Pl(ﬁsz}ut)
and
P((B[Ngu)|(B[N7)) = P*(B[Ngw).

These two statements follow directly by unwinding the definitions of P! and P2, respectively. [
The next lemma has a slightly simpler statement than Lemma 19.

Lemma 20 Let 8 be a finite trace of N that is consistent with ;. Then
P(B) = P'(B[N"') x P2(B[N?).

Proof. This follows from Lemma 19 because in each term on the right-hand-side of the equation in
this lemma, the probability depends on the output traces only—the input traces are fixed. Formally,
this uses Lemma 10. O

Finally, Lemma 20 yields a kind of compositionality theorem for acyclic composition:
Theorem 21 Beh(N) is determined by Beh(N') and Beh(N?).

We prove a more general compositionality result in Section 5.

4.2 Examples
4.2.1 Boolean circuits

Let N be the seven-gate Boolean circuit from Section 3.3.1. Express N as the composition Nt x A/2,
where A'! denotes the (Nand,Or) network and N2 denotes the second And network. That is, we
are considering the final composition in the order of compositions described in Section 3.3.1.

Fix f;, to be any infinite input execution with stable inputs, and let P be the probabilistic
execution of N generated from f;,. In P, we should expect to have stable, correct outputs for a
long while starting from time 4, because the depth of the entire network is 4. Here we consider just
the situation at precisely time 4, that is, we consider the probabilities P(/3) for finite traces 8 of
length exactly 4. Specifically, we would like to use Lemma 19 to help us show that the probability
of a correct Xor output at time 4 is at least (1 — 4)°.

18

We work compositionally. In particular, we assume that, in the probabilistic execution of N'! on
Bin, or any other stable input sequence, the probability of correct (Nand,Or) outputs at time 3 is
at least (1 —)% We also assume that, in the probabilistic execution of A? on any input sequence,
the probability that the output at time 4 is the And of its two inputs at time 3 is at least 1 — 4.
These assumptions could be proved for these two networks, but we simply assume them here and
use them to get our result about the composed network N.

So define event B to be the set of traces 3 of A of length 4 such that 3 gives a correct Xor output
at time 4, as well as correct (Nand, Or) outputs at time 3. We will argue that P(B) > (1 — §)®,
which implies our desired result.

We have that P(B) =3 _5.p P(8). By Lemma 19, this is equal to

ZP 6(out XPQ([Ngut)
BEB

Here P! and P? are defined as in Section 4.1, based on ,Biln = Bin, and for each particular 3, based
on equal to B[N? i, extended to an infinite sequence by adding 0’s. Note that the choice of input
sequence B2, for N2 is uniquely determined by B[NZ,,.

We break this expression up into:

L 2/ 92
ZZP 5(out XP(B(out))
Bt B2
Here, 3! ranges over traces of N'! that are consistent with 3;, and yield correct (Nand, Or) outputs
at time 3. And for each particular 81, 62 ranges over traces of N2 that are consistent with the

input sequence 2, determined from 8'[NZ, = B[NZ,, and whose output at time 4 is the Xor of
its inputs at time 3. This is equal to (collecting terms for each 3'):

ZPI(out ZP2 62(out
i

Now, for any particular 8!, we know that:

ZP2 /82 out (5)7

by our assumptions about the behavior of N?. So the overall expression is at least
1 1
Z P out 1 - 1 - Z P out

We also know that

ZPl/B(out (1_5)

by our assumption about the behavior of N''. So the overall expression is at least
(1= -0'=(1-4d)

as needed.

19

4.2.2 Attention using WTA

We consider the composition of the WTA network and the Filter network as described in Sec-
tion 3.3.2. Now call the composition A, the WTA network N, and the Filter network A2, We
assume that the WTA network satisfies Theorem 12, with particular values of 6, t., ts, 7y, ¢c1 and cs.
We assume that each And network within Filter is correct at each time with probability at least
1-4.

Fix B, to be any infinite input execution of ' with stable z; inputs, such that at least one z; is
firing. The w; inputs are unconstrained. Let P be the probabilistic execution of A/ generated from
Bin- We want to prove that, according to P, with probability at least (1 — §)(1 — &)™, there is
some t < t. such that: (a) the y outputs stabilize by time ¢ to one steadily-firing output y;, which
persists through time ¢ +¢5— 1, and (b) for this particular ¢, starting from time ¢+ 1 and continuing
for a total of ¢5 times, the z; outputs correctly mirror the w; inputs at the previous time, and all
the other z neurons do not fire.

We work compositionally. We assume that, in the probabilistic execution of the WTA network
N1 on Bin[Nin, the probability of correct, stable outputs as in Theorem 12 is at least 1 — J. We
also assume that, in the probabilistic execution of A2 on any input sequence, conditioned on any
finite execution prefix, the probability of correct mirroring of inputs for the next ¢ times is at least
(1 — §’)™s=. These assumptions could be proved for the two networks, but we simply assume them
here.

Now define B to be the set of traces 3 of A of length t. + t; — 1 such that all the desired
conditions hold in S, that is, there is some t < ¢, such that in g, (a) the y outputs stabilize by time
t to one steadily-firing output y;, which persists through time ¢ +t; — 1, and (b) for this particular
i, starting from time ¢t + 1 and continuing for a total of ¢, times, the z; outputs correctly mirror
the w; inputs at the previous time, and all the other z neurons do not fire. We will argue that
P(B) > (1 —6)(1 —§)™s. We follow the same pattern as in the Boolean circuit network example
in Section 4.2.

We have that P(B) = 5.5 P(8). By Lemma 19, this is equal to

Z Pl(B(Nolut) x PZ(B’VN(?ut)

BeB

Here, P! and P? are defined as in Section 4.1, based on B}n = Bin [Nzln and for each particular (3,
based on (2, equal to B[N2, and extended to an infinite sequence by adding 0’s. Note that 82, is
uniquely determined by B[(N;, U NL,,).

This expression is greater than or equal to:

Z(ZP1<51(N01ut) x P2(52(N3ut))

gt B2

Here, B! ranges over traces of N'! that are consistent with 3;,, and for which there is some ¢ < t.. such
that in 8%, the y outputs stabilize by time ¢ to one steadily-firing output y;, which persists through
time t 4+ ts — 1. And for each particular 8!, 82 ranges over traces of N2 that are consistent with
the input sequence Bfn determined from B;, and B[N}, = B[N}, and that satisfy the following

ut utr
correctness condition for N2: for the first ¢ and associated i that witness the correctness condition
for 1, at times ¢+ 1,...,t;,_1, the z; outputs correctly mirror the w; inputs at the previous time,

and all the other z neurons do not fire.'?

10T he technical reason why this is an inequality rather than an equation is that it is possible for 82 to satisfy the
correctness condition for N2 starting from some other time than the initial ¢ satisfying the condition for A*.

20

This is equal to (collecting terms for each 3'):
ZPI(out ZP2 62(ou
ﬁl

Now, for any particular ', we know that:

ZP2 52 out (1 - 6/)nts’

by our assumptions about the behavior of N2. So the overall expression is at least

ZPI out (1 - 6l)nts = 5/ s ZPI out

We also know that

ZPI out (1_6)

by our assumption about the behavior of N'!. So the overall expression is at least
(1—0)(1 — &),

as needed.

5 Theorems for General Composition

For general composition, a simple approach like the one in Section 4 does not work. Apparent
circularities in dependencies get in the way. In the general case, we can break these circularities
using time.

For this entire section, fix N' = N'' x N2. We will continue to mostly avoid writing the cone
notation A().

5.1 Composition results for executions and traces

For this subsection and the following, fix a particular input execution f3;, of N, which yields a
particular probabilistic execution P. The main result of this subsection is Lemma 23. It says that
the probability of a certain execution « of the entire network A, conditioned on its trace f3, is
simply the product of the probabilities of the two projections of v on the two sub-networks, each
conditioned on its projected trace. In other words, once we fix all the external behavior of the
network, including the part of the behavior involved in interaction between the two sub-networks,
the internal states of the neurons within the two sub-networks are determined independently. We
begin with a straightforward lemma that treats the two sub-networks asymmetrically.

Lemma 22 Let o be a finite execution of N with trace 3, such that « is consistent with 3;,. Then

P(O‘|ﬁ):P(((znt)’ﬁ)xp((|V mt)‘((znt))

Proof. Standard conditional probability. O

And now we remove the asymmetry:

21

Lemma 23 Let o be a finite execution of N with trace 3, such that « is consistent with 3;,. Then
P(a|B) = P((a[NH|(BIN1) x P((a[N*)|(B[N?)).
Proof. Lemma 22 says that

P(O‘M?):P(((znt)’/B)XP(([mt)‘(a(mt))

It suffices to show:

L. P((a[Nj,)18) = P((a[ND)|(B[N1)).
For this, note that
P((a[Ni)|B) = P((a[N'|B),

because 3 already includes the firing patterns for all the neurons in N1 — N}
P((a[N'[B) = P((a[NY)[(B[N1)),

because of locality—the neurons in N! are the only ones that a[N! depends on. Putting
these two facts together yields the needed equation.

2. P((a[Nz)|(a[Ni,), 8) = P((a[N?)[(B[N?)).
For this, note that

_Nl

ext*

And

P((af N[Ni), B) = P((a[N*)[(a[Niy). B),

because (3 already includes the firing patterns for all the neurons in N2 — N2 = . And

P((a[N?)|(a[Nin), B) = P((a[N?)|5),

because o[N? does not depend on (a[N} ,

P((a[N?)|8) = P((a[N?)|(B[N?)),

because of locality—the neurons in N2 are the only ones that a[N? depends on. Putting
these three facts together yields the needed equation.

), except indirectly through 5. Finally,

O

5.2 Composition results for one-step extensions

In this subsection, we describe how to break circularities in dependencies using time, as a major
step toward our general compositionality result. Specifically, we consider one-step extensions of
executions and traces of N/, and show how we can express them in terms of one-step extensions of
executions and traces of N1 and N?.

Our first lemma is about extending an execution, either to a particular longer execution, or just
to any execution with a particular longer trace.

Lemma 24 1. Let « be a finite execution of N of length > 0 that is consistent with Bi,. Let o/
be the one-step prefix of . Then:

P(ala’) = P((a[Ni|(@'TN1)) x P((a[Ng)|(a/[N?)).

22

2. Let B be a finite trace of N of length > 0 that is consistent with Bi,. Let o' be a finite
execution of N such that trace(c’) is the one-step prefix of B. Then:

P(Bla’) = P((B[Not) (o [N1)) 5 P((B[Nyp)| (/' [N?)).

Proof. 1. The non-input neurons of N are those in N;. = N ﬁ: U N, l%. The firing states of all of
these neurons in the final configuration of o are determined independently. Thus, we have

P(ala’) = P((a[Ni)|a') x P((a[Nig)la').

Furthermore, the final firing states for the neurons in NllC depend only on the immediately
previous states of the neurons in N', and similarly for Nl2C and N2, so this last expression is
equal to

P((a[N)|(@'TN1) x P((a[Nigl(a'TN?)),
as needed.

Ly UN2,. The firing states of all of these
neurons in the final configuration of 8 are determined independently. Thus, we have

P(Bla’) = P((B[Noyp)la') x P((B[Nou)lo).

Furthermore, the final firing states for the neurons in NJ,, depend only on the immediately
previous states of the neurons in N!, and similarly for N2, and N2, so this last expression
is equal to

2. The output neurons of A/ are those in Ny, = N

P((BINgu)l (o' TN')) x P((B[Ngy)| (o' [N?)),

as needed.
O

The second lemma is about extending a trace, either to an execution or to a longer trace. This
is a bit more difficult because we are conditioning only on traces, which do not include the internal
behavior of the two sub-networks.

Lemma 25 1. Let « be a finite execution of N of length > 0 that is consistent with ;. Let 3
be the one-step prefix of trace(a). Then:

P(alf") = P((a[N)(B'TNY)) x P((a[Ni)|(B'TN?)).

2. Let B be a finite trace of N of length > 0 that is consistent with Bi,. Let B’ be the one-step
prefic of trace(a). Then:

P(B18") = P((BINout) [(B'TN")) x P((B[NGu)|(8'TN?))-
Proof. 1. Fix a and 3 as described. Let o’ be the one-step prefix of a. By Lemma 9, we have:
P(alp’) = P(ala’) x P(a'|8).
Lemma 24 implies that
P(ala) = P((a[Nj)|(@'[N1)) x P((a[Nig)l(a/[N?)).
Lemma 23 implies that

P(c/|8") = P((«/IN)|(B'TNY)) x P((a'[N?)|(B'[N?)).
23

Substituting, we get that:

P(a]f') = P((a[Ng)|(a'TN')x P((a[N)|(a'[N?))x P((a' [N |(B'[N1))x P((a'[N?)[(5'N?)).

Rearranging terms and using Lemma 15, we see that the right-hand side is equal to
P((a[Ni)|(B'TN1) x P((a[NR)I(B'TN?)),

as needed.

2. Fix g and 8’ as described. Let B denote the set of executions « of N such that trace(a) = 3,
i.e., such that a[Ney = 8. Note that what varies among the different executions in B is just
the firing patterns of the neurons in N;,; = Nl U N2 . Then P(8|8") can be expanded as

int wmnt®

> Plalp).

aeB

By Part 1, this is equal to
D (PUaINDIB'TNY) x P((a[NZ)|(B'TN?)).

aeB

Now define B! to be the set of executions a® of N such that trace(a') = S[N'. Note that
all that varies among these a' is the firing patterns of the neurons in Nilm. Analogously,

define B? to be the set of executions o of A2 such that trace(a?) = f[N2. All that varies

among these a? is the firing patterns of the neurons in N2,,.

Now we project the o executions onto N' and N2, and we get that the above is equal to:

Y. (PE@YBTNY) x P(a®|(BTN?)).

aleBl a2eB?

This sum can be split into the product of sums:

Y. PINBINY) x Y P*(BN?).

aleB! a?eB?

This is, in turn, equal to
P((B[Nout) [(B'TN1)) x P((B[Naut) [(8'[N?)),

as needed.

5.3 Compositionality

Finally we are ready to prove that our behavior notion Beh is compositional. In view of Theorem 16,
it suffices to show that our auxiliary behavior notion Behsy is compositional. And in view of
Lemma 17, it suffices to show that Beha(N) is determined by Beha(N71) and Beha(N?).

So here we show how to express Beha(N) in terms of Beho(N?1) and Beha(N?). Recall that the
definition of Behsy(N) specifies, for each infinite input execution f;, of N/, a collection of conditional
probabilities, one for each finite trace 3 of A of length > 0 that is consistent with 3;,. Fix any such
input execution, (3;,, which generates a particular probabilistic execution P of M. Then consider
an arbitrary finite trace 8 of N of length ¢ > 0 that is consistent with 3;,. Let 8’ be the length
t — 1 prefix of 3. We show how to express P(3|3’) in terms of the conditional probabilities that
arise from probability distributions P! and P2, which are generated by N and N?, respectively,
from certain input executions. We define these input executions and distributions as follows.

24

e Input execution 8} and distribution P! for N'!:

Then define the infinite input execution 3}, of N1 as follows. First, note that N}, C Ny, UN2,,,
that is, every input of '! is either an input of A" or an output of A2, Define the firing patterns
of the neurons in Niln N N;, using B, that is, define Zln ((Nzln N Nin) = Bin [Nzln And for the
firing patterns of the input neurons in N1 N N2, use 8/'[(N} N N2,) for times 0,...,t — 1,
and the default 0 for times > . Define P! to be the probability distribution that is generated
by A from input execution 3} .

e Input execution 42, and distribution P? for N':

Analogous, interchanging 1 and 2.

Lemma 26

P(B16") = P (BT Nou) I(B'TN1)) x P*((B[Ngu)|(B'[N?)).
Proof. Lemma 25, Part 2, tells us that:

P(BIB") = P((B[Nou)|(B'TN1)) x P((BING,)|(B'TN?)).

So it suffices to show that

P((B[Ngun)(B'TNY)) = PH(B[Nour) | (B'TN1)),

and similarly for A2

There are two differences between the two expressions: First, in the first expression, we fix only
the external inputs of N'', and consider the probabilistic execution of the entire network. We then
consider the conditional probability P((3[NZt,)|(8'[N')), which means that we fix all the inputs
and outputs of A'' through time ¢ — 1 to be as in 3/, and consider the probability that the firing
pattern for the outputs of A'! at time ¢ coincides with what is given in 8. In the second expression,
we fix all the inputs of N'', and consider the probabilistic execution of just AN''. We then consider
the conditional probability P'((8[NL,,)|(8’[N')), which means that we again fix all inputs and
outputs of N'! through time ¢ — 1 to be as in /', and consider the probability that the firing pattern
for the outputs of N at time t coincides with what is given in 3.

The second difference is that the first expression involves different input sequences to N'! starting
from time ¢. The second expression fixes those inputs to 0. This should not matter, because we
are concerned only with what happens up to time ¢, and the probabilities for times up to ¢ depend
only on inputs through time ¢ — 1.

The equivalence of these two expressions follows by unwinding the definitions. O

Lemma 26 seems to be a nice statement of how the probabilities decompose, and we generalize
this in Lemma 31. However, it is not in exactly the right form to actually prove the compositionality
of Behs. For this, we need a technical modification of the lemma.

Namely, define 4! to be the length-t trace of N'! such that '[N}, = B[N}, and y![N}, is

a prefix of ﬁlln That is, 7! pastes together the output from B[N}, with the input used in the
definition of P!. Note that S'[N'! is the one-step prefix of y!. Define 42 analogously. Now we
can state a lemma that expresses conditional probabilities for N' with f;, in terms of condition

probabilities for N1 with 8} and N? with 32,

Lemma 27

P(BI8") = P*(y'|(B'TN1)) x P*(+*|(8'TN?)).

25

Proof. By Lemma 26, we have that
P(B|8") = PH((B[Nou) I(B'TN1)) x P2((B[NG.0)|(5'TN?)).
So it suffices to show that the corresponding terms are the same, that is:
PY(BINGu)|(B'TNT) = PL(y (BTN Y)),

and similarly for N2. The first case follows because the definition of P! fixes the firing patterns
for the neurons in N}, through time ¢, in a way that is consistent with 4!, and the 4! and 3 agree
on the neurons in Nout Similarly for the second case. O

Now we can argue compositionality:

Lemma 28 For all compatible pairs of networks N* and N2, Beho(N') is determined by Beha(N™1)
and Beha(N?).

Proof. Follows directly from Lemma 27. 0
Theorem 29 Beho is compositional.
Proof. By Lemmas 28 and 17. 0
Theorem 30 Beh is compositional.
Proof. By Theorems 29 and 16. 0

We end this section with a generalization of Lemma 26 that applies to all four combinations
of executions and traces. The proof should be similar to that for Lemma 26, based on earlier
Lemmas 24 and 25. We will use this later, in Section 5.4.1.

Lemma 31 Let o, o/, 3, and B’ be as usual, Py and Py as defined earlier in this section. Then

1. P(ala/) = PY((a[Np)[(a'[N1)) x P2((a[NE)|(e/[N?)).
P(Bla’) = PH((B[Nou) (' [N1)) x P2((B[Ngu) | (o' [N?)).
P(a]f’) = PH((a[NI (B'TNY)) x P2((a[NE)|(B'[N?)).
P(B18") = PH((B[Nou) [(B'[N1)) x P2((B[NG,)I(B'[N?)).

5.4 Examples
5.4.1 Cyclic composition

We consider the cyclic composition example from Section 3.3.3. We analyze just one case in detail,
namely, where ;1 fires initially and zs does not. We prove here just that, with probability at least
(1 —0)7, both z; and 9 fire at time 4.

The input firing sequence [;, is trivial here, since we have no input neurons for the entire
network A. For this example, we assume that, in the initial configuration, z; fires and the other
three neurons do not fire. So with all these restrictions, we have just a single probability distribution
P for executions of N.

We argue the result compositionally, in terms of executions. Probably we could carry out a
similar analysis in terms of traces, but coping with the hidden neurons would make things more
complicated.

So let A be the set of executions of length 4 in which both z; and x5 fire at time 4. We aim to
show that P(A) > (1—4§)7. For this, we define several other successively-included sets of executions:

26

e Ay, the set of executions of length 0 consisting of just the initial configuration, in which z; is
firing and the others are not firing.

e Ay, the set of executions of length 1 whose one-step prefix is in Ap and in which, in the last
configuration, a; is firing.

e Ay, the set of executions of length 2 whose one-step prefix is in A; and in which, in the last
configuration, x is firing.

e Ajs, the set of executions of length 3 whose one-step prefix is in As and in which, in the last
configuration, zo and ag are both firing.

o Ay, the set of executions of length 4 whose one-step prefix is in Az and in which, in the last
configuration, x1, x2 and ag are all firing.

Then we can see that
P(A) > P(A4) = P(A4]A3)P(As|Ag)P(A2] A1) P(A1]Ap).

We need lower bounds for the four conditional probabilities. For example, consider P(A4|Az).
Let o/ be any execution in As; we will argue that P(A4|a’) > (1 — §)3, and use Total Probability
to conclude that P(A4]A3) > (1 —6)3. We have:

P(A4]) ZP ala’),

where o ranges over the length-4 executions in A4 that extend o’. By Lemma 31, we may write:

P(ala’) = P((afNi) (o [N1)) x P2((a[Ng)| (o' [N?)),

where P! and P? are defined from o/[Ny, as in Section 5.3.
So we can rewrite > P(ala’) as

SN PH(a NDI(@TNY) x P2((a*[N2)|(a/[N?)),

al o2

where a! ranges over all one-step extensions of o/ [N! such that zs fires in the final configuration,

and o ranges over all one-step extensions of o [N 2 in which z; and a2 both fire in the final
configuration. This summation is equal to

ZP ! [NL)I(ZP2 2[N2)|(a/[N?)).

The first term is > (1 —¢) because we care only that x5 fires in the final configuration, and we have
assumed that it fires in the previous configuration. The second term is > (1 — §)2, because we care
that both z; and as fire in the final configuration, and we have assumed that as and xo fire in the
previous configuration. So we have:

P(Ada’) > 3 P (@} NL)(ZP? 2[N2)|(@/[N?) = (1 - 8)(1—6)? = (1 - 5)"

al

So we have shown that P(A4|A3) > (1 — §)3, Similar arguments can be used to show that
P(A3]A2) > (1 —9)%, (A2|A1) > (1—6), and P(A1]Ap) > (1 —). Combining all the terms we
get that P(A4) > (1 —6)7, as needed.

27

6 Hiding

Next, we define a hiding operation for networks, which simply reclassifies some output neurons as
internal. Such an operation can be used in conjunction with a composition operation, for example,
we often want to compose two networks and then hide the neurons that were used to communicate
between them.

6.1 Hiding definition

Given a network A and a subset V of the output neurons N,,; of N, we define a new network
N’ = hide(N,V) to be the same as N except that all the outputs in V are now reclassified as
internal neurons. That is, all parts of the definition of N/ and A are identical except that:

e N/,=Nou—V,and
° N'/nt = Ny UV.

v

The important effect of the hiding operation is to make the hidden neurons ineligible for combining
with other neurons in further composition operations.

We give a result in the style of Lemma 28, here saying that the external behavior of hide(N, V)
is determined by the external behavior of A" and V.

Theorem 32 For all networks N and subsets V. C Ny, Beh(hide(N,V)) is determined by
Beh(N) and V.

Proof. Let N denote hide(N,V). Fix any infinite input execution 8;, for N, and let P’ denote
the generated probabilistic execution of N’. Consider any finite trace S of N’ that is consistent
with f;,. We must express P’() in terms of the probability distribution of traces generated by N
on some input execution.

To do this, note that the executions of N are identical to those of N'—only the classification
of neurons in V is different. The input execution f3;, is also an input execution of N, and the
probabilistic execution P’ generated from (;,, in AV is identical to P. So we can write P'(8) = P(5).

This is not quite what we need, because 3 is not actually a trace of N—it excludes firing patterns
for V. But we can define B to be the set of traces v of N such that y[N/,, = 3, that is, the traces
of N that project to yield 3 but allow any firing behavior for the neurons in V. Then we have

P'(8) =3 P(y).

YEB

This shows the needed dependency. ([l

6.2 Examples
6.2.1 Boolean circuits

Let N be the 5-gate Nand circuit from Section 3.3.1. Let V be the singleton set consisting of just
the And gate within the circuit. We consider the network N’ = hide(N, V'), which is the same as
the Nand circuit except that the And gate is now regarded as internal. Thus, A/ has two internal
neurons, the And neuron and a.

Fix S, to be any infinite input execution (of both N" and N”’) with stable inputs, and let P and
P’ be the probabilistic executions of N' and N, respectively, generated from S;,.

In P, we should expect to have stable correct Nand outputs for a long time starting from time 3.
Here we consider just the situation at precisely time 3, that is, we consider the probabilities P’(3)

28

for finite traces [of length exactly 3. Specifically, we would like to use the connection between P
and P’ to help us show that the probability of a correct Nand output at time 3 is at least (1 —6)3.

We work in terms of the hiding operation. In particular, we assume that, in P, the probability
of both a correct And output at time 1 and a correct Nand output at time 3 is at least (1 — §)3.
This could be proved for the Nand circuit separately, but we simply assume it here.

Now define event B to be the set of traces S of N of length 3 such that 8 gives a correct Nand
output at time 3. We argue that P'(B) > (1 — 6)3, which implies our desired result.

We have that P'(B) = > gcp P'(8). We know that P'(3) = P(B) for each such 8. Since
P'(B) = P(B) for every trace of N, we have that P'(B) = 35 P(8) = P(B). But by assumption,
P(B) > (1 —6)3. Therefore, P'(B) > (1 — §)3, as needed.

7 Problems

In this section, we define a formal notion of a problem to be solved by a stochastic Spiking Neural
Network. We say what it means for an SNN to solve a problem. We prove that the solves notion
respects composition and hiding operations.

7.1 Problems and solving problems

A problem R for a pair (N, Noyt) of disjoint sets of neurons is a nonempty set of possibilities.
Each possibility Poss is a mapping that takes each infinite sequence (;, of firing patterns for N,
to a result. A result R = Poss(B;,) is a mapping that specifies, for every finite sequence 3 of firing
patterns for Nj, U Ny, of length > 0 that is consistent with S;,,, a probability R(j).

The probabilites assigned for a particular result R must satisfy certain constraints. They must
be such that the probabilities generated from them for all the “cones” form an actual probability
distribution, for example, the sum of the probabilities of all one-step extensions of a frace S must
be equal to the probabiity of 5.!!

Now suppose that A is a network with input and output neurons N;, and N,u, and R is a
problem for (Nj,, Noyt). Then we say that that N solves R provided that, for some Poss € R
the following holds: Let f3;, be any infinite input execution of A/, and let P be the probabilistic
execution of N generated from f;,. Then for every finite trace 8 of N, P(8) = Poss(Bin)(5)-
In other words, R = Poss(f;,) is exactly the trace distribution derived from the probabilistic
execution of N on input f;,.

7.2 Composition

We would like a theorem of the form: If N solves problem R' and A? solves problem R? then
the composition N' = A x A2 solves the composition R = R! x R?. For this, we must first define
the composition of two problems, R = R x R2.

Definition of composition of problems: Let R! be a problem for the pair (N} K N}

in’ out) and R2
a problem for the pair (N2, N2,,). Assume that Let R! and R? are compatible, in the sense that

N}, N N2, =0. The composition R is a problem for the pair (N, Nout), where
e Noy = NL,UN2, and

® Nin :NiInUNZ%L_Nout-

11 Also, since we are assuming that the initial states of networks are fixed rather than determined probabilistically,
we might want to insist that R assign probability 1 to one particular trace of length 0. We don’t need to do this, so
let’s avoid this for now.

29

The composition is a nomempty set of possibilities, each of which is a mapping that takes each
infinite sequence f;, of firing patterns for Nj, to a result. Each result R specifies a probability
distribution on the set of infinite sequences of firing patterns for N;, U N, that are consistent
with B;,. To define the set of possibilities for R, we simply fix (in an arbitrary way) possibilities
Poss' and Poss? for R' and R?, respectively, and then construct a possibility Poss from Poss!
and Poss?. Since there may be many ways to fix the combination of choices of Poss' and Poss?,
R may wind up containing many different possibilities.

To construct Poss from a given Poss' and Poss?, we fix any infinite sequence B, of firing
patterns for Nj,, and define the result R = Poss(f;,). This requires us to define R(3) for every
finite sequence [of firing patterns of N;, U N, that is consistent with 3;,. We do this using a
recursive approach, inspired by the conditional construction used for Lemma 26.

For the base, consider 3 of length 0. Then we define R(8) =1 if

/B[N(}ut_FO[outandg{ out_F0|r out»

and 0 otherwise. That is, we assign probability 1 to the length-0 sequence S in which the initial
output firing states are as specified for networks N'' and A2

For the recursive step, consider 3 of length > 1. Let 8’ be the one-step prefix of 5. We will
define R(B) to be R(B') x T x T?, where T' and T? correspond to conditional probabilities for the
output neurons generated by Poss' and Poss?, respectively.

Let 8} be the infinite sequence of firing patterns for N} that are constructed from (a) Bin [N},
for neurons in N}, N Ny, and (b) B[(N}, N NZ2,) for times 0,. — 1, and the default 0 for
tirnes >t Deﬁne R! = Poss'(3}), that is, the result generated by Rl on input B} . Define

= R (B[NA) (9 [N).

Deﬁne B2, R% and T? analogously. Thus, 7% = R%((8[NZ2,,)|(8'[N?)). Finally, define R(3) =

R(B") x T x T2

Theorem 33 If N solves problem R'! and N? solves problem R? then the composition N =
N1 x N? solves the composed problem R = R! x R?.

Proof. Since N solves R', we know that there is a possibility Poss! € R! such that, for any
infinite input execution S}, of N1, Poss'(B])) is identical to the trace distribution derived from
N1 on input 62»1”. In other words, Poss' = Beh(N'). Likewise, since N solves R?, there is a
possibility Poss? € R? such that, for any infinite input execution 82, of N2, Poss(/32,) is identical
to the trace distribution derived from N? on input 32,. In other words, Poss® = Beh(N?). We
define a possibility Poss € R from Poss' and Poss?, following the approach just above, in the
definition of composition of problems. We claim that Poss = Beh(N).

In order to show that Poss = Beh(N'), we must show that, for any infinite sequence f3;;, of firing
patterns for Ny,, Poss(f;,) is the same trace distribution that is generated by A/ on input §;,,. So
fix Bin, let P be the trace distribution generated by N on input B;,, and let R = Poss(8;,). We
must show that, for any finite trace § of N that is consistent with 8;,, P(8) = R(3). We do this
by induction on the length of .

For the base, consider 3 of length 0. If B[N}, = Fi [N}, and B[N2, = FZ[N2,, then R(B) is
defined to be 1, and otherwise it is defined to be 0. The definition of P yields 1 for the starting
output configuration of A and 0 for other output conﬁgurations The starting output configuration
is the unique configuration C for which C[N},, = F}[N},, and C[N2, = F3[NZ2,. Since C is the
same as the unique configuration in B[Ny, this implies that P(5) = R(f).

For the inductive step, consider 3 of length > 1. Let 3 be the one-step prefix of 5. By the
inductive hypothesis, we know that P(8') = R(3’). We must show that P(3) = R(f).

out*

30

Fix 8}, R, B2, and R? as in the recursive definition of R(3). Then by the definition of R(8),
we have
R(B) = R(ﬁ) X R (B[Noup)[(B'TNY)) x R*((B[Naw) |(B'N?)).
Similarly, for the same 8} and 32,, fix P! and P?, probabilistic traces for N'* and N? respectively.

Then by Lemma 26, we have

P(B) = P(8") x PY((B[Nout)l(B'TN)) x P*((B[Ngue)|(B'TN?)).

By the assumption that N solves R! with the particular possibility Poss!, we have that P! =
RY, 50 P((BINL|(B'TND)) = RA((B[NL)|(8'[ND). Similarly, P? = R2, so P2((B[NZ,)| (3 N?))
RA((BINZu)l(B'[N?).

Since the three corresponding terms in the two equations are all equal, we have that their products
are equal, that is, P(8) = R(f), as needed. O

7.3 Hiding

Now we define a hiding operator on problems, analogous to the hiding operation on networks.
Namely, given a problem R for (Njn, Nout), and a subset V' of the output neurons N,,; of R, we

define a new problem R’ = hide(R,V) for (N/,, N/), where
e N ,= Ny —V,and
o Nlln = Nm.

For each possibility Poss of R, we define a possibility Poss’ for R’. Namely, if 3;, is any
infinite sequence of firing patterns for N;, = N/, , and 3 is any finite sequence of firing patterns for
N! UN] ., then define Poss'(83;,)(0) as follows. First, let B denote the set of finite sequences ~y of
ﬁrlng patterns for Ny, U Ny such that v[(N], UN/,,) = . Then define

Poss'(Bin) (B Z Poss(Bin) (7

veB
Theorem 34 If network N solves problem R, and V € Nyyt, then hide(N,V) solves hide(R, V).

Proof. Since N solves R, we know that there is a possibility Poss € R such that for every infinite
input execution f3;, of N, with P the generated probabilistic execution, the following holds. For
every finite trace 5 of N, P(8) = Poss(Bin)(B).

Let N denote hide(N,V) and let R’ denote hide(R, V). We show that N’ solves R'.

Define Poss’ for R’ from Poss as in the construction just before this theorem. Fix an infinite
sequence [, of firing patterns for A/ and let P’ be the generated probabilistic execution of N”.
Let 8 be a finite trace of N/. We must show that P’'(3) = Poss'(Bin)(5).

Let B denote the set of finite sequences v of firing patterns for N;, U Ny such that v[(N/

Nou) = B. Then P'(8) = >° 5 P(y) and Poss'(8in)(8) = _,cp Poss(Bin)(7). Since for each
such v, P(y) = Poss(Bin)(7y), the two expressions are equal. O

7.4 Examples

In this section, we define three problems, all satisfying our formal definition of problems. They
are Winner-Take-All, Filter, and a problem we call Attention which can be solved by combining
Winner-Take-All and Filter.

31

The Winner-Take-All problem: We define the Winner-Take-All problem formally using no-
tation that corresponds to the statement of Theorem 12: we write it as WT A(n, d, t¢, ts), using
four parameters that appear in the theorem statement. The problem statement allows considerable
nondeterminism, in the choice of which output ends up firing, in the time when the stable interval
begins, and in what happens outside the stable interval.

The set Ny, is {x1,...,2n}, and Nyy is {y1,...,yn}. Each possibility is a mapping that takes
each infinite sequence [;, of firing patterns for N;, to a probability distribution on infinite sequences
of firing patterns for N, U Nyy;. In this case (and for the other problems in this section), we simply
define allowable results for each f;, independently, and combine them in all combinations to get
the possibility mappings.

So consider any B;,. If the firing pattern for N;, in 5;, is not stable or does not have at least one
firing neuron, then we allow all possible distributions that are consistent with 3;,. Now consider
the case where ;, is stable with at least one firing neuron. Then the allowable results for 5;, are
exactly the distributions that satisfy the following condition: With probability > 1 — 4, there is
some t < t. such that the y outputs stabilize by time t to one steadily-firing output y;, and this
firing pattern persists through time ¢ + t; — 1. Notice that these distributions may differ in many
ways, for example, they may give equal probabilities to choosing each output, or may favor some
over others. They may exhibit different times, or distributions of times, for when the stable interval
begins. They may exhibit different types of behavior before and after the stable interval.

We argue that our WTA network from Section 2.4.2 solves the formal WTA problem WT A(n, d, t¢, ts).
More specifically, we consider our WTA network with the weighting factor -y satisfying the inequal-
ity v > clog("gs), and with ¢, ~ clognlog(%). And we allow initial firing patterns for the internal
and output neurons to be arbitrary; so technically, we are talking about a class of networks, not a
single network. Then Theorem 12 implies that each of these networks solves the problem.

The Filter problem: We define the Filter problem as Filter(n,d). The set Ny, is {w;, yi|l <
i < n} and the set Nyy is {z;|]1 < i < n}. The Filter problem is intended to say that, for every
i, 1 <4 < n, the output neuron z; should fire at any time ¢t > 1 exactly if both the corresponding
inputs w; and x; fired at time ¢ — 1. Thus, it acts like n And networks.

Formally, each possibility is a mapping that takes each infinite sequence f;, of firing patterns
for N;, to a probability distribution on sequences of firing patterns for N;, U Nyu:. We define
the allowable results for each ;, independently. Here we express the requirements in terms of
conditional probabilities.

So consider any particular 3;,. Then the allowable results for 3;, are exactly the distributions
P on infinite firing sequences over N;, U N, that are consistent with 5;, and satisfy the following
condition. Let § be any finite sequence over N;,, U Ny, of length ¢t > 1 that is consistent with G,
and let C; be the final configuration of 5. Let 3’ be the the one-step prefix of 3, and C;_; be the
final configuration of 5. Suppose that, for every i, 1 <i < n, Cy(z;) = Ci—1(w;) A C¢—1(z;). That
is, 8 extends B’ with correct outputs at the final time. Then P(3|8") > (1 — §)™. The differences
among these distributions may involve different conditional probabilities, as long as they satisfy
the inequality.

Our simple Filter network of Section 3.3.2 solves the formal Filter problem, with § = 1—(1—¢")",
where ¢’ is the failure probability for a single And gate at a single time, according to notation used
in Section 3.3.2.

The Attention problem: We define the Attention problem formally as

Attention(n, 0, t.,ts) = WTA(n, 8%, t., ts) x Filter(n, 6%).

32

Here §, 6!, and 62 are related so that (1 —9) = (1 —6%)(1 —62)%s. The set Ny, is {z;, w;|1 < i < n},
and Noyt is {yi, zi|1 <i < n}.

Attention(n, d, t.,ts) guarantees that, with probability at least (1 — &'), the y; outputs converge
to a single firing output corresponding to a firing input within time ¢., and this configuration
persists for time t,. Furthermore, it guarantees that with probability at least 1 — §2, after any
prefix, the z; outputs exhibit correct And behavior with respect to the previous time’s y; and w;
firing behavior. It follows that, with probability at least (1 — §2)%. the z; outputs exhibit correct
And behavior throughout the stable y; firing interval. In other words, with probability at least
(1 —6) = (1—6Y)(1 - d2)%, the Attention network correctly mirrors the inputs corresponding to
the chosen y; output throughout the stable interval.

By Theorem 33, we see that any compatible solutions to WT A(n,d,t.,ts) and Filter(n,§?)
can be composed to yield a solution to Attention(n,d,t.,ts). In particular, the solutions to these
problems that we presented in Sections 2.4.2 and 3.3.2 can be composed in this way.

We can also define a version of the Attention problem in which we hide the y; outputs, hide(Attention(n,d,t.,ts),
The guarantees of this problem are similar to those of the Attention(n,Jd,t.,ts) problem, except
that the behavior of the y; neurons is not mentioned explicitly. Essentially, this problem says that,
with probability at least (1 —) = (1 — 6)(1 — 62)%, the network correctly mirrors the inputs
corresponding to some y; output, throughout the stable interval. The same composition as above,
with hiding of the y; outputs, solves this problem.

8 Conclusions

We have described in detail a model for Spiking Neural Networks, including composition and hiding
operations. We have proved fundamental theorems about these operators.

The model used in ths paper is very basic; in particular, each neuron in this paper has simple
state, just a Boolean representing whether it is firing or not. In future work, we will try to extend
the definitions and results to allow a neuron to have more elaborate state, including history of its
recent past firing or accumulated potential. Such extensions are realistic for a brain network model.

References

[LMP17a] Nancy Lynch, Cameron Musco, and Merav Parter. Computational tradeoffs in biological
neural networks: Self-stabilizing winner-take-all networks. In Proceedings of the 8th
Conference on Innovations in Theoretical Computer Science (ITCS), 2017. Full version
available at https://arxiv.org/abs/1610.02084.

[LMP17b] Nancy Lynch, Cameron Musco, and Merav Parter. Neuro-RAM unit with applications
to similarity testing and compression in spiking neural networks. In Proceedings of the
2017 Internal Symposium on Distributed Computing (DISC), 2017. Full version available
at https://arxiv.org/abs/1706.01382.

[Mus18] Cameron Musco. The Power of Randomized Algorithms: From Numerical Linear Al-
gebra to Biological Systems. PhD thesis, Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, June 2018. Neural algo-
rithms work covered in Chapter 5.

[Seg95] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, June 1995.

33

https://arxiv.org/abs/1610.02084
https://arxiv.org/abs/1706.01382

	1 Introduction
	2 The Model
	2.1 Network structure
	2.2 Executions and probabilistic executions
	2.2.1 Executions and traces
	2.2.2 Probabilistic executions
	2.2.3 Probabilistic traces

	2.3 External behavior of a network
	2.4 Examples
	2.4.1 Simple Boolean gate networks
	2.4.2 Winner-Take-All circuits

	3 Composition
	3.1 Composition of two networks
	3.2 A special case: acyclic composition
	3.3 Examples
	3.3.1 Boolean circuits
	3.3.2 Attention using WTA
	3.3.3 Cyclic composition

	3.4 Compositionality definitions

	4 Theorems for Acyclic Composition
	4.1 Compositionality
	4.2 Examples
	4.2.1 Boolean circuits
	4.2.2 Attention using WTA

	5 Theorems for General Composition
	5.1 Composition results for executions and traces
	5.2 Composition results for one-step extensions
	5.3 Compositionality
	5.4 Examples
	5.4.1 Cyclic composition

	6 Hiding
	6.1 Hiding definition
	6.2 Examples
	6.2.1 Boolean circuits

	7 Problems
	7.1 Problems and solving problems
	7.2 Composition
	7.3 Hiding
	7.4 Examples

	8 Conclusions

