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Abstract

We give the first algorithms for kernel matrix approximation that run in time linear in
the number of data points and output an approximation which gives provable guarantees when
used in many downstream learning tasks, including kernel principal component analysis, kernel
k-means clustering, kernel ridge regression, and kernel canonical correlation analysis.

Our methods require just Õ(n·k) kernel evaluations and Õ(n·k2) additional runtime, where n
is the number of training data points and k is a target rank or effective dimensionality parameter.
These runtimes are significantly sub-linear in the size of the n × n kernel matrix and apply to
any kernel matrix, without assuming regularity or incoherence conditions.

The algorithms are based on a ridge leverage score Nyström sampling scheme (RLS-Nyström)
which was recently shown to yield strong kernel approximations, but which had no efficient imple-
mentation [AM15, RCR15, Wan16]. We address this shortcoming by introducing fast recursive
sampling methods for RLS-Nyström, while at the same time proving extended approximation
guarantees for this promising new method.

http://arxiv.org/abs/1605.07583v2


1 Introduction

The kernel method is an extremely popular learning tool, which implicitly maps data to a high-
dimensional feature space before applying linear learning methods [SS02]. In this way, classical
linear techniques such as support vector machines, ridge regression, principal component analysis,
and k-means clustering can be used for nonlinear learning tasks – linear relationships in the high
dimensional feature space correspond to nonlinear relationships in the original input space.

Unfortunately kernel learning is slow. Since points cannot be explicitly mapped to the kernel
feature space, which is often infinite dimensional, the kernel trick is employed: an efficient kernel
function is used to compute inner products between the high dimensional mappings of input points.
Given n input points x1, . . . ,xn, the kernel matrix K ∈ R

n×n is formed where Ki,j contains the
high dimensional inner product between every xi and xj . All computations of a linear learning
algorithm are then performed using the inner product information contained in K, which inherently
requires space (and computation time) quadratic in the size of the dataset.

1.1 Kernel approximation

Since this cost is prohibitive for large datasets, a large body of work focuses on quickly and space
efficiently approximating the kernel matrix K with a sketch K̃ [AMS01, BBV06, SS00, WS01, FS02,
DM05, RR07, GM13]. While this approach has seen significant practical and theoretical success,
the theory of kernel approximation is still lacking in two respects:

Problem 1: Usefulness While many algorithms compute a K̃ that provably approximates K,
the approximation metric is rarely tied to downstream learning tasks. For example, several
papers study algorithms for finding low-rank approximations or entry-wise approximations to
K. While qualitatively useful, these metrics do not imply that K̃ can be used in place of K
to provably approximate downstream computations.

Problem 2: Efficiency Amongst those methods that do guarantee useful kernel approximations
[Bac13, AM15, RCR15, YPW15], none run provably quickly for all kernel matrices. Ideally,
we want to avoid computing K entirely, running as fast as linear-time heuristic methods.

1.2 Our contributions

In this paper we address both issues by significantly pushing forward a recent line of research on
ridge leverage score based Nyström approximation, a kernel approximation algorithm proposed by
Alaoui and Mahoney [AM15] that we refer to as RLS-Nyström. One of many Nyström methods
based on non-uniform subsampling of input points [DM05, ZTK08, KMT12, GM13, WZ13, LJS16],
RLS-Nyström has shown promise: it outputs an approximate kernel K̃ that is provably useful in
kernel ridge regression and kernel canonical correlation analysis and can be represented in space
linear in the number of data points n [AM15, RCR15, Wan16].

However, current methods for performing RLS-Nyström are slow. They require computing the
so called ridge leverage scores of K, which contain fine grained information about theK’s spectrum.
While these scores can be computed quickly for some matrices [AM15] it is not known how to do
so for many natural instances [YPW15]. In the worst case, computing K̃ could take O(n3) time.

Our main contribution is a recursive sampling scheme that computes the ridge leverage scores of
any kernel matrix without forming the whole matrix. The key idea is that it is possible to compute
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approximations to the ridge leverage scores by uniformly sampling a constant fraction of the input
points. By recursively approximating the (still large) sampled kernel matrix, we can perform fast
leverage score computation, running in time significantly sublinear in the size of K.

Our methods are based on recent iterative sampling methods for spectral approximation and
low-rank approximation of large matrices [CLM+15, CMM15]. However, our implementation is
more involved as it must work with the kernelized dataset implicitly, without forming all of K.

In addition to an efficient implementation, we provide a new analysis of RLS-Nyström which
gives general approximation bounds for K̃ that can be used to recover all prior results on down-
stream approximation guarantees. Our approach also yields new guarantees for kernel principal
component analysis and kernel k-means clustering. The results are summarized in Table 1.

Table 1: We summarize the downstream guarantees offered by the kernel approximation K̃ obtained
from RLS-Nyström. Notice that for all problems the runtime required to compute K̃ and the space
required to store K̃ depend linearly on the number of training data points n.

Application
Downstream
Guarantee

Relevant
Theorem

Space to

store K̃

Time to

compute K̃

Kernel Ridge
Regression w/
Parameter λ

(1 + ǫ) relative error
risk bound

Thm 10 Õ(ndeff

ǫ
)† Õ(

nd2

eff

ǫ2
) + Õ(ndeff

ǫ
) kernel evals.

Kernel
k-means
Clustering

(1 + ǫ) relative error Thm 11 Õ(nk
ǫ
) Õ(nk

2

ǫ2
) + Õ(nk

ǫ
) kernel evals.

Rank k
Kernel PCA

(1 + ǫ) relative
Frobenius norm error

Thm 12 Õ(nk
ǫ
) Õ(nk

2

ǫ2
) + Õ(nk

ǫ
) kernel evals.

Kernel CCA w/
Regularization
Params λx, λy

ǫ additive error to
canonical correlation

Thm 13 Õ(
ndx

eff
+nd

y

eff

ǫ
)

Õ(
n(dx

eff
)2+n(dy

eff
)2

ǫ2
)+

Õ(
ndx

eff
+nd

y

eff

ǫ
) kernel evals.

∗ For simplicity, Õ(·) hides log factors in the failure probability, deff, and k.
† deff = tr(K(K+ λI)−1) is the so-called “effective dimensionality” of the ridge regression [HTF02].

1.3 Prior Work

It was not previously clear that any method could provably approximate an arbitrary kernel matrix
without at least examining every entry of the matrix, and thus requiring at least O(n2) time. All
previous sub-quadratic time algorithms are either:

1. Based on uniform sampling or similar techniques for Nyström approximation that only work
well under regularity and incoherence conditions on K [Git11, KMT12, AM15]. The extent
to which these conditions can be assumed for practical data is debated (see [GM13]).

2. Based on random Fourier features, which are not currently known to give strong guarantees for
downstream learning tasks in comparison to Nyström methods [RR07, And09, CP16, GPP16].

3. Apply to specific limited complexity kernels, e.g. constant degree polynomial kernels [ANW14].
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1.4 Future work

Our primary focus is on advancing the theory behind the RLS-Nyström method and proving that it
can be implemented in linear time in the number of training data points n. An important next step is
to empirically test and develop practical implementations of our RLS-Nyström algorithms. We note
that, aside from algorithmic considerations, preliminary experimental results on the effectiveness
of RLS-Nyström for kernel approximation are available in [AM15], [RCR15], and [Wan16].

1.5 Paper organization

We first introduce the RLS-Nyström approximation scheme in Section 3, without considering al-
gorithmic issues. We present and prove simple but powerful approximation metrics for K̃ that
allow it to be used in place of K for a variety of downstream learning tasks. In Section 4, we give
algorithms for computing an RLS-Nyström approximation in linear time. Our problem specific
results from Table 1 are proven in Appendix A using the approximation metrics from Section 3.
Auxiliary lemmas are included in Appendix B and C.

2 Preliminaries

Consider an input space X and a positive semidefinite kernel K : X × X → R. Let F be an
associated reproducing kernel Hilbert space and φ : X → F be a (typically non-linear) feature map
such that for any x, y ∈ X , K(x, y) = 〈φ(x), φ(y)〉F . Given a set of n input points x1, . . . ,xn ∈ X ,
define the kernel matrix K ∈ R

n×n by Ki,j = K(xi,xj).
It will often be natural to consider the kernelized data matrix that generates K. Informally,

let Φ ∈ R
n×d′ be the matrix containing φ(x1), ..., φ(xn) as its rows (note that d′ may be infinite).

K = ΦΦT . While we will use Φ for intuition, in our formal proofs we will replace it with any
matrix B ∈ R

n×n satisfying BBT = K (e.g. a Cholesky factor).
In our proofs, we will repeatedly make we will make use of the singular value decomposition,

which allows us to write any rank r matrix M ∈ R
n×d as M = UΣV⊤, where U ∈ R

n×r and
V ∈ R

d×r have orthogonal columns (the left and right singular vectors of A), and Σ ∈ R
r×r is

a positive diagonal matrix containing the singular values of M: σ1(M) ≥ σ2(M) ≥ . . . ≥ σr(M).
The pseudoinverse of M is given by M+ = VΣ−1U⊤.

3 The RLS-Nyström method

We begin by describing the RLS-Nyström method of [AM15], which computes an efficiently rep-
resentable approximate kernel matrix K̃ by combining ridge leverage score sampling with the well
studied Nyström method [WS01]. Without yet considering how to efficiently implement RLS-
Nyström, we show that it gives several strong guarantees for approximating K. Unlike ad-hoc
guarantees (e.g. element-wise approximation or low-rank approximation of K), these guarantees
are provably sufficient for use in many downstream maching learning applications.
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3.1 Nyström approximation

The Nyström method approximates K by subsampling input points. Given a sampling matrix
S ∈ R

n×s with a single nonzero entry per column, the associated Nyström approximation is:

K̃ = KS(STKS)+STK (1)

where + denotes the pseudoinverse. K̃ can be stored in O(ns) space by separately storing KS ∈
R
n×s and (SKST )+ ∈ R

s×s. Furthermore, the factors can be computed using just O(ns) kernel
evaluations to form KS and O(s3) time to compute (STKS)+. Typically s << n so these costs are
significantly lower than the cost to form and store the full kernel matrix K.

We view Nyström approximation as a low-rank approximation to the dataset in feature space.
Recalling that K = ΦΦT , S selects s kernelized data points STΦ and we approximate Φ using its
projection onto these points. Informally, let PS ∈ R

d′×d′ be the orthogonal projection onto the row
span of STΦ. We approximate Φ̃ = ΦPS. We can write PS = ΦTS(STΦΦTS)+STΦ. Since it is
an orthogonal projection, PSP

T
S
= P2

S
= PS and so:

K̃ = Φ̃Φ̃T = ΦP2
SΦ

T = Φ
(

ΦTS(STΦΦTS)+STΦ
)

ΦT

= KS(STKS)+STK.

This recovers the standard Nyström approximation (1). Note that the above view is presented
for intuition – we do not rigorously handle the infinite dimensionality of the feature space. However,
the argument can be made formal by replacing Φ with any B ∈ R

n×n satisfying BBT = K. Such
a B is guaranteed to exist since K is positive semidefinite.

3.2 Ridge leverage scores

Classically, S is formed by sampling data points uniformly at random [WS01, BW09]. However, a
large body of research focuses on non-uniform importance sampling strategies based off diagonal
entries, column norms, leverage scores, and DPPs [DM05, KMT12, GM13, WZ13, LJS16]. These
strategies give approximation bounds that do not require assumptions on K.

Recent work shows that sampling points via their ridge leverage scores gives bounds on K̃ that
are provably useful for ridge regression and canonical correlation analysis [AM15, RCR15, Wan16].

Definition 1 (Ridge Leverage Scores). For any λ > 0 and any B ∈ R
n×n satisfying BBT = K,

the λ-ridge leverage score of data point xi with respect to the kernel matrix K is given by:

lλi (K) = bT
i (B

TB+ λI)−1bi (2)

where bT
i ∈ R

1×n is the ith row of B.

Above I refers to the n× n identity matrix. For ease of notation we will write lλi (K) simply as
lλi and include the argument only when referring to the ridge leverage scores of some kernel matrix
other than K. Additionally, note that we will typically replace λ with ǫλ for some error parameter
ǫ ∈ (0, 1), using the scores lǫλi . Finally, while B will be useful computationally, the value of lλi does
not depend on the choice of this matrix – any square root of K can be used. As noted in [AM15],
lλi =

(

K(K+ λI)−1
)

i,i
. Informally, using Φ in place of B, the above definition is identical to the

definition of ridge leverage scores given in [CMM15] for the rows of the kernelized dataset Φ.
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3.3 The basic algorithm

The RLS-Nyström method is simple to describe. We include pseudocode as Algorithm 1 below,
but again do not address how to efficiently implement each step of the algorithm until Section 4.

Algorithm 1 RLS-Nyström Sampling

input: x1, . . . ,xn ∈ X , kernel matrix K, ridge parameter λ > 0, ǫ, δ ∈ (0, 1)
output: kernel approximation K̃

1: Compute over-approximations to the ǫλ-ridge leverage scores of x1, . . . ,xn, l̃
ǫλ
i ≥ lǫλi

2: Set oversampling parameter q := log(
∑

l̃ǫλi /δ)

3: Set pi := c ·min
{

ql̃ǫλi , 1
}

for sufficiently large constant c

4: Construct S ∈ R
n×s by sampling x1, . . . ,xn each independently with probability pi. In other

words, for each i add a column to S with a 1 in position i with probability pi
5: Form the Nyström approximation K̃ := KS(SKS)+SK

Note that since points are sampled independently, s is actually a random variable in RLS-
Nyström – when analyzing Algorithm 1 we will show that it is not too large with good probability.
Also note that we do not form K̃ explicitly, as this would take space and time quadratic in n. We
simply return the s× s matrix (SKS)+ along with KS.

3.4 Accuracy Bounds

We first show that the RLS-Nyström method gives an additive error kernel embedding.

Theorem 2 (Additive Error Kernel Embedding). For any λ > 0 and ǫ, δ ∈ (0, 1), RLS-Nyström
returns an S ∈ R

n×s such that with probability 1 − δ, s = O (
∑

i pi) and the approximation K̃

satisfies:

K̃ � K � K̃+ ǫλI. (3)

When ridge scores are computed exactly,
∑

i pi = O
(

deff
ǫ log deff

δǫ

)

where deff = tr(K(K+ λI)−1).

� denotes the standard Loewner matrix ordering on positive semi-definite matrices1. Note that
(3) immediately implies that ‖K− K̃‖2 ≤ ǫλ and it is in fact equivalent to this well studied [GM13]
spectral norm guarantee as long as we assume K̃ � K. (3) also appears directly in the streaming
and sketching literature [GLPW15, CMM15].

Intuitively, Theorem 2 guarantees that the K̃ produced by RLS-Nyström very well approximates
the top of K’s spectrum (i.e. any eigenvalues > λ) while allowing it to eliminate information about
smaller eigenvalues, which are less important for many learning tasks. This guarantee is already
sufficient for using K̃ to approximately solve kernel ridge regression (Theorem 10).

Proof. It is clear from the view of Nyström approximation as a low-rank projection of the kernelized
data (see Section 3.1) that K̃ � K. Formally, for any B ∈ R

n×n with BBT = K:

K̃ = KS(STKS)+STK = BPSB
T

1
M � N means that N−M is positive semidefinite.

5



where PS = BTS(STBBTS)+STB is the orthogonal projection onto the row span of STB. Since
PS is a projection ‖PS‖2 ≤ 1. So, for any x ∈ R

n:

xT K̃x = xTBPSBx = ‖PSBx‖22 ≤ ‖Bx‖22 = xTKx

giving K̃ � K. So, it just remains to show K � K̃+ ǫλI.
It can be shown via a matrix Bernstein bound that if S samples rows of B by their ridge leverage

scores, BTSSTB will spectrally approximate BTB up to an additive ridge error (see Lemma 14 in
Appendix B). We require a relatively weak corollary of this fact which appears in Appendix B as
Corollary 15: with probability 1− δ, s = O (

∑

i pi) and there is some scaling factor C such that

BTB � C ·BTSSTB+ ǫλI. (4)

Let P̄S = I−PS be the projection onto the complement of the row span of STB. By (4):

P̄SB
TBP̄S � C · P̄SB

TSSTBP̄S + ǫλP̄SIP̄S. (5)

Since P̄S projects to the complement of the row span of STB, STBP̄S = 0. So (5) gives:

P̄SB
TBP̄S � 0+ ǫλP̄SIP̄S � ǫλI.

In other notation, ‖P̄SB
TBP̄S‖2 ≤ ǫλ. This in turn implies ‖BP̄SB

T ‖2 ≤ ǫλ and hence:

BP̄SB
T = B(I−PS)B

T � ǫλI.

Rearranging, and using K = BBT and K̃ = BPSB
T gives the theorem.

We conclude by noting that, if exact ridge leverage scores are used in Algorithm 1,
∑

i pi =
∑

lǫλi log(
∑

lǫλi /δ). Since the ǫλ ridge leverage scores are the diagonal entries of K(K+ ǫλI)−1,

∑

i

lǫλi = tr(K(K+ ǫλI)−1) ≤ 1

ǫ
tr(K(K+ λI)−1).

Accordingly, Theorem 2 guarantees that S contains just O
(

deff
ǫ log deff

δǫ

)

samples.

The additive error kernel embedding bound of Theorem 2 easily implies what’s called a projection-
cost preserving kernel embedding, which is presented next in Theorem 3. Since its recent introduc-
tion, projection-cost preservation has proven a powerful concept in the matrix sketching literature
[FSS13, CEM+15, CMM15, BWZ16]. We hope that an explicit projection-cost preservation guar-
antee for kernels will lead to applications of RLS-Nyström beyond those considered in this paper.

Theorem 3 (Projection-Cost Preserving Kernel Embedding). Let λ = 1
k

∑n
i=k+1 σi(K). For any

ǫ, δ ∈ (0, 1), RLS-Nyström returns an S ∈ R
n×s such that with probability 1 − δ, s = O (

∑

i pi)
and the approximation K̃ = KS(SKS)+SK satisfies, for any rank k orthogonal projection X and
a positive constant c independent of X:

tr(K−XKX) ≤ tr(K̃−XK̃X) + c ≤ (1 + ǫ) tr(K−XKX). (6)

When ridge leverage scores are computed exactly,
∑

i pi = O
(

k
ǫ log

k
δǫ

)

.
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Intuitively, Theorem 3 ensures that the distance from K̃ to any low dimensional subspace closely
approximates the distance from K to the subspace. Accordingly, K̃ can be used in place of K to
approximately solve low-rank approximation problems, both constrained (e.g. k-means clustering)
and unconstrained (e.g. principal component analysis). See Theorems 11 and 12.

Proof. Set c = tr(K)− tr(K̃), which is ≥ 0 since K̃ � K by Theorem 2. By linearity of trace:

tr(K̃−XK̃X) + c = tr(K)− tr(XK̃X).

So to obtain (6) it suffices to show:

tr(XKX)− ǫ tr(K−XKX) ≤ tr(XK̃X) ≤ tr(XKX). (7)

SinceX is a rank k orthogonal projection we can write X = QQT whereQ ∈ R
n×k has orthonormal

columns. Applying the cyclic property of the trace, and the spectral norm bound of Theorem 2:

tr(XK̃X) = tr(QT K̃Q) =

k
∑

i=1

qT
i K̃qi ≤

k
∑

i=1

qT
i Kqi = tr(QTKQ) = tr(XKX).

This gives us the upper bound of (7). For the lower bound:

tr(XK̃X) =
k
∑

i=1

qT
i K̃qi ≥

k
∑

i=1

qT
i Kqi − kǫλ = tr(XKX)− kǫλ. (8)

Finally, kǫλ = ǫ
∑n

i=k+1 σi(K) ≤ ǫ tr(K − XKX) since tr(K) =
∑n

i=1 σi(K) and tr(XKX) ≤
∑k

i=1 σi(K) by the Eckart-Young theorem. Plugging into (8) gives (7), completing the proof.
Again we conclude by showing that s is not too large. As in the proof of Theorem 2, s = O(

∑

i pi)
with probability 1−δ. When ridge leverage scores are computed exactly

∑

i pi =
∑

lǫλi log(
∑

lǫλi /δ).

∑

i

lǫλi = tr(K(K+ ǫλI)−1) ≤ 1

ǫ
tr(K(K+ λI)−1)

=
1

ǫ

n
∑

i=1

σi(K)

σi(K) + 1
k

∑n
i=k+1 σi(K)

=
1

ǫ

(

k
∑

i=1

σi(K)

σi(K) + 1
k

∑n
i=k+1 σi(K)

+

n
∑

i=k+1

σi(K)

σi(K) + 1
k

∑n
i=k+1 σi(K)

)

≤ 1

ǫ

(

k +
n
∑

i=k+1

σi(K)
1
k

∑n
i=k+1 σi(K)

)

=
2k

ǫ
.

Accordingly,
∑

i pi = O
(

k
ǫ log

k
δǫ

)

as desired.

4 Efficient implementation of RLS-Nyström

Having established that RLS-Nyström can be used to well approximate K, we next show how to
very efficiently implement the high-level procedure described in Algorithm 1. We give two closely
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related algorithms: The first applies when the ridge parameter λ is known – e.g. when applying
Theorem 2 to approximating kernel ridge regression. The second applies when λ = 1

k

∑n
i=k+1 σ(K)

for some rank parameter k – e.g. when applying Theorem 3 to kernel clustering and PCA. In this
case we cannot directly compute λ, so it must be estimated.

Both algorithms are simple recursive methods, which sample uniformly fromK and approximate
the ridge leverage scores based on this sampling. In order to ensure accuracy, the uniform sample
must be large – consisting of a constant fraction of the original data points. However, it is possible
to recursively approximate the sample, leading to a runtime which is linear in n and polynomial in
the sum of ridge leverage scores. Our recursive algorithms follow work in [CMM15] and [CLM+15]
and should be thought of as adapting these earlier results to the more challenging kernel setting.

4.1 Ridge leverage score approximation via uniform sampling

We first show that uniform sampling a constant fraction of the data points yields good ridge leverage
score estimates. We will focus first on the case when λ is known.

Lemma 4. For any B ∈ R
n×n with BBT = K and S ∈ R

n×s chosen by sampling each data point
independently with probability 1/2, let

l̃ǫλi = bT
i (B

TSSTB+ ǫλI)−1bi.

and pi = min{1, c log(∑ l̃ǫλi /δ)}. Then with probability at least 1− δ:

1. l̃ǫλi ≥ lǫλi

2.
∑

i pi = O
(

c log(
∑

lǫλi /δ) ·∑i l
ǫλ
i

)

The first condition ensures that we can form an RLS-Nyström approximation by sampling with
the approximate ridge leverage scores l̃ǫλi . The second ensures that this approximation will have
up to constant factors the same size as if we used the true ridge leverage scores. Note that it is not
obvious how to compute l̃ǫλi = bT

i (B
TSSTB+ ǫλI)−1bi without explicitly forming B. We discuss

how to do this in Section 4.2.

Proof. The first bound follows because BTSSTB � BTB so

l̃ǫλi = bT
i (B

TSSTB+ ǫλI)−1bi ≥ bT
i (B

TB+ ǫλI)−1bi = lǫλi .

So the challenge is showing the second bound. The proof closely follows proofs in [CLM+15] and
[CMM15], and we refer the reader to Theorem 2 of [CLM+15] for details. We sketch the idea below.

We first argue that there exists a diagonal reweighting matrix W ∈ R
n×n, 0 � W � I such

that for all i, lǫλi (WBBTW) ≤ α where α
def
= 1

2 · 1
c log(

∑
lǫλi /δ)

. This bound ensures that uniformly

sampling rows with probability 1/2 from the reweighted kernel WBBTW is a valid ridge leverage
score sampling. Further, we can show |{i : Wi,i < 1}| = O

(

c log(
∑

lǫλi /δ) ·∑ lǫλi
)

– that is, we do
not need to reweight too many columns to achieve the ridge leverage score upper bound.

W is formed by iteratively considering any i with lǫλi (WBBTW) ≥ α. Since ǫλ > 0, it is
always possible to decrease the ridge leverage score to exactly α by decreasing Wi,i sufficiently.

It is clear from Definition 1 that decreasing the weight of one row of B will only increase the
ridge leverage scores of other rows. So, any reweighted row will always have leverage score ≥ α.
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Theorem 2 of [CLM+15] demonstrates rigorously that the leverage scores of these reweighted rows
will in fact converge to α. Further, since W � I, WBBTW � BBT and it is not hard to show
(see Lemma 16 in Appendix C) that:

∑

i

lǫλi (WBBTW) ≤
∑

i

lǫλi (BBT )
def
=
∑

i

lǫλi .

So the number of reweighted rows is at most 1
α

∑

i l
ǫλ
i = O

(

c log(
∑

lǫλi /δ) ·∑ lǫλi
)

.
We can now bound

∑

i pi. For any i that is reweighted by W we just trivially bound pi ≤ 1.
Since lǫλi (WBBTW) ≤ 1

2 · 1
c log(

∑
lǫλi /δ)

for all i, and since S samples each i with probability 1/2, it

is a valid ridge leverage score sampling, and by Lemma 14:

1

2
(BTW2B+ ǫλI) � (BTWSSTWB+ ǫλI) � 3

2
(BTW2B+ ǫλI).

Hence:

l̃ǫλi = bT
i (B

TSSTB+ ǫλI)−1bi ≤ bT
i (B

TWSSTWB+ ǫλI)−1bi

≤ 2bT
i (B

TW2B+ ǫλI)−1bi

= 2lǫλi (WBBTW).

Again using the fact that WBBTW � BBT and Lemma 16,
∑

{i:Wi,i=1} l̃
ǫλ
i ≤ 2

∑

i l
ǫλ
i . Overall:

∑

i

pi =
∑

{i:Wi,i<1}

pi +
∑

{i:Wi,i=1}

pi

≤ |{i : Wi,i < 1}| + c log
(

∑

lǫλi /δ
)

·
∑

i

lǫλi = O

(

c log
(

∑

lǫλi /δ
)

·
∑

i

lǫλi

)

.

4.2 Efficient sampled ridge leverage score computation

In order to utilize Lemma 4 we must show how to efficiently compute

l̃ǫλi = bT
i (B

TSSTB+ ǫλI)−1bi

without explicitly forming either K or B. We show how to do this in the following lemma:

Lemma 5. For any sampling matrix S ∈ R
n×s, and any λ, ǫ > 0:

l̃ǫλi
def
= bT

i (B
TSSTB+ ǫλI)−1bi =

1

ǫλ

(

K−KS
(

STKS+ ǫλI
)−1

STK
)

i,i
.

It follows that we can compute l̃ǫλi for all i in total time O(ns2) using just O(ns) kernel evaluations.

Proof. Using the SVD write STB = ŪΣ̄V̄T . V̄ ∈ R
n×s forms an orthonormal basis for the row

span of STB. Let V̄⊥ be span for the nullspace of STB. Then we can rewrite l̃ǫλi as:

l̃ǫλi = bT
i

(

BTSSTB+ ǫλI
)−1

bi = bT
i

[

V̄, V̄⊥

]

(Σ̄2 + ǫλI)−1
[

V̄, V̄⊥

]T
bi.

9



Here we’re abusing notation a bit by letting Σ̄ represent an n × n diagonal matrix whose first s
entries are the singular values of STB and whose remaining entries are all equal to 0. Now:

l̃ǫλi = bT
i

[

V̄, V̄⊥

]

(Σ̄2 + ǫλI)−1
[

V̄, V̄⊥

]T
bi =

1

ǫλ
bT
i V̄

T
⊥V̄⊥bi + bT

i V̄(Σ̄2 + ǫλI)−1V̄TbT
i (9)

Focusing on the second term of (9),

bT
i V̄(Σ̄2 + ǫλI)−1V̄Tbi = bT

i V̄
1

ǫλ

(

I− Σ̄2(Σ̄2 + ǫλI)−1
)

V̄Tbi

=
1

ǫλ
bT
i V̄V̄Tbi −

1

ǫλ
bT
i V̄

(

Σ̄2(Σ̄2 + ǫλI)−1
)

V̄Tbi (10)

Focusing on the second term of (10),

bT
i V̄

(

Σ̄2(Σ̄2 + ǫλI)−1
)

V̄Tbi = bT
i V̄Σ̄ŪT Ū(Σ̄2 + ǫλI)−1ŪT ŪΣ̄V̄TbT

i

= bT
i B

TS(STKS+ ǫλI)−1STBbi.

Substituting back into (10) and then (9), we conclude that:

l̃ǫλi =
1

ǫλ
bT
i V̄

T
⊥V̄⊥bi +

1

ǫλ
bT
i V̄V̄Tbi −

1

ǫλ
biB

TS(STKS+ ǫλI)−1STBbi

=
1

ǫλ
bT
i bi −

1

ǫλ
bT
i B

TS(STKS+ ǫλI)−1STBbi

=
1

ǫλ
Ki,i −

1

ǫλ

(

KS
(

STKS+ ǫλI
)−1

STK
)

i,i
.

We can compute (STKS+ǫλI)−1 in O(s3) = O(ns2) time and O(s2) = O(ns) kernel evaluations.

Given this inverse, computing the diagonal entries of KS
(

STKS+ ǫλI
)−1

STK requires just O(ns)
kernel evaluations to form KS and O(ns2) time to perform the necessary multiplications. Finally,
computing the diagonal entries of K requires n additional kernel evaluations.

4.3 Basic recursive RLS-Nyström algorithm

We are finally ready to combine the above results into an efficient recursive method for ridge
leverage score approximation.

Algorithm 2 Recursive Ridge Leverage Score Approximation. Known λ.

input: x1, . . . ,xn ∈ X , kernel function K : X × X → R, ridge parameter λ, ǫ, δ ∈ (0, 1)
output: weighted sampling matrix S ∈ R

n×s such that for any B with BBT = K, 1
2(B

TB+ǫλI) �
(BTSSTB+ ǫλI) � 3

2(B
TB+ ǫλI).

1: Choose S0 by sampling each data point independently with probability 1/2.
2: If S0 has > O(1) columns, apply Algorithm 2 recursively to ST

0 KS0 with δ ← δ/2 to compute
an S1 such that:

1

2
(BTS0S

T
0 B+ ǫλI) � (BTS1S

T
1 B+ ǫλI) � 3

2
(BTS0S

T
0 B+ ǫλI).

3: l̃ǫλi := 2
ǫλ

(

K−KS1

(

ST
1 KS1 + ǫλI

)−1
ST
1 K
)

i,i
⊲ Equals (B(BTS1S

T
1 B+ ǫλI)−1BT )i,i

4: pi := min{1, l̃ǫλi · c log(
∑

l̃ǫλi /δ)}
5: return S chosen by sampling i with probability pi and reweighting selected columns by 1/

√
pi.

10



Theorem 6. Let s = O
(

log(
∑

lǫλi /δ) ·∑ lǫλi
)

. Algorithm 2 performs O(n · s) kernel evaluations
and runs in time O(n · s2). With probability 1− 2δ it returns S ∈ R

n×s satisfying, for any B with
BBT = K:

1

2
(BTB+ ǫλI) � (BTSSTB+ ǫλI) � 3

2
(BTB+ ǫλI)

Proof. Assume by induction that after forming S0 via uniformly sampling, the recursive call to
Algorithm 2 returns S1 satisfying:

1

2
(BTS0S

T
0 B+ ǫλI) � (BTS1S

T
1 B+ ǫλI) � 3

2
(BTS0S

T
0 B+ ǫλI).

Then for all i, l̃ǫλi will be within a constant factor of the approximate leverage score computed using
S0 instead of S1. So if we sample by these scores, by Lemmas 4 and 14 we have the desired bound.
By a union bound, the failure probability of the recursive algorithm is bounded by δ+δ/2+. . . = 2δ.

To evaluate total runtime, let ni be the number of points passed to the ith recursive call of
Algorithm 2. Applying Lemma 5, the total runtime to compute S, excluding the recursive compu-
tation of S1, is O(nisi) kernel evaluations and O(nis

2
i + s3i ) = O(nis

2
i ) where si ≤ ni is the number

of points sampled by S1. By induction,

si = O
(

log(
∑

lǫλi (ST
0 BBTS0)/(δ/2

i)) ·
∑

lǫλi (ST
0 BBTS0)

)

= O(i · s)

since ‖S0‖2 ≤ 1 so we can apply Lemma 17. Since ni = O(n/2i) in expectation and with high
probability, our total runtime is O(ns2 · (1 + 1/2 + 22/4 + 32/8 + . . .+ log2 n/n)) = O(ns2) by the

fact that
∑∞

i=1
i2

2i
= 6.

In the final stage of Algorithm 2, we can use S directly to form a Nyström approximation of
K. Note that in this stage, we can just take S to have 0, 1 entries – reweighting of sampled points
will not change the Nyström approximation. Since Theorem 6 gives that:

1

2
(BTB+ ǫλI) � (BTSSTB+ ǫλI) � 3

2
(BTB+ ǫλI),

even if S is unweighted, there is some C such that BTB � C ·BTSSTB+ ǫλI (see Corollary 15).
This bound in turn implies that S satisfies the guarantees of RLS-Nyström (see Theorem 2).

Corollary 7 (Efficient RLS-Nyström for Fixed λ). Algorithm 2 implements RLS-Nyström for a

fixed λ with O(n · s) kernel evaluations and O(n · s2) computation time, where s = O
(

deff
ǫ log deff

δǫ

)

for deff = tr(K(K+ λI)−1).

Proof. The runtime bound follows from Theorem 6 and the fact that it is possible to compute KS

using O(n · s) kernel evaluations and (STKS)+ using O(ns2 + s3) = O(n · s2) additional time.

4.4 Recursive RLS-Nyström algorithm for fixed k

In order to obtain a rank k projection-cost preserving kernel embedding as in Theorem 3, we must
set λ = 1

k

∑n
i=k+1 σi(K). Of course, it is not possible to compute λ directly – instead we will

approximate it in conjunction with approximating the ridge leverage scores.
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Algorithm 3 Recursive Ridge Leverage Score Approximation. Fixed rank k.

input: x1, . . . ,xn ∈ X , kernel function K : X × X → R, rank parameter k, ǫ, δ ∈ (0, 1)
output: sampling matrix S ∈ R

n×s such that for any B with BBT = K, for λ = 1
k

∑n
i=k+1 σi(K),

1

2
(BTB+ ǫλI) � (BTSSTB+ ǫλI) � 3

2
(BTB+ ǫλI).

1: Choose S0 by sampling each data point independently with probability 1/2.
2: If S0 has > O (ck log(k/ǫδ)/ǫ) columns, apply Algorithm 3 recursively to ST

0 KS0 with δ ← δ/2
to compute an S1 such that for λ′ = 1

k

∑n
i=k+1 σi(S

T
0 KS0),

1

2
(BTS0S

T
0 B+ ǫλ′I) � (BTS1S

T
1 B+ ǫλ′I) � 3

2
(BTS0S

T
0 B+ ǫλ′I).

3: λ̃ := 1
k

∑n
i=k+1 σi(S

T
1 KS1) ⊲ Approximate λ

4: l̃ǫλi := 5
ǫλ

(

K−KS1

(

ST
1 KS1 + ǫλ̃I

)−1
ST
1 K

)

i,i

⊲ Equals (B(BTS1S
T
1 B+ ǫλ̃I)−1BT )i,i

5: pi := min{1, l̃λi · c log(k/δ)}
6: return S chosen by sampling i with probability pi and reweighting selected columns by 1/

√
pi.

Theorem 8. Let s = O
(

k log(k/ǫδ)
ǫ

)

. Algorithm 3 performs O(n · s) kernel evaluations and runs in

time O(n · s2). With probability 1− 2δ it returns S ∈ R
n×s satisfying, for any B with BBT = K:

1

2
(BTB+ ǫλI) � (BTSSTB+ ǫλI) � 3

2
(BTB+ ǫλI) (11)

for λ = 1
k

∑n
i=k+1 σi(K).

Proof. Assume by induction that after forming S0 via uniformly sampling, the recursive call to
Algorithm 3 returns S1 satisfying:

1

2
(BTS0S

T
0 B+ ǫλ′I) � (BTS1S

T
1 B+ ǫλ′I) � 3

2
(BTS0S

T
0 B+ ǫλ′I). (12)

where λ′ = 1
k

∑n
i=k+1 σi(S

T
0 KS0). This implies that λ̃ = 1

k

∑n
i=k+1 σi(S

T
1 KS1) satisfies:

1

2k

(

n
∑

i=k+1

σi(S
T
0 KS0) + kǫλ′

)

≤ λ̃ ≤ 3

2k

(

n
∑

i=k+1

σi(S
T
0 KS0) + kǫλ′

)

1 + ǫ

2
λ′ ≤ λ̃ ≤ 3(1 + ǫ)

2
λ′.

Combining with (12) and the fact that ǫ ∈ (0, 1):

1

4
(BTS0S

T
0 B+ ǫλ′I) � (BTS1S

T
1 B+ ǫλ̃I) � 9

2
(BTS0S

T
0 B+ ǫλ′I).

So, for all i, l̃ǫλi (which is computed using (BTS1S
T
1 B+ ǫλ̃I) in line 4 of Algorithm 3) is within

a constant factor of the approximate leverage score computed using S0 instead of S1. If we sample
by these scores, by Lemma 4 and Lemma 14:

1

2
(BTB+ ǫλ′I) � (BTSSTB+ ǫλ′I) � 3

2
(BTB+ ǫλ′I)

12



which implies (11) since λ′ ≤ λ since ‖S0‖2 ≤ 1 so σi(S
T
0 KS0) ≤ σi(K) for all i.

It just remains to show that we do not sample too many rows. This can be shown using a
similar reweighting argument to that used in the known λ case in Lemma 4. See Lemma 13 of
[CMM15] for a full proof. Roughly, when forming the reweighting matrix W, decreasing Wi,i will
decrease

∑n
i=k+1 σi(WBBTW) and hence will decrease λ. However, it is not hard to show that

the ith ridge leverage score will still decrease. So we can find W giving a uniform ridge leverage
score upper bound of α. Let λ′ =

∑n
i=k+1 σi(WBBTW).

Using the same argument as Lemma 4, we can bound the sum of estimated sampling probabilities
by log(k/ǫδ) ·∑ lǫλ

′

i (WBBTW) = O(k/ǫ) by the argument in Theorem 3. The runtime and failure
probability analysis is identical to that of Algorithm 2 – the only extra step is computing λ̃ which
can be done in O(s3) time via an SVD of ST

1 KS1.

As in Algorithm 2, in the final stage of Algorithm 3 we can use S directly to form a Nyström
approximation of K. Since Theorem 8 gives:

1

2
(BTB+ ǫλI) � (BTSSTB+ ǫλI) � 3

2
(BTB+ ǫλI)

even if S is unweighted, there is some C such that BTB � C ·BTSSTB+ ǫλI (see Corollary 15).
This bound in turn implies that S satisfies the guarantees of RLS-Nyström (see Theorem 2).

Corollary 9 (Efficient RLS-Nyström for Fixed k). Algorithm 3 implements RLS-Nyström for
λ = 1

k

∑n
i=k+1 σi(K) with O(n · s) kernel evaluations and O(n · s2) computation time, where s =

O (k log(k/ǫδ)/ǫ).

Proof. The runtime bound follows from Theorem 8 and the fact that it is possible to compute KS

using O(n · s) kernel evaluations and (STKS)+ using O(ns2 + s3) = O(n · s2) additional time.
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A Applications of kernel approximations

In this section we prove that the kernel approximation guarantees given by RLS-Nyström sampling
are sufficient for many downstream kernel learning tasks. In other words, K̃ can be used in place
of K without sacrificing accuracy or statistical performance in the final computation.

A.1 Kernel ridge regression

We begin with a standard formulation of kernel ridge regression. Given a response space Y, a loss
function ℓ : Y × Y → R, and a regularization parameter λ ∈ R, consider minimizing:

f∗ = argmin
f∈F

n
∑

i=1

ℓ(yi, f(xi)) + λ‖f‖2F .

We focus on the special case where Y = R and ℓ is the square loss (yi− f(xi))
2. By the representer

theorem, f∗ can be written as f∗ =
∑n

i=1 αiφ(xi) [SS02]. Letting y ∈ R
n contain the responses
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y1, . . . , yn and α ∈ R
n contain the coefficients α1, . . . , αn for representing f∗, it is well known that

α = (K+ λI)−1y.

Once α is obtained, it can be used directly for prediction:

f∗(x) =
n
∑

i=1

αi 〈φ(xi), φ(x)〉 =
n
∑

i=1

αiK(xi,x). (13)

Naively, solving for α exactly requires at least O(n2) time to compute K, plus the cost of a
direct or iterative matrix inversion algorithm. Accordingly, a lot of research has focused on how
to approximate K for use in kernel ridge regression. Of particular interest are two recent papers,
[Bac13] and [AM15], which show how to bound the statistical risk of constructing an estimator for
ridge regression based on a subsampled approximation of K.

In particular, both papers consider the fixed design scenario and seek to bound the expected
in-sample prediction error under the assumption that yi satisfies:

yi = f∗(xi) + ηi

where the noise terms η1, . . . , ηn are distributed as normal random variables with variance σ2. Let
z denote the vector containing f∗(x1), . . . , f

∗(xn) and let η denote the vector containing η1, . . . , ηn.
Following, [Bac13] and [AM15], consider the expected risk of our estimator for z, f̂K = Kα:

R(f̂K) = E
η
‖K(K+ λI)−1(z+ η)− z‖22

= ‖
(

K(K+ λI)−1 − I
)

z‖22 + E
η
‖K(K+ λI)−1η‖22

= λ2zT (K+ λI)−2z+ σ2 tr(K(K+ λI)−1)

def
= bias(K)2 + variance(K).

We refer the reader to [AM15] and [Bac13] for the above derivation. Note that our λ parameter is
scaled differently than the λ in those papers by a factor of n. [Bac13] also uses a more general noise
model, which we avoid for simplicity but note could be handled with essentially the same proof.

Theorem 10 (Kernel Ridge Regression Risk Bound). Suppose K̃ is computed using RLS-Nyström
with parameters λ, ǫ, and δ. Let α̃ = (K̃ + λI)−1y and let f̂

K̃
= K̃α̃ be our estimator for z

computed using the approximate kernel. Then with probability (1− δ):

R(f̂
K̃
) ≤ (1 + 3ǫ)R(f̂K).

By Corollary 7, Algorithm 2 can compute K̃ with just O(n · s) kernel evaluations and O(n · s2)
computation time, with s = O

(

deff
ǫ log deff

δǫ

)

for deff = tr(K(K+ λI)−1).

In other words, replacing K with the approximation K̃ is provably sufficient for obtaining a
(1+ǫ) quality solution to the downstream task of ridge regression. To use the approximate solution
for prediction, we just multiply any new input point φ(x) by the vector

ΦTS(STKS)+STKα

which can be done with only s additional kernel evaluations and O(n · s) time.
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Proof. The rest of the proof follows that of Theorem 1 in [AM15]. First we show that:

bias(K̃) ≤ (1 + ǫ)bias(K). (14)

At first glance this might appear trivial as Theorem 2 easily implies that

(K̃+ λI)−1 � (1 + ǫ)(K+ λI)−1

However, this statement does not imply that

(K̃+ λI)−2 � (1 + ǫ)2(K+ λI)−2

since (K̃ + λI)−1 and (K + λI)−1 do no necessarily commute. We highlight the issue because
the incorrect conclusion is used in several papers to prove risk bounds for approximating ridge
regression. A rigorous proof requires a bit more work.

1

λ
bias(K̃) = ‖(K̃+ λI)−1z‖2

≤ ‖(K+ I)−1z‖2 + ‖(K̃+ λI)−1z− (K+ λI)−1z‖2 (triangle inequality)

= ‖(K+ I)−1z‖2 + ‖(K̃+ λI)−1(K− K̃)(K+ λI)−1z‖2
≤ ‖(K+ I)−1z‖2 + ‖(K̃+ λI)−1(K− K̃)‖2‖(K+ λI)−1z‖2 (submultiplicativity)

=
1

λ
bias(K)

(

1 + ‖(K̃+ λI)−1(K− K̃)‖2
)

. (15)

So we just need to bound ‖(K̃+ λI)−1(K− K̃)‖2 ≤ ǫ. First note that, by Theorem 2 ,

K− K̃ � ǫλI

and since (K− K̃) and I commute, it follows that

(K− K̃)2 � ǫ2λ2I. (16)

Accordingly,

‖(K̃+ λI)−1(K− K̃)‖22 = ‖(K̃+ λI)−1(K− K̃)2(K̃+ λI)−1‖2
≤ ǫ2λ2‖(K̃+ λI)−2‖2

≤ ǫ2λ2 1

λ2
= ǫ2.

So ‖(K̃+λI)−1(K−K̃)‖2 ≤ ǫ as desired and plugging into (15) we have shown (14), that bias(K̃) ≤
(1 + ǫ)bias(K). We next show:

variance(K̃) ≤ variance(K). (17)

variance(K̃) = σ2 tr(K̃(K̃+ λI)−1). tr(K̃(K̃+ λI)−1) is just the sum of λ ridge leverage scores. So
we have (17) by Lemma 16 where we show, for K̃ � K

tr(K̃(K̃+ λI)−1) ≤ tr(K(K+ λI)−1).

Combining (17) and (14) we conclude that, for ǫ < 1,

R(f̂
K̃
) ≤ (1 + ǫ)2R(f̂K) ≤ (1 + 3ǫ)R(f̂K).
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A.1.1 Additional error bounds

Bounding risk in the fixed design setting is one particularly natural and popular way to evaluate
the quality of K̃ for use in ridge regression (it is also applied in [LJS16] and [PD15]). However, we
remark that prior work has considered a number of alternative bounds which may be interesting
to the reader. In particular, [CLL+15], [YPW15], and [YZ13] directly bound ‖f̂

K̃
− f∗‖. [CMT10]

gives bounds on the in-sample hypothesis error |f̂K(xi) − f̂
K̃
(xi)| that would also follow from

the guarantee of RLS-Nyström. Finally, [RCR15] considers statistical settings beyond fixed design
regression. They also employ ridge leverage scores to compute K̃ so their bounds would immediately
transfer over to our more efficient algorithm.

A.2 Kernel k-means

Kernel k-means clustering asks us to partition x1, . . . ,xn, into k cluster sets, {C1, . . . , Ck}. Let
µi =

1
|Ci|

∑

xj∈Ci
φ(xj) be the centroid of the vectors in Ci after mapping to kernel space. The goal

is to choose {C1, . . . , Ck} which minimize the objective:

k
∑

i=1

∑

xj∈Ci

‖φ(xj)− µi‖2F (18)

It is well known that this optimization problem can be rewritten as a constrained low-rank ap-
proximation problem (see e.g. [BMD09] or [CEM+15]). In particular, for any clustering C =
{C1, . . . , Ck} we can define a rank k orthonormal matrix C ∈ R

n×k called the cluster indicator
matrix for C. Ci,j = 1/

√

|Cj | if xi is assigned to Cj and Ci,j = 0 otherwise. CTC = I, so CCT is
a rank k projection matrix. Furthermore, it’s not hard to check that:

k
∑

i=1

∑

xj∈Ci

‖φ(xj)− µi‖2F = tr
(

K−CCTKCCT
)

. (19)

Informally, if we work with the kernalized data matrix Φ, (19) is equivalent to

‖Φ−CCTΦ‖2F .
Regardless, it’s clear that solving kernel k-means is equivalent to solving:

min
C∈S

tr
(

K−CCTKCCT
)

(20)

where S is the set of all rank k cluster indicator matrices. From this formulation, we easily obtain:

Theorem 11 (Kernel k-means Approximation Bound). Let K̃ be computed by RLS-Nyström with
λ = 1

k

∑n
i=k+1 σi(K) and ǫ, δ < 1. Let C̃∗ be the optimal cluster indicator matrix for K̃ and let C̃

be an approximately optimal cluster indicator matrix satisfying:

tr
(

K̃− C̃C̃T K̃C̃C̃T
)

≤ (1 + γ) tr
(

K̃− C̃∗C̃∗T K̃C̃∗C̃∗T
)

.

Then, if C∗ is the optimal cluster indicator matrix for K:

tr
(

K− C̃C̃TKC̃C̃T
)

≤ (1 + γ)(1 + ǫ) tr
(

K−C∗C∗TKC∗C∗T
)

By Corollary 9, Algorithm 3 can compute K̃ with O(n · s) kernel evaluations and O(n · s2) compu-
tation time, with s = O

(

k
ǫ log

k
δǫ

)

.
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In other words, if we find an optimal set of clusters for our approximate kernel matrix, those
clusters will provide a (1+ ǫ) approximation to the original kernel k-means problem. Furthermore,
if we only solve the kernel k-means problem approximately on K̃, i.e. with some approximation
factor (1 + γ), we will do nearly as well on the original problem. This flexibility allows for the use
of k-means approximation algorithms (since the problem is NP-hard to solve exactly).

Proof. The proof is almost immediate from our bounds on RLS-Nyström:

tr
(

K− C̃C̃TKC̃C̃T
)

≤ tr
(

K̃− C̃C̃T K̃C̃C̃T
)

+ c (Theorem 2)

≤ (1 + γ) tr
(

K̃− C̃∗C̃∗T K̃C̃∗C̃∗T
)

+ (1 + γ)c (by assumption)

≤ (1 + γ) tr
(

K̃−C∗C∗T K̃C∗C∗T
)

+ (1 + γ)c (optimality of C̃∗ )

≤ (1 + γ) tr
(

K̃−C∗C∗T K̃C∗C∗T
)

+ c (since c ≥ 0)

≤ (1 + γ)(1 + ǫ) tr
(

K− C̃∗C∗TKC∗C∗T
)

. (Theorem 2)

A.3 Kernel principal component analysis

We consider the standard formulation of kernel principal component analysis (PCA) presented in
[SSM99]. The goal is to find principal components in the kernel space F that capture as much
variance in the kernelized data as possible. In particular, if we work informally with the kernelized
data matrix Φ, we want to find a matrix Zk containing k orthonormal columns such that:

ΦΦT − (ΦZkZ
T
k )(ΦZkZ

T
k )

T

is as small as possible. In other words, if we project Φ’s rows to the k dimensional subspace spanned
by Vk’s columns and then recompute our kernel, we want the approximate kernel to be close to
the original.

We focus in particular on minimizing PCA error according to the metric:

tr
(

ΦΦT − (ΦZkZ
T
k )(ΦZkZ

T
k )

T
)

= ‖Φ−ΦZkZ
T
k ‖2F (21)

which is standard in the literature [Woo14, ANW14]. As with f in kernel ridge regression, to solve
this problem we cannot write down Zk explicitly for most kernel functions. However, the optimal
Zk always lies in the column span of ΦT , so we can implicitly represent it by constructing a matrix
X ∈ R

n×k such that ΦTX = Zk. It is then easy to compute the projection of any new data vector
onto the span of Zk (the typical objective of principal component analysis) since we can multiply
by ΦTX using the kernel function.

By the Eckart-Young theorem the optimal Zk contains the top k row principal components of Φ.
Accordingly, if we write the singular value decomposition Φ = UΣVT we want to set X = UkΣ

−1
k ,

which can be computed from the SVD of K = UΣ2UT . Zk will equal Vk and (21) reduces to:

tr(K−ΦVkV
T
k Φ) = tr(K−VkV

T
kK) (cyclic property)

=

n
∑

i=k+1

σi(K) (22)
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Theorem 12 (Kernel PCA Approximation Bound). Suppose K̃ is computed by RLS-Nyström with
λ = 1

k

∑n
i=k+1 σi(K) and ǫ, δ < 1. Then from K̃ we can compute a matrix X ∈ R

s×k such that if

we set Z = ΦTSX,

‖Φ−ΦZZT ‖2F ≤ (1 + 2ǫ)‖Φ −ΦVkV
T
k ‖2F = (1 + 2ǫ)

n
∑

i=k+1

σi(K).

By Corollary 9, Algorithm 3 can compute K̃ with O(n · s) kernel evaluations and O(n · s2) compu-
tation time, with s = O

(

k
ǫ log

k
δǫ

)

.

Note that S is the sampling matrix used to construct K̃. Z = ΦTSX can be applied to vectors
(in order to project onto the approximate low-rank subspace) using only s kernel evaluations.

Proof. Re-parameterizing Zk = ΦTY, we see that minimizing (21) is equivalent to minimizing

tr(K−KYYTK)

over Y ∈ R
n×k such that (ΦTY)TΦTY = YTKY = I. Then we re-parameterize again by writing

Y = K−1/2W where W is an n × k matrix with orthonormal columns. Using linearity and cyclic
property of the trace, we can write:

tr(K−KYYTK) = tr(K)− tr(YTKKY) = tr(K)− tr(WTKW) = tr(K)− tr(WWTKWWT ).

So, we have reduced our problem to a low-rank approximation problem that looks exactly like the
k-means problem from Section A.2, except without constraints.

Accordingly, following the same argument as Theorem 11, if we find W̃ minimizing

tr(K̃)− tr(W̃W̃T K̃W̃W̃T ),

then

tr(K)− tr(W̃W̃TKW̃W̃T ) ≤ (1 + ǫ)

[

min
W

tr(K)− tr(WWTKWWT )

]

= (1 + ǫ)
n
∑

i=k+1

σi(K).

W̃ can be taken to equal the top k eigenvectors of K̃, which can be found in O(n · s2) time.
However, we are not quite done. Thanks to our re-parameterization this bound guarantees

that ΦTK−1/2W̃ is a good set of approximate kernel principal components for Φ. Unfortunately,
ΦTK−1/2W̃ cannot be represented efficiently (it requires computing K−1/2) and projecting new
vectors to ΦTK−1/2W̃ would require n kernel evaluations to multiply by ΦT .

Instead, recalling the definition of PS = ΦTS(STKTS)+STΦ from Section 3.1, we suggest using
the approximate principal components:

PSΦ
T K̃−1/2W̃.

Clearly PSΦ
T K̃−1/2W̃ is orthonormal because

(PSΦ
T K̃−1/2W̃)TPSΦ

T K̃−1/2W̃ = W̃T K̃−1/2ΦTPSΦK̃−1/2W̃

= W̃T IW̃ = I
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and we will argue that it is offers nearly as a good of a solution as ΦTK−1/2W̃. Specifically,
substituting into (21) gives a value of

tr(K−ΦPSΦ
T K̃−1/2W̃W̃T K̃−1/2ΦPSΦ

T ) = tr(K)− tr(W̃W̃T K̃−1/2ΦPSΦ
TΦPSΦ

T K̃−1/2)

= tr(K)− tr(W̃W̃T K̃−1/2K̃2K̃−1/2)

= tr(K)− tr(W̃W̃T K̃)

Compare this to the value obtained from ΦTK−1/2W̃:
[

tr(K)− tr(W̃W̃TKW̃W̃T )
]

−
[

tr(K)− tr(W̃W̃T K̃W̃W̃T )
]

= tr
(

W̃W̃T (K− K̃)
)

= tr
(

W̃T (K− K̃)W̃
)

=

k
∑

i=1

w̃T
i (K− K̃)w̃i ≤ kǫ

1

k

n
∑

i=k+1

σi(K). (23)

The last step follows from Theorem 2 which guarantees that (K − K̃) � ǫλI. Recall that we set
λ = 1

k

∑n
i=k+1 σi(K) and each column w̃i of W̃ has unit norm.

We conclude that the cost obtained by PSΦ
T K̃−1/2W̃ is bounded by:

tr(K−ΦPSΦ
T K̃−1/2W̃W̃T K̃−1/2ΦPSΦ

T ) ≤ tr(K)− tr(W̃W̃TKW̃W̃T ) + ǫ

n
∑

i=k+1

σi(K)

≤ (1 + 2ǫ)

n
∑

i=k+1

σi(K).

This gives the result. Notice that PSΦ
T K̃−1/2W̃ = ΦTS(STKTS)+STΦΦT K̃−1/2W̃ so, if we set

X = (STKTS)+ST K̃1/2W̃

our solution can be represented as Z = ΦTSX as desired.

A.4 Kernel canonical correlation analysis

We briefly discuss a final application to canonical correlation analysis (CCA) that follows from
applying our additive error kernel embedding guarantee (Theorem 2) to recent work in [Wan16].

Consider n pairs of input points (x1,y1), ..., (xn,yn) ∈ (X ,Y) along with two positive semidef-
inite kernels, Kx : X × X → R and Ky : Y × Y → R. Let Fx and Fy and φx : X → Fx and
φy : Y → Fy be the Hilbert spaces and feature maps associated with these kernels. Let Φx and Φy

denote the kernelized X and Y inputs respectively and Kx and Ky denote the associated kernel
matrices.

We consider standard regularized kernel CCA, following the presentation in [Wan16]. The goal
is to compute coefficient vectors αx and αy such that f∗x =

∑n
i=1α

x
i φx(xi) and f∗y =

∑n
i=1 α

y
i φy(yi)

satisfy:

(f∗x , f
∗
y ) = argmax

fx∈Fx,fy∈Fy

fTx Φ
T
xΦyf

∗
y

subject to

fTx Φ
T
xΦxfx + λx‖fx‖2Fx

= 1

fTy Φ
T
y Φyfy + λy‖fy‖2Fy

= 1
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In [Wan16], the kernelized points are centered to their means. For simplicity we ignore centering,
but note that [Wan16] shows how bounds for the uncentered problem carry over to the centered
one.

It can be shown that αx = (Kx + λxI)
−1βx and αy = (Ky + λyI)

−1βy where βx and βy are
the top left and right singular vectors respectively of

T = (Kx + λxI)
−1KxKy(Ky + λyI)

−1.

The optimum value of the above program will be equal to σ1(T).
[Wan16] shows that if K̃x and K̃y are ǫ additive error kernel embeddings with parameters λx and

λy, then if α̃x and α̃y are computed using these approximations, the achieved objective function
value will be within ǫ of optimal (see their Lemma 1 and Theorem 1). So we have:

Theorem 13 (Kernel CCA Approximation Bound). Suppose K̃x and K̃y are computed by RLS-
Nyström with parameters ǫ, δ, λx and λy. If we solve for α̃x and α̃y, the approximate canonical
correlation will be within an additive ǫ of the true canonical correlation σ1(T).

By Corollary 7, Algorithm 2 can compute K̃x and K̃y with O(nsx + nsy) kernel evaluations

and O(ns2x + ns2y) computation time, with sx = O
(

dx
eff

ǫ log
dx
eff

δǫ

)

for dxeff = tr(Kx(Kx + λxI)
−1) and

sy = O

(

dy
eff

ǫ log
dy
eff

δǫ

)

for dyeff = tr(Ky(Ky + λyI)
−1).

B Ridge leverage score sampling bounds

Lemma 14. For any λ > 0 and ǫ, δ ∈ (0, 1), given ridge leverage score approximations l̃ǫλi ≥ lǫλi for

all i, let pi = min
{

l̃ǫλi · c log(
∑

lǫλi /δ), 1
}

for some sufficiently large constant c. Let S ∈ R
n×s be

selected by sampling x1, . . . ,xn each independently with probability pi and rescaling selected columns
by 1/

√
pi. With probability at least 1− δ, s = O(

∑

i pi) and

1

2
BTB− 1

2
ǫλI � BTSSTB � 3

2
BTB+

1

2
ǫλI, (24)

Proof. Let B = UΣVT be the singular value decomposition of B. By Definition 1:

lǫλi = bT
i

(

BTB+ ǫλI
)−1

bi = bT
i

(

VΣ2VT + ǫλVVT
)−1

bi

= bT
i

(

VΣ̄2VT
)−1

bi

= bT
i

(

VΣ̄−2VT
)

bi,

where Σ̄2
i,i = σ2

i (B) + ǫλ. For each i ∈ 1, . . . , n define the matrix valued random variable:

Xi =

{

(

1
pi
− 1
)

Σ̄−1VTbib
T
i VΣ̄−1 with probability pi

−Σ̄−1VTbib
T
i VΣ̄−1 with probability (1− pi)

Let Y =
∑

iXi. We have EY = 0. Furthermore, BTSSTB = VΣ̄YΣ̄VT + BTB. Showing
‖Y‖2 ≤ 1

2 gives −1
2I � Y � 1

2I, and since VΣ̄2VT = BTB+ ǫλI would give:

1

2
BTB− 1

2
ǫλI � BTSSTB � 3

2
BTB+

1

2
ǫλI,
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giving the Lemma.
To prove that ‖Y‖2 is small we use a stable rank matrix Bernstein inequality [Tro15]. If pi = 1

(i.e. l̃ǫλi · c log(
∑

lǫλi /δ) ≥ 1) then Xi = 0 so ‖Xi‖2 = 0. Otherwise, we use the fact that

1

l̃ǫλi
bib

T
i �

1

lǫλi
bib

T
i � BTB+ ǫλI. (25)

This follows since we can write any x ∈ R
n as x = (BTB + ǫλI)−1/2y for some y ∈ R

n. We can
then write:

xTbib
T
i x = yT (BTB+ ǫλI)−1/2bib

T
i (B

TB+ ǫλI)−1/2y

≤ ‖y‖22 · ‖(BTB+ ǫλI)−1/2bib
T
i (B

TB+ ǫλI)−1/2‖2.

Since it is rank 1, we have

‖(BTB+ ǫλI)−1/2bib
T
i (B

TB+ ǫλI)−1/2‖2 = tr
(

(BTB+ ǫλI)−1/2bib
T
i (B

TB+ ǫλI)−1/2
)

= bT
i (B

TB+ ǫλI)−1bi = lǫλi (26)

where in the last step we use the cyclic property of the trace. Writing y = (BTB + ǫλI)1/2x and
plugging back into (26) we thus have:

xTbib
T
i x ≤ ‖y‖22 · lǫλi = xT (BTB+ ǫλI)x · lǫλi .

Rearranging gives (25). With this bound in place we have:

1

l̃ǫλi
· Σ̄−1VTbib

T
i VΣ̄−1 � Σ̄−1VT

(

BTB+ ǫλI
)

VΣ̄−1 = I.

So we have

Xi �
1

pi
Σ̄−1VTbib

T
i VΣ̄−1 � l̃ǫλi

pi
I =

1

c log
(
∑

lǫλi /δ
)I.

Next we bound the variance of Y.

E(Y2) =
∑

E(X2
i ) �

∑

[

pi

(

1

pi
− 1

)2

+ (1− pi)

]

· Σ̄−1VTbib
T
i VΣ̄−2VTbib

T
i VΣ̄−1

�
∑ 1

pi
· lǫλi · Σ̄−1VTbib

T
i VΣ̄−1 � 1

c log
(
∑

lǫλi /δ
) Σ̄−1VTBTBVΣ̄−1

� 1

c log
(
∑

lǫλi /δ
)Σ2Σ̄−2 � 1

c log
(
∑

lǫλi /δ
)D. (27)

whereD1,1 = 1 and Di,i = (Σ2Σ̄−2)i,i =
σ2
i (B)

σ2
i (B)+ǫλ

for all i ≥ 2. By the stable rank matrix Bernstein

inequality given in Theorem 7.3.1 of [Tro15]

P

[

‖Y‖ ≥ 1

2

]

≤ 4 tr(D)

‖D‖2
e

−1/8
(

1
4c log(

∑

lǫλ
i

/δ)
(‖D‖2+1/6)

)

. (28)
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Clearly ‖D‖2 = 1. Additionally,

tr(D) ≤ 1 + tr(Σ2Σ̄−2) = 1 + tr
(

K(K+ ǫλI)−1
)

= 1 +
∑

i

lǫλi .

Plugging into (28), we see that

P

[

‖Y‖ ≥ 1

2

]

≤ 4

(

1 +
∑

i

lǫλi

)

· e−Θ(c log(
∑

lǫλi /δ)) ≤ δ/2,

if we choose the constant c large enough. Note that here we make the extremely mild assumption
that

∑

i l
ǫλ
i ≥ 1. If not, we can simply use a smaller λ that allows this condition to be true, and

will have s = O(1). So we have established (29).
All that remains to show is that, the sample size s is bounded with high probability. If pi = 1, we

always sample i so there is no variance in s. Let S ⊆ [1, ..., n] be the set of indices with pi < 1. The
expected number of points sampled from S is

∑

i∈S pi = c log(
∑

lǫλi /δ) ·∑i∈S l̃ǫλi . Assume without

loss of generality that
∑

i∈S l̃ǫλi ≥ 1 – otherwise can just increase our leverage score estimates
and increase the expected sample size by at most 1. Then, by a standard Chernoff bound, with

probability at least 1− δ/2, O
(

log(
∑

lǫλi /δ) ·
∑

i l̃
ǫλ
i

)

points are sampled from S. Union bounding

over failure probabilities gives the lemma.

The above Lemma yields an easy Corollary which is all we need for BTSSTB:

Corollary 15. For any λ > 0 and ǫ, δ ∈ (0, 1), given ridge leverage score approximations l̃ǫλi ≥ lǫλi
for all i, let pi = min

{

l̃ǫλi · c log(
∑

lǫλi /δ), 1
}

for some sufficiently large constant c. Let S ∈ R
n×s

be selected by sampling x1, ..., xn each independently with probability pi. With probability at least
1− δ, s = O(

∑

i pi) and the exists some scaling factor C such that

BTB � C ·BTSSTB+ ǫλI (29)

Proof. By Lemma 14, if we set C ′ = 1
mini pi

we have:

1

2
BTB− 1

2
ǫλI � C ′ ·BTSSTB

BTB � 2C ′ ·BTSSTB+ ǫλI

which gives the corollary by setting C = 2C ′.

C Additional proofs

Lemma 16. For any K,K′ ∈ R
n×n, K′ � K,

n
∑

i=1

lλi (K
′) ≤

n
∑

i=1

lλi (K).
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Proof. As discussed in [AM15], lλi =
(

K(K+ λI)−1
)

i,i
so

n
∑

i=1

lλi (K) = tr
(

K(K+ λI)−1
)

=
n
∑

i=1

σi(K)

σi(K) + λ
.

K′ � K implies that σi(K
′) ≤ σi(K) for all i. So:

n
∑

i=1

lλi (K
′) =

n
∑

i=1

σi(K
′)

σi(K′) + λ
≤

n
∑

i=1

σi(K)

σi(K) + λ
=

n
∑

i=1

lλi (K)

giving the lemma.

Lemma 16 generalizes to the case when K′ and K have different sizes and each of K′’s singular
values is bounded above by the corresponding singular value of K. We give a proof for a specific
case that we will require:

Lemma 17. For any K ∈ R
n×n and S ∈ R

n×s with ‖S‖2 ≤ 1. If K′ = STKS then,

n
∑

i=1

lλi (K
′) ≤

n
∑

i=1

lλi (K).

Proof. Define S̄ ∈ R
n×n as S̄ = [S,0n×n−s]. Clearly ‖S̄‖2 ≤ 1 and so S̄TKS̄ � K. Additionally,

for i ∈ [1, ..., s], lλi (S̄
TKS̄) = lλi (K

′) and for i ∈ [s + 1, ..., n], lλi (S̄
TKS̄) = 0. So

∑n
i=1 l

λ
i (K

′) =
∑n

i=1 l
λ
i (S̄

TKS̄) and the lemma follows by applying Lemma 16.

26


	1 Introduction
	1.1 Kernel approximation
	1.2 Our contributions
	1.3 Prior Work
	1.4 Future work
	1.5 Paper organization

	2 Preliminaries
	3 The RLS-Nyström method
	3.1 Nyström approximation
	3.2 Ridge leverage scores
	3.3 The basic algorithm
	3.4 Accuracy Bounds

	4 Efficient implementation of RLS-Nyström
	4.1 Ridge leverage score approximation via uniform sampling
	4.2 Efficient sampled ridge leverage score computation
	4.3 Basic recursive RLS-Nyström algorithm
	4.4 Recursive RLS-Nyström algorithm for fixed k

	A Applications of kernel approximations
	A.1 Kernel ridge regression
	A.1.1 Additional error bounds

	A.2 Kernel k-means
	A.3 Kernel principal component analysis
	A.4 Kernel canonical correlation analysis

	B Ridge leverage score sampling bounds
	C Additional proofs

