
1

Stability of Hybrid Automata with Average Dwell Time: An
Invariant Approach

Sayan Mitra*
Computer Science and Artificial Intelligence

Laboratory
Massachusetts Institute of Technology

200 Technology Square
Cambridge, MA 02139, USA

mitras@csail.mit.edu

Daniel Liberzon**
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign,
1308 W. Main Street

Urbana, IL 61801, USA
liberzon@uiuc.edu

Abstract— A formal method based technique is presented
for proving the average dwell time property of a hybrid system,
which is useful for establishing stability under slow switching.
The Hybrid Input/Output Automaton (HIOA) framework
of [12] is used as the model for hybrid systems, and it is
shown that some known stability theorems from system theory
can be adapted to be applied in this framework. The average
dwell time property of a given automaton, is formalized as
an invariant of a corresponding transformed automaton, such
that the former has average dwell time if and only if the
latter satisfies the invariant. Formal verification techniques
can be used to check this invariance property. In particular,
the HIOA framework facilitates invariant proofs by breaking
them down into a systematic case analysis for the discrete
actions and continuous trajectories. The invariant approach
to proving the average dwell time property is illustrated by
analyzing the hysteresis switching logic unit of a supervisory
control system.

Index Terms— Average dwell time, Stability, Formal meth-
ods, Invariant, Hybrid systems, Hybrid I/O automaton.

I. INTRODUCTION

Systems with both discrete and continuous dynamics are
called hybrid systems. Computer scientists have concen-
trated on verification of hybrid systems, and have developed
a wide range of techniques for proving saftey properties,
from model checking [1], [6], [12] which is automatic
but limited to moderate sized linear hybrid systems, to
interactive theorem proving [2], [5] which is applicable
to larger and more complicated hybrid systems. Control
theorists, on the other hand, have viewed hybrid systems
as switched systems or as dynamical systems with special
boolean variables, and have addressed stability, controlla-
bility, and controller synthesis of such systems [18], [10].
The differences in these approaches espoused different
terminologies and mathematical models, which has led to
a lack of interaction between the two communities and
isolated developments.

A platform bridging the gap by allowing both computer
scientists and control theorists to apply their techniques in
the same modeling framework is desirable. To this end, we
introduce the Hybrid Input/Output Automaton (HIOA) [12]

*Research supported by AFRL contract number F33615-010C-1850
**Supported by the MURI project:DARPA/AFOSR MURI F49620-02-

1-0325 Award

to the Control Systems community. HIOA is a mathematical
model for developing compositional specifications for a
very general class of hybrid systems and it subsumes the
class of untimed and timed distributed systems. Hybrid
behavior is modeled as an alternating sequence of actions
and trajectories; the actions correspond to discrete state
transitions and the trajectories capture continuous evolution
of the state variables of an automaton. Most of the prior
work with HIOA focused on verifying safety of hybrid
systems [16], [11], [4]. Owing to this special structure of
the HIOA, its safety properties, which are actually its
invariants, can be proved inductively by a systematic case
analysis of its actions and trajectories.

In this paper we demonstrate how formal methods and
the HIOA framework can be useful for proving invariants
arising in stability analysis of hybrid systems. First, we
show the straightforward adaptation of some known stability
theorems from system theory to the HIOA framework.
Then, we show that the task of proving the average dwell
time property [7] which is used to prove stability of
hybrid systems under slow switching, can be reduced to
checking a set of invariants. We have chosen the average
dwell time property to demonstrate the invariant approach
because it decouples the problem of finding the Lyapunov
functions (which we assume are given), from the problem
of checking that all the executions of the HIOA satisfy
certain properties. In general, properties of the executions of
an automaton, are harder to prove than invariant properties
which are properties of the state. We transform the given
HIOA

�
, to a new HIOA

���
and find a condition � on

the states of
���

, such that
�

satisfies the average dwell
time property if and only if � is an invariant of

���
. This

enables us to prove the average dwell time property by
checking � with a suitable formal verification technique.
We illustrate our approach by analyzing the stability of
the hysteresis switching logic unit in a supervisory control
system. In this case study we have proved the invariants by
hand, however our long term goal is to develop an integrated
system which uses automatic theorem provers to efficiently
verify the invariants arising in stability analysis of hybrid
systems.

The rest of this paper is organized as follows: In Sec-
tion II we describe the HIOA model, in Section III we define

2

the various notions of stability and restate some known
stability theorems in the HIOA framework. In Section IV
we define the aforementioned transformations and proceed
to formalize the average dwell time property as a set of
invariants. In Section V we present the analysis of the hys-
teresis switching unit of a supervisory control system using
our invariant approach. In Section VI we conclude with a
synopsis of contributions and future research directions.

II. MATHEMATICAL PRELIMINARIES

The hybrid I/O automaton framework [12] evolved from
the generalization of the timed I/O automaton model [9]
for real time distributed systems. Earlier versions of the
model appeared in [13] and [14]. A hybrid I/O automaton
models hybrid behavior in terms of discrete transitions and
continuous evolution of its state variables.

Let � be the set of variables of automaton
�

. Each �����
is associated with a (static) type which is the set of values �
can assume. A valuation � for � is a function that associates
each variable ����� to a value in �
	���
������ . The set of all
valuations of � is denoted by ����������� .

A trajectory � of � is a mapping ������������� �!�"� , where
� is a left closed interval of time. The domain of � is the
interval � and is denoted by �$# %�&�' . The first time of � is
the infimum of �(# %�&�' , also written as �$#)��
*+'�
 . If �$# %�&�'
is right closed then � is closed and its limit time is the
supremum of �$# %,&�' , also written as �(# ���
*!'�
 .

Each variable ���-� is also associated with a %.	�/0��'1*+2
�
	��3
 (or %,�
	4��
) which is the set of trajectories that � may
follow. Dynamic type %,�
	4��
��5��� of a continuous (discrete)
variable � is the pasting closure of continuous (constant)
functions from left closed intervals of time to �
	���
������ .

A. HIOA Model

A hybrid I/O automaton
�

consists of :
1) A set � of variables, partitioned into internal 6 , input7

, and output variables 8 . The internal variables are
also called state variables. The set 9;: 7�< 8 is the
set of external variables. And, the set =?>:@6 < 8 is
called the set of locally controlled or local variables.

2) A set A of actions , partitioned into internal B , inputC
, and output actions D .

3) A set of states EGF������ ��6H� ,
4) A non-empty set of start states IJFKE ,
5) A set of discrete transitions L FMEONPAQNRE .

A transition �5SUT���T�S � �V�WL is written in short as
S X��YZS � . The subscript is sometimes omitted and
written as S[X��S � when the automaton

�
is clear

from the context.
6) A set of trajectories \ for � , such that for ev-

ery trajectory � in \ , and for every �V�]�$# %�&�' ,
�0�5� �^# 6 �_E and \ is closed under prefix, suffix,
and concatenation. The first state �0��`,�a# 6 of trajec-
tory is denoted by �$#b)dce�f���f
 . If �$# %�&�' is finite then
�$# �!cg�f�,�f
h:K�0���$# ���
*+'1
i�^# 6 .

Further,
�

is: (1) input action enabled, that is, it cannot
block input actions, and (2) input trajectory enabled, that

is, it accepts any trajectory of the input variables either
by allowing time to progress for the entire length of the
trajectory or by reacting with some internal action before
that.

For this paper we assume that (1) All variables are
either discrete or continuous. For a set of variables j , we
denote its discrete and continuous subsets by jlk and j0m ,
and the the corresponding state vectors by nok and n�m . And,
(2) discrete transitions do not change the valuation of the
continuous variables, that is, if S X��S � , then SU# Spmq:@S � # Spm .

B. Executions

An execution fragment of
�

is a finite or infinite sequence
of actions and trajectories rW: �gs,Tt�$u�T ��u�T���vU#g#e# , where
each �ewx�J\xTt��wy�JA , and if �gw is not the last trajectory
in r then �gw is finite and �ew�# ��cg�f���f
 X^z|{�}� �ew�~�ui#b)dcg�f���f
 . If r
is an execution fragment, then we define the first state of
r , r�#b)dcg�f�,�f
 to be �es,#b)dcg�f���f
 . An execution fragment r is
an execution if r�#b)dce�f���f
���I . An execution fragment is
closed if it is a finite sequence and the domain of the final
trajectory is a finite closed interval. We say a state of

�

is reachable if it is the last state of some closed execution
of
�

. An execution fragment r is reachable if r�#b)dcg�f���f
 is
reachable.

The length of a closed execution fragment is the number
of elements (actions and trajectories) in the sequence. The
first time r�#b)��
*+'1
 of an execution fragment r is � s #b)��
*!'�
 ,
and if r is closed then its limit time r�# �5�
*+'1
 is �4�d# ���
*+'1
 ,
where �g� is the last trajectory of r . The duration of
a closed execution fragment is its length in time and
is defined as r�# %,���J:�� �w��ds �5�ew�# ���
*+'1
��P�ew�#)��
*+'�
�� . We
denote the valuation of the continuous variables 6 m at time
�^T�r�#b)��
*!'�
����x�_r�#b)��
*!'�
 , in the execution fragment r
by r���� � . Note that r���� � is uniquely determined because the
discrete actions do not alter the valuation of the continuous
variables.

C. Invariants

An invariant property or simply an invariant of
�

is a
condition on � that remains true in all reachable states of

�
.

The structure of HIOA allows systematic proof of invariants.
An invariant � is either derived from other invariants or
proved by induction on the length of a closed execution of�

. The induction consists of the following steps:

1) base step: ����c�� is true for all c��-I ,
2) induction step: consisting of

a) discrete part: for every discrete transition
c����c � , ����c�� implies ����c � � , and

b) continuous part: for any closed trajectory ���
\ , with �$#b)dce�f���f
�:�c and �$# ��cg�f���f
�:?c � , ����c��
implies ���!c � � .

So, the inductive proof of an invariant breaks down into
a set of cases, one for each action and trajectory. This is
particularly helpful in organizing large, complex proofs and
for automating invariant proofs in a theorem prover.

3

III. STABILITY THEOREMS IN HIOA FRAMEWORK

In this section we define what it means for a HIOA�
to be stable. In this and the following section, we are

concerned with hybrid systems with no continuous inputs,
and we assume that there exists a family of sufficiently
regular1 functions)���� � � � � � , ����� , such that every
trajectory of

�
satisfies �Spm�:P)�����Spm^� for some ����� , where

� is a finite index set.

A. Stability Definitions

Let us assume that all the subsystems of
�

have the origin
their the common equilibrium point, that is,) � ��`�� :P` for
all � ��� . The origin is a stable equilibrium point of a
HIOA

�
, in the sense of Lyapunov, if for every 	�
W` ,

there exists a �

 ` , such that for every execution r of
�

,
we have� r ��`,� � ����� � r �5� � � ��	����J` ��� � r�# �5�
*+'1
�T (1)

and we say that
�

is stable. A HIOA
�

is asymptotically
stable if it is stable and � can be chosen so that� r ��`�� � ������r���� ���Q` ��c?� ��� (2)

If the above condition holds for all � then
�

is globally
asymptotically stable.

Uniform stability is a concept which guarantees that the
stability property in question holds, not just for executions,
but for any execution fragment. Therefore,

�
is uniformly

stable in the sense of Lyapunov, if for every 	�
 ` there
exists a constant ��
 ` , such that for any execution
fragment r ,� r���� s � � ����� � r �5� � � ��	4T���� s T��^T ` ��� s � ���@r�# ���
*!'�

A HIOA

�
is said to be uniformly asymptotically stable if

it is uniformly stable and there exists a ��
@` , such that for
every 	�
 ` there exists a � , such that for any execution
fragment r ,� r���� s � � ����� � r���� � � ��	4T�������� s � � (3)

It is said to be globally uniformly asymptotically stable if
the above holds for all � .

All the above stability properties are by definition uni-
form over executions. We will also make use of the fol-
lowing weaker notion of stability: a given execution is
stable (uniformly stable, asymptotically stable, etc.) if the
corresponding property is satisfied for this execution.

In the remaining part of this section we show how some
known theorems on stability (see, e.g., [10]), can be adapted
for the stability analysis of HIOA.

B. Common Lyapunov Function

The basic tool for studying stability of hybrid systems
relies on the existence of a single Lyapunov function whose
derivative along the trajectories of all the subsystems in !
satisfies the suitable inequalities.

1Locally Lipschitz

Definition 1. Given a positive definite continuously differ-
entiable function � � � � � � � , we say that it is a common
Lyapunov function for a HIOA

�
if there exists a positive

definite continuous function 9 � � � � � � , such that we
have "

�"
Spm) � ��S m � � � 9��5S m �#� S m T$������� (4)

Theorem 1. If a HIOA
�

has a radially unbounded
common Lyapunov function then

�
is globally uniformly

asymptotically stable.

C. Multiple Lyapunov Functions

When a common Lyapunov function for all the subsys-
tems in � is not known or does not exist, the stability of
a HIOA depends on the choice of an execution. Multiple
Lyapunov functions [3] is an useful tool for proving sta-
bility of a chosen execution. In this case, each subsystem
�[�%� is associated with a Lyapunov function �&� , and
one attempts to prove the stability of the execution using
the continuous decay of the �'� ’s and the switching logic
between the subsystems. In control theory literature [10], [7]
the switches between the subsystems � �(� are defined in
terms of a “switching signal” which is a piece-wise constant
function)��&* `(T+��� �,� . In the HIOA model the switches
are defined by the discrete transitions of the automaton, so
we define the notion of switching times as follows:

Let - � \��.� be a function that gives the index �
of the function)�� , which is active over the trajectory � .
Whenever a discrete action � w occurs such that -��5� w0/du �21:
-��5�gw!� , the HIOA

�
is said to undergo a switch.

Definition 2. For any execution fragment r :�� s � u � u #g#e# ,
an instant of time �1��r�# %,&�' is called a switching time
if there exists * such that ��: � w # �5�
*+'�
 , and -��5� w ��1:
-��5� w|~�u � .
Theorem 2. Let � � be a radially unbounded Lyapunov
function corresponding to the globally asymptotically stable
system �3 :) � � 3 � for each � �4� . An execution r
of a HIOA

�
is globally asymptotically stable if there

exists a family of positive definite continuous functions
95��T����6� such that, for every pair of successive switching
times �^T�� � in r , and the corresponding trajectories � w T��+7 , if
-��5� w ��:8-��5�+74� :K� and -��5��9o�21: �pT:�<; Tq*>=?;�=A@ then
�B�$���+7,�5� � ��� � �B�(�5� w �5� ���q��� 9(�$�5� w �5� ��� .
D. Stability Under Slow Switching

It is well known that a switched system is stable if
all the individual subsystems are stable and the switching
is sufficiently slow, so as to allow the dissipation of the
transient effects after each switch. The dwell time [17] and
the average dwell time [7] criteria define restricted classes
of switching signals, based on switching speeds, and one
can conclude the stability of a system with respect to these
restricted classes. In the HIOA framework, the discrete
transitions of the automaton define the speed of switching,
and so the average dwell time property can be formalized
as an invariant of the automaton.

4

Definition 3. Let �tu�T��fvoTe#g#e# be the switching times of an
execution fragment r of a HIOA

�
. The execution fragment

r has a dwell time � k
�` if it satisfies the inequality
�fw�~�u$���fw ��� k , for all * . If all reachable execution fragments
of
�

have dwell times � � k then
�

has a dwell time � k .

Definition 4. Let
� ��r � denote the number of switches

over an execution fragment r of a HIOA
�

. The execution
fragment has an average dwell time � X
�` if there exists
a positive number

� s such that:

� ��rl�q� � s�� r�# %,�3�
� X

(5)

If all reachable execution fragments of
�

have average
dwell times � � X then

�
has an average dwell time � X .

The following theorem, adapted to the HIOA framework
from the results in [7], uses the concept of average dwell
time to give a sufficient condition for stability. Since dwell
time is a special case of average dwell time with

� s :�� ,
a separate theorem for dwell time is not necessary.

Theorem 3. Consider a HIOA
�

with its trajectories
specified by a family of functions) � T������ . Suppose there
exist positive definite, radially unbounded, and continuously
differentiable functions � � � � � � � � , for each ����� , and
positive numbers �(s and � such that:"

�B�"
Spm) � �5S m �q� ���(si� � �5S m �aT#� S m T������6� (6)

� � �5S m �q���p�	�.�5S m �aT���S m T$���pT�
����x# (7)

Then
�

is globally uniformly asymptotically stable if it has
an average dwell time � X

�
����
v���� .

Theorem 3 roughly states that a hybrid system is uni-
formly stable if the discrete switches are between modes
which are individually stable, provided that the switches
do not occur too frequently on the average. This stability
condition effectively allows us to decouple the construc-
tion of Lyapunov functions—one for each �P� � , which
we assume are known from available methods of system
theory—from the problem of checking that every execution
of the automaton satisfies Equation (5). In the next section
we shall formalize this latter property as an invariant of a
corresponding transformed automaton and show how formal
methods can be used to verify it.

IV. AVERAGE DWELL TIME: INVARIANT APPROACH

In general, it is harder to prove properties of executions
of automata than it is to prove invariants, which are prop-
erties of state. Several formal verification techniques have
been developed expressly for checking invariants of hybrid
automata (see [1], [6], [5], and Chapters 5 and 6 of [18]).
So, once we have translated the average dwell time property
to a set of invariant properties, we can appeal to the suitable
formal verification tool for checking the invariants.

A. Transformed Automaton for Stability Verification

We transform the given HIOA
�

to a new HIOA
���

as
follows: In addition to all the variables of

�
, automaton

���

has two new internal variables; a counter E and a timer
� , both initialized ` . The counter E counts the number of
mode switches, and the timer reduces the count by � in
every � X time. For every discrete transition c X� Y c � of

�
,

automaton
� �

has a corresponding transition c X� Y�� c � , such
that c � #bEJ: c,#bE � � . In addition

���
has internal action which

occurs every � X time and decrements E by one. Finally,
for every trajectory � � of

� �
, the projection of � on the

set of continuous variables of
�

is a trajectory of
�

, i.e.,
� ��� = m ��\�Y , and �� :�� .
Lemma 1. All closed executions of

�
satisfy Equation (5)

if and only if E � � s in all reachable states of
���

.

Proof. Since r is a closed execution of
�

, we can replace
r�# %,�3� in Equation (5) with r�# �5�
*+'�
 . For the “if” part,
consider a closed execution r of

�
and let r � be the

“corresponding” execution of
���

. Let c � be the last state
of r , therefore from the invariant we know that c � #bE � � s .
From construction of

� �
we know that,

� ��r ��: � ��r � �
and r � # ���
*+'1
 :]r�# �5�
*+'1
 and therefore c � #bE : � ��r � ������ ��� �! w#"%$&(') . It follows that

� ��rl�U� � � �! w#"%$&�' � � s .
For the “only if” part, consider a reachable state c � of

� �
.

There exists an execution r � such that c � is the last state of
r � . Let r be an execution of

�
“corresponding” to r � . Since� ��rl�q� � s � �*� � w+"%$& ',) implies
� ��r � �q� � s � ��� ��� �- w+"%$& ') ,

it follows that c � #bEG� � s .

Theorem 4. All executions of
�

satisfy Equation (5) if and
only if EG� � s in all reachable states of

���
.

Proof. We only have to show that if any execution r of
�

violates (5), then there exists a closed execution r � of
�

that
violates (5) as well. If r is infinite, then there is a closed
prefix of r that violates (5). Otherwise, r is finite and open,
and the closed prefix of r excluding the last trajectory of
r violates (5).

B. Transformed Automaton for Uniform Stability Verification

The above transformation is acceptable for asymptotic
stability, but it allows E to become negative, and then
rapidly return to zero, so it does not guarantee uniform sta-
bility. For uniform stability we want all reachable execution
fragments of

�
to satisfy (5).

Consider any reachable execution fragment r of
�

, with
r�#)��
*+'�
 : � u , and r�# �5�
*+'1
_: � v . Let

� �5� v T � u � and
E���� v T � u � denote the number of switches and the number
of “extra” switches over r with respect to dwell time � X ,
that is, E��5� v T�� u ��: � �5� v T � u �l� ��� v �H� u ��.i� X . Thus, every
reachable execution fragment r of

�
satisfies (5), if

� ���^T �
s4� :PE����^T�`,� � �
� X

��E��5�
s,T�`,�l� �
s
� X

� � s � �����
s
� Xthat is, E����^T � s � � � s T

where �
s�: r�#)��
*+'�
 , and � :�r�# �5�
*+'�
 . So, we introduce
an additional variable E/"qw � which stores the magnitude

5

of the smallest value ever attained by E . Then, for uniform
stability we need to show that the total change in E between
any two reachable states is bounded by

� s .

Theorem 5. All reachable execution fragments of
�

satisfy
Equation (5), if and only if E��"E/"qw � � � s in all reachable
states of

���
.

Proof. For the “if” part, consider a reachable closed exe-
cution fragment r of

�
which is a part of the execution�

, such that r�#)dcg�f���f
x: � �5� u � and r�# ��cg�f���f
y: � �5� v � . Let
r � and

� �
be the corresponding execution (fragment) of

���
.

Based on whether or not E "qw � changes over the interval
* � u T�� v�� , we have the following two cases:

If E "qw � does not change in the interval, then� � ��� u �^#bE "qw � : � � ��� v �a# E "qw � : � � ��� �^#bE for some
� "qw �?=?� u , and E���� v T � u �y: E���� v T � "qw �(� �KE��5� u T � "qw �3���
E���� v T�� " w �(� . Since

� � �5� v � satisfies the invariant,
E���� v T�� " w �(�Z: � � ��� v �a# E � � � �5� v �^#bE "qw � � � s from
which we get E���� v T � u � � � s .

Otherwise, there exists some � "qw � � * � u T � v�� , such
that

� � �5�fv4�^#bE "qw � : � � ��� "qw � �a# E = � � �5��ua�a# E/" w � , and
E����fvoT���ua�?: E����fvoT � "qw � � � E��5� "qw � T ��ue�_� Ex�5�fvoT�� "qw � � .
Again, from the invariant property at

� � �5�fv4� , we get
E����fvoT���ua�q�@E��5�fv.T � "qw � � � � s .

For the “only if” part, let c � be a reachable state, and� �
be a closed execution of

���
, such that c � : � � # �!ce�f���f
 .

Further, let
�

be the corresponding execution of
�

, and ��s
be the intermediate point where E attains its minimal value
over

�
, that is,

� ��� �^#bE " w �x: � ��� s �a# E . Since
�

is a reachable
execution fragment of

�
, it satisfies Equation (5), and we

have:
� ���^T � s � � � s � / �&(' . Rewriting,

Ex�5�^T�`�� � �
� X

��E����
s.T�`��l� �
s
� X

� � s � �l�H�
s
� X

By assumption, Ex�5� s Tt`,� : � � ��� �^#bE "qw � : c � #bE "qw � , there-
fore, it follows that c � #bEP� c � # E " w ��� � s .

C. Finding the Required Invariants

For a general HIOA, there are no obvious ways of finding
the correct invariants that would lead to the average dwell
time property, however, based on some case studies, we
provide the following guidelines.

First, for each mode � we identify a variable � � that is
monotonic; � � and � � could be the same, for � 1:
 . Then,
we introduce discrete history variables � w� , *�:,�,T���Tg#e#g# ,
which record the value of � � when the system switched out
of mode � for the * �� time. Now, we want two invariants
of the following forms:

1) � 9 ~�uw �K) � � 9w � , for all * , where) is some monotonic
increasing function, and

2) � 9 ~�uw �
	 ��� � , where 	 is some monotonic function of
time.

Roughly speaking, the second invariant sets an upper bound
on how fast � � can grow, and the first invariant sets a lower
bound on how much � � has to grow in order to perform
a certain number of switches. Together, they bound the
minimum time that has to elapse between switches. The

case study presented in the next section will illustrate these
principles further.

V. HYSTERESIS SWITCHING

In this section the invariant based technique is applied to
a hysteresis switching logic unit which is a subsystem of
an adaptive supervisory control system taken from [8] (also
Chapter 6 of [10]). Our goal is to prove the average dwell
time property of this switching logic, which guarantees
stability of the overall supervisory control system (see the
above references for details).

An adaptive supervisory controller consists of a family
of candidate controllers � ��T�� � � , which correspond to
the parametric uncertainty range of the plant in a suitable
way. Such a controller structure is particularly useful when
the parametric uncertainty is so large that robust control
design tools are not applicable. The controller operates in
conjunction with a set of on-line estimators that provide
monitoring signals or time-varying estimates of the un-
known parameters of the plant model and at each instant
of time, the switching logic unit generates, the index)U��� �
of the controller to be applied to the plant.

In building the HIOA model, we take as inputs the
monitoring signals � � and focus on the switching logic unit
which implements scale independent hysteresis switching as
follows: at an instant of time when controller � is operating,
that is,)�:V� for some � ��� , if there exists a ����� such
that � � � � �
� �h� �
� for some fixed hysteresis constant � ,
then the switching logic sets)�: � and applies output of
controller � to the plant. Below we describe and analyze
the HIOA representing this switching logic unit, which we
call HysteresisSwitchingLogic automaton.

We consider a finite set of continuous, monotonically
nondecreasing monitoring signals � � , ���6� satisfying:

� � ��`�� � ��s (8)

� ��� ��� � � � u � � vg
 v�� T for some ���h��� (9)

where � s T�� u and � v are positive constants for each ����� .
Equation (8) sets a lower bound on the initial values of all
the monitoring signals, and Equation (9) states that there
exists some ���h�6� for which the corresponding monitoring
signal satisfies the exponential upper bound.

A. HIOA Specification

In specifying the hysteresis switch as a HIOA (Figure 1),
we adopt the style described in [16]. The input, output, and
state (internal) variables are declared and initialized in the
variables section of the code. Each variable’s type is listed,
after a colon, following its name in the declaration. The
variables declared with the preceding analog keyword are
continuous, the rest are discrete. The monitoring signals
� � , � � � , are declared as input variables because they
are controlled by an external source. And, the discrete
switching signal) is an output variable because it is visible
to the outside word; all other variables are internal and
are not visible outside the automaton. The variables 2 and
% count the number of switches and the number of � X

6

periods elapsed; together they define E , the number of
“extra switches”. The history variables � w� ’s store the values
of � � at the instants when) becomes equal to � for the
* �� time. The variable 2 � counts the number of intervals in
which) has been equal to � , and the real variable � � is a
reset timer measuring the length of this interval.

The discrete transitions section defines the two actions
of the automaton, namely %,

��
4��
 and c���*+�f2 � ��T����6� . An
action is enabled or in other words, it can occur when the
condition following the precondition keyword is true. The
change in the state variables when the action does occur is
described by the effect part of the transition definition.

The trajectories section defines the evolution of the
continuous variables in terms of the differential and al-
gebraic equations. The %��f#b� in the evolve section stands
for derivative. The stopping condition, in this automaton,
is the disjunction of the action preconditions, so it forces
the actions to occur whenever they are enabled.

B. Invariant Properties

In this section we prove a sequence of
invariants which show that the executions of the
HysteresisSwitchingLogic automaton satisfy
the average dwell time property with � X :

�
���� u ~ ���v���" . For
simplicity of presentation, we prove the invariants required
for asymptotic stability, and not uniform asymptotic
stability, and accordingly the average dwell time property
we get is over executions and not over execution fragments
of the automaton. The invariants closely correspond to
those outlined in Section IV-C. The first three invariants
lead to Corollary 2, which corresponds to the first invariant
of Section IV-C and gives the lower bound on the change in
the history variables necessary to perform a certain number
of switches. As for the second invariant of Section IV-C,
we already have an upper bound on the rate of growth
of the monitoring signals from Equations (8) and (9).
Putting these two pieces together in Invariant 5, and using
Theorem 4 we derive the average dwell time property.

Invariant 1. EG� 2 � ���	�& ' � � .
Proof. Initial states satisfy. The c���*+�f2 � � action does not
affect the invariant. Consider the %,

��
g�
 action c X�;c � .
We know c � # E : c,#bE[� � and the right hand side of
the inequality does not change, therefore the invariant is
preserved. Also, all trajectories preserve the invariant.

Invariant 2. For all
���� ,

� ���)�:
�� �������xT(� � �J� � �
� � � ��T
� �,�)�:
�
12 �
 `�
�� � :V`�� �������xT(� � � � �$#

Proof. Part(1): Initial states satisfy. For the induction step
we need to consider only discrete transitions c X��c � , where
�@:Wc���*+�f2 � � . Let c,#)R: � , we know that c � #)R:
 . By
inductive hypothesis c,# � � ��� � � � � c,# � � , for all ����� . By
precondition of c
� *!�f2 � � , �(� � � � c,# � � �Kc,# �
� . By continuity
of � � ’s �(� � � � c � # � �h�Kc � # �
� �J� � � � ��c � # � � , for all ����� .

From the above it follows that c � # � �h�P�(� � � ��c � # � � , for
all ����� . The stopping condition of activity) ��&�� ensures
that the invariant is preserved over all trajectories.

Part(2) : Initial states satisfy the invariant because
�:
����	�'�*+/ ����� � � . For the induction step, consider a discrete
transition c X� c � , where ��: c
� *!�f2 � � . Let c,#)P: � , we
know that c � #) :
 . From Part (1), c,# �
� ��� � � � ��c,# � � , for
all ����� . By precondition of c���*+�f2 � � , � � � � � c,# � � �@c,# � � ,
and by continuity of � � ’s, c � # � � � c � # � � , for all ����� .

We note that the %,

��
g�
 actions do not alter any of
the variables involved in the invariant. Now, consider any
trajectory � . If � is a point trajectory, then the invariant
holds. If � is not a point trajectory, then the invariant holds
vacuously because �$# ��cg�f���f
,# � � 1: ` .

Corollary 1. For all
�T������ ,
)�:K��
�� � �
� � � � ��� � � �(� � � � � � : � � .
Invariant 3. For all
���� ,
2 � � � � � m��� �P�(� � � � � m�� /du� .

Proof. Initial states have 2 �@� � for all ��� � . For the
induction step we only have to consider discrete transitions
of the form c X� c � , where �V: c���*+�f2 � � . Let c,#) :W� ,
c,# 2 � : ; � � , that is, � is the � ; � ����� c���*+�f2 � � action.
From the transition relation, and Corollary 1:

c � # � 9 ~�u� : c � # � � :��(� � � � c � # �
� (10)

Let c � � be the post state of the ; �� c
� *!�f2 �	� action. From
Invariant 2 Part(1) c � � # � � :_c � � # � 9� � � � � � ��c � � # � � . From
monotonicity of � � , c � � # �
� �Kc � # �
� . Since � 9� is not changed
after c � � ,

c � # � 9� � c � # � � (11)

Combining (10) and (11), c � # � 9 ~�u� �J� � �
� ��c � # � 9� .
Corollary 2. �
 �6�xT�� m��� �J� � �
� � m�� /du � u� .
Invariant 4. There exists
"��� such that 2�� ��� m /du"�� .
Proof. We observe that, the counter 2 is incremented every
time a c
� *!�f2 � � action occurs for any �Q� � , and for
each � �4� the counter 2 � is incremented when the
corresponding c���*+�f2 � � action occurs. Since there are '
possible values of � , it follows that at least � m /du" � out of
the 2 c
� *!�f2 � actions would correspond to some
 in � .

Invariant 5. If we set the � X :
�
���� uf~ ���v���" then,��� �"!$#%! #&('�)+*-, !$.0/ &('�)214365 ! 3"7398 : (12)

Proof. Consider any reachable state c , from Corollary 2,
Invariant 4 and monotonicity of � � ’s we know that there
exists
 in � such that c.# � m��� �P�(� � � ��;=<�> }?A@ /0u c,# � u� . Taking
logarithm and rearranging we have,B�C D � , !E#%! #&('�)+*-, !F.G/ &('�) 1 B�C HJI �KB�C H 5K :
Let c � be the post state of the 2 ��� c
� *!�f2 �	� action, then
c,# � mML� :�c � # � � . From Invariant 2 Part(2) and monotonicity

7

hybridautomaton HysteresisSwitchingLogic(� :PosReal, � :IndexSet)

variables
input analog

� L��������	� , for each � ��� ,

output
 � � , initially
 � X ��� "qw ��L
��� � L ,
internal analog � ��� �������	� , initially s ,

internal m��!k ������� , initially s ,

internal
� zL ����������������� , for � ��� and w � � s � u � v � � � � � ,

initially
� �L � � L , � }� � � � , otherwise

� zL � � ,

internal mML ������� , initially s , for �"!�
 , and m � � �xu
internal L#��������� , initially s , for each � ��� ,

derived variables
const "$�������p�&% � %
' �������p� m / k

discrete transitions
switch L for each � ���
precondition

� u(~ ��� � L)(� �
effect
 � � � ; m � � m ~�u ;mML � � mML ~�u ;

� < LL � � � L ; L � �ys
dequeue

precondition � ��� � 9 & '
effect k � � k ~ u

trajectories
activity flow

evolve k � � ��� � � ��u+* k � L � � ��u
stop at

�-, �.� � u$~ ��� � L (� � �0/ � � ��� � 9 &(' �
Fig. 1. HIOA specification of the hysteresis switching logic in the supervisory controller

it follows that c,# � m �� : c � # � m �� �_c � # � � �_c,# � � . It follows
that,B�C D � , ! #%! #&('�)0*-, !F.0/ &('�) 1 B�C H21B�C H 5K :43 57628:9
Form monotonicity and property (8) of the monitoring
signals, � u� ��� s � � � s . Therefore,

B�C D � , !E#%! #&('�)0*-, !$.0/ &('�) 1 B�C H;13 8 :<3 5=628>9
Replacing � with ��� of (9), we getB�C D � , ! #%! #&('�)0*-, !$.0/ &('�) 1 3 5 ! 3 7�? 7A@CB�D E�F	G398 :B�C D � , ! #%! #&('�)0*-, !$.0/ &('�) 14365 ! 3"7398 : ! �IH # B�C JLK�M&('�)0*-, !E.0/
Using Invariant 1, and putting � X :

�
���� u ~ ���v���" , we get the
result.

Theorem 6. The HysteresisSwitchingLogic au-
tomaton has an average dwell time of at least

�
���� u ~ ���v���" .

Proof. Follows from Invariant 5 and Theorem 4.

VI. REMARKS AND FUTURE WORK

We have introduced the hybrid I/O automaton frame-
work [12] as a common modeling platform in which anal-
ysis techniques from both computer science and control
theory can be applied. To demonstrate the utility and
expressive power of this framework, we have shown how
known stability theorems from system theory literature can
be adapted and applied in the HIOA framework. Our main
contribution is to formalize the average dwell time property
of hybrid systems as a set of invariants and thereby making
it possible to prove (uniform) stability of hybrid systems
under slow switching using formal verification techniques.
The suggested method has been illustrated by analyzing the
stability of a hysteresis switching logic unit in a supervisory
control system.

In this paper we examined internal stability only, how-
ever, the HIOA framework explicitly incorporates exter-
nal variables and is also useful for studying input-output
properties of hybrid systems. Further, we have proved the
invariants in this paper by hand, but it is possible to
mechanize the invariant proofs using theorem provers, and
in certain special cases to completely automate the proofs
with symbolic model checkers. Of course, substantial work
remains to be done both in terms of building software tools
and developing the theory, in order to have an efficient and
seamless process for stability analysis of hybrid systems,
and we plan to pursue these in the future.

VII. ACKNOWLEDGMENTS

This work significantly benefited from discussions with
Nancy Lynch on the use of formal methods in stability
analysis of hybrid systems. We also thank Peter B. Jones
for his comments on related case studies.

REFERENCES

[1] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A.
Henzinger, P.-H. Ho, Xavier Nicollin, Alfredo Olivero, Joseph
Sifakis, and Sergio Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138(1):3–34, 1995.

[2] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS interface to
simplify proofs for automata models. In Proceedings of UITP ’98,
July 1998.

[3] M. Branicky. Multiple lyapunov functions and other analysis tools
for switched and hybrid systems. IEEE Transactions on Automatic
Control, 43:475–482, 1998.

[4] Ekaterina Dolginova and Nancy Lynch. Safety verification for
automated platoon maneuvers: A case study. In HART’97 (Interna-
tional Workshop on Hybrid and Real-Time Systems), volume 1201 of
Lecture Notes in Computer Science series, Grenoble, France, March
1997. Springer Verlag.

[5] Connie Heitmeyer and Nancy Lynch. The generalized railroad
crossing: A case study in formal verification of real-time system. In
Proceedings of the 15th IEEE Real-Time Systems Symposium, San
Juan, Puerto Rico, December 1994. IEEE Computer Society Press.

[6] Thomas Henzinger. The theory of hybrid automata. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science
(LICS ’96), pages 278–292, New Brunswick, New Jersey, 1996.

[7] J. Hespanha and A. Morse. Stability of switched systems with
average dwell-time. In Proceedings of 38th IEEE Conference on
Decision and Control, pages 2655–2660, 1999.

8

[8] J.P. Hespanha, D. Liberzon, and A.S. Morse. Hysteresis-based
switching algorithms for supervisory control of uncertain systems.
Automatica, 39:263–272, 2003.

[9] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaan-
drager. Timed I/O automata: A mathematical framework for mod-
eling and analyzing real-time system. In RTSS 2003: The 24th
IEEE International Real-Time Systems Symposium, Cancun,Mexico,
December 2003.

[10] Daniel Liberzon. Switching in Systems and Control. Systems and
Control: Foundations and Applications. Birkhauser, Boston, June
2003.

[11] Carolos Livadas, John Lygeros, and Nancy A. Lynch. High-level
modeling and analysis of TCAS. In Proceedings of the 20th IEEE
Real-Time Systems Symposium (RTSS’99),Phoenix, Arizona, pages
115–125, December 1999.

[12] Nancy Lynch, Roberto Segala, and Frits Vaandraage. Hybrid I/O
automata. Information and Computation, 185(1):105–157, August
2003.

[13] Nancy Lynch, Roberto Segala, Frits Vaandrager, and H. B. Weinberg.
Hybrid I/O automata. In T. Henzinger R. Alur and E. Sontag, editors,
Hybrid Systems III, volume 1066 of Lecture Notes in Computer
Science, New Brunswick, New Jersey, October 1995. Springer-
Verlag.

[14] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid
I/O automata revisited. In M.D. Di Benedetto and A.L. Sangiovanni-
Vincentelli, editors, Proceedings Fourth International Workshop on
Hybrid Systems: Computation and Control (HSCC’01), Rome, Italy,
volume 2034 of LNCS, pages 403–417. Springer, March 2001.

[15] Sayan Mitra, Yong Wang, Nancy Lynch, and Eric Feron. Application
of hybrid I/O automata in safety verification of pitch controller for
model helicopter system. Technical Report MIT-LCS-TR-880, MIT
Laboratory for Computer Science, Cambridge, MA 02139, January
2003. http://theory.lcs.mit.edu/mitras/research/.

[16] Sayan Mitra, Yong Wang, Nancy Lynch, and Eric Feron. Safety
verification of model helicopter controller using hybrid Input/Output
automata. In HSCC’03, Hybrid System: Computation and Control,
Prague, the Czech Republic, April 3-5 2003. Also, long version in
[15].

[17] A. S. Morse. Supervisory control of families of linear set-point
controllers, part 1: exact matching. IEEE Transactions on Automatic
Control, 41:1413–1431, 1996.

[18] A. van der Schaft and H. Schumacher. An Introduction to Hybrid
Dynamical Systems. Springer, London, 2000.

