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setting it is possible to elect a leader in two communication rounds, with high probability.
Previously, it was known that ®(logn) rounds were sufficient and necessary when using
uniform power, where n is the number of nodes in the network.

We then examine how much power control is needed to achieve fast leader election. We

gfﬁ;’:ms' show that every 2-round leader election algorithm in the SINR model running correctly

Leader election w.h.p. requires a power range 2™, even when n is known. We complement this with

Power control an algorithm that uses power range 201 when n is known, and 20("1'5), when n is not

Capture effect known. We also explore tradeoffs between time and power used, and show that to elect
a leader in t rounds, a range of possible power levels of size exp(n!/®®) is sufficient and
necessary.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this article we discuss what we can accomplish in a Signal-to-Interference-plus-Noise-Ratio (SINR) network using
power control, the ability of nodes to transmit with variable transmission power, and the capture effect, a property of SINR
networks, where a node’s transmission can be successful even if other nodes within its communication range transmit at
the same time.

We study the leader election problem as a vehicle to explore this frontier. Leader election, the problem of determining
a unique leader among the nodes in a network, is one of the oldest and most studied problems in distributed computing. It
provides a strong form of breaking symmetry within radio networks in an initially unknown system, and is frequently used
as a preliminary step in more complex communication tasks.

The leader election problem was originally introduced in the 1970s, with the publication of the ALOHA radio network
paper [1]. In the following years, many variations of the leader election problem have been extensively studied under a
variety of models and algorithmic constraints, For example, in the multiple access channel model with collision detection
[12], and in the SINR model with no collision detection [8].
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We consider the leader election problem in SINR networks. In the SINR model, nodes operate in synchronous rounds.
In each round a node either broadcasts a message to its neighbors or listens. A node v may or may not receive a message
from node u depending on the distance between u and v, the transmission power of u, and the interference generated by
other broadcasting nodes, as defined in Section 3.

In the classical radio network model, the leader election problem requires ®(log?n) rounds w.h.p. [11]. Fineman et al.
[8] show that O(logn) rounds are sufficient and necessary to elect a leader in SINR networks without power control. They
suggest that improved bounds may be possible using power control. Indeed, we show that power control can provide the
ultimate speedup.

Our contributions: We present an algorithm that solves the leader election problem in two rounds w.h.p. We also present a
multi-round leader election algorithm that uses limited transmission power. Our work is complemented by nearly matching
lower bounds on the transmission power range for both two-round and multi-round leader election algorithms.

2. Related work

Gallager [9] presents a good survey of early work on leader election. From the mid-eighties, there was an increased
interest in the radio network model [5], where concurrent transmissions are lost due to collisions, and nodes do not learn
if their messages are successfully received. In this classical model, the leader election problem can be solved in @(log2 n)
rounds w.h.p. [7] where n is the number of nodes in the network. This bound can be improved to @(logn) w.h.p. assuming
that nodes can detect collisions [4], and to O(logn,) expected rounds assuming an upper bound n, of n [2].

In the beginning of the new millennium came a renewed interest in fading radio networks, especially the SINR model,
which take interference into account in a more realistic way. Moscibroda and Wattenhofer [10] showed that algorithms
in the fading radio networks model can achieve better runtimes than algorithms for the radio networks model on certain
problems, as SINR allows for better spatial reuse.

The most efficient leader election protocol known in the SINR model is by Fineman et al. [8]. It runs in time
O(logn + logR) w.h.p. in a single-hop network using uniform transmission power, where n is the number of nodes and
R = O(poly(n)) is the ratio between the longest and the shortest link. Fineman et al. suggest that it may be possible to
achieve better performance using power control. Indeed, for problems like link scheduling and connectivity, power control
has been shown to give much better performance [10]. Power control has also been used in the SINR setting to solve the
link scheduling problem while conserving energy, e.g. [3], [6].

To our knowledge, there has been no published work using power control to optimize the runtime of the leader election
problem, or examining the trade-offs between the required communication complexity and power range of a leader election
algorithm.

3. Model and problem statement

Let V be a set of n nodes, that represent wireless devices, deployed in a single-hop network located on a metric space.
Time is divided into synchronous rounds. In each round, a node v can either transmit a message of size O (logn) with some
power P, or listen. Node v € V receives a message transmitted by node u € V, iff v is listening and

Py
d(u,v)*

Py
N+ Zwel d(w,v)¥

where [ is the set of other nodes transmitting simultaneously, d(u, v) is the internode distance, and «, 8, N are constants.
Specifically, « is the path-loss exponent, N is the non-zero ambient noise, and 8 is a hardware-dependent minimum SINR
threshold required for a successful message reception.

Our algorithms work for any 8 > 0, while the lower bounds use g > 2.

Every node can communicate with any other node using transmission power Pp;pn, in absence of interference from other
nodes, that is m’zumf—;)a >B,Vu,veV.

In this paper, we consider the leader election problem.

SINR(u,v,) = > B, (1)

Problem 1 (Leader election problem). Given n nodes in a network, elect exactly one node (called the leader), with all nodes
knowing the identity of the leader.

We denote by R the ratio of the longest to the shortest distance between nodes in the network. Similarly to [8], we
assume that there exists some constant ¢ € N, such that R <n®. Let ¥ be a constant such that y > max(1, co + 1+ log ).
We assume that the nodes know y.

The O-notation omits logarithmic factors. All logs are base 2. We consider that an event happens with high probability
(w.h.p.) if it happens with probability greater than 1 —1/n.
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Definition 2 (Bernoulli(p) random variable). A Bernoulli(p) random variable X takes on the values competitor or listener such
that Pr[X = competitor] = p and Pr[X =listener]=1 — p.

4. 2-round leader election algorithm

In this section, we present a 2-round leader election algorithm that uses power control and requires no knowledge of n.
First, we give some key ideas behind our algorithm. Then, we present a 2-round leader election algorithm followed by the
analysis.

4.1. The essence of our algorithm
Below we present a high level description of the key ideas behind our algorithm.

(i) Breaking symmetry: Each node computes a geometric random variable k. Then, it picks an ID uniformly at random
from a range that depends on k. We ensure that with high enough probability the largest ID is picked by exactly one
node.

(ii) The loudest node wins: Each broadcasting node v determines its transmission power by evaluating power function
fUD) := Ppin - IDY!P using its identification number, ID,. Any listening nodes receive the message sent by the node
with the highest ID, with a high enough probability.

(iii) Feedback: In order to inform all nodes of the leader node v, we split the set of nodes V' into listeners and competitors.
The competitors compete for the leader position during the first round of the two-round protocol. The listeners inform
the competitors of the winner during the second round.

4.2. Leader election algorithm

The algorithm proceeds as follows. Initially, each node v flips a fair coin (a Bernoulli(%) random variable) to determine
its role, which is a competitor if heads are flipped, and listener if tails. It then computes a geometric random variable (r.v.)
ky, which counts the tails flipped in a sequence of coin flips before the first heads is flipped. The ID of the node, ID,, is an
integer selected uniformly at random from the range [J,2- J], where J = g(k) := 2*k*. Finally, the power P, that v uses for
broadcast is given by f(ID) := Ppin - 1 DY'D \where Ppp is the minimum power needed to reach all nodes in the network
(overcoming the ambient noise).

During round 1, each competitor v transmits its ID using power P,, which is to be received by the listeners. In round 2,
the roles are reversed, as each listener reports back the ID of the purported leader that it received. In the unlikely scenario
that no message was received, the listener broadcasts an empty string.

We shall argue that, with high probability, a unique competitor succeeds in transmitting to all the listeners, and a unique
listener succeeds in reporting back to all the competitors. The leader is then that successful competitor.

Algorithm 1 2-round leader election algorithm for node v.

1: Preprocessing:

2: Role: a boolean Bernou"i(%) random variable {‘competitor’ if heads, ‘listener’ if tails}
3:k:a Geometric(%) random variable, k € Zxg

4: ID: chosen uniformly at random from [ ], 2- J], where | = g(k) := 2%k%, ID € Zzo
5: P: the transmission power, P = f(ID) := Ppin - ID)Y'P, P € Z2g

6: Leader: a string denoting the identity of the leader, initially empty

7

8: Round 1:

9: if Role = competitor then

10:  Broadcast /D using power P

11: else

12:  If v receives message m, set Leader =m

13:

14: Round 2:

15: if Role = competitor then

16:  If v receives message m, set Leader =m
17: else

18:  Broadcast Leader using power P

4.3. Analysis

We proceed by showing that the highest power used by a competitor is sufficient to overpower all the other competitors,
ensuring that this competitor is heard by all the listeners. Identical arguments hold for the reporting back in round 2.

Please cite this article in press as: M.M. Halldorsson et al., Leader election in SINR model with arbitrary power control, Theoret. Comput. Sci. (2019),
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To this end, we first show that there is a competitor whose geometric r.v. is nearly logn, and at most a logarithmic
number of competitors have that large value. We then show that all the O(logn) IDs at the high end of the spectrum are
unique, i.e., selected by a single node. The difference in power used by nodes with different ID ensures that the competitor
with highest ID will overpower all the other competitors and be heard by all the listeners.

We need the following version of Chernoff bounds.

Theorem 3 (Chernoff bound). Let X1, X3, ..., X, be independent Bernoulli random variables and X = ZL] Xi. For R > 4E[X],

Pr[X > R] <2 0%R

Proof. The standard Chernoff bound is that for any & > 0,

o8 E[X]
PI[X > (1+8)E[X]] < (m) .

Set § be such that R = (1 + §)E[X], so § > 3. We get that

ob E[X] e\ (+DEX]
Pr[X>Rl <[ —— < — — o~ log((1+8)/e)R
— T\ A48 “\1+$6 ’

which is maximized when § is minimized. Finally, observe that log(4/e) > 0.55. O

Lemma 4. Let k1 :=logn — loglogn — 2. With probability greater than 1 — ﬁ, for at least one and at most 32 logn competitors v, it
holds that k, > k.

Proof. Let t = [k1] = [logn — loglogn — 27. Let A, be the event that a given node v is a competitor and has k, > t. The
probability of A, is Pr{A,] =21t =21=T1_ Thus,

4logn

=

The probability that no node satisfies A, is then at most

— 4logn\" = _,, 57 1
br /\Av]s(l— ) etz L
{v n 16n

for n sufficiently large, establishing the first part of the claim.
Let X be the number of nodes v for which A, holds. Then E[X] < 8logn and by Chernoff bound (Theorem 3) with
R =32logn,

27k < pria,] <21k — 31087
n

Pr[X > 32logn] < 2-05532l0gn _ p—176 _ % !
n

for n large enough. lLe., at most 32logn nodes satisfy A,, with probability greater than 1 — Jﬁ.
Combined, with probability at least 1 — Bl_n' both of these claimed events hold. O

Tghe range from which the IDs are chosen is [[,2 ][], for | > g(ky), with high probability. Observe that g(k;) = 2"1k§1 >
%, for sufficiently large values of n.

Lemma 5. A sole competitor receives the highest ID with probability greater than 1 — slTr given that at least one node calculated
ky = k.

Proof. The ranges of IDs assigned to nodes of different k, values are disjoint. The competitor receiving the highest ID
will therefore necessarily be one with a highest k, value, which we denote by K. Let Z be the set of competitors with
ky = K > ki(=logn —loglogn — 2). By Lemma 4, Z is non-empty and contains at most 32 logn nodes.

The probability that a given pair of nodes in Z receive the same ID is inversely proportional to the range of IDs sampled
from, or 1/] < ﬁ < %ggn. The probability that some pair of nodes in Z are assigned the same ID is then, by the union

bound, at most

@((3zlogn)2_ 128 1

|
= < ,
J = nleg'n nlogn ~ 8n
8

for large enough n. In particular, all nodes in Z receive different IDs with probability greater than 1 — Sln O
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The highest ID received, ID,, is at least g(k;) > n, for sufficiently large values of n.
Lemma 6. If a sole competitor receives the highest ID, then its transmission is received by all the listeners.
Proof. Let w be the sole competitor with the highest ID. For any other competitor v it then holds that

Py fUDW) Y ¥ co+1
P, zf(mw_”zmwzn > pn . (2)

Let u be a listener. We bound the noise and interference received by u in terms of the signal §, := Py, /d(w,u)¥ it
receives from w. Recall that d(w,u) <R -d(v,u) <n®-d(v,u), and thus d(w,u)* <n® -d(v,u)®, for any competitor v.
Hence, applying (2), the interference received from a competitor v is bounded by

PV I;)w-'ncm Su

I, = < = —. 3
VT d(v,w)® T Anetld(w,u)®  Bn (3)

The definition of minimum power P, ensures that w > B. Thus, we can use (2) to bound the noise term by
Pmin < Py Su Su (4)

N < - < —
“dw,u)®-8 ~d(w,u)®-n¥.8 pn¥ ~ Bn
Combining (3) and (4), we get that the SINR of w’s signal at receiver u is bounded below by
Sy > Bn >
N4>, ex v — 14X

where X is the set of competitors other than w. Thus, w overpowers all other competitors at all the listeners. 0O

B

Theorem 7. The 2-round leader election algorithm terminates with all nodes agreeing on a common leader, w.h.p.

Proof. Using a union bound, we add up the error probabilities of Lemmas 4 and 5, we find that a sole competitor w
receives the highest ID, with probability at least 1 — 41—". By Lemma 6, w then successfully informs all the receivers. All
three lemmas work identically for the reporting process in round 2. Hence, with probability at least 1 — % the algorithm
succeeds. 0O

Remark 8. Leader election can be achieved in a single round if simultaneous transmission and reception is possible. Such
full-duplex radios operate by subtracting the transmitted signal from the received one. While they are still rare, being hard to
implement, such technology has been progressing significantly in recent years and may well become a commodity feature.
With full-duplex, our arguments apply unchanged to the success of reception by the other competitors, thus succeeding
after only a single round.

5. Range of power needed for a 2-round leader election

Power control is the essential feature that allows our algorithms to work. That begs the question how much power control
is needed?

We say that an algorithm uses a power range X if the powers assigned fall in the range [Ppin, ..., X - Ppinl- The basic
question is then how the power range must grow as a function of n for leader election to work correctly.

5.1. Upper bound
Theorem 9. Our 2-round leader election algorithm can be made to work correctly with a power range of 26("]'5), w.h.p.

Proof. The algorithm as is may select power assignments inducing a range of 20("2), since k, is no larger than 2logn + 2,
with probability greater than 1 — % However, if the range is bounded, we may assume that the nodes know the upper
bound of the range, Ppq. Thus, the algorithm would automatically truncate the power assigned to be at most Py We
observe that this truncation can occur for at most one verteX, for the node with the highest ID to succeed. Namely, the
probability that two or more nodes select a k, value greater than 1.5logn is at most

n 27310gn < l .
2 ~2n

The bound on the maximum power now follows immediately. O
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If nodes know 1, we can work with a smaller power range as follows: We can first sample the nodes with probability
®(logn/n), and have each selected node select ID uniformly at random from the range [],2]], where | = nlog?n. The
power used is f(ID,) as before, and the arguments are otherwise the same. This results in a power range of at most

2(nlogZnyrlos’n — 20
Propeosition 10. When nodes know n, a power range of 200 suffices.

5.2. Lower bound

We show that an exponential-size power range is actually necessary for any leader election protocol running in (at most)
two rounds.

Theorem 11. Every 2-round leader election algorithm in the SINR model running correctly w.h.p. requires a power range 2% _ This
holds even if the nodes know n, the number of nodes in the network, and if the nodes are located in a unit metric space (where all
distances are equal).

Proof. Consider n nodes located in a unit metric. In the unit metric, either a single message is received by all the listeners
or none of them hear anything (assuming B > 1). Since the nodes don't operate full-duplex, two rounds are needed to
inform the transmitting nodes of the winner, and the winner must be heard by all listeners in the first round.

We divide the available range of power into subranges, each within factor 2. Namely, if Pyg is the maximum power
available, then the i-th highest subrange is [Pm/zf, Pmax/zi‘l]. If the highest range used is used by two or more nodes,
then the algorithm fails (assuming g8 > 2). We shall bound from below the probability that exactly two nodes use the
highest subrange in use; this is clearly a lower bound on the failure probability of the algorithm.

Let X/ be the event that node v transmits in the first round using the i-th highest subrange. Since the nodes are
identical, the same probability holds for them all, so let p; =Pr[X{]. Observe that the probability that no node transmits in
the round is at least 1 —n ) ; p;, and since that can hold with probability at most 1/n, it follows that

1 1

Let g be the largest number such that

Zm <o (6)

So, a subrange of rank at least g+ 1 is in use.

Let A; be the event that at least two nodes use the i-th highest subrange, B; be the event that no node transmits at
subranges 1,2,...,i —1, and C; = A; N B; be the event that both A; and B; occur, for i =1,2,.... Then, C = J;C; is the
event that at least two nodes use the highest subrange in use. Observe that Pr[A;|B;] > Pr[A;], since the non-use of the i — 1
highest subranges only makes the event A; more likely. Then,

Pr[C;] = Pr[A; N B;] = Pr[A;|B;] Pr[B;] > Pr[A;] Pr[B;] .
We bound the probability of A;, i < g, by the first term of the binomial expansion:
2 n—2 2
n 2 -2 n 2 1 n 2
Pr[Ai] > (Z)Pi Q—p)"* > ?pj (1 - %) > ipi ‘
Also, applying (6),

i—1
Pr[Bi]>1-n) pi>
j=1

—

E .

Observe that the C;'s are mutually exclusive and apply the Cauchy-Schwarz inequality followed by (5) to obtain:

q 2
n’ 2 1 n oL, pi)? _a—1m1
Pl‘[C]ZiEZ1 Pr[C1]> z p; 2 Z e p Z " 6e.g

The algorithm fails when C holds, and thus we may assume that Pr[C] < 1/n, which implies that g = Q(n). Hence, the
claim. O
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Observe that for the case of known n, we obtain an essentially tight bound of 26 on the needed power range.

Remark 12. We note that a construction can be given in the Euclidean plane that achieves the same result but with slightly
weaker power tradeoffs. It consists of n/2 well-separated node-pairs that are internally close. It, however, does not avail
itself to easy generalizations to protocols with greater number of rounds, and is therefore omitted.

6. Trading time for power range

In this section, we explore how much the power range can be reduced by increasing the round complexity. We present
a multi-round protocol that requires limited power range and derive a lower bound on the power range required by any
t-round leader election algorithm, for t > 2.

6.1. Multi-round protocol

When a smaller power range is available, we can give a protocol that uses a larger number of rounds.
Our multi-round algorithm simply repeats the 2-round algorithm t times, for a given number t > 1, but using a slower-
growing power function. Namely, we change the ID-selection function to g:(k) = 2kk3'+1, and the power function to

1t
ft(IDy) = Ppin - ID?,'(”JV) . After each round-pair repetition, each competitor v updates its leader, value to the largest
among those heard so far.

First, we observe that it suffices to succeed in one of the round-pairs.

Observation 13. If, in some round-pair, all receivers hear from a particular node v, and the senders all get informed of v as a leader,
then the algorithm successfully terminates with v as leader.

Proof. After this round-pair, all nodes have leader, value set as w. Thus, all broadcasts that follow use w for the value of
leader,. O

We say that a node w is strong in a given round if (IDy)/t > (ID,)1/t — 1, for all other nodes v. We first argue that a
strong node will be heard by all.

Lemma 14. A strong transmitting node is heard by all listeners.

Proof. Recall that, as before, it holds that the highest ID, ID,,, is at least n. If a node w is strong in a round then it satisfies

f,UD,) 1D DY 1!t
LLgE N > D} 0w IV 5 p¥ > ny > gpoetl
fedDy) — pruptt =Y =tw=T =
v

Thus, by the same argument as in Lemma 6, w overpowers all other transmitters at every receiver. O
We next observe that a strong node is likely to emerge.
Lemma 15. Let U = n/t. In a given round, some node is strong, with probability at least 1 — 1/(2U).
Proof. Let Z be the set of competitors with the largest k,-value. By Lemma 4, |Z| < 32logn. Recall that IDs are allocated

uniformly at random, and for nodes in Z, the range is of size at least gi(k;) = 2!08n-loglogn-2(19gn — Joglogn — 2)3*+1 =

4—@(1"%)3”1 > #nlog&n, for large enough n. The probability that a given pair of nodes u,v in Z receive nearly
gl1/t

equivalent IDs, with [(ID)1/t — (ID,)1/f] <1, is at most g (k)" V't <

< . Thus, the probability that some two nodes
in Z receive nearly equivalent IDs is at most

nl/tlog n
(\§|) - gl+1/t 322 lOg2 n 1
< )
k)t = nl/tlogin 2nl/t

for sufficiently large n. O

The correctness of the algorithm follows from the above observations.

Theorem 16. For each number t = O (logn/ loglogn), there is a 2t-round algorithm using a power range 20°Y that correctly elects
a leader, w.h.p.
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Proof. A round-pair is strong if both of its round feature a strong (participating) node. In a strong round-pair, all the listeners
hear from a strong competitor in the first round and all the competitors receive the acknowledgment from a strong listener,
by Lemma 14. By Observation 13, the algorithm is therefore successful as long as there is some strong round-pair. We
proceed to argue the probability of a strong round-pair occurring.

Let U =n'/t. By Lemma 15, a strong node fails to emerge in a given round with probability at most 1/(2U). Thus, a given
round-pair fails to be strong with probability at most 1/U. By independence, the probability that none of the t round-pairs
are strong is at most 1/Uf =1/n. O

6.2. Lower bound for multi-round protocols

Theorem 17. Any t-round leader election algorithm in the SINR model running correctly w.h.p. requires a power range 25 tiﬁ), t>2.
This holds even if the nodes know n, the number of nodes in the network, and the nodes are located in a unit metric (where all distances
are equal).

Proof. We consider n nodes located in a unit metric space. In this setting, after any round of the algorithm either all
listening nodes receive a message, or no progress is made (assuming 8 > 1). Since the nodes do not operate full-duplex, any
leader election algorithm requires at least two rounds, one round for the winner to broadcast its message, and one round
to be informed of the victory.

Let A be a t-round leader election algorithm in the SINR model that runs correctly with probability greater than 1 —1/n.
Since at least two rounds of successful communication are needed, Algorithm A fails when no listening node receives a
message during the first t — 1 rounds. This happens with probability ]_[ﬁ;} pr, where pr denotes the probability that no
listener receives a message in round r. Since algorithm A succeeds with probability greater than 1 —1/n,

1 t—1
E > E pr.

Now, consider round r. Let ¢ and C be as in Theorem 11. We can show by a similar argument that Pr[C] >
assuming 8 > 2. No listener receives a message in round r when C holds, and thus Pr[C] < p,, which implies that

1
12e.q’

>
q_12e-pr

It follows that 1/n > (%ﬂq)f—ﬂ and therefore q > /n/(12e) = Q( */n). Thus, algorithm A requires a power range
29( t_ﬁ). O

7. Conclusions and acknowledgments

We have shown that power control can yield the ultimate speedup for leader election in the SINR model. This is thanks
to the capture effect, which is the crucial property in which SINR differs from graphs-based models.

It would be exciting to see these techniques applied more widely. Multi-hop settings and more restricted power ranges
are natural directions to examine, as well as problems beyond leader election. In general, the value of power control and
the capture effect is still not fully understood.

We thank Hsin-Hao Su for helpful comments and discussions.
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