
Neuro-RAM Unit with Applications to Similarity Testing and

Compression in Spiking Neural Networks

Nancy Lynch
MIT

lynch@csail.mit.edu

Cameron Musco
MIT

cnmusco@mit.edu

Merav Parter
MIT

parter@mit.edu

June 6, 2017

Abstract

We study distributed algorithms implemented in a simplified but biologically plausible model
for stochastic spiking neural networks. We focus on tradeoffs between computation time and
network complexity, along with the role of noise and randomness in efficient neural computation.

It is widely accepted that neural spike responses, and neural computation in general, is
inherently stochastic. In recent work, we explored how this stochasticity could be leveraged to
solve the ‘winner-take-all’ leader election task. Here, we focus on using randomness in neural
algorithms for similarity testing and compression. In the most basic setting, given two n-length
patterns of firing neurons, we wish to distinguish if the patterns are equal or ε-far from equal.

Randomization allows us to solve this task with a very compact network, using O
(√

n logn
ε

)
auxiliary neurons, which is sublinear in the input size. At the heart of our solution is the design of
a t-round neural random access memory, or indexing network, which we call a neuro-RAM. This
module can be implemented with O(n/t) auxiliary neurons and is useful in many applications
beyond similarity testing – e.g. we discuss its application to compression via random projection.

Using a combination of Yao’s minimax principle and a VC dimension-based argument, we
show that the tradeoff between runtime and network size in our neuro-RAM is nearly optimal.
To the best of our knowledge, we are the first to apply these techniques to stochastic spiking
network lower bounds. Our result has several implications – since our neuro-RAM construction
can be implemented with deterministic threshold gates, it demonstrates that, in contrast to
similarity testing, randomness does not provide significant computational advantages for this
problem. It also establishes a separation between our networks, which spike with a sigmoidal
probability function, and well-studied but less biologically plausible deterministic sigmoidal
networks, whose gates output real number values, and which can implement a neuro-RAM
much more efficiently.ar

X
iv

:1
70

6.
01

38
2v

1 
 [

cs
.N

E
] 

 5
 J

un
 2

01
7



1 Introduction

Biological neural networks are arguably the most fascinating distributed computing systems in our
world. However, while studied extensively in the fields of computational neuroscience and artificial
intelligence, they have received little attention from a distributed computing perspective. Our
goal is to study biological neural networks through the lens of distributed computing theory. We
focus on understanding tradeoffs between computation time, network complexity, and the use of
randomness in implementing basic algorithmic primitives, which can serve as building blocks for
high level pattern recognition, learning, and processing tasks.

Spiking Neural Network (SNN) Model We work with biologically inspired spiking neural
networks (SNNs) [Maa96, Maa97, GK02, Izh04], in which neurons fire in discrete pulses in syn-
chronous rounds, in response to a sufficiently high membrane potential. This potential is induced
by spikes from neighboring neurons, which can have either an excitatory or inhibitory effect (in-
creasing or decreasing the potential). As observed in biological networks, neurons are either strictly
inhibitory (all outgoing edge weights are negative) or excitatory. As we will see, this restriction
can significantly affect the power of these networks.

A key feature of our model is stochasticity – each neuron is a probabilistic threshold unit, spiking
with probability given by applying a sigmoid function to its potential. While a rich literature focuses
on deterministic circuits [MP69, HT+86] we employ a stochastic model as it is widely accepted that
neural computation is inherently stochastic [AS94, SN94, FSW08].

Computational Problems in SNNs We consider an n-bit binary input vector X, which rep-
resents the firing status of a set of input neurons. Given a (possibly multi-valued) function
f : {0, 1}n → {0, 1}m, we seek to design a network of spiking neurons that converges to an output
vector Z = f(X) (or any Z ∈ f(X) if f is multi-valued) as quickly as possible using few auxiliary
(non-input or output) neurons.

The number of auxiliary neurons used corresponds to the “node complexity” of the network
[HH94]. Designing circuits with small node complexity has received a lot of attention – e.g., the work
of [FSS84] on PARITY and [All89] on AC0. Much less is known, however, on what is achievable
in spiking neural networks. For most of the problems we study, there is a trivial solution that uses
Θ(n) auxiliary neurons for inputs of size n. Hence, we primarily focus on designing sublinear size
networks – with n1−c auxiliary neurons for some c.

Past Work: WTA Recently, we studied the ‘winner-take-all’ (WTA) leader election task in SNNs
[LMP17]. Given a set of firing input neurons, the network is required to converge to a single
firing output – corresponding to the ‘winning’ input. In that work, we critically leveraged the
noisy behavior of our spiking neuron model: randomness is key in breaking the symmetry between
initially identical firing inputs.

This Paper: Similarity Testing and Compression In this paper, we study the role of ran-
domness in a different setting: for similarity testing and compression. Consider the basic similarity
testing problem: given X1, X2 ∈ {0, 1}n, we wish to distinguish the case when X1 = X2 from the
case when the Hamming distance between the vectors is large – i.e., dH(X1, X2) ≥ εn for some
parameter ε. This problem can be solved very efficiently using randomness – it suffices to sample
O(log n/ε) indices and compare X1 and X2 at these positions to distinguish the two cases with
high probability. Beyond similarity testing, similar compression approaches using random input
subsampling or hashing can lead to very efficient routines for a number of data processing tasks.

1



1.1 A Neuro-RAM Unit

To implement the randomized similarity testing approach described above, and to serve as a foun-
dation for other random compression methods in spiking networks, we design a basic indexing
module, or random access memory, which we call a neuro-RAM. This module solves:

Definition 1 (Indexing). Given X ∈ {0, 1}n and Y ∈ {0, 1}logn which is interpreted as an integer
in {0, ..., n− 1}, the indexing problem is to output the value of the Y th bit of X1.

Our neuro-RAM uses a sublinear number of auxiliary neurons and solves indexing with high
probability on any input. We focus on characterizing the trade-off between the convergence time
and network size of the neuro-RAM, giving nearly matching upper and lower bounds.

Generally, our results show that a compressed representation (e.g., the index Y ) can be used
to access a much larger datastore (e.g., X), using a very compact neural network. While binary
indexing is not very ‘neural’ we can imagine similar ideas extending to more natural coding schemes
used, for example, for memory retrieval, scent recognition, or other tasks.

Relation to Prior Work Significant work has employed random synaptic connections between
neurons – e.g., the Johnson-Lindenstrauss compression results of [AZGMS14] and the work of
Valiant [Val00]. While it is reasonable to assume that the initial synapses are random, biological
mechanisms for changing connectivity (functional plasticity) act over relatively large time frames
and cannot provide a new random sample of the network for each new input. In contrast, stochastic
spiking neurons do provide fresh randomness to each computation. In general, transforming of a
network with m possible random edges to a network with fixed edges and stochastic neurons requires
Ω(m) auxiliary neurons and thus fails to fulfill our sublinearity goal, as there is typically at least
one possible outgoing edge from each input. Our neuro-RAM can be thought of as improving the
naive simulation – by reading a random entry of an input, we simulate a random edge from the
specified neuron. Beyond similarity testing, we outline how our result can be used to implement
Johnson-Lindenstrauss compression similar to [AZGMS14] without assuming random connectivity.

1.2 Our Contributions

1.2.1 Efficient Neuro-RAM Unit

Our primary upper bound result is the following:

Theorem 2 (t-round Neuro-RAM). For every integer t ≤
√
n, there is a ( recurrent) SNN with

O(n/t) auxiliary neurons that solves the indexing problem in t rounds with high probability. In
particular, there exists a neuro-RAM unit that contains O(

√
n) auxiliary neurons and solves the

indexing problem in O(
√
n) rounds.

Above, and throughout the paper ‘with high probability’ or w.h.p. to denotes with probability
at least 1− 1/nc for some constant c. Theorem 2 is proven in Section 3.

Neuro-RAM Construction The main idea is to first ‘encode’ the firing pattern of the input
neurons X into the potentials of t neurons. These encoding neurons will spike with some probability
dependent on their potential. However, simply recording the firing rates of the neurons to estimate
this probability is too inefficient. Instead, we use a ‘successive decoding strategy’, in which the

1 Here, and throughout, for simplicity we assume n is a power of 2 so logn is an interger.

2



firing rates of the encoding neurons are estimated at finer and finer levels of approximation, and
adjusted through recurrent excitation or inhibition as decoding progresses. The strategy converges
in O(n/t) rounds – the smaller t is the more information is contained in the potential of a single
neuron, and the longer decoding takes.

Theorem 2 shows a significant separation between our networks and traditional feedforward
circuits where significantly sublinear sized indexing units are not possible.

Fact 3 (See Lower Bounds in [Koi96]). A circuit solving the indexing problem that consists of
AND/OR gates connected in a feedforward manner requires Θ(n) gates. A feedforward circuit
using linear threshold gates requires Θ(n/ log n) gates.

We note, however, that our indexing mechanism does not exploit the randomness of the spiking
neurons, and in fact can also be implemented with deterministic linear threshold gates. Thus, the
separation between Theorem 2 and Fact 3 is entirely due to the recurrent (non-feedforward) layout
of our network. Since any recurrent network using O(m) neurons and converging in t rounds can be
‘unrolled’ into a feedforward circuit using O(mt) neurons, Fact 3 shows that the tradeoff between
network size and runtime in Theorem 2 is optimal up to a log n factor, as long as we use our spiking
neurons in a way that also be implemented with deterministic threshold gates. However, it does
not rule out improvements using more sophisticated randomized strategies.

1.2.2 Lower Bound for Neuro-RAM in Spiking Networks

Surprisingly, we are able to show that despite the restricted way in which we use our spiking neuron
model, significant improvements are not possible:

Theorem 4 (Lower Bound for Neuro-RAM in SNNs). Any SNN that solves indexing in t rounds

with high probability in our model must use at least Ω
(

n
t log2 n

)
auxiliary neurons.

Theorem 4, whose proof is in Section 4, shows that the tradeoff in Theorem 2 is within a log2 n
factor of optimal. It matches the lower bound of Fact 3 for deterministic threshold gates up to a
log n factor, showing that there is not a significant difference in the power of stochastic neurons
and deterministic gates in solving indexing.

Reduction from SNNs to Deterministic Circuits We argue that the output distribution of
any SNN is identical to the output distribution of an algorithm that first chooses a deterministic
threshold circuit from some distribution and then applies it to the input. This is a powerful
observation as it lets us apply Yao’s principle: an SNN lower bound can be shown via a lower
bound for deterministic circuits on any input distribution [Yao77].

Deterministic Circuit Lower Bound via VC Dimension We next show that any deterministic
circuit that succeeds with high probability on the uniform input distribution cannot be too small.
The bound is via a VC dimension-based argument, which extends the work of [Koi96] on indexing
circuits. As far as we are aware, we are the first to give a VC dimension-based lower bound for
probabilistic and biologically plausible network architectures and we hope our work significantly
expands the toolkit for proving lower bounds in this area. In contrast to our lower bounds on the
WTA problem [LMP17], which rely on indistinguishability arguments based on network structure,
our new techniques allow us to give more general bounds for any network architecture.

Separation of Network Models Aside from demonstrating that randomness does not give sig-
nificant advantages in constructing a neuro-RAM (contrasting with its importance in WTA and

3



similarity testing), Theorem 4 separates our spiking networks from the well-studied deterministic
sigmoidal circuit model. Our neurons spike with probability given by applying a sigmoid to their
membrane potential. In sigmoidal circuits, each neuron outputs a real number value, equivalent to
our spiking probability. A neuro-RAM can be implemented very inefficiently in these networks:

Fact 5 (See [Koi96], along with [Maa97] for similar bounds). There is a sigmoidal circuit using
O(n1/2) gates that solves the indexing problem in O(1) rounds.2

It has been shown that sigmoidal circuits can significantly outperform standard linear threshold
circuits [MSS91, Koi96], however previously it was not known that restricting gates to spike with a
sigmoid probability function rather than output the real value of this function significantly affected
their power. The lower bound of Theorem 4, along with Fact 5, shows that in some cases it does.
It is well known that real neurons output discrete spikes rather than continuous values. Thus our
separation in some sense challenges the use of deterministic sigmoidal gates in modeling neural
computation, suggesting that modeling spiking behavior, as we do in our model, is important in
understanding neural computation.

1.2.3 Applications to Randomized Similarity Testing and Compression

As discussed, our neuro-RAM is widely applicable to algorithms that require random sampling of
inputs. In Section 5 we discuss our main application, to similarity testing – i.e., testing if X1 = X2

or if dH(X1, X2) ≥ εn. It is easy to implement an exact equality tester using Θ(n) auxiliary neurons.
Alternatively, one can solve exact equality with three auxiliary neurons using mixed positive and
negative edge weights for the outgoing edges of inputs. However this is not biologically plausible
– neurons typically have either all positive (excitatory) or all negative (inhibitory) outgoing edges,
a restriction included in our model. Designing sublinear sized exact equality testers under this
restriction seems difficult – simulating the three neuron solution requires at least Θ(n) auxiliary
neurons – Θ(1) for each input.

By relaxing to similarity testing and applying our neuro-RAM, we can achieve sublinear sized
networks. We can use Θ(log n/ε) neuro-RAMs, each with O(

√
n) auxiliary neurons to check equality

at Θ(log n/ε) random positions of X1 and X2 distinguishing if X1 = X2 or if dH(X1, X2) ≥ εn
with high probability. This is the first sublinear solution for this problem in the spiking neural
networks. In Section 5, we discuss possible additional applications of our neuro-RAM to Johnson-
Lindenstrauss random compression, which amounts to multiplying the input by a sparse random
matrix – a generalization of input sampling.

2 Computational Model and Preliminaries

2.1 Network Structure

We now give a formal definition of our computational model. A Spiking Neural Network (SNN)N =
〈X,Z,A,w, b〉 consists of n input neurons X = {x1, . . . , xn}, m output neurons Z = {z1, . . . , zm},
and ` auxiliary neurons A = {a1, ..., a`}. The directed, weighted synaptic connections between X,
Z, and A are described by the weight function w : [X ∪ Z ∪ A] × [X ∪ Z ∪ A] → R. A weight
w(u, v) = 0 indicates that a connection is not present between neurons u and v. Finally, for any

2 Note that [MSS91] shows that general deterministic sigmoidal circuits can be simulated by our spiking model.
However, the simulation blows up the size of the circuit size by

√
n, giving Θ(n) auxiliary neurons.

4



neuron v, b(v) ∈ R≥0 is the activation bias – as we will see, roughly, v’s membrane potential must
reach b(v) for a spike to occur with good probability.

The weight function defining the synapses in our networks is restricted in a few notable ways.
The in-degree of every input neuron xi is zero. That is, w(u, x) = 0 for all u ∈ [X ∪ Z ∪ A] and
x ∈ X. This restriction bears in mind that the input layer might in fact be the output layer of
another network and so incoming connections are avoided to allow for the composition of networks
in higher level modular designs. Additionally, each neuron is either inhibitory or excitatory: if v
is inhibitory, then w(v, u) ≤ 0 for every u, and if v is excitatory, then w(v, u) ≥ 0 for every u. All
input and output neurons are excitatory.

2.2 Network Dynamics

An SNN evolves in discrete, synchronous rounds as a Markov chain. The firing probability of every
neuron at time t depends on the firing status of its neighbors at time t− 1, via a standard sigmoid
function, with details given below.

For each neuron u, and each time t ≥ 0, let ut = 1 if u fires (i.e., generates a spike) at time t.
Let u0 denote the initial firing state of the neuron. Our results will specify the initial input firing
states x0

j = 1 and assume that u0 = 0 for all u ∈ [Z ∪ A]. For each non-input neuron u and every
t ≥ 1, let pot(u, t) denote the membrane potential at round t and p(u, t) denote the corresponding
firing probability (Pr[ut = 1]). These values are calculated as:

pot(u, t) =
∑

v∈X∪Z∪A
wv,u · vt−1 − b(u) and p(u, t) =

1

1 + e−pot(u,t)/λ
(1)

where λ > 0 is a temperature parameter, which determines the steepness of the sigmoid. It is easy
to see that λ does not affect the computational power of the network. A network can be made to
work with any λ simply by scaling the synapse weights and biases appropriately.

For simplicity we assume throughout that λ = 1
Θ(logn) . Thus by (1), if pot(u, t) ≥ 1, then ut = 1

w.h.p. and if pot(u, t) ≤ −1, ut = 0 w.h.p. (recall that w.h.p. denotes with probability at least
1 − 1/nc for some constant c). Aside from this fact, the only other consequence of (1) we use in
our network constructions is that pot(u, t) = 0 =⇒ p(u, t) = 1/2. That is, we will use our spiking
neurons entirely as random threshold gates, which fire w.h.p. when the incoming potential from
their neighbors’ spikes exceeds b(u), don’t fire w.h.p. when the potential is below b(u), and fire
randomly when the input potential equals the bias. It is an interesting open question if there are
any problems which require using the full power of the sigmoidal probability function.

2.3 Additional Notation

For any vector x we let xi denote the value at its ith position, starting from x0. Given binary
x ∈ {0, 1}n, we use dec(x) to indicate the integer encoded by x. That is, dec(x) =

∑n−1
i=0 xi · 2i.

Given an integer x we use bin(x) to denote its binary encoding, where the number of digits used in
the encoding will be clear from context. We will often think of the firing pattern of a set of neurons
as a binary string. If B = {y1, ..., ym} is a set of m neurons then Bt ∈ {0, 1}m is the binary string
corresponding to their firing pattern at time t. Since the input is typically fixed for some number of
rounds, we often just write X to refer to the n-bit string corresponding to the input firing pattern.

Boolean Circuits. We mention that SNNs are similar to boolean circuits, which have received
enormous attention in theoretical computer science. A circuit consists of gates (e.g., threshold

5



gates, probabilistic threshold gates) connected in a directed acyclic graph. This restriction means
that a circuit does not have feedback connections or self-loops, which we do use in our SNNs. While
we do not work with circuits directly, for our lower bound, we show a transformation from an SNN
to a linear threshold circuit. We sometimes refer to circuits as feedforward networks, indicating
that their connections are cycle-free.

3 Neuro-RAM Network

In this section we prove our main upper bound:

Theorem 6 (Efficient Neuro-RAM Network). There exists an SSN with O(
√
n) auxiliary neurons

that solves indexing in 5
√
n rounds. Specifically, given inputs X ∈ {0, 1}n, and Y ∈ {0, 1}logn,

which are fixed for all rounds t ∈ {0, ..., 5
√
n}, the output neuron z satisfies: if Xdec(Y ) = 1 then

z5
√
n = 1 w.h.p. Otherwise, if Xdec(Y ) = 0, z5

√
n = 0 w.h.p.

Theorem 6 easily generalizes to other network sizes, giving Theorem 2, which states the gen-
eral size-time tradeoff. Here we discuss the basic construction and intuition behind our network
construction. The full details and proof are given in Appendice A.1 and A.2.

We divide the n input neurons X into
√
n buckets each containing

√
n neurons3:

X0 = {x0, ..., x√n−1}, ..., X√n−1 = {x(
√
n−1)

√
n, ..., xn−1}.

Throughout, all our indices start from 0. We encode the firing pattern of each bucket Xi via the
potential of a single neuron ei. Set w(xi

√
n+j , ei) = 2

√
n−j for all i, j ≥ 0. In this way, for every

round t, the total potential contributed to ei by the firing of the inputs in bucket Xi is equal to:

√
n−1∑
j=0

xi
√
n+j · 2

√
n−j = 2 · dec(X̄i). (2)

where X̄i is the reversal of Xi and dec(·) gives the decimal value of a binary string, as defined in
the preliminaries. We set b(ei) = 2

√
n+2 + 2

√
n − 1. We will see later why this is an appropriate

value. We defer detailed discussion of the remaining connections to ei for now, first giving a general
description of the network construction.

In addition to the encoding neurons e0, ..., e√n−1, we have decoding neurons d0,k, ..., d√n−1,k

for k = 1, 2, 3 (3
√
n neurons total). The idea is to select a bucket Xi (via ei) using the first

log
√
n = logn

2 bits in the index Y . Let Y1
def
= {y0, ..., y logn

2
−1
} and Y2

def
= {y logn

2
, ..., ylogn−1} be the

higher and lower order bits of Y respectively. It is not hard to see that using O(
√
n) neurons we

can construct a network that processes Y1 and uses it to select ei with i = dec(Y1). When a bucket
is selected, the potential of any ej with j 6= dec(Y1) is significantly depressed compared to that of
ei and so after this selection stage, only ei fires.

We will then use the decoding neurons to ‘read’ each bit of the potential encoded in ei. The final
output is selected from each of these bits using the lower order bits Y2, which can again be done
efficiently with O(

√
n) neurons. We call this phase the decoding phase since the bucket neuron ei

3 Throughout we assume for simplicity that n = 22m for some integer m. This ensures that
√
n, logn, and log

√
n

are integers. It will be clear that if this is not the case, we can simply pad the input, which only affects our time and
network size bounds by constant factors.

6



encodes the value (in decimal) of its bucket Xi, and we need to decode from that value the bit of
the appropriate neuron inside that bucket.

The decoding process works as follows: initially, ei will fire only if the first bit of bucket i is
on. Note that the weight from this bit to ei is 2

√
n and thus more than double the weight from any

other input bit. Thus, by appropriately setting b(ei), we can ensure that the setting of this single
bit determines if ei fires initially.

𝑒3

[10 01] [11 10] [11 10] [1𝟎 10]

𝑋3 𝑋2 𝑋1 𝑋0

𝑒2 𝑒1 𝑒0

[00 10]

𝑌1 𝑌2

𝐸

𝐷3 𝐷2 𝐷0

𝑂𝑈𝑇

23

0

−22
1

𝐷1

2
0

Figure 1: Illustration of the Neuro-RAM mod-
ule. The index encoded by Y is marked in bold.

If the first bit is the correct bit to output (i.e. if
the last logn

2 bits of the index Y2 encode position 0),
this will trigger the output z to fire. Otherwise, we
iterate. If ei in fact fired, this triggers inhibition that
cancels out the potential due to the first bit of bucket
i. Thus, ei will now only fire if the second bit of Xi

is on. If ei did not fire, the opposite will happen.
Further excitation will be given to ei again ensuring
that it can fire as long as the second bit of Xi is on.
The network iterates in this way, successively reading
each bit, until we reach the one encoded by Y2 and the
output fires. The first decoding neuron for position j,
dj,1, is responsible to triggering the output to fire if j
is the correct bit encoded by Y2. The second decod-
ing neuron dj,2 is responsible for providing excitation
when ei does not fire. Finally, the third decoding neuron dj,3 provides inhibition when ei does fire.

In Appendix A.1, we describe the first stage in which we use the first log n/2 index bits to select
the bucket to which the desired index belongs to.

In Appendix A.2, we discuss the second phase where we use the last log n/2 bits of Y , to select
the desired index inside the bucket i. Our success decoding process is synchronized by a clock
mechanism, shown in Appendix A.2.1. This clock mechanism consists of chain of Θ(

√
n) neurons

that govern the timing of the Θ(
√
n) steps of our decoding scheme. Roughly speaking, traversing

the
√
n bits of the chosen ith bucket from left to right, we spend O(1) rounds checking if the current

index is the one encoded by Y2. If yes, we output the value at that index and if not, the clock
will “tick” and we move to the next candidate. This successive decoding scheme is explained in
Appendix A.2.2.

Note that our model and the proof of Theorem 6 assume that no auxiliary neurons or the output
neuron fire in round 0. However, in applications it will often be desirable to run the Neuro-RAM for
multiple inputs, with execution not necessarily starting at round 0. We can easily add a mechanism
that ‘clears’ the network once it outputs, giving:

Observation 7 (Running Neuro-RAM for Multiple Inputs). The Neuro-RAM of Theorem 6 can
be made to run correctly given a sequence of multiple inputs.

4 Lower Bound for Neuro-RAM in Spiking Networks

In this section, we show that our neuro-RAM construction is nearly optimal. Specifically:

Theorem 8. Any SNN solving indexing with probability ≥ 1 − 1
2n in t rounds must use ` =

Ω
(

n
t log2 n

)
auxiliary neurons.

7



This result matches the lower bound for deterministic threshold gates of Fact 3 up to a log n
factor, demonstrating that the use of randomness cannot give significant runtime advantages for the
indexing problem. We note that even if one just desires a constant (e.g. 2/3) probability of success
– the lower bound applies. By replicating any network with success probability 2/3, Θ(log n) times
and taking the majority output (which can be computed with just a single additional auxiliary
neuron), we obtain a network that solves the problem w.h.p. We thus have:

Corollary 9. Any SNN solving indexing with probability ≥ 2/3 in t rounds must use ` = Ω
(

n
t log3 n

)
auxiliary neurons.

The proof of Theorem 8 proceeds in a number of steps, which we overview here.

4.1 High Level Approach and Intuition

Reduction to Deterministic Indexing Circuit. We first observe that a network with ` auxiliary
neurons solving the indexing problem in t rounds can be unrolled into a feedforward circuit with
t layers and ` neurons per layer. We then show that the output distribution of a feedforward
stochastic spiking circuit is identical to the output distribution if we first draw a deterministic
linear threshold circuit (still with t layers and ` neurons per layer) from a certain distribution, and
evaluate our input using this random circuit.

This equivalence is powerful since it allows us to apply Yao’s minimax principal [Yao77]: as-
suming the existence of a feedforward SNN solving indexing with probability ≥ 1− 1

2n , given any
distribution of the inputs X,Y , there must be some deterministic linear threshold circuit ND which
solves indexing with probability ≥ 1− 1

2n over this distribution.
If we consider the uniform distribution over X,Y , this success probablity ensures via an averag-

ing argument that for at least 1/2 of the 2n possible values of X, ND succeeds for at least a 1− 1
2n

fraction of the possible Y inputs. Note, however, that the Y can only take on n possible values –
thus this ensures that for 1/2 the possible values of X, ND succeeds for all possible values of the
index Y . Let X be the set of ‘good inputs’ for which ND succeeds.

Lower Bound for Deterministic Indexing on a Subset of Inputs. We have now reduced
our problem to giving a lower bound on the size of a deterministic linear threshold circuit which
solves indexing on an arbitrary subset X of 1

2 · 2
n = 2n−1 inputs. We do this using VC dimension

techniques inspired by the indexing lower bound of [Koi96].
The key idea is to observe that if we fix some input X ∈ X , then given Y , ND evaluates the

function fX : {0, 1}logn → {0, 1}, whose truth table is given by X. Thus ND can be viewed as
a circuit for evaluating any function fX(Y ) for X ∈ X , where the X inputs are ‘programmable
parameters’, which effectively change the thresholds of some gates.

It can be shown that the VC dimension of the class of functions computable by a fixed a linear
threshold circuit with m gates and variable thresholds is O(m logm). Thus for a circuit with t
layers and ` gates per layer, the VC dimension is O(`t log(`t)) [BH89]. Further, as a consequence
of Sauer’s Lemma [Sau72, She72, AB09], defining the class of functions F = {fX for any X ∈ X},
since |F| = |X | = 2n−1, we have V C(F) = Θ(n/ log n). These two VC dimension bounds, in
combination with the fact that we know ND can compute any function in F if its input bits

are fixed appropriately, imply that `t · log(`t) = Ω(n/ log n). Rearranging gives ` = Ω
(

n
t log2 n

)
,

completing Theorem 8.

8



4.2 Reduction to Deterministic Indexing Circuit

We now give the argument explained above in detail, first describing how any SNN that solves
indexing w.h.p. implies the existence of a deterministic feedforward linear threshold circuit which
solves indexing for a large fraction of possible inputs X.

Lemma 10 (Conversion to Feedforward Network). Consider any SNN N with ` auxiliary neurons,
which given input X ∈ {0, 1}n that is fixed for rounds {0, ..., t}, has output z satisfying Pr[zt =
1] = p. Then there is a feedforward SNN NF (an SNN whose directed edges form an acyclic graph)
with (t − 1) · (` + 1) auxiliary neurons also satisfying Pr[zt = 1] = p when given X which is fixed
for rounds {0, ..., t}.

Proof. Let B = A∪z – all non-input neurons. We simply produce t−1 duplicates of each auxiliary
neuron a ∈ A : {a1, ..., at−1} and of z : {z1, ..., zt−1}, which are split into layers B1, ..., Bt−1. For
each incoming edge from a neuron u to v and each i ≥ 2 we add an identical edge from ui−1 to vi.
Any incoming edges from input neurons to u are added to each ui for all i ≥ 1. Finally connect z
to the appropriate neurons in Bt−1 (which may include zt−1 if there is a self-loop in N ).

In round 1, the joint distribution of the spikes B1
1 in NF is identical to the distribution of B1 in

N since these neurons have identical incoming connections from the inputs, and since any incoming
connections from other auxiliary neurons are not triggered in N since none of these neurons fire at
time 0.

Assuming via induction that Bi
i is identically distributed to Bi, since Bi+1 only has incoming

connections from Bi and the inputs which are fixed, then the distribution of Bi+1
i+1 identical to that

of Bi+1. Thus Bt−1
t−1 is identically distributed to Bt−1, and since the output in NF is only connected

to Bt−1 its distribution is the same in round t as in N .

Lemma 11 (Conversion to Distribution over Deterministic Threshold Circuits). Consider any
spiking sigmoidal network N with ` auxiliary neurons, which given input X ∈ {0, 1}n that is fixed
for rounds {0, ..., t}, has output neuron z satisfying Pr[zt = 1] = p. Then there is a distribution
D over feedforward deterministic threshold circuits with (t − 1) · (` + 1) auxiliary gates that, for
ND ∼ D with output z, PrD[zt = 1] = p when presented input X.

Proof. We start with NF obtained from Lemma 4.2. This circuit has t− 1 layers of `+ 1 neurons
B1, ..., Bt−1. Given X ∈ {0, 1}n that is fixed for rounds {0, ..., t}, NF has Pr[zt = 1] = p, which
matches the firing probability of the output z in N in round t.

Let D be a distribution on deterministic threshold circuits that have identical edge weights
to NF . Additionally, for any (non-input) neuron u ∈ NF , letting ū be the corresponding neuron
in the deterministic circuit, set the bias b(ū) = η, where η is distributed according to a logistic
distribution with mean µ = b(u) and scale s = λ. The random bias is chosen independently for
each u. It is well known that the cumulative density function of this distribution is equal to the
sigmoid function. That is:

Pr[η ≤ x] =
1

1 + e−
x−b(u)
λ

. (3)

Consider ND ∼ D and any neuron u in the first layer B1 of NF . u only has incoming edges
from the input neurons X. Thus, its corresponding neuron ū in ND also only has incoming edges

9



from the input neurons. Let W =
∑

x∈X w(x, u) · x0. Then we have:

Pr
D

[ū1 = 1] = Pr[W − η ≥ 0] = Pr[η ≥W ] (Deterministic threshold)

=
1

1 + e−
W−b(u)

λ

(Logistic distribution CDF (3))

= Pr[u1 = 1]. (Spiking sigmoid dynamics (1))

Let B̄i denote the neurons in ND corresponding to those in Bi. Since in round 1, all neurons in B1

fire independently and since all neurons in B̄1 fire independently as their random biases are chosen
independently, the joint firing distribution of B1

1 is identical to that of B̄1
1 .

By induction assume that B̄i
i is identically distributed (over the random choice of deterministic

network ND ∼ D) to Bi
i . Then for any u ∈ Bi+1 we have by the same argument as above,

conditioning on some fixed firing pattern V of Bi in round i:

Pr
D

[ūi+1 = 1|B̄i
i = V ] = Pr[ui+1 = 1|Bi

i = V ].

Conditioned on Bi
i = V , the neurons in Bi+1 fire independently in round i+ 1. So do the neurons

of B̄i+1 due to their independent choices of random biases. Thus, the above implies that the
distribution of B̄i+1

i+1 conditioned on B̄i
i = V is identical to the distribution of Bi+1

i+1 . This holds for

all V , so, the full joint distribution of B̄i+1
i+1 is identical to that of Bi+1

i+1 .
We conclude by noting that the same argument applies for the outputs of NF and ND since

B̄t−1
t−1 is identically distributed to Bt−1

t−1 .

Lemma 11 is simple but powerful – it demonstrates the following:

The output distribution of a spiking sigmoid network is identical to the output distribution of a
deterministic feedforward threshold circuit drawn from some distribution D.

Thus, the performance of any spiking sigmoid network is equivalent to the performance of a ran-
domized algorithm which first selects a linear threshold circuit using D and then applies this circuit
to the input. This equivalence allows us to apply Yao’s minimax principal:

Lemma 12 (Application of Yao’s Principal). Assume there exists an SNN N with ` auxiliary
neurons, which given any inputs X ∈ {0, 1}n and Y ∈ {0, 1}logn which are fixed for rounds {0, ..., t},
solves indexing with probability ≥ 1− δ in t rounds. Then there exists a feedforward deterministic
linear threshold circuit ND with (t−1) · (`+1) auxiliary gates which solves indexing with probability
≥ 1− δ given X,Y drawn uniformly at random.

Proof. This follows from Yao’s principal [Yao77]. In short, given X,Y drawn uniformly at random,
N solves indexing with probability ≥ 1− δ (since by assumption, it succeeds with this probability
for any X,Y ). By Lemma 11, N performs identically to an algorithm which selects a deterministic
circuit from some distribution D and then applies it to the input. So at least one circuit in the
support of D must succeed with probability ≥ 1 − δ on X,Y drawn uniformly at random, since
the success probability of N on the uniform distribution is just an average over the deterministic
success probabilities.

From Lemma 12 we have a corollary which concludes our reduction from our spiking sigmoid
lower bound to a lower bound on deterministic indexing circuits.

10



Corollary 13 (Reduction to Deterministic Indexing on a Subset of Inputs). Assume there exists
an SNN N with ` auxiliary neurons, which, given inputs X ∈ {0, 1}n and Y ∈ {0, 1}logn which are
fixed for rounds {0, ..., t}, solves indexing with probability ≥ 1 − 1

2n in t rounds. Then there exists
some subset of inputs X ⊆ {0, 1}n with |X | ≥ 2n−1 and a feedforward deterministic linear threshold
circuit ND with (t − 1) · (` + 1) auxiliary gates which solves indexing given any X ∈ X and any
index Y ∈ {0, 1}logn.

Proof. Applying Lemma 12 yields ND which solves indexing on uniformly random X,Y with prob-
ability 1− 1

2n . Let I(X,Y ) = 1 if ND solves indexing correctly on X,Y and 0 otherwise. Then:

1− 1

2n
≤ 1

n · 2n
∑

X∈{0,1}n

∑
Y ∈{0,1}logn

I(X,Y ) = E
X uniform from {0,1}n

 1

n

∑
Y ∈{0,1}logn

I(X,Y )


which in turn implies:

E
X uniform from {0,1}n

 1

n

∑
Y ∈{0,1}logn

(1− I(X,Y ))

 ≤ 1

2n
. (4)

If 1
n

∑
Y ∈{0,1}logn(1 − I(X,Y )) 6= 0 then 1

n

∑
Y ∈{0,1}logn(1 − I(X,Y )) ≥ 1

n just by the fact that

the sum is an integer. Thus, for (4) to hold, we must have 1
n

∑
Y ∈{0,1}logn(1− I(X,Y )) = 0 for at

least 1
2 of the inputs X ∈ {0, 1}n. That is, ND solves indexing for every input index on some subset

X with |X | ≥ 1
2 |{0, 1}

n| ≥ 2n−1.

4.3 Lower Bound for Deterministic Indexing on a Subset of Inputs

With Corollary 13 in place, we now turn to lower bounding the size of a deterministic linear
threshold circuitND which solves the indexing problem on some subset of inputs X with |X | ≥ 2n−1.
To do this, we employ VC dimension techniques first introduced for bounding the size of linear
threshold circuits computing indexing on all inputs [Koi96].

Consider fixing some input X ∈ X , such that the output of ND is just a function of the index Y .
Specifically, with X fixed, ND computes the function fX : {0, 1}logn → {0, 1} whose truth table is
given by X. Note that the output of ND with X fixed is equivalent to the output of a feedforward
linear threshold circuit NX

D where each gate with an incoming edge from xi ∈ X has its threshold
adjusting to reflect the weight of this edge if xi = 1.

We define two sets of functions. Let F = {fX |X ∈ X} be all functions computable using
some NX

D as defined above. Further, let G be the set of all functions computabled by any circuit
N ′D which is generated by removing the input gates of ND and adjusting the threshold on each
remaining gate to reflect the effects of any inputs with xi = 1. We have F ⊆ G and hence, letting
V C(·) denote the VC dimension of a set of functions have: V C(F) ≤ V C(G). We can now apply
two results. The first gives a lower bound V C(F):

Lemma 14 (Corollary 3.8 of [AB09] – Consequence of Sauer’s Lemma [Sau72, She72]). For any
set of boolean functions H = {h} with h : {0, 1}logn → {0, 1}:

V C(H) ≥ log |H|
log n+ log e

.

11



We next upper bound V C(G). We have the following, whose proof is in Appendix B:

Lemma 15 (Linear Threshold Circuit VC Bound). Let H be the set of all functions computed by
a fixed feedforward linear threshold circuit with m ≥ 2 gates (i.e. fixed edges and weights), where
each gate has a variable threshold. Then: V C(H) ≤ 3m logm.

Applying the bounds of Lemmas 14 and 15 along with V C(F) ≤ V C(G) gives:

Lemma 16 (Deterministic Circuit Lower Bound). For any set X ⊆ {0, 1}n with |X | ≥ 2n−1, any
feedforward deterministic linear threshold circuit ND with m non-input gates which solves indexing

given any X ∈ X and any index Y ∈ {0, 1}logn must have m = Ω
(

n
log2 n

)
.

Proof. Let F and G be as defined in the beginning of the section. We have V C(F) ≤ V C(G). At
the same time, by Lemma 14 we have

V C(F) ≥ log |F|
log n+ log e

=
log |X |

log n+ log e
≥ cn

log n

for some fixed constant c. By Lemma 15 we have V C(G) ≤ 3m logm. We thus can conclude that
cn

logn ≤ 3m logm, and so m = Ω
(

n
log2 n

)
.

We conclude by proving our main lower bound:

Proof of Theorem 8. The existence of a spiking sigmoidal network with ` auxiliary neurons, solving
indexing with probability ≥ 1− 1

2n in t rounds implies via Corollary 13 the existence of a feedforward
deterministic linear threshold circuit with (t − 1)` + 1 non-input gates solving indexing on some

subset of inputs X with |X | ≥ 2n−1. Thus by Lemma 16 we must have ` · t = Ω
(

n
log2 n

)
.

5 Applications to Similarity Testing and Compression

5.1 Similarity Testing

Theorem 17 (Similarity Testing). There exists an SNN with O
(√

n logn
ε

)
auxilary neurons that

solves the approximate equality testing problem in O(
√
n) rounds. Specifically, given inputs X1, X2 ∈

{0, 1}n which are fixed for all rounds t ∈ {0, .., 5
√
n+ 2}, the output z satisfies w.h.p. z5

√
n+2 = 1

if dH(X1, X2) ≥ εn. Further if X1 = X2 then z5
√
n+2 = 0 w.h.p.

[ 𝑋1 ] [ 𝑋2 ]

[
]

[
]

𝑌1

…

𝑌log 𝑛
𝜖

𝑆
1,
log 𝑛
𝜖

𝑆
2,
log 𝑛
𝜖

𝑆1,1

𝑆1,1

=

=

+

Figure 2: Solving ε-approximate similarity using
Neuro-RAM modules.

Our similarity testing network will use K =

Θ
(

logn
ε

)
copies of our Neuro-RAM from Theorem

6, labeled S1,k and S2,k for all k ∈ {1, ...,K}. The
idea will be to employ log n auxiliary neurons Yk =
y1,k, ..., ylogn,k whose values encode a random index
i ∈ {0, ..., n− 1}. By feeding the inputs (X1, Yk) and
(X2, Yk) into S1 and S2, we can check whether X1 and

X2 match at position i. Checking Θ
(

logn
ε

)
different

random indices suffices that identify if dH(X1, X0) ≥
εn w.h.p. Additionally, if X1 = X0, they will never
differ at any of the checks, and so the output will
never be triggered. We use the following:

12



Observation 18. Consider X1, X2 ∈ {0, 1}n with dH(X1, X0) ≥ εn. Let i1, ..., iT be chosen inde-
pendently and uniformly at random in {0, ..., n− 1}. Then for T = c lnn

ε ,

Pr[(X1)it = (X2)it for all t ∈ 1, ..., T ] ≤ 1

nc
.

Proof. For any fixed t, Pr[(X1)it = (X2)it ] = 1− εn
n = 1− ε as we select indices at random. Addi-

tionally, each of these events is independent since i1, ...iT are chosen independently so: Pr[(X1)it =

(X2)it for all t ∈ 1, ..., T ] ≤ (1− ε)T =
(
1− ε)1/ε

)c lnn ≤ 1
ec lnn

≤ 1
nc .

5.1.1 Implementation Sketch

It is clear that the above strategy can be implemented in the spiking sigmoidal network model –

we sketch the construction here. By Theorem 6, we require O
(√

n logn
ε

)
auxiliary neurons for the

2K = Θ
(

logn
ε

)
neuro-RAMs employed, which dominates all other costs.

It suffices to present a random index to each pair of neuro-RAMs S1, k an S2, k for 5
√
n rounds

(the number of rounds required for the network of Theorem 6 to process an n-bit input). To
implement this strategy, we need two simple mechanisms, described below.

Random Index Generation: For each of the log n index neurons in Yk we set b(yi) = 0 and add
a self-loop w(yi, yi) = 2. In round 1, since they have no-inputs, each neuron has potential 0 and
fires with probability 1/2. Thus, Y 1

k represents a random index in {0, ..., n− 1}. To propagate this
index we can use a single auxiliary inhibitory neuron g, which has bias b(g) = 1 and w(x, g) = 2
for every input neuron x. Thus, g fires w.h.p. in round 1 and continues firing in all later rounds,
as long as at least one input fires.

We add an inhibitory edge from g to yi for all i with weight w(g, yi) = −1. The inhibitory
edges from g will keep the random index ‘locked’ in place. The inhibitory weight of −1 prevents
any yi without an active self-loop from firing w.h.p. but allows any yi with an active self-loop to
fire w.h.p. since it will still have potential b(yi) + w(yi, yi)− 1 = 1.

If both inputs are 0, g will not fire w.h.p. However, here our network can just output 0 since
X1 = X2 so it does not matter if the random indices stay fixed.

Comparing Outputs: We next handle comparing the outputs of S1,k and S2,k to perform equality
checking. We use two auxiliary neurons – f1,k and f2,k. f1,k is excitatory and fires w.h.p. as long
as long as at least one of S1,k or S2,k has an active output. f2,k is an inhibitor that fires only if both
S1,k and S2,k have active outputs. We then connect f1,k to our output z with weight w(f1,k, z) = 2
and connect f2,k with weight w(f2, z) = −2 for all k. We set b(z) = 1. In this way, z fires in round
5
√
n + 2 w.h.p. if for some k, exactly one of S1,k or S2,k has an active output in round 5

√
n and

hence an inequality is detected. Otherwise, z does not fire w.h.p. This behavior gives the output
condition of Theorem 17.

5.2 Randomized Compression

We conclude by discussing informally how our neuro-RAM can be applied beyond similarity testing
to other randomized compression schemes. Consider the setting where we are given n input vectors
Xi ∈ {0, 1}d. Let X ∈ {0, 1}n×d denote the matrix of all inputs. Think of d as being a large
ambient dimension, which we would like to reduce before further processing.

13



One popular technique is Johnson-Lindenstrauss (JL) random projection, where X is multiplied
by a random matrix Π ∈ Rd×d′ with d′ << d to give the compressed dataset X̃ = XΠ. Regardless
of the initial dimension d, if d′ is set large enough, X̃ preserves significant information about X.
d′ = Õ(log n) is enough to preserve the distances between all points w.h.p. [KN14], d′ = Õ(k) is
enough to use X̃ for approximate k-means clustering or k-rank approximation [BZD10, CEM+15],
and d′ = Õ(n) preserves the full covariance matrix of the input and so X̃ can be used for approximate
regression and many other problems [CW13, Sar06].

JL projection has been suggested as a method for neural dimensionality reduction [AZGMS14,
GS12], where Π is viewed as a matrix of random synapse weights, which connect the input neurons
representing X to the output neurons representing X̃. While this view is quite natural, we often
want to draw Π with fresh randomness for each input X. This is not possible using changing synapse
weights, which evolve over a relatively long time scale. Fortunately, it is possible to simulate these
random connections using our neuro-RAM module.

Typically, Π is sparse so that it can be multiplied by efficiently. In one of the most efficient
constructions [CW13], it has just a single nonzero entry in each row which is chosen randomly to be
±1 and placed in a uniform random position in the row. Thus, computing a single bit of X̃ = XΠ
requires selecting on average d/d′ random columns of X, multiplying their entries by a random
sign and summing them together. This can be done with a set of neuro-RAMS, each using O(

√
d)

auxiliary neurons which select the random columns of X. In total we will needs Õ(d/d′) networks
– the maximum column sparsity of Π with high probability, yielding O(d3/2/d′) auxiliary neurons
total. In contrast, a naive simulation of random edges using spiking neurons would require Θ(d)
auxiliary neurons, which is less efficient whenever d′ > d3/2. Additionally, our neuro-RAMs can be
reused to compute multiple entries of X̃, which is not the case for the naive simulation.

Traditionally, the value of an entry of X̃ is a real number, which cannot be directly represented
in a spiking neural network. In our construction, the value of the entry is encoded in its potential,
and we leave as an interesting open question how this potential should be decoded or otherwise
used in downstream applications of the compression.

Acknowledgments

We are grateful to Mohsen Ghaffari. Some of the ideas of this paper came up while visiting him
at ETH. We would like to thank Sergio Rajsbaum, Ron Rothblum and Nir Shavit for helpful
discussions.

References

[AB09] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical founda-
tions. Cambridge University Press, 2009.

[All89] Eric Allender. A note on the power of threshold circuits. In FOCS, 1989.

[AS94] Christina Allen and Charles F Stevens. An evaluation of causes for unreliability of
synaptic transmission. PNAS, 1994.

[AZGMS14] Zeyuan Allen-Zhu, Rati Gelashvili, Silvio Micali, and Nir Shavit. Sparse sign-
consistent Johnson–Lindenstrauss matrices: Compression with neuroscience-based
constraints. PNAS, 2014.

14



[BH89] Eric B Baum and David Haussler. What size net gives valid generalization? In NIPS,
1989.

[BZD10] Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for
k-means clustering. In NIPS, 2010.

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In STOC, 2015.

[CW13] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression
in input sparsity time. In STOC, 2013.

[FSS84] Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Theory of Computing Systems, 17(1):13–27, 1984.

[FSW08] A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous system.
Nature Reviews Neuroscience, 9(4):292–303, 2008.

[GK02] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,
populations, plasticity. Cambridge University Press, 2002.

[GS12] Surya Ganguli and Haim Sompolinsky. Compressed sensing, sparsity, and dimen-
sionality in neuronal information processing and data analysis. Annual Review of
Neuroscience, 2012.

[HH94] Bill G Horne and Don R Hush. On the node complexity of neural networks. Neural
Networks, 7(9):1413–1426, 1994.

[HT+86] John J Hopfield, David W Tank, et al. Computing with neural circuits- a model.
Science, 233(4764):625–633, 1986.

[Izh04] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE Trans-
actions on Neural Networks, 15(5):1063–1070, 2004.

[KN14] Daniel M Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. JACM,
2014.

[Koi96] Pascal Koiran. VC dimension in circuit complexity. In CCC, 1996.

[LMP17] Nancy Lynch, Cameron Musco, and Merav Parter. Computational tradeoffs in bio-
logical neural networks: Self-stabilizing winner-take-all networks. In ITCS, 2017.

[Maa96] Wolfgang Maass. On the computational power of noisy spiking neurons. In NIPS,
pages 211–217, 1996.

[Maa97] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network
models. Neural Networks, 10(9):1659–1671, 1997.

[MP69] Marvin Minsky and Seymour Papert. Perceptrons. 1969.

15



[MSS91] Wolfgang Maass, Georg Schnitger, and Eduardo D Sontag. On the computational
power of sigmoid versus boolean threshold circuits. In FOCS, 1991.

[Sar06] Tamas Sarlos. Improved approximation algorithms for large matrices via random
projections. In FOCS, 2006.

[Sau72] Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory,
Series A, 13(1):145–147, 1972.

[She72] Saharon Shelah. A combinatorial problem; stability and order for models and theories
in infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

[SN94] Michael N Shadlen and William T Newsome. Noise, neural codes and cortical organi-
zation. Current Opinion in Neurobiology, 4(4):569–579, 1994.

[Val00] Leslie G Valiant. Circuits of the Mind. Oxford University Press on Demand, 2000.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of
complexity. In FOCS, 1977.

16



A Missing Details for Implementing Neuro-RAM

A.1 First Stage: Bucket Selection

To implement the bucket selection stage, we connect the neurons in Y1 to each ei such that if
i = dec(Y1) the potential of ei is increased significantly, and if i 6= dec(Y1) the potential of ei
remains the same. By setting this potential increase to a very large value and the bias b(ei) to
a correspondingly very large value, ei will not fire with high probability unless i = dec(Y1). This
selection phase can be implemented with O(

√
n) auxilary neurons.

Specifically, for each yj ∈ Y1, we have two neurons yj,1, yj,1′ connected as follows:

• yj,1 is an excitatory neuron with b(yj,1) = 1 and w(yj , yj,1) = 2. In this way, if ytj = 1,

pot(yj,1, t) = 1 and so yt+1
i,1 = 1 w.h.p.

• yj,1′ is an inhibitory neuron with b(yj,1′) = 1 and w(yj , yj,1′) = 2. So again, if ytj = 1,

pot(yj,1′ , t) = 1 and so yt+1
j,1 = 1 w.h.p.

The behavior of yj,1 and yj,1′ can be summarized as:

Lemma 19. For any t, if ytj = 1 then w.h.p. yj,1 = yj,1′ = 1.

For each ei, we then have an auxiliary excitatory neuron gi. Connected as follows:

• w(yj,1, gi) = 2 if bin(i)j = 1 and 0 otherwise.

• w(yj,1′ , gi) = −2 if bin(i)j = 0 and 0 otherwise.

• b(gi) = 2‖bin(i)‖1 − 1.

• w(gi, ei) = 2
√
n+2.

We have the following lemma:

Lemma 20. For any t, if Y t
1 = bin(i) then w.h.p. gt+2

i = 1 and gt+2
k = 0 for all k 6= i.

Proof. The connections to yj,1 and yj,1′ and Lemma 19 ensure that if Y t
1 = bin(i), w.h.p.

pot(gi, t+ 1) = −b(gj) +

logn/2−1∑
j=0

[
w(yj,1, gi) · yt+1

j,1 + w(yj,1′ , gi) · yt+1
j,1′

]

= 1− 2‖ bin(i)‖1 + 2

logn/2−1∑
j=0

[
bin(i)j · ytj + (bin(i)j − 1) · ytj

]
= 1− 2‖ bin(i)‖1 + 2

logn/2−1∑
j=0

[
bin(i)2

j + (bin(i)j − 1) · bin(i)j
]

= 1− 2‖ bin(i)‖1 + 2‖ bin(i)‖1 = 1.

17



Thus, if Y t
1 = bin(i), gt+2

i = 1 w.h.p. Similarly, if Y t
1 = bin(i) then for any k 6= i:

pot(gk, t+ 1) = 1− 2‖ bin(k)‖1 + 2

logn/2−1∑
j=0

[bin(i)j · bin(k)j + (bin(i)j − 1) · bin(k)j ]

≤ 1− 2‖ bin(k)‖1 + 2‖bin(k)‖1 − 2 ≤ −1

where the bound that the sum is ≤ 2‖bin(k)‖1 − 2 follows from the fact that bin(i)j 6= bin(k)j for
some j. Thus gt+2

k = 0 w.h.p. completing the lemma by a union bound over all gk.

By Lemma 20 we can ensure that ei only fires if it corresponds to the bucket selected by Y –
i.e., if Y1 = bin(i). To do this we need one more fact, which will be clear after defining our full
network:

Fact 21. The total weight of incoming excitatory connections to ei for any i, excluding the con-
nection from gi, is upper bounded by 2

√
n+2.

Lemma 22 (Bucket Selection). For any t, if Y t
1 = bin(i) then w.h.p. et+3

k = 0 for all k 6= i.

Proof. By the setting of b(ek) = 2
√
n+2 + 2

√
n − 1, Fact 21, and Lemma 20 w.h.p.

pot(ek, t+ 2) ≤ −2
√
n+2 − 2

√
n + 1 + gt+2

k · w(gi, ei) + 2
√
n+2

≤ −2
√
n + 1 + 0 ≤ −1

so w.h.p. et+3
k = 0, giving the lemma after union bounding over all ek.

We note that if Y t
1 = bin(i) then ei will receive a potential of 2

√
n+2 from gi and so its effective

bias will shift to 2
√
n+1, which as we will see, will be appropriate for the remainder of the algorithm.

A.2 Second Stage: Bucket Decoding

We now discuss the decoding phase of our network.

A.2.1 Clock Mechanism

For this phase we need a clock mechanism. Specifically, we have some initiator neuron c0, with
w(xi, c0) = 2 for all inputs xi and b(c0) = 1. Thus, c0 fires w.h.p. in response to at least one input
firing. We then have 5

√
n additional excitatory neurons c1, ..., c5

√
n and 5

√
n additional inhibitory

neurons c1′ , ..., c5
√
n
′ . We set b(ci) = b(ci′) = 1 and w(ci−1, ci) = w(ci−1, c

′
i) = 2. Further, we set

w(c′1, c1) = −2, and for all i < 5
√
n, w(c′i, c0) = −2n. This gives the following clocking property:

Lemma 23 (Clock Mechanism). If ct0 = 1 for some round t, then for all i ≤ 5
√
n, ct+ii = 1.

Further, for all j ≤ 5
√
n, with j 6= i ct+ji = 0 w.h.p.

We place inhibitory connections from each c′i back to c0, which prevent the clock from ‘restarting’
before it has finished a complete cycle. We do not connect the last inhibitor c5

√
n to c0 (in fact,

this inhibitor can be removed from the network). This ensures that once the c5
√
n fires, in the next

round, as long as at least one input is active, c0 will fire w.h.p. restarting the clock. While this
is not necessary for the correctness of our neuro-RAM, it will be useful in applications that reuse
this network to process multiple inputs.

18



Proof. Since ct0 = 1, pot(c1, t) = pot(c1′ , t) = −1 + 2 = 1 and so ct+1
1 = ct+1

1′ = 1 w.h.p. Thus, due
to the inhibitory connection from c1′ , and since c0 has a total of 2n excitatory weight from all n
inputs, w.h.p. pot(c0, t+ 1) ≤ −1 + 2n− 2n ≤ −1 so ct+2

0 = 0 w.h.p. Finally, due to the inhibitory
connection from c1′ to c1, w.h.p. pot(c1, t+ 1) ≤ −1 + 2− 2 ≤ −1 so ct+2

1 = 0 w.h.p.

Now for any i > 1 assume by induction that for j < i, ct+jj = 1, ct+j+1
j = 0 and ct+j+1

0 =

0. This implies that pot(ci, t + i − 1) = pot(ci′ , t + i − 1) = 1 and thus ct+ii = ct+ii′ = 1 w.h.p.
Additionally, since ct+ii−1 = 0, pot(ci, t + i) = −1 and so ct+i+1

i = 0 w.h.p. Finally, since ct+ii′ = 1

w.h.p. pot(c0, t+ i) ≤ −1 + 2n−2n ≤ −1 and so ct+i+1
0 = 0 w.h.p. Thus, the inductive assumption

is fulfilled up to round i.
The lemma follows simply by noting that since c0 does not fire in any round after round t+ 1,

it never excites c1 and so later neurons in the chain are not re-excited and at round t+ i, ct+ij = 0
w.h.p. for all j ≤ i− 1. We union bound over all failure events and have the full result w.h.p.

We finally state the following immediate corollary of Lemma 23 which will be useful:

Corollary 24. If any input in X fires at time t then w.h.p. for all i, ci+1
i = 1 and for all j ≤ 5

√
n

with j 6= i, cj+1
i = 0.

Proof. This just follows from the fact that if any input fires in round t, c0 fires w.h.p. in round
t+ 1. We then have the result by Lemma 23.

A.2.2 Successive Decoding

With the clock mechanism of Lemma 23 in place we can give our decoding algorithm. As discussed,
we have three decoding neurons for each bit, labeled dj,1, dj,2, and dj,3. We describe the specific
setups for each below.

Output Triggering dj,1 is responsible for triggering the output z to fire if bit j of Xdec(Y1) is 1.
We set w(ei, dj,1) = 2 for all i, j. We additionally set w(dj,1, z) = 2 for all j and b(z) = 1, such
that whenever one of these triggering neurons fires, the output z fires. We also add a self-loop with
weight w(z, z) = 2 such that once the output fires, it continues to fire w.h.p.

Like ei, dj,1 is equipped with an auxilary neuron fj which fires w.h.p. iff Y2 = bin(j). Specif-
ically, we connect fj to Y2 in an identical manner to how we connected gj to Y1 and have the
following analog of Lemma 20:

Lemma 25. For any t, if Y t
2 = bin(j) then w.h.p. f t+2

j = 1 and f t+2
k = 0 for all k 6= j.

We set w(yj , dj,1) = 2. Additionally, to insure that dj,1 only fires at the appropriate step of
decoding we connect it to our clock mechanism. We set w(cl, dj,1) = 2

√
n for l = 5j + 2. Finally

we set b(dj,1) = 2
√
n+ 3. This gives the following lemma:

Lemma 26. Assume that the inputs X, Y1, and Y2 remain fixed for t ∈ {0, ..., 5
√
n} and that

Y1 = bin(i) and Y2 = bin(j). Then dtj,1 = 1 for t = 5j + 4 w.h.p. if eti = 1 for t = 5j + 3.
Otherwise, w.h.p. dtj,1 = 0 for all t ≤ 5

√
n.

Proof. dj,1 will not fire w.h.p. in round t unless cl (for l = 5j + 2) fires in round t − 1. This is
because the weight of all incoming connections to dj,1 from the

√
n encoding neurons and yj is

2
√
n+ 2 which is not enough to overcome the bias b(dj,1) = 2

√
n+ 3.

19



Additionally, assuming Xt 6= 0, then at least one input fires in round 0, so by Corollary 24, cl
fires w.h.p. in round 5j + 3 and in no other rounds by Lemma 23. So if dj,1 fires, w.h.p. it must
be in round t = 5j + 4.

Note that to have dtj,1 = 1 w.h.p. we must additionally have f t−1
j = 1 and et−1

dec(Y1) = 1.
Otherwise, since by Lemma 22, edec(Y1) is the only encoding neuron that fires after round 3:

pot(dj,1, t− 1) ≤ −b(dj,1) + w(edec(Y1), dj,1) + w(cl, dj,1) ≤ −2
√
n− 3 + 2 + 2

√
n ≤ −1

and so dtj,1 = 0 w.h.p. By Lemma 25, if Y t′
2 = bin(j) for all t′ ∈ {0, ..., 5

√
n} then yj will fire in

all rounds after round 2 and hence in round t− 1. Thus d1,j will fire w.h.p. if edecY1 fires in t− 1
as well. If Y2 6= bin(j) or if edecY1 does not fire in this round, then d1,j will not fire with high
probability, giving the lemma. We conclude by noting that we assumed that Xt 6= 0. If Xt = 0,
then c0 will never be triggered, and thus no dj,1 will ever fire, so z will never fire. This is a correct
output, as all bits of the input are 0.

From Lemma 26 we have the following simple corollary:

Corollary 27. Assume that the inputs X, Y1, and Y2 remain fixed for t ∈ {0, ..., 5
√
n} and that

Y1 = bin(i) and Y2 = bin(j). Then z5
√
n = 1 w.h.p. if eti = 1 for t = 5j + 3. z5

√
n = 0 w.h.p.

otherwise.

Proof. This follows directly from Lemma 26 and the fact that we set b(z) = 1 and w(dj,1, z) = 2 for
all j ∈ 1, ...,

√
n. Additionally, once z fires, it continues firing as we added a self-loop with weight

2. Thus it fires w.h.p. in round 5
√
n.

Potential Reading Corollary 27 shows that as long as bin(i) = Y1, bin(j) = Y2, and X√ni+j = 1
causes ei to fire at round 5j + 3 then z will fire. If ei does not fire in this round then z will fire in
a round w.h.p. iff Xdec(Y ) = 1. Thus is remains to demonstrate how to ensure that ei fires in this
round if X√ni+j = 1 and does not fire if X√ni+j = 0.

To do this we use an excitatory neurons dj,2, dj,3′ and the inhibitory neuron dj,3. We set
b(dj,2) = 1 and b(dj,3) = b(dj,3′) = 3. We set w(ei, dj,3) = w(ei, dj,3′) = 2 for all i, j ∈ {0, ...,

√
n−1}

and finally w(cl, dj,2) = 2 for l = 5j+2 and w(cl, dj,3) = 2 for l = 5j+2. Finally we create self loops
w(dj,2, dj,2) = 2 and w(dj,3′ , dj,3′) = 4. and w(dj,3′ , dj,3) = 4. This gives the following lemmas:

Lemma 28. Assume that X0 6= 0 (i.e. at least one input fires in round 0). With high probability,
for every j, dtj,2 = 0 for all t < 5j + 4 and dtj,2 = 1 for all 5j + 4 ≤ t ≤ 5

√
n.

Proof. We have b(dj,2) = 1, and w(cl, dj,2) = 2 so as long as Xt 6= 0, by Corollary 24, cl fires in
round 5j + 3, dj,2 will fire in the next round w.h.p. Further, it will continue to fire in all successive
rounds w.h.p. due to its self-loop with w(dj,2, dj,2) = 2. Since it does not fire in round 0, its
self-loop will be inactive and it will not fire in any round before 5j + 4.

Lemma 29. Assume that X and Y1 remain fixed for t ∈ {0, ..., 5
√
n}, that X 6= 0, that Y1 = bin(i).

For every j, if eti = 1 for t = 5j + 3, then w.h.p. dtj,3 = 1 for all t ≥ 5j + 4. Otherwise, w.h.p.
dtj,3 = 0 for all t ≤ 5

√
n.

Proof. Since b(dj,3) = 3, in order of dj,3 to fire in round t if it did not fire in round t − 1 (and
hence dj,3′ , which has identical connections, was not activated w.h.p. ) we must have et−1

i = 1 for

20



some i and ct−1
l = 1 for l = 5j + 2. By Corollary 24, since X0 6= 0, cl fires w.h.p. in round 5j + 3

and no other round, so if dj,3 fires it must be in round 5j + 4 w.h.p. Since only edec(Y1) fires in

any round after round 3 w.h.p. by Lemma 22, we must have e5j+3
dec(Y1) = 1 in order for dj,3 to fire.

We finally note that once dj,3 fires, it will continue firing w.h.p. in each round due to dj,3′ whose
excitatory connection excites it (the connection from dj,3′ behaves as an excitatory self-loop, which
dj,3 is not allowed to have directly since it is an inhibitor). Further, it does not fire in any round
before t = 5j + 4 since it does not fire in round 0 so dj,3′ will be inactive.

We now discuss how dj,2 and dj,3 provide feedback to ei. We set for all i,

w(dj,2, ei) = 2
√
n−j−1 and w(dj,3, ei) = −2

√
n−j .

We can verify Fact 21: The total weight on each ei from the dj,2 neurons is at most
∑√n−1

j=0 2
√
n−j−1 ≤

2
√
n. The total weight from the inputs is at most

∑√n−1
j=0 2

√
n−j ≤ 2

√
n+1, so overall the total exci-

tatory weight is at most 2
√
n+2. We can finally prove:

Lemma 30. Assume that X, Y1 remain fixed for t ∈ {0, ..., 5
√
n} and that Y1 = bin(i). For all

k, j, e5j+3
k = 1 w.h.p. if Xk

√
n+j = 1 and k = i. Otherwise, e5j+3

k = 0 w.h.p.

Proof. We first note that if X = 0, then no ek will ever fire and the lemma will be correct trivially.
So we assume X 6= 0. By Lemma 22, for k 6= i, etk for all 3 ≤ t ≤ 5

√
n w.h.p. which immediately

gives the result in this case. So now consider k = i. For j = 1, since we set b(ei) = 2
√
n+2 +2

√
n−1,

since Y t
1 = bin(i) for t = 0, by Lemma 20, gi fires in round 2. Thus w.h.p.

pot(ei, 2) = −2
√
n+2 − 2

√
n + 1 + w(gi, ei) +

√
n−1∑
j=0

[
d2
j,2w(dj,2, ei) + d2

j,3w(dj,3, ei)
]

+

√
n−1∑
j=0

Xi
√
n+j · 2

√
n−j

= −2
√
n + 1 +

√
n−1∑
j=0

Xi
√
n+j · 2

√
n−j

where the last step follows since w(gi, ei) = 2
√
n+2 and since neither dj,2 nor dj,3 fire w.h.p. be-

fore round 4 (see Lemmas 28 and 29). Now,
∑√n−1

j=0 Xi
√
n+j · 2

√
n−j ≥ 2

√
n if Xi

√
n = 1 and∑√n−1

j=0 Xi
√
n+j · 2

√
n−j ≤ 2

√
n − 2 otherwise. Thus ei fires w.h.p. in round 3 if Xi

√
n = 1 and does

not fire w.h.p. otherwise. This completes the lemma in the base case of j = 0.
Now consider j ≥ 1 and assume the lemma holds w.h.p. for all j′ < j. By this inductive

21



assumption and Lemmas 28 and 29 at round t = 5j + 2 we have w.h.p.

pot(ei, t) = −2
√
n+2 − 2

√
n + 1 + w(gi, ei) +

√
n−1∑
j=0

[
dtj,2w(dj,2, ei) + dtj,3w(dj,3, ei)

]
+

√
n−1∑
j=0

Xi
√
n+j · 2

√
n−j

= 1− 2
√
n +

j−1∑
j′=1

[
2
√
n−j′−1 −Xi

√
n+j′2

√
n−j
]

+

√
n−1∑
j=0

Xi
√
n+j · 2

√
n−j

= 1− 2
√
n +

j−1∑
j′=0

2
√
n−j′−1 +

√
n−1∑
j′=j

Xi
√
n+j′2

√
n−j

= 1− 2
√
n−j +

√
n−1∑
j′=j

Xi
√
n+j′2

√
n−j

And again, this potential is ≥ 1 if Xi
√
n+j = 1 and ≤ −1 otherwise. Thus, e5j+3

i = 1 w.h.p. if
Xi
√
n+j = 1 and is 0 otherwise w.h.p. This completes the lemma.

With this lemma in hand, we can now prove our main result Theorem 6.

Proof of Theorem 6. The theorem follows from Corollary 27 combined with Lemma 30.

Proof of Observation 7. To run the indexing algorithm multiple times, the network must ‘reset’
to a state in which all auxiliary neurons do not fire for a round. This is notably important for
dj,2, dj,3′ , and z. Once these neurons spike, they propagate the spike via a self-loop and will fire
continuously w.h.p. unless they receive some external inhibition. A simple way to achieve a reset is
to add an inhibitory neuron r with b(r) = 1 and w(c5

√
n−2, r) = 2. Thus, since c5

√
n−2 fires w.h.p.

in round 5
√
n − 1, r will fire w.h.p. in round 5

√
n. We can add an inhibitory synapse from r to

each decoding neuron and to z, with arbitrarily large weight. In this way, in round 5
√
n+ 1, none

of these neurons will fire with high probability, and the computation will proceed as described.
Round 5

√
n+ 1 can be identified with round 0 in the statement of Theorem 6.

B Missing Proofs for the Lower Bound

Proof of Lemma 15: We first define a generalization of VC dimension, which measures the
number of dichotomies that a class of functions can induce over a set.

Definition 31. For a class of functions H : X → {0, 1}, let ∆H(z) be the maximum over sets
A ⊆ X with |A| = z of ∆H(A), the number of different partitions of A that can be induced by some
h ∈ H. V C(H) is the maximum z with ∆H(z) = 2z.

Lemma 32 (Theorem 1 of [BH89]). Let H be the class of functions computed by a fixed feedforward
architecture with m nodes, where each node vi can be chosen to compute any function in the class
Hi. Then ∆H(z) ≤

∏m
i=1 ∆Hi(z).

22



Applying Lemma 32 to a fixed threshold circuit with programmable thresholds gives Lemma 15.
For a threshold gate with fixed input weights and a variable threshold, we trivially have ∆Hi(z) ≤ z,
since for z inputs, there are z possible functions that can computed by varying the threshold of
the circuit (since edge weights are fixed, any input is just mapped to a single real number which is
thresholded). We thus have ∆H(z) ≤ zm.

By Definition 31, for z = V C(H) we have ∆H(z) = 2z. So we have 2z ≤ zm and thus z ≤ m log z.
This is violated for any z ≥ 3m logm, so we must have V C(H) ≤ 3m logm.

23


	1 Introduction
	1.1 A Neuro-RAM Unit
	1.2 Our Contributions
	1.2.1 Efficient Neuro-RAM Unit
	1.2.2 Lower Bound for Neuro-RAM in Spiking Networks
	1.2.3 Applications to Randomized Similarity Testing and Compression


	2 Computational Model and Preliminaries
	2.1 Network Structure
	2.2 Network Dynamics
	2.3 Additional Notation

	3 Neuro-RAM Network
	4 Lower Bound for Neuro-RAM in Spiking Networks
	4.1 High Level Approach and Intuition
	4.2 Reduction to Deterministic Indexing Circuit
	4.3 Lower Bound for Deterministic Indexing on a Subset of Inputs

	5 Applications to Similarity Testing and Compression
	5.1 Similarity Testing
	5.1.1 Implementation Sketch

	5.2 Randomized Compression

	A Missing Details for Implementing Neuro-RAM
	A.1 First Stage: Bucket Selection
	A.2 Second Stage: Bucket Decoding 
	A.2.1 Clock Mechanism
	A.2.2 Successive Decoding


	B Missing Proofs for the Lower Bound

