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Abstract

We use a recently developed synchronous Spiking Neural Network (SNN) model to study
the problem of learning hierarchically structured concepts. Specifically, we introduce a data
model that describes simple hierarchical concepts. We define a biologically plausible layered
SNN model, with learning modeled using Oja’s local learning rule, a well known biologically
plausible rule for adjusting synapse weights. We define what it means for such a network to
recognize hierarchical concepts; our notion of recognition is robust, in that it tolerates a bounded
amount of noise.

Then, we present two unsupervised learning algorithms by which a layered network may
learn to recognize hierarchical concepts according to our noise-tolerant definition. We analyze
correctness and performance formally; the amount of time required to learn each concept, after
learning all of the sub-concepts, is approximately O

(
1
ηk

(
`max log(k) + 1

ε

)
+ log(k)

)
, where k

is the number of sub-concepts per concept, `max is the maximum hierarchical depth, η is the
learning rate, and ε describes the amount of noisiness tolerated. An interesting feature of these
algorithms is that they allow the networks to learn sub-concepts in a highly interleaved manner.
We complement our learning results with lower bounds, which say that, in order to recognize
concepts with hierarchical depth ` with noise-tolerance, a neural network must have at least `
layers.

The results in this paper represent a first step in studying learning of hierarchical concepts
using SNNs. The case studied here is basic, but the results suggest many directions for extensions
to more elaborate and realistic cases.
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1 Introduction

We are interested in the general question of how concepts that have structure are represented in the
brain. What do these representations look like? How are they learned, and how do the concepts
get recognized after they are learned? We draw inspiration from intriguing research in experimental
computer vision on "network dissection" by Zhou, et al. [21] showing how deep convolutional neural
networks learn structure using unsupervised learning of visual concepts: the lower layers of the
network learn very basic concepts and the higher layers learn higher-level concepts. Our general
thesis is that the structure that is naturally present in the concepts gets mirrored in its brain
representation, in some natural way that facilitates both learning and recognition. This appears
to be consistent with neuroscience research, which indicates that visual processing in mammalian
brains is performed in a hierarchical way, starting from primitive notions such as position, light
level, etc., and building toward complex objects; see, e.g., [8, 7, 4].

We approach this problem using ideas and techniques from theoretical computer science, dis-
tributed computing theory, and in particular, from recent work by Lynch, Musco, Parter, and
others on synchronous Spiking Neural Networks (SNNs) [13, 12, 19, 6], These papers began the
development of an algorithmic theory of SNNs, developing a formal foundations, and using them to
study problems of attention, focus, and neural coding. Here we continue that general development,
by initiating the study of learning within the same framework. We focus on learning hierarchically-
structured concepts.

Specifically, we focus on learning of concept hierarchies, in which concepts are built from other
lower-level concepts, which in turn are built from other still-lower-level concepts, etc. Such structure
is natural, for example, for physical objects that are learned and recognized during human or
computer visual processing. An example of such a hierarchy might be the following model of a
human: A human consists of a body, a head, a left leg, a right leg, a left arm, and a right arm. Each
of these concepts consists in turn consists of concepts; e.g., the head consists of two eyes, a nose,
a mouth, etc. Again, each of these concepts may consist of more concepts, allowing us to model a
human to an arbitrary degree of granularity. Most concepts in real life have additional structure,
e.g., arms and legs are positioned symmetrically; we ignore such additional information here and
simply assume that each concept consists of sub-concepts.

For this initial theoretical study, we make some simplifications: we fix a maximum level `max

for our concept hierarchies, we assume that all non-primitive concepts have the same number k of
"child concepts", and we assume that our concept hierarchies are trees, i.e., there is no overlap in
the composition of different concepts at the same level of a hierarchy. We expect that all of these
assumptions can be removed or weakened, but we think it is useful to start with the simpler case.

This paper is intended to demonstrate theoretically, at least for this special case, how hierarchi-
cally structured data can be represented, learned, and recognized in biologically plausible layered
SNNs. To that end, we provide general definitions for concept hierarchies and layered neural net-
works. We define precisely what it means for a layered neural network to recognize a particular
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Figure 1: The figure shows the concept martini, which consists of two concepts, etc. The right-
hand side shows a network that has "learned" the concept "martini" in the sense that, when the
neurons representing the basic parts water, alcohol, seed, skin are excited, then exactly one neuron
on the top layer will fire. This neuron should also fire when "most" of the basic parts are excited,
and it should not fire when few of the basic parts are excited. The network accomplishes this by
strengthening synapses (bold edges) and weakening others (thin edges).

concept hierarchy; our notion of recognition is robust, in that it tolerates a bounded amount of
noise. We also define what it means for a layered neural network to learn to recognize a concept
hierarchy, according to our noise-tolerant definition of recognition.

Next, we present two simple layered networks that can learn efficiently to recognize concept
hierarchies; the first assumes reliability during the learning process, whereas the second tolerates
some random noise. An example of such learning is shown in Figure 1. We also provide lower
bounds, showing that, in order to recognize concepts with hierarchical depth ` with noise-tolerance,
a neural network must have at least ` layers. We end with many directions for extending this work.

In more detail: We assume a fixed number `max of levels in our concept hierarchies. Each concept
hierarchy C has a fixed set C of concepts, organized into levels `, 0 ≤ ` ≤ `max. These are chosen

layer `max

layer 0 (input layer)

layer 1

layer 2

layer `max − 1

Figure 2: The figure depicts the general structure of the feed-forward network.
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from some universal sets D`, 0 ≤ ` ≤ `max of concepts. Each concept at each level `, 1 ≤ ` ≤ `max

has precisely k child level ` − 1 concepts. We assume that each concept hierarchy is a tree, that
is, there is no overlap among the sets of children of different concepts. Each individual concept
hierarchy represents the concepts and child relationships that arise in a particular execution of the
network (or lifetime of an organism). The chosen concepts and their relationships may be different
in different concept hierarchies.

We then define a synchronous Spiking Neural Network model, similar to the model in [13, 12],
but with additional structure to support learning. Most importantly, it incorporates edge weights
(representing synapse strengths) into the neuron states; this provides a convenient formal way to
describe how those weights change during learning. We model learning using Oja’s rule, a biolog-
ically inspired rule that was first introduced in [16] and has since received considerable attention
due its connections with dimensionality reduction; see e.g., [17, 5]. Oja’s rule is a mathematical
formalization of Hebbian learning [10].

Even though there is no direct experimental evidence yet that Oja’s precise rule is used in the
brain, its core characteristics such as long-term potentiation, long-term depression, and normaliza-
tion are known to occur in brain networks, and have been studied thoroughly (e.g., [2, 1]).

Interestingly, to the best of our knowledge, Oja’s rule has so far been studied only in "flat"
settings, where the network has only one layer. Moreover, so far the literature on learning (e.g.,
[16]) has assumed that the learning parameter η is time-dependent, in proving convergence. In this
paper, we study the hierarchical (multilayer) setting, and we show convergence with a fixed learning
rate.

We next define what it means for an SNN of our type to correctly recognize a concept hierarchy,
including both positive and negative requirements, that is, situations in which the network is re-
quired to recognize the concepts and situations where it is required not to do so. These conditions
include noise-tolerance requirements: Not all of the children of a concept c need to be recognized in
order for c to be recognized—a sufficiently large fraction is enough. On the other hand, if too few
children of c are recognized, then c should not be recognized. We also define what it means for an
SNN to correctly learn to recognize a concept hierarchy.

Then we present algorithms that allow a network, starting from a default configuration, to rec-
ognize and to learn the concepts in a particular concept hierarchy. Our algorithms are efficient, in
terms of network size and running time. Namely, a network with max layer `max suffices to recognize
a concept hierarchy with max level `max. For recognition, we get extremely short recognition time,
corresponding to the number of layers in the network. For learning, we obtain fairly short conver-
gence time and large stability time. Our time bound results for learning appear in Theorem 5.3
and Theorem 6.1. Our results require the examples to be shown several times and in a constrained
order: roughly speaking, we require the network to "learn" the children of a concept c first, before
examples of c are shown; Thus, in our running example, we require enough examples of "head",
"body", etc. to be able to learn the concepts before the network sees them all together as "human".
Except for this constraint, concepts may be shown in an arbitrarily interleaved manner.

In Theorem 6.1, we consider "noisy learning", where the examples we see are perturbed by noise.
This requires the network to see more examples in comparison to the noise-free case (Theorem 5.3).
The learning process requires multiple examples to be shown to the network (as inputs).

Once we see that a network with max layer `max can easily learn and recognize any concept hier-
archy with max level `max, it is natural to ask whether `max layers are actually necessary. Certainly
they yield a natural and efficient representation. But it is interesting to ask the theoretical ques-
tion of whether shallower networks could accomplish the same thing. For this, we give some lower
bound results. These results use some simple assumptions about how data is represented. First, in
Theorem 7.1, we show that a two-layer concept hierarchy requires a two-layer network in order to
solve the recognition problem. Then we show (Theorem 7.2) that a three-layer concept hierarchy
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requires a three-layer network, and (Theorem 7.3) that an `max-level concept hierarchy requires an
`max-layer network. The assumptions describe the way data is represented in the networks, namely,
that only one neuron is used to represent any particular concept, and that no neuron is used to
represent a mixture of concepts. These assumptions match what arises ‘naturally’ from our learning
algorithms.

This paper is intended to show, using theoretical techniques, how structured concepts can be
represented, learned, and recognized in a biologically plausible neural network. We give fundamental
definitions, algorithms, and lower bounds, for particular types of concept hierarchies and networks.
This represents a first step towards a theory of learning for hierarchically structured concepts in
SNNs; it opens up a huge number of follow-on questions, which we discuss in Section 8.

Related work: Some of the inspiration from this work comes from intriguing new experimental
computer vision research on "network dissection" by Zhou, et al. [21], which was, in turn, inspired
by neuroscience vision research such as that by Quiroga, et al [18]. The authors of [21] describes
experiments that show that unsupervised learning of visual concepts in deep convolutional neural
networks results in "disentangled" representations. These include neural representations, not just for
the main concepts of interest, but also for their components and sub-components, etc., throughout
a concept hierarchy. As in this paper, they consider individual neurons as representations for
individual concepts. They find that the representations that arise are generally arranged in layers
so that more primitive concepts (colors, textures,...) appear at lower layers whereas more complex
concepts (parts, objects, scenes) appear at higher layers. They find that deeper networks have
higher capacity to represent concepts with larger visual complexity, and that wider networks can
increase the number of represented concepts.

The Quiroga paper [18] is example of a neuroscience paper that explores experimentally the
notion that individual neurons in the brain act as "concept cells", representing individual visual
concepts. Their focus was on higher-level concepts, such as pictures of famous individuals, and
representations by neurons in the medial temporal lobe (MTL).

In the neuroscience vision research community, researchers generally agree that visual processing
in mammalian brains is performed in a hierarchical way, starting from primitive notions such as
position, light level, etc., and building toward complex objects; see, e.g., [8, 7, 4]. Some of this work
indicates that the network includes feedback edges in addition to forward edges; the function of the
feedback edges seems to be to solidify representations of lower-level objects based on context [9, 14].
While we do not address feedback edges in this paper, that is one of our intended future directions.
The learning rule we study, Oja’s rule, was introduced by [16] and is also used for dimensionality
reduction; see e.g., [17, 5]. As mentioned earlier, to the best of our knowledge, Oja’s rule has so
far only been studied in "flat" settings with only one-layered networks and with time-dependent
learning rates ([16, 17, 5].

Work by Mhaskar et al. [15] is related to ours in that they also consider embedding a tree-
structured concept hierarchy in a layered network. They also prove results saying that deep neural
networks are better than shallow networks at representing a deep concept hierarchy, However, their
concept hierarchies are different mathematically from ours, formalized as compositional functions.
Also, their notion of representation corresponds to function approximation, and their proofs are
based on approximation theory, rather than the limitations or noise-tolerance in recognizing hierar-
chical concepts. Other results along the same lines appear in [20].

There is also an interesting connection to circuit complexity (e.g., [11]) with respect to the
question of how many layers are required to solve the recognition problem (Section 4.1). The
models studied are slightly different as neurons have the power of threshold gates.

Nonetheless, understanding the trade-off between the number of layers and the number of neurons
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per layer would be a very interesting question for future work.

Acknowledgments: We thank Brabeeba Wang for helpful conversations and suggestions.

2 Data Model

We define some general parameters and notation, and then define the notion of a "concept hierar-
chy". A concept hierarchy is supposed to represent all the concepts that arise in some particular
"lifetime" of an organism, together with hierarchical relationships between them. We follow this
with notions of "support" that say which lowest-level concepts are sufficient to support the recog-
nition of higher-level concepts.

Preliminaries We start by fixing some constants: `max, a positive integer, representing the maxi-
mum level number for the concepts we consider. n, a positive integer, representing the total number
of lowest-level concepts. k, a positive integer, representing the number of sub-concepts for each con-
cept that is not at the lowest level, in any concept hierarchy. r1, r2, reals in [0, 1] with r1 ≤ r2; these
represent thresholds for noisy recognition. We assume a universal set D of concepts, partitioned
into disjoint sets D`, 0 ≤ ` ≤ `max. We refer to any particular concept c ∈ D` as a level ` concept,
and write level(c) = `. Here, D0 represents the most basic concepts and D`max the highest-level
concepts. We assume that |D0| = n.

2.1 Concept hierarchies

A concept hierarchy C consists of a subset C of D, together with a children function. For each `,
0 ≤ ` ≤ `max, we define C` to be C ∩D`, that is, the set of level ` concepts in C.

For each concept c ∈ C`, 1 ≤ ` ≤ `max, we designate a nonempty set children(c) ⊆ C`−1. We
call each c′ ∈ children(c) a child of c. We require the following three properties. First, |C`max | = k.
Second, For any c ∈ C`, where 1 ≤ ` ≤ `max, we have that |children(c)| = k; that is, the degree
of any internal node in the concept hierarchy is exactly k. Finally, For any two distinct concepts c
and c′ in C`, where 1 ≤ ` ≤ `max, we have that children(c) ∩ children(c′) = ∅; that is, the sets of
children of different concepts at the same level are disjoint.

It follows that C is a forest with k roots, and that it has height `max. Also, for any `, 1 ≤ ` ≤ `max,
|C`| = k`max−`+1. We extend the children notation recursively, namely, we define concept c′ to be
a descendant of a concept c if either c′ = c, or c′ is a child of a descendant of c. We write
descendants(c) for the set of descendants of c. Let leaves(c) = descendants(c)∩C0, that is, all the
level 0 descendants of c. Note that our notion of concept hierarchies is quite restrictive, in that we
allow no overlap between the sets of children of different concepts. Allowing overlap is an interesting
research direction itself.

2.2 Support

In this subsection, we fix a particular concept hierarchy C, with its concept set C. For any given
subset B of the general set D0 of level 0 concepts, and any real number r ∈ [0, 1], we define a set
supportedr(B) of concepts in C. This represents the set of concepts c ∈ C, at any level, that have
enough of their leaves present in B to support recognition of c. The notion of "enough" here is
defined recursively, based on having an r-fraction of children present at every level.

Definition 2.1 (Support). Given B ⊆ D0, define the following sets of concepts at all levels, recur-
sively: B0 = B ∩ C0. B1 is the set of all concepts c ∈ C1 such that |children(c) ∩ B0| ≥ rk. In
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general, for 1 ≤ ` ≤ `max, B` is the set of all concepts c ∈ C` such that |children(c) ∩ B`−1| ≥ rk.
Define supportedr(B) to be

⋃
0≤`≤`max

B`. We sometimes also write supportedr(B, `) for B`.

We now give an example. Consider Figure 1. If B = {seed, skin,water} and r = 1, then
supported1(B) = {olive}. The special case r = 1 is important as it corresponds to a "noise-free"
notion of support, in which all the leaves of a concept have to be present:

Lemma 2.2. For any B ⊆ D0, supported1(B) is the set of all concepts c ∈ C (at all levels) such
that leaves(c) ⊆ B.

3 Network Model

We first describe the network structure, then the individual neurons, and finally the operation of the
overall network. Before we do so, we introduce four constants: `′max, a positive integer, representing
the maximum number of a layer in the network. n, a positive integer, representing the number of
distinct inputs the network can handle; this is the same n as in the data model. τ , a real number,
representing the firing threshold for neurons. η, a positive real, representing the learning rate.

3.1 Network structure

Our network N consists of a set N of neurons, partitioned into disjoint sets N`, 0 ≤ ` ≤ `′max, which
we call layers. We assume that each layer contains exactly n neurons, i.e., |N`| = n for all `. We
refer to the n neurons in layer 0 as input neurons and to all other neurons as non-input neurons.
We assume total connectivity between successive layers, i.e., each neuron in N`, 0 ≤ ` ≤ `′max − 1
has an outgoing edge to each neuron in N`+1, and these are the only edges.

We assume a one-to-one mapping rep : D0 → N0, where rep(c) is the neuron corresponding to
concept c. That is, rep is a one-to-one mapping from the full set of level 0 concepts D0, to N0, the
set of layer 0 neurons, This will allow the network to receive an input corresponding to any level 0
concept. See Figure 2 for a depiction.

We "lift" the definition of rep to sets of level 0 concepts as follows: For any B ⊆ D0, define
rep(B) = {rep(b)|b ∈ B}. That is, rep(B) is the set of all reps of concepts in B. We use analogous
"lifting" definitions to extend other functions to sets. Since we know that |C0| = k`max +1, C0 ⊆ D0,
and all elements of D0 have reps among the n neurons of N0, it follows that n ≥ k`max +1.

3.2 Neuron states

We distinguish between input and non-input neurons. Each input neuron u ∈ N0 has just one
state component: firing, withvaluesin{0,1}; thisindicateswhetherornottheneuronisfiring. We de-
note the firing component of neuron u at time t by firingu(t); we sometimes abbreviate this in math
formulas as just yu(t). Each non-input neuron u ∈ N`, 1 ≤ ` ≤ `′max, has three state components:

• firing, with values in {0, 1}, indicating whether the neuron is firing.

• weight, a real-valued vector in [0, 1]n representing current weights on incoming edges.

• engaged, with values in {0, 1}; indicating whether the neuron is currently prepared to learn.

We denote the three components of neuron u at time t by firingu(t), weightu(t), and engagedu(t),
respectively, and abbreviate these by yu(t), wu(t), and eu(t). We also use the notation xu(t) to
denote the column vector of firing flags of u’s incoming neighbor neurons at time t.
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That is, xu(t) =


yv1(t)
yv2(t)

...
yvn(t)

, where {vi}i≤n are the incoming neighbors of u, which are exactly all

the nodes in the layer below u.

3.3 Neuron transitions

Now we describe neuron behavior, specifically, we describe how to determine the values of the state
components of each neuron u at time t ≥ 1 based on values of state components at the previous
time t− 1 and on external inputs.

Input neurons: If u is an input neuron, then it has only one state component, the firing flag.
We assume that the value of the firing flag is controlled by the network’s environment and not by
the network itself, i.e., the value of yu(t) is set by some external input signal.

Non-input neurons: If u is a non-input neuron, then it has three state components, firing,
weight, and engaged. Whether or not neuron u fires at time t, that is, the value of yu(t), is
determined by its potential and its activation function. The potential at time t, which we denote
as potu(t) is given by the dot product of the weights and inputs at neuron u at time t− 1, that is,
potu(t) = wu(t− 1)T · xu(t− 1) =

∑n
j=1w

u
j (t− 1)xuj (t− 1). The activation function, which defines

whether or not neuron u fires at time t, is then defined by: yu(t) =

{
1 if potu(t) ≥ τ ,
0 otherwise

. Here, τ is

the assumed firing threshold. We assume that the value of the engaged flag of u is controlled by
u’s environment, that is, for every t, the value of eu(t) is set by some input signal, which may arise
from the environment or from another part of the network.

Finally, for the weights, we assume that each neuron that is engaged at time t determines its
weights at time t according to Oja’s learning rule. That is, if eu(t) = 1, then

Oja’s rule: wu(t) = wu(t− 1) + ηz(t− 1) · (xu(t− 1)− z(t− 1) · wu(t− 1)), (1)

where η is the assumed learning rate. and z(t − 1) = potu(t). For convenience, we will sometimes
drop the neuron superscripts and time arguments, abbreviate wu(t− 1) by w, wu(t) by w′, etc. and
write simply w′ = w + ηz · (x− z · w).

3.4 Network operation

During execution, the network proceeds through a series of configurations C(0), C(1), . . ., where
C(t) describes the configuration at time t. Each configuration specifies a state for every neuron in
the network, that is, values for all the state components of all the neurons.

As described above, the y values for the input neurons are specified by some external source.
The y, w, and e values for the non-input neurons are defined by the network specification at time
t = 0. For times t > 0, the y and w values are determined by the activation and learning functions
described above. The e values will be determined by special inputs arriving from other subnetworks,
which we describe later.

4 Problem Statements

In this section we define two problems: recognizing concept hierarchies, and learning to recognize
concept hierarchies. In both cases, we assume that each item is represented by exactly one neuron.

8



Throughout this section, we fix a concept hierarchy C, with concept set C and maximum level
`max, partitioned into C0, C1, . . . , C`max . We fix constants n, k, r1 and r2 according to the definitions
for a concept hierarchy. We also fix a network N , with constants `′max, n, τ , and η as in the
definitions for a network. Thus, the maximum layer number `′max for N may be different from the
maximum level number `max for C, but the number n of input neurons is the same as the number
of level 0 items in C. The following definition will be useful in defining the recognition and learning
problems. It defines what it means for a particular subset B of the level 0 concepts to be "presented"
as input to the network, at a certain time t.

Definition 4.1. Presented: If B ⊆ D0 and t is a non-negative integer, then we say that B is
presented at time t (in some particular execution) if, for every layer 0 neuron u, the following hold.
If u ∈ rep(B) then yu(t) = 1. Furthermore, if u /∈ rep(B) then yu(t) = 0. That is, all of the layer
0 neurons in rep(B) fire at time t and no other layer 0 neuron fires at that time.

4.1 Recognition

Here we define what it means for network N to recognize concept hierarchy C. We assume that
every concept c ∈ C, at every level, has a unique representing neuron rep(c).

We also assume that, during the entire recognition process, the engaged flags of all neurons are
off, i.e., for every neuron u at a layer > 0, eu(t) = 0.

The following definition uses the two "ratio" values r1, r2 ∈ [0, 1], with r1 ≤ r2. Ratio r2

represents the fraction of children of a concept c at any level that should be sufficient to support
firing of rep(c). r1 is a fraction below which rep(c) should not fire.

Definition 4.2. Recognition problem: Network N (r1, r2)-recognizes a concept c in a concept
hierarchy C provided that N contains a unique neuron rep(c) such that the following holds. Assume
that B ⊆ C0 is presented at time t. Then:

1. When rep(c) must fire: If c ∈ supportedr2(B), then rep(c) fires at time t+ layer(rep(c)).

2. When rep(c) must not fire: If c /∈ supportedr1(B), then rep(c) does not fire at time t +
layer(rep(c)).

We say that N (r1, r2)-recognizes C provided that it (r1, r2)-recognizes each concept c in C.

The special case of (1, 1)-recognition is interesting and summarized in the following lemma. The
proof follows from the definitions and Lemma 2.2.

Lemma 4.3. Network N (1, 1)-recognizes a concept c in a concept hierarchy C if and only if N
contains a unique neuron rep(c) such that the following holds. If B ⊆ C0 is presented at time t,
then rep(c) fires at time t+ layer(rep(c)) if and only if leaves(c) ⊆ B.

4.2 Learning

In the learning problem, the network does not know ahead of time which particular concept hierarchy
might be presented in a particular execution. It must be capable of learning any concept hierarchy.
In order for the network to learn a concept hierarchy C, it must receive inputs corresponding to all
the concepts in C. We describe below how individual concepts are "shown" to the network, and
then give constraints on the order in which the concepts are shown. Then we state the learning
guarantees, assuming an allowable presentation schedule for C.

We begin by describing how an individual concept c is "shown" to the network, in order to help
in learning c. This involves identifying a subset B of D0 which should be presented to the network.
Here we define B to be simply leaves(c) (= descendants(c) ∩ C0).

9



Definition 4.4 ("Showing" of concepts). Concept c is shown when, for every input neuron u, u
fires if and only if u ∈ rep(leaves(c)).

Learning a concept hierarchy will involve showing all the concepts in the hierarchy to the network.
Informally speaking, we assume that the concepts are shown "bottom-up", e.g., before learning the
concept of a head, the network learns the lower-level concepts of mouth, eye, etc. And before
learning the concept of a human, the network first learns the lower-level concepts of head, body,
legs, etc. More precisely, to enable network N to learn the concept hierarchy C, we assume that
every concept in its concept set C is shown to the network at least σ times (where σ is a parameter
to be specified by a learning algorithm). Furthermore, we assume that any concept c ∈ C is shown
only after each child of c has been shown at least σ times. We allow the concepts to be shown in
an arbitrary order and in an interleaved manner provided that theses constraints are observed.

Definition 4.5. Bottom-up presentation schedule: A presentation schedule for C is any finite
list c0, c1, . . . , cm of concepts in C, possibly with repeats. A presentation is σ-bottom-up, where σ
is a positive integer, provided that each concept in C appears in the list at least σ times, and no
concept in C appears before each of its children has appeared at least σ times.

A presentation schedule c0, c1, . . . , cm generates a corresponding sequence B0, B1, . . . , Bm of
sets of level 0 concepts to be presented in a learning algorithm. Namely, Bi is defined to be
rep(leaves(ci)).

Definition 4.6. Learning problem: Network N (r1, r2)-learns concept hierarchy C with σ repeats
provided that the following holds. After a training phase in which C is shown to the network according
to a σ-bottom-up presentation schedule, network N (r1, r2)-recognizes C.

5 Algorithms (Neural Networks) for Recognition and Noise-Free
Learning

Fix a concept hierarchy C with concept set C. Recognition can be achieved by simply embedding
the digraph induced by C in the network N . See Figure 1 for an illustration. For every ` and for
every level ` concept c of C, we designate a unique representative rep(c) in layer ` of the network.
Let R be the set of all representatives, that is, R = rep(C) = {rep(c) | c ∈ C}. We use rep−1

with support R to denote the corresponding inverse function that gives, for every u ∈ R, the unique
concept c with rep(c) = u. We define the edge weight weight(u, v) from a neuron u at layer ` to a

neuron v at layer ` + 1 to be weight(u, v) =

{
1 if rep−1(v) ∈ children(rep−1(u)),

0 otherwise.
. Finally, for

any particular choice of r1, r2 ∈ [0, 1], with r1 ≤ r2, we set the threshold for every non-input neuron
to be τ = (r1+r2)k

2 . It should be clear that the resulting network N solves the (r1, r2)-recognition
problem.

Theorem 5.1. Network N (r1, r2)-recognizes C. Moreover, the required time is `max.

In the remainder of this section we move from the recognition problem to the harder problem of
learning. We start with the following module which we require.

Winner-Take-All modules: Our algorithm will use Winner-Take-All modules to select certain
neurons to be prepared to learn. We abstract from these modules by describing how the engaged
flags should be set during learning; we give the precise requirements in Assumption 5.2.

While the network is being trained, example concepts are "shown" to the network, one example
at each time t, according to a σ-bottom-up schedule as defined above. We assume that, for every
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example concept c that is shown, exactly one neuron at the appropriate layer will be engaged; this
layer is the one with the same number as the level of c in the concept hierarchy. Furthermore, the
neuron on that layer that is engaged is the one that has the largest potential potu. More precisely,
in terms of timing, we assume:

Assumption 5.2 (Winner-Take-All Assumption). If a level ` concept c is "shown" at time t, then
at time t + `, exactly one neuron u in layer ` has its engaged state component equal to 1, that is,
it has eu(t+ `) = 1. Moreover, u is chosen so that potu(t+ `) is the highest potential at time t+ `
among all the layer ` neurons.

Main result: We assume that the network starts in a clean state in which, for every neuron u in
layer 1 or higher, wu(0) = 1

k`max
1, where 1 is the n-dimensional all-one vector. We set the threshold

τ for all neurons to be τ = (r1+r2)
√
k

2 . The initial condition and threshold, Assumption 5.2, and the
general model conventions for activation and learning suffice to determine how the network behaves.
Our main result is:

Theorem 5.3 ((r1, r2)-Learning). Let N be the network described above, with maximum layer
`′max, and with learning rate η = 1

4k . Let r1, r2 be reals in [0, 1] with r1 ≤ r2. Let ε = r2−r1
r1+r2

. Let
C be any concept hierarchy, with maximum level `max ≤ `′max. Assume that the concepts in C are
presented according to a σ-bottom-up presentation schedule as defined in Section 4.2, where σ is
O
(

1
ηk

(
`max log(k) + 1

ε

)
+ b log(k)

)
. Then, N (r1, r2)-learns C.

A rigorous analysis can be found in Appendix A; the main idea of the analysis is as follows. We
first identify structural properties of Oja’s rule (Lemma A.1, Lemma A.2 and Lemma A.3), in which
we quantify the weight changes of a single concept provided that all sub-concepts have been learned
already. Among other properties, we show that the weights quickly to converge to either 1/

√
k or

0 depending on whether the weights belong to neurons that represent the sub-concepts or not.
We then use the aforementioned properties to describe in Lemma A.6 the learning (and weight

changes) throughout the network. What makes this challenging is that we allow concept to be
shown in an interleaved manner in addition to allowing concepts of different levels to be shown (as
long as sub-concepts are shown before the concept is shown). In order to prove that all concepts are
learned correctly despite these challenges, we use an involved yet elegant induction. The inductive
hypothesis has five different parts that hold at every time step. Finally, in Section A.3 we put
everything together and show that the network successfully (r1, r2)-learns the concept hierarchy.

6 Extension: Noisy Learning

We extend our model, algorithm, and analysis to noisy learning. The idea is that we should be able
to learn concepts even if we do not see all the child concepts all the time. For example, we could
expect to learn the concept of a human even if we sometimes only see "legs" and a "body" and
other times we see the "head" and "legs" etc.

6.1 Noisy Learning Algorithm

Formally, our model is as follows. Recall that in Definition 4.4, we assumed that when a concept c
is shown, that all reps of the leaves of c fire. We now weaken this assumption, as follows.

We redefine the notion of showing concept c, by first executing the procedure mark(c, k, p) to
determine a subset of leaves(c), which is defined as follows. Fix an arbitrary p ∈ (0, 1].

If c is a level 0 concept, then mark c. Otherwise, select dp · ke children of c uniformly at random
and recurse on these children, i.e., execute mark(c′, k, p) for each of the selected children c′.
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Then we define B to be {c′ ∈ leaves(c) | c′ is marked}. Thus, concept c is shown when, for every
input neuron u, we have that u fires if and only if u ∈ {rep(c′) | c′ ∈ leaves(c) and c′ is marked}.
We call this noisy showing. Our result is as follows.

In the following we state our main theorem in the noisy learning setting. The main difference to
Theorem 5.3 is that we only guarantee for the first O(n6) rounds of learning that the weights are
‘correct’ meaning that the network (r1, r2)-learns the concept hierarchy. This is natural since if we
consider a number of rounds T that is of order exponential in n, then at some point t ≤ T it is very
likely that the weights will be unfavorable for recognition. 1

Theorem 6.1 ((r1, r2)-Noisy-Learning). Let N be the network described in Section 3, with maxi-
mum layer `′max, and with learning rate η ≤ cη

r62
k4 logn

, for some small enough constant cη. Let r1, r2

be reals in [0, 1] with r1 ≤ r2. Consider the noisy learning algorithm defined in Section 6.1 with
p ∈ [r2, 1]. Let C be any concept hierarchy, with maximum level `max ≤ `′max. Assume that the con-
cepts in C are presented according to a σ-bottom-up presentation schedule as defined in Section 4.2,

with σ = c′ 1
ηk

(
`max log(k) + r2k+1−r2

ηr
3/2
2 (r2−r1)

)
+ log(k), for some large enough constant c′.

Then, w.h.p., N (r1, r2)-learns C for at least O(n6) rounds.

6.2 Proof idea

We extend our model, algorithm, and analysis to noisy learning. The idea is that we should be able
to learn concepts even if we do not see all the child concepts all the time. For example, we could
expect to learn the concept of a "human" even if we sometimes only see "legs" and a "body" and
other times we see the "head" and "legs" etc. Informally speaking, we assume that when a concept
is shown, a random p-fraction of the sub-concepts are shown.

In contrast, in the noise-free case, all sub-concepts are shown. See Section 6 for a precise definition
of the model.

In the presence of noise, many of the properties of the noise-free case no longer hold, rendering
the proof significantly more involved. Here we give a rough outline of our proof. First, we bound
the change of potential during a period of T rounds. We then derive very rough bounds on the
change of a single weight during such a period. Using these rough results, we are able to prove
much more precise bounds on the change of the weights in a given interval of length T . It turns
out that the way the weights change depends highly on the other weights, which makes the analysis
non-trivial. The way we show that weights converge, is by using the following potential function ψ.
Fix an arbitrary time t and let wmin(t) and wmax(t) be the minimum and maximum weights among
w1(t), wk(t), . . . , wk(t), respectively. Let ψ(t′) = max

{
wmax(t′)

w̄ , w̄
wmin(t′)

}
, where w̄ = 1√

pk+1−p . We
show that, in contrast to the noise-free case, weights belonging to representatives of sub-concepts
converge to w̄ instead to 1/

√
k.

Our goal is to show that the above potential decreases quickly until it is very close to 1. Showing
that the potential decreases is involved, since one cannot simply use a worst case approach, due to
the terms in Oja’s rule being non-linear and potentially having a high variance, depending on the
distribution of weights. The key to showing that ψ decreases is to carefully use the randomness
over the input vector and to carefully bound the non-linear terms. Bounding these non-linear terms
tightly presents a major challenge which we overcome using two techniques. First, we consider a

1This can happen since in such a large time frame, it’s very likely that there will be a long sequence of runs in which
the same representatives are simply (due to bad luck) not shown. The network will forget about their importance.
This is also partly the reason why the learning rate in the following theorem is smaller than the one of the noise-free
counterpart: the smaller learning rate guarantees that during the first O(n6) rounds no unlikely sequence occurs that
is very ‘bad’.
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process P ′ which is almost as the original process P , with the difference that the weights only change
marginally in each period of T rounds. If they change by more, then we assume that the weights are
simply reset to the value at the beginning of the T rounds. As we will see later, we can couple the
processes P and P ′ with high probability. This coupling allows us to avoid a conditioning that would
otherwise change the probability space and prevent us from using second technique. Second, we
show that the changes of the weights form a Doob maringale allowing us to use Azuma-Hoeffding
inequality to get asymptotically almost tight bounds on the change of the weights during the T
rounds. We present the precise definition, results and proofs in Appendix B.

7 Results on Lower Bounds

In this section, we give three lower bound theorems describing limitations on the number of lay-
ers needed to recognize concept hierarchies with particular numbers of levels. The first theorem,
Theorem 7.1, simply says that a network N with maximum layer 1 cannot recognize a concept
hierarchy C with maximum level 2. This bound depends only on the requirement that N should
recognize C according to our definition for noisy recognition in Definition 4.2. That definition says
that the network must tolerate bounded noise, as expressed by the ratio parameters r1 and r2 in
the definition of noisy recognition. Our result assumes reasonable constraints on the values of r1

and r2.
The second theorem, Theorem 7.2, extends Theorem 7.1 by showing that a network N with

maximum layer 2 cannot recognize a concept hierarchy C with maximum level 3. In addition to
the basic definition of noisy recognition, this result requires a new "non-interference" assumption
for concept representations in the network. This assumption seems to be reasonable, in that it is
guaranteed by our learning algorithms in Section 5.

The third theorem, Theorem 7.3, generalizes the first two to arbitrary numbers of levels and
layers. The heart of the proof of Theorem 7.3 is a lemma, Lemma 7.4 that considers a single
network N and a concept hierarchy C, and assumes that N recognizes C. The lemma says that, for
any `, the representation of any level ` concept must be in a layer ≥ `. The proof is by induction
on `. As for Theorem 7.2, these results requires the new "non-interference" assumption for concept
representations.

7.1 Assumptions for the lower bounds

Here we list the assumptions that we use for our lower bounds. These assumptions are for a
particular concept hierarchy C, with concept set C, to be (r1, r2)-recognized by a particular network
N . The first three of these properties are already required by the definition of the noisy recognition
problem. These three properties are enough to prove our first lower bound theorem, Theorem 7.1.

1. Every concept c ∈ C has a unique designated neuron rep(c) in the network. (In general, it
might be in any layer, regardless of the level of c.)

2. Let B be any subset of C0. If c ∈ supportedr2(B), then presentation of B results in firing of
rep(c) at time t+ layer(rep(c)).

3. Let B be any subset of C0. If c /∈ supportedr1(B), then presentation of B does not result in
firing of rep(c) at time t+ layer(rep(c)).

The fourth property is new here, and used only for the second and third lower bound theorems,
Theorem 7.2 and Theorem 7.3. This property is an attempt to rule out extraneous firing caused by
mixing inputs that belong to different higher-level concepts. Stated informally: presenting the sets
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of leaves of several concepts simultaneously does not trigger any additional firing at higher layers
of the network than what we would get by presenting the sets one at a time.

4. Non-interference: Fix any ` ≥ 1. Consider any subset B of the level ` concepts in C. For
each b ∈ B, let N(b) be the set of neurons (at all layers) whose firing is triggered by presenting
leaves(b).2 Let N be the set of neurons (at all layers) whose firing is triggered by presenting all
the leaves of all the concepts in B at the same time. Then N =

⋃
b∈B N(b).

Note that all of the above assumptions arise from our learning algorithms. While they are
natural, it is nonetheless conceivable that there exists other learning algorithms that violate these
assumptions.

Throughout this section, we assume the model presented in Section 2 and Section 3. Furthermore,
since we are considering recognition only, and not learning, we assume that the engaged state
components are always equal to 0.

Also throughout this section, we assume that r1 and r2 satisfy the following constraints:

1. 0 ≤ r1 ≤ r2 ≤ 1.

2. r1k is not an integer; define r′1 so that r′1k = br1kc.

3. Define r′2 so that r′2k = dr2ke.

4. (r′2)2 ≤ 2r′1 − (r′1)2.

For example, for k = 10, r1 = .51 and r2 = .8 satisfy these conditions.

7.2 Impossibility for recognition for two levels and one layer

We consider an arbitrary concept hierarchy C with maximum level 2 and concept set C.
We assume a (static) network N with maximum layer 1, and total connectivity from the layer 0

neurons to the layer 1 neurons. For such a network and concept hierarchy, we get a contradiction
to the noisy recognition problem definition from Section 4.1, for any values of r1 and r2 that satisfy
the constraints given in Section 7.1. For the problem requirements in this section, we use only
Assumptions 1-3 from Section 7.1.

Theorem 7.1. Assume that C has maximum level 2 and N has maximum layer 1. Assume that
r1, r2, r

′
1, r
′
2 satisfy the constraints in Section 7.1. Then N does not recognize C, according to As-

sumptions 1-3.

The proof can be found in Appendix C

7.3 Impossibility for recognition for three levels and two layers

Now we consider another special case result, for three levels and two layers, before moving on in
the next section to the general case of `max levels and `max−1 layers. Now we assume an arbitrary
concept hierarchy C with maximum level 3, and a network N with maximum layer 2 and total
connectivity between each consecutive pair of layers. For such a network and concept hierarchy,
we get a contradiction to the noisy recognition problem definition, for any values of r1 and r2 that
satisfy the constraints given in Section 7.1. For the problem requirements here, we use Assumptions
1-4 from Section 7.1.

2A note about timing: When we say that the firing of a neuron u is triggered by presenting a set of level 0 concepts
at time t, we mean that this firing occurs at time exactly t+ layer(u).
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Theorem 7.2. Assume that C has maximum level 3 and N has maximum layer 2. Assume that
r1, r2, r

′
1, r
′
2 satisfy the constraints in Section 7.1. Then N does not recognize C, according to As-

sumptions 1-4.

The proof can be found in Appendix C.

7.4 Impossibility for recognition for `max levels and `max−1 layers

We now generalize the results of Sections 7.2 and 7.3 to arbitrary numbers of levels. Now we
assume an arbitrary concept hierarchy C with maximum level `max, and a network N with maximum
layer `′max and total connectivity between consecutive layers. Again we get a contradiction to the
noisy recognition problem definition, for any values of r1 and r2 satisfying the constraints given in
Section 7.1. For the problem requirements here, we use Assumptions 1-4 from Section 7.1.

Theorem 7.3. Assume that `′max < `max, that is, that the network N has fewer layers than the
number of levels in the concept hierarchy C. Assume that r1, r2, r

′
1, r
′
2 satisfy the constraints in

Section 7.1. Then N does not recognize C, according to Assumptions 1-4.

The proof of Theorem 7.3 borrows ideas from that of Theorem 7.2. However, instead of a case
analysis as in the earlier proof, we would like to use induction on the level numbers. For this, we
extract a lemma about where the reps of different concepts may appear in a single network. For
this lemma (unlike in the theorem), we do not assume any particular relationship between `max and
`′max.

Lemma 7.4. Suppose that N recognizes C, according to Assumptions 1-4. Then for every `, 1 ≤
` ≤ `max, and for any level ` concept c ∈ C, rep(c) is in a layer ≥ `.

The proof can be found in Appendix C. Using Lemma 7.4, we can now prove the main theorem:

Proof of Theorem 7.3. Assume that `′max < `max, that is, that N has fewer layers than the number
of levels in C. Assume for contradiction that N (r1, r2)-recognizes C.

Fix any level `max concept c. Then by Lemma 7.4, rep(c) must be in a layer ≥ `max. But this is
impossible since N has strictly fewer than `max layers.

8 Conclusions and Future Work

In this paper, we have proposed a theoretical model for recognition and learning of hierarchically
structured concepts in synchronous Spiking Neural Networks. Using this model, we have given
algorithms and lower bound results that appear to be consistent with experimental results for
learning of structured concepts. These results suggest numerous directions for future research.

Extensions to our results: We can consider different orders in which concepts in a hierarchy
can be learned. Is it possible to learn higher-level concepts before learning low-level concepts? How
does the order of learning affect the time required to learn? Another interesting issue is robustness
of the network, e.g., to noise in calculating potentials, or to failures of neurons or synapses.

Variations in the network model: Our networks have a simple structure; it would be interesting
to consider natural variations. For example, instead of all-to-all connections between consecutive
layers, what happens if we assume a smaller number of randomly-determined connections between
layers? Also, in our networks, all edges go from one layer ` to the next higher layer `+ 1. What if
we allow edges to go from layer ` to any higher layer? What if we allow feedback edges from each
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layer ` to the next-lower layer ` − 1? How does this aid in recognizing or learning concepts based
on feedback from representations of higher-level concepts? What would be the effect of using other
variants of Hebbian learning rules besides Oja’s rule?

Learning different kinds of structure: It would be interesting to understand more generally
what kinds of structures can be learned by synchronous SNNs. In our concept hierarchies, each
level `+ 1 concept corresponds to the "and" of several level ` concepts. What if we allow concepts
that correspond to "ors", or even "nors", of other concepts? Similar questions were suggested by
Valiant [], in terms of a different model.

In computer vision, it appears that a concept may be first recognized in outline and then details
get filled in later. How can we fit this type of recognition into our model? Also, in addition
to learning individual concepts, it would be interesting to learn relationships between concepts,
such as association or causality. We might also consider other types of concept structure, such as
sequences (as in music), or geometric or topological structure.
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A Analysis of Noise-free Learning

We present our analysis for the noise-free learning algorithm in this section. In Section A.1, we
describe how incoming weights change for a particular neuron when it is presented with a consistent
input vector. In Section A.2, we prove our main invariant, saying how neurons get bound to concepts,
when neuron firing occurs, and how weights change, during the time when the network is learning.
In Section A.3, we use that invariant to prove Theorem 5.3.
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A.1 Weight Change for Individual Neurons

In this subsection we give a series of lemmas that describe how incoming weights change for a
particular neuron when it is presented with a consistent input vector during execution of our noise-
free learning network. Throughout this subsection, we consider a single neuron u in a layer ≥ 1.

We begin by considering how weights change in a single round. Lemma A.1 describes how the
weights change for firing neighbors, and for non-firing neighbors. In this lemma, we consider a
neuron u with weight vector w(t − 1) and input vector x(t − 1), both at time t − 1 ≥ 0. Write
z(t− 1) for the dot produce of w(t− 1) and x(t− 1). We assume that the engaged component, e(t),
is equal to 1. We give bounds on the new weights for u at time t, given by w(t).

Lemma A.1. Let F ⊆ {1, . . . , n}, with |F | = k. Assume that:

1. xi(t− 1) = 1 for every i ∈ F and xi(t− 1) = 0 for every i /∈ F . That is, exactly the incoming
neighbors in F fire at time t− 1.

2. All weights wi(t− 1), i ∈ F are equal, and all weights wi(t− 1), i /∈ F are equal.

3. wi(t− 1) < 1√
k
for every i ∈ F .

4. wi(t− 1) > 0 for every i /∈ F .

5. 0 < η ≤ 1
4k .

Then:

1. All weights wi(t), i ∈ F are equal, and all weights wi(t), i /∈ F are equal.

2. For any i ∈ F , wi(t) > wi(t− 1).

3. For any i ∈ F , wi(t) < 1√
k
.

4. For any i /∈ F , wi(t) < wi(t− 1).

5. For any i /∈ F , wi(t) > 0.

Proof. Part 1 is immediate by symmetry—all components for i ∈ F are changed by the same rule,
based on the same information.

Note that z(t− 1) < k 1√
k

=
√
k, because of the assumed upper bound for each wj(t− 1) and the

fact that |F | = k. Similarly, we have that z(t− 1) > 0.
For Part 2, consider any i ∈ F . Since z(t − 1) <

√
k and wi(t − 1) ≤ 1√

k
, the product z(t −

1)wi(t− 1) < 1. Then by Oja’s rule:

wi(t) = wi(t− 1) + ηz(t− 1)(1− z(t− 1)wi(t− 1)) > wi(t− 1) + ηz(t− 1) · 0 = wi(t− 1),

as needed.
For Part 3, again consider any i ∈ F . Since wi(t− 1) < 1√

k
, we may write wi(t− 1) = 1√

k
− λ for

some λ > 0. Then by symmetry, for every j ∈ F , we also have wi(t − 1) = 1√
k
− λ. We thus have
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that

wi(t) = wi(t− 1) + ηz(t− 1)(1− z(t− 1)wi(t− 1))

= wi(t− 1) + ηk ·
(

1√
k
− λ

)(
1− k

(
1√
k
− λ
)2
)

= wi(t− 1) + ηk ·
(

1√
k
− λ

)(
1− k

(
1

k
− 2λ√

k
+ λ2

))
< wi(t− 1) + ηk ·

(
1√
k

)
2λ
√
k

≤ wi(t− 1) +
λ

2

< 1/
√
k,

as needed.
For Part 4, consider any i /∈ F . We have

wi(t) = wi(t− 1) + ηz(t− 1)(0− z(t− 1)wi(t− 1))

= wi(t− 1) + ηz(t− 1)(0− z(t− 1)wi(t− 1))

= wi(t− 1)(1− ηz(t− 1)2)

< wi(t− 1),

as needed.
Finally, for Part 5, again consider any i /∈ F . We then have:

wi(t) = wi(t− 1) + ηz(t− 1)(0− z(t− 1)wi(t− 1))

= wi(t− 1)− ηz(t− 1)2wi(t− 1)

= wi(t− 1)(1− ηz(t− 1)2)

> wi(t− 1)(1− ηk)

≥ wi(t− 1)(1− k

4k
)

=
3

4
wi(t− 1)

> 0,

as needed.

The following lemma, Lemma A.2, extends Lemma A.1 to any number of steps. This lemma
assumes that the same x inputs are given to the given neuron u at every time. When we apply this
later, in the proof of Lemma A.6, it will be in a context where these inputs may occur at separated
times, namely, the particular times at which u is actually engaged in learning. At the intervening
times, u will not be engaged in learning and will not change its weights.

Lemma A.2. Let F ⊆ {1, . . . , n}, with |F | = k. Assume that:

1. For every t ≥ 0, xi(t) = 1 for every i ∈ F and xi(t) = 0 for every i /∈ F .

2. All weights wi(0) are equal.

3. 0 < wi(0) < 1√
k
for every i.
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4. 0 < η ≤ 1
4k .

Then for any t ≥ 1:

1. All weights wi(t), i ∈ F are equal, and all weights wi(t), i /∈ F are equal.

2. 0 < wi(t) <
1√
k
for every i.

3. For any i ∈ F , wi(t) > wi(0).

4. For any i /∈ F , wi(t) > wi(0).

The next lemma, Lemma A.3 gives quantitative bounds on the amount of weight increase and
weight decrease, again for a single neuron u involved in learning a single concept. This lemma
describes what happens in multiple rounds, not just a single round. We use notation w(t), x(t), z(t)
as before. We assume that x(t) is the same at all times 0, 1, . . ., and assume that the engaged
component e(t) is equal to 1 at all times.

Lemma A.3 (Learning Properties). Let F ⊆ {1, . . . , n} with |F | = k. Let ε ∈ (0, 1]. Let b be a posi-
tive integer. Let σ = 4

3ηk (`max log(k))+ 3
ηkε+ b log(k)

log( 16
15

)
. Thus, σ is O

(
1
ηk

(
`max log(k) + 1

ε

)
+ b log(k)

)
.

Assume that:

1. For every t ≥ 0, xi(t) = 1 for every i ∈ F , xi(t) = 0 for every i /∈ F , and e(t) = 1.

2. All weights wi(0) are equal to 1
k`max

.

3. η = 1
4k .

3

Then for every t ≥ σ, the following hold:

1. For any i ∈ F , we have wi(t) ∈ [ 1
(1+ε)

√
k
, 1√

k
].

2. For any i /∈ F , we have wi(t) ≤ 1
k`max +b .

Proof. We first show Part 1. We begin with a Claim that bounds the time to double the weight wi
for i ∈ F , when wi is not "too close" to the target weight 1√

k
.

Claim 1: Assume that i ∈ F . For j ≥ 1, the number of rounds needed to increase wi from 1
2j+1

√
k

to 1
2j
√
k
is at most 4

3ηk .
Proof of Claim 1: Using the assumption that all the weights are the same, and the assumption that
wi ≤ 1

2
√
k
, we get:

wi(t) = wi(t− 1) + ηz(t− 1) · (1− z(t− 1) · wi(t− 1))

= wi(t− 1) + ηkwi(t− 1)(1− kw2
i (t− 1))

≥ wi(t− 1) +
ηk

2j+1
√
k

(1− k 1

4k
)

= wi(t− 1) +
ηk

2j+1
√
k

(3/4).

Increasing wi from 1
2j+1

√
k
to 1

2j
√
k
means we must increase it by 1

2j+1
√
k
. Each round increases wi by

at least ηk 1
2j+1

√
k
(3/4). Thus, the time to double wi from 1

2j+1
√
k
to 1

2j
√
k
is at most 1

2j+1
√
k
divided

3This is a very precise assumption but it could be weakened, at a corresponding cost in run time.
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by ηk 1
2j+1

√
k
(3/4), which is 4

3ηk .
End of proof of Claim 1.
Claim 2: For i ∈ F , the total time to increase wi from the starting value 1

k`max
to the target value

1
2
√
k
is at most 4

3ηk (`max log(k)).
Proof of Claim 2: Claim 1 implies that the total time required to increase wi from 1

k`max
to the

target value 1
2
√
k
is at most 4

3ηk (`max log(k)).
End of Proof of Claim 2.

Next, we bound the time required to increase wi from 1
2
√
k
to 1

(1+ε)
√
k
. This time, of course,

depends on ε.
Claim 3: For i ∈ F , the time to increase wi from 1

2
√
k
to 1

(1+ε)
√
k
is at most 3

ηkε .
Proof of Claim 3: The argument is generally similar to that for Claim 1:

wi(t) = wi(t− 1) + ηz(t− 1)(1− z(t− 1)wi(t− 1))

= wi(t− 1) + ηkwi(t− 1)(1− kw2
i (t− 1))

≥ wi(t− 1) +
ηk

2
√
k

(
1− 1

(1 + ε)2

)
= wi(t− 1) +

η
√
k

2

(
1− 1

(1 + ε)2

)
≥ wi(t− 1) +

η
√
k

2

ε

3
,

= wi(t− 1) +
η
√
kε

6
,

where we used the fact that (1 − 1/(1 + x)2) ≥ x/3 for x ≤ 1. It follows that the total time to
increase wi from its initial value 1

2
√
k
to the target value 1

(1+ε)
√
k
is at most

(
1

(1 + ε)
√
k
− 1

2
√
k

)
· 6

η
√
kε

=
1− ε

2(1 + ε)
√
k
· 6

η
√
kε

=
6(1− ε)

2(1 + ε)ηkε
≤ 3

ηkε
.

End of Proof of Claim 3.
It follows that the total time for Part 1 is at most

4

3ηk
(`max log(k)) +

3

ηkε
.

Note that once the weights for indices in F reach their target values, they never decrease below
those values. This follows from strict monotonicity shown in Lemma A.2.

We now turn to proving Part 2. We consider what happens after the increasing weights (for indices
in F ) in reach the level 1

2
√
k
, and then bound the number of rounds for the decreasing weights to

decrease to the desired target 1
k`max +b . The reason we choose the level 1

2
√
k
for the increasing weights

is that this is enough to guarantee that z is "large enough" to produce enough decrease.
For this part, we use our assumed lower bound on η.

Claim 4: For i /∈ F , the time to decrease wi from the starting weight 1
k`max

to 1
k`max +b is at most

b log2 k

log2
16
15

, which is O(b log(k)).
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Proof of Claim 4: Considering a single round, we get:

wi(t) = wi(t− 1)(1− ηz(t− 1)2)

≤ wi(t− 1)

1− 1

4k

(√
k

2

)2


= wi(t− 1)

(
1− 1

16

)
= wi(t− 1)

15

16
.

The inequality uses the facts that η ≥ 1
4k and z(t− 1) ≥ k( 1

2
√
k
) =

√
k

2 .
Thus, the weight decreases by a factor of 15/16 at each round.
Now consider the number of rounds needed to reduce from 1

k`max
to the target weight 1

k`max +b .
This number is bounded by b log2 k

log2
16
15

, which is O(b log(k)), as claimed. End of Proof of Claim 4.
Summing up the three bounds yields the result.

A.2 Invariants About Engagement, Weights, and Firing

We use some assumptions about the various parameters:

1. The concept hierarchy consists of `max levels.

2. r1, r2 satisfy 0 < r1 < r2 ≤ 1.

3. ε = r2−r1
r1+r2

.

4. η = 1
4k .

5. b is an arbitrary positive integer.

6. σ, for the σ-bottom-up presentation definition, satisfies σ = 4
3ηk (`max log(k)) + 3

ηkε + b log(k)

log( 16
15

)
.

Thus, σ is O
(

1
ηk

(
`max log(k) + 1

ε

)
+ b log(k)

)
. Here, η, ε, and b are as described just above.

We start with an assumption about the engagement flags.

Assumption A.4. For every time t and layer `, a neuron u on layer ` ≥ 1 is engaged (i.e.,
u.engaged = 1) at time t, if and only if both of the following hold:

1. A level ` concept was shown at time t− `.

2. Neuron u is selected by the WTA at time t.

Note that, by Assumption 5.2, the WTA selects exactly one neuron, which together with the
assumption above implies that exactly one neuron will be engaged on layer ` at time t.

We say that a layer ` neuron u, ` ≥ 1, "binds" to a level ` concept c at time t if c is presented for
the first time at time t− `, and u is the neuron that is engaged at time t. At that point, we define
rep(c) = u.

Here is an auxiliary lemma, about unbound neurons.

Lemma A.5. Let u be a neuron with layer(u) ≥ 1. Then for every t ≥ 0, the following hold:

1. If u is unbound at time t, then all of u’s incoming weights at time t are the initial weight
1

k`max
.
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2. If u is unbound at time t, then u does not fire at time t.

We are now ready to prove our main invariant.

Lemma A.6. Consider any particular execution of the network in which inputs follow a σ-bottom-up
schedule. For any t ≥ 0, the following hold.

1. The rep() mapping from the set of concepts to the set of neurons a is one-to-one mapping;
that is, for any two distinct concepts c and c′ for which rep(c) and rep(c′) are both defined,
we have rep(c) 6= rep(c′).

2. For every concept c with level(c) ≥ 1, every showing of c at a time ≤ t− level(c), leads to the
same neuron u = rep(c) becoming engaged.

3. For every concept c with level(c) ≥ 1, and any t′ ≥ 1, if c is shown at time t − level(c) for
the t′-th time, then the following are true at time t:

(a) If t′ ≥ 1, then u with u = rep(c) has weights in
(

1
k`max

, 1√
k

)
for all neurons in rep(children(c)),

and weights in
(
0, 1

k`max

)
for all other neurons.

(b) If t′ ≥ σ, then u with u = rep(c) has weights in
[

1
(1+ε)

√
k
, 1√

k

]
for all neurons in

rep(children(c)), and weights in
[
0, 1

k`max +b

]
for all other neurons.

4. For every concept c, if a proper ancestor of c is shown at time t − level(c), then rep(c) is
defined by time t, and fires at time t.

5. For any neuron u, the following holds. If u fires at time t, then there exists c such that
u = rep(c) at time t, and an ancestor of c is shown at time t− layer(u). (This ancestor could
be c or a proper ancestor of c.)

Proof. First observe that, by Assumption A.4, every representative rep(c) is on the layer equal to
level(c). We prove the five-part statement of the lemma by induction on t.

Base: t = 0.
Then for Part 1, the only concepts for which reps are defined at time 0 are level 0 concepts, and
these all have distinct reps by assumption. For Parts 2 and 3, note that level(c) ≥ 1 implies that
the times in question are negative, which is impossible; so these are trivially true. For Part 4, it
must be that level(c) = 0 (to avoid negative times), and a proper ancestor of c is shown at time 0.
Then the layer 0 neuron rep(c) fires at time 0, by the definition of "showing".

For Part 5, first note that at time 0 no neurons at layers ≥ 1 are bound, so by Lemma A.5, they
cannot fire at time 0. Since we assume that u fires at time 0, it must be that layer(u) = 0, which
implies that u = rep(c) for some level 0 concept c. Then, since u fires at time 0, by definition of
"showing, an ancestor of c must be shown at time 0.
Inductive step: Assume the five-part claim holds for time t− 1 and consider time t.
We prove the five parts one by one.

1. For Part 1, let c and c′ be any two distinct concepts for which rep(c) and rep(c′) are both
defined at time t. We must show that rep(c) 6= rep(c′).

If both rep(c) and rep(c′) are defined at time t− 1, then by the I.H., Part 1, rep(c) 6= rep(c′)
at time t− 1. Since the reps do not change, this is still true at time t, as needed. So the only
possibility for conflict is that one of these two concepts, say c′, already has its rep defined at
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time t− 1 but the other concept, say c, does not, and rep(c) becomes defined at time t. Let
u = rep(c); we show that u is unbound at time t− 1.

By Assumption A.4, the engaged flag gets set at time t for u, and for no other neurons. Since
c is shown at time t − `, by the σ-bottom-up assumption, each child of c must have been
shown at least σ times prior to time t − `. Then by the I.H., Parts 4 and 5, the layer ` − 1
neurons "fire correctly" at time t− 1, i.e., all neurons in the set rep(children(c)) fire and no
other layer `− 1 neuron fires, at time t− 1.

This implies that every neuron that is already bound prior to time t has incoming potential
in round t strictly less than k times the initial weight, by I.H. 3.(a) and by the disjointness
of the concepts. On the other hand, every unbound neuron has incoming potential equal to k
times the initial weight, by Lemma A.5. By assumption, there is at least one unbound neuron
available. It follows that the neuron u that is chosen by the WTA is unbound, and so cannot
be equal to rep(c).

2. For Part 2, let c be any concept with level(c) ≥ 1, and write ` = level(c). We must prove that
any showing of c at any time ≤ t− ` leads to the same neuron u = rep(c) becoming engaged.

If c is not shown at time precisely t− `, then the claim follows directly from the I.H., Part 2.

So assume that c is shown at time t− `. If t− ` is the first time that c is shown, then rep(c)
first gets defined at time t, so the conclusion is trivially true (since there is only one showing
to consider).

It remains to consider the case where rep(c) is already defined by time t−1. Then, by the I.H.
Part 2, we know that any showing of c at a time ≤ t− 1− ` leads to neuron rep(c) becoming
engaged.

We now argue that the same rep(c) is also selected at time t. As in the proof of Part 1, the
engaged flag is set at time t for exactly one layer ` neuron; we claim that this chosen neuron is
in fact the previously-defined rep(c). As in the proof for Part 1, we claim that all neurons in
the set rep(children(c)) fire and no other layer `−1 neuron fires at time t−1. Then rep(c) has
incoming potential in round t that is strictly greater than k times the initial weight, by I.H.
Part 3(a). On other hand, every other layer ` neuron has incoming potential that is at most
k times the initial weight, again by I.H. Part 3(a). It follows that rep(c) has a strictly higher
incoming potential in round t than any other layer ` neuron, and so is the chosen neuron at
time t.

3. For Part 3, let c be any concept with level(c) ≥ 1, and write ` = level(c). Let t′ ≥ 1. Assume
that c is shown at time t− ` for the t′-th time. We must show:

(a) If t′ ≥ 1, then u with u = rep(c) has weights in
(

1
k`max

, 1√
k

)
for all neurons in rep(children(c)),

and weights in
(
0, 1

k`max

)
for all other neurons.

(b) If t′ ≥ σ, then u with u = rep(c) has weights in
[

1
(1+ε)

√
k
, 1√

k

]
for all neurons in

rep(children(c)), and weights in
[
0, 1

k`max +b

]
for all other neurons.

For both parts, we use Part 2 (for t, not t − 1) to infer that every showing of c at a time
≤ t− level(c) leads to the same neuron u = rep(c) being engaged. Thus, neuron u has been
engaged t′ times as a result of showing c, up to time t.

For Part (a), assume that t′ ≥ 1. Then we may apply Lemma A.2, with F = rep(children(c)),
to conclude that the incoming weights for u are in the claimed intervals. For Part (b), assume
that t′ ≥ σ. Then we may apply Lemma A.3, with F = rep(children(c)), to conclude that
the incoming weights for u are in the claimed intervals.
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4. For Part 4, let c be any concept, and assume that c∗, a proper ancestor of c, is shown at time
t− level(c). We must show that rep(c) is defined by time t, and that it fires at time t.

Since c∗ is shown at time t− level(c), by the definition of a σ-bottom-up schedule, that means
c was shown at least σ times by time t− level(c)− 1. This implies that rep(c) is defined by
time t− 1, and so, by time t.

Moreover, since c was shown at least σ times by time t− level(c)− 1, by the I.H., Part 3(b),
at time t−1, rep(c) has incoming weights at least 1

(1+ε)
√
k
for all neurons in rep(children(c)).

By the I.H. Part 4, the neurons in rep(children(c)) fire at time t− 1 since c∗ is also a proper
ancestor of all children of c. Therefore, at time t, the potential of rep(c) is at least k · 1

(1+ε)
√
k
,

which by definition means that u fires at time t.

5. For Part 5, fix an arbitrary neuron u and suppose that u fires at time t. We must show that
there is some concept c such that u = rep(c) at time t, and an ancestor of c is shown at time
t− layer(c).
Since u fires at time t, by Lemma A.5, we know that u is bound at time t; let c be the (unique)
concept such that u = rep(c). The firing of u at time t is due to the showing of some concept,
say c∗, at time t− layer(u).

Let R be the subset of rep(children(u)) that fire at time t− 1. We claim that |R| ≥ 2; that
is, at least two reps of children of c must fire at time t − 1. For, if at most one rep(c′) for a
child of c fires at time t− 1, then by the I.H., Part 3(a), the total potential incoming to u at
step t would be at most 1√

k
+ k`max

k`max
< 1√

k
+ 1, which is smaller than the threshold for firing.

So |R′| ≥ 2; let u′ and u′′ be any two distinct elements of R′. Since u′ and u′′ fire at time t−1,
by Lemma A.5, we know that both are bound at time t − 1; let c′ and c′′ be the respective
concepts such that u′ = rep(c′) and u′′ = rep(c′′). We know that c′ 6= c′′ because each concept
gets only one rep neuron, by the way that rep is defined. Note that the firing of both u′ and
u′′ must be due to the showing of concept c∗ at time (t− 1)− (layer(u)− 1) = t− layer(u).
Then by the I.H., Part 5, applied to both u′ and u′′, we see that c∗ must be an ancestor of
both c′ and c′′. Therefore, c∗ must be an ancestor of the common parent c of c′ and c′′, as
needed.

This completes the proof.

A.3 Proof of Theorem 5.3

Now we use Lemma A.6 to prove our main theorem, Theorem 5.3. The proof is straightforward,
but we include it for the sake of completeness.

Proof. By assumption, all the concepts in the hierarchy have been shown according to a σ-bottom-up
schedule.

This implies, by Assumption A.4, that all the concepts in the hierarchy have reps in the cor-
responding layers. Also, by Lemma A.6, Part 3(b), the weights are set as as follows: For every
concept c with level(c) ≥ 1, all incoming weights of rep(c) from the reps of its children, i.e., the
neurons in rep(children(c), are in the range [ 1

(1+ε)
√
k
, 1√

k
], and weights from all other neurons (on

layer level(c)− 1) are at most 1
k`max +b .

Now we must argue that the resulting network (r1, r2)-recognizes the concept hierarchy. This has
two directions. First, consider any subset B ⊆ C0. We argue by induction on levels `, 1 ≤ ` ≤ `max,
that the rep of any level ` concept in supportedr2(B) fires (see Definition 2.1 for the definition of
supportedr2).
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For the base case, consider a level 1 concept c ∈ supportedr2(B). Since c ∈ supportedr2(B), it
means that |children(c) ∩B| ≥ r2k. As noted above, the rep of each of these children is connected
to rep(c) by an edge with weight at least 1

(1+ε)
√
k
, which yields a total incoming potential for rep(c)

of at least
r2k

(1 + ε)
√
k

=
r2

√
k

1 + ε
.

We must show that the right-hand side is at least as large as the firing threshold τ = r1+r2
2

√
k.

That is, we must show that r2
1+ε ≥

r1+r2
2 . Plugging in the expression for ε, we get that:

r2

1 + ε
=

r2

1 + r2−r1
r1+r2

=
r1 + r2

2
,

as needed.
For the inductive step, consider ` ≥ 2 and suppose that the rep of any level ` − 1 concept in

supportedr2(B) fires. Consider a level ` concept c ∈ supportedr2(B). This means that |children(c)∩
B`−1| ≥ r2k, using notation from the definition of "supported" (Definition 2.1), that is, at least r2k
children of c are in supportedr2(B). By Lemma A.6, Part 3(b), the rep of each of these children is
connected to rep(c) by an edge with weight at least 1

(1+ε)
√
k
, which yields a total incoming potential

for rep(c) of at least
r2k

(1 + ε)
√
k

=
r2

√
k

1 + ε
.

Arguing as in the base case, this is at least as large as the firing threshold τ , as needed.
For the other direction, again consider any subset B ⊆ C0. First note that, by Lemma A.5,

unbound neurons never fire. We now argue that for any rep of any concept c in the hierarchy such
that c /∈ supportedr1(B) does not fire. Recognizing that levels correspond to layers, this time we
proceed by induction on layers `, 1 ≤ ` ≤ `max.

For the base case, consider a level 1 concept c /∈ supportedr1(B); rep(c) is at layer 1. Since
c /∈ supportedr1(B), it means that |children(c) ∩ B| < r1k. By Lemma A.6, Part 3(b), the rep of
each of these children is connected to rep(c) by an edge with weight ≤ 1√

k

and all other incoming weights of rep(c) are at most 1
k`max +b .

We add a technical assumption here: that r1k is not an integer, and the difference between r1k

and the next-smaller integer (which is r1k − dr1k − 1e) is at least
√
k
kb

.
Writing a as an abbreviation for r1k − dr1k − 1e, we get that the total incoming potential for

rep(c) is at most

r1k − a√
k

+
k`max

k`max +b
= r1

√
k − a√

k
+

1

kb
≤ r1

√
k <

r1 + r2

2

√
k = τ,

which implies that rep(c) does not fire.
For the inductive step, consider ` ≥ 2 and suppose that the rep of any level ` − 1 concept c

such that c /∈ supportedr1(B) does not fire. Consider a level ` concept c /∈ supportedr1(B). This
implies that |children(c)∩B`−1| < r1k, because if this cardinality were ≥ r1k, then by the recursive
definition of "supported", c would be in supportedr1(B).

By the inductive hypothesis, only the reps of concepts in children(c) ∩ B`−1 contribute to the
incoming potential for rep(c). By Lemma A.6, each such rep is connected to rep(c) by an edge with
weight at most 1√

k
and all other neurons have weight at most 1

k`max +b . Thus, the total incoming
potential for rep(c) is at most

r1k − a√
k

+
k`max

k`max +b
,
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which is strictly less than τ as in the base case. Thus rep(c) does not fire.

B Analysis of Noisy Learning

We start by giving a proof overview.

B.1 Proof Overview

The overall analysis of Theorem 6.1 is at its core similar to the analysis of Theorem 5.3 presented
in Appendix A.

The main difference is that the weights of the neurons after learning are slightly different: Fol-
lowing the notation of Lemma A.1, Lemma A.2 and Lemma A.3, we show that for all i ∈ F the
weights will eventually approximate

w̄ =
1√

pk + 1− p

and for i 6∈ F, the weights are bounded by 1/k2 `max . Note that, in this section, we set the parameter
b, governing the desired decrease of unrelated weights, to be b = `max. Also note that we recover
the noise-free case by setting p = 1.4

The main difficulty in the noisy case is to establish a noisy version of Lemma A.3, which we do
in Lemma B.1.

Due to the noise, main structural properties, such as weights of neurons in F changing mono-
tonically, do not hold anymore. To make matters worse, we cannot simply use Chernoff bounds
and assume the worst-case distribution of the weight changes. Instead, we work with a fine-grained
potential analysis, which we describe in more detail in the paragraph "Proof idea" below.

After establishing Lemma B.1, proving the main theorem is then analogous to the noise-free case.
This is because the overall structure of the network follows exactly the noise-free case, with the
small exception that the weights are slightly different. Nonetheless, the same arguments as in the
proof Lemma A.6 still hold.

Proof idea. First we bound the change of the potential during a period of T rounds (Lemma B.3).
We then derive very rough bounds on the change of a single weight during such a period (Lemma B.4).
Using these rough results, we are able to prove much more precise bounds on the change of the
weights in a given interval of length T . It turns out that the way the weights change depends highly
on the other weights, which makes the analysis non-trivial. The way we show that weights converge,
is by using the following potential ψ. Fix an arbitrary time t and let wmin(t) and wmax(t) be the
minimum and maximum weights among w1(t), wk(t), . . . , wk(t), respectively. Let

ψ(t′) = max

{
wmax(t′)

w̄
,

w̄

wmin(t′)

}
.

Our goal is to show that this potential decreases quickly until it is very close to 1. Showing that
the potential decreases is involved, since one cannot simply use a worst case approach, due to
the terms in Oja’s rule being non-linear and potentially having a high variance, depending on the
distribution of weights. The key to showing that ψ decreases is to carefully use the randomness over
the input vector x together with the rough bounds (established before) on the worst-case values of
wi and z during the interval. Bounding these non-linear terms tightly presents a major challenge
which we overcome using two techniques. First, we consider a process P ′ which is almost as the

4In this case the probabilistic guarantees become deterministic guarantees.
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original process P , with the difference that the weights only change marginally in each period of T
rounds. If they change by more, then we assume that the weights are simply reset to the value at
the beginning of the T rounds. As we will see later, we can couple the processes P and P ′ with
high probability. This coupling allows us to avoid a conditioning that would otherwise change the
probability space and prevent as from using the following second technique. Second, we show that
the changes of the weights form a Doob maringales allowing us to use Azuma-Hoeffding inequality
to get asymptotically almost tight bounds on the change of the weights during the T rounds starting
at time t. To this end we define

X(t′) = z(t+ t′) ·
(
xi∗(t+ t′)− z(t+ t′) · wi∗(t+ t′)

)
and

S =
∑
t′≤T

X(t′). (2)

We bound these quantities in Lemma B.7 and Lemma B.8. We then show that these imply
Lemma B.1. Finally, at the end of the section, we prove Theorem 6.1.

B.2 Weight Change for Individual Neurons

We consider the first O(n6) rounds. Consider any interval of length T . Note that the number of
intervals is bounded by O(n6). Define the event E to be the event that for each interval and each
input neuron u, the number times u fires is in [(1− δ)pT, (1 + δ)pT ].

Using a Chernoff bound and a union bound,
we get that E holds w.h.p. In the following we will often condition on event E .
We use some assumptions about the various parameters:

1. δ = r2−r1
r2

/50,

2. b = 100
δ ,

3. T = 210k4 logn
p6δ2

,

4. The learning rate η = 1
4Tk4

.

5. The firing threshold τ = r2kw̄
(1+10δ)

Lemma B.1 (Learning Properties, Noisy Case). Let F ⊆ {1, . . . , n} with |F | = k. Let ε ∈ (0, 1].
Let b be a positive integer.

Let σ = c′ 1
ηk

(
`max log(k) + r2k+1−r2

ηr
3/2
2 (r2−r1)

)
+ log(k), for some large enough constant c′.

Assume that:

1. For every t ≥ 0, xi(t) = 0 for every i /∈ F , and e(t) = 1.

2. All weights wi(0) are equal to 1
k`max

.

3. η = 1
4Tk4

.5

4. E holds.

Then for every t ≥ σ, the following hold:
5This is a very precise assumption but it could be weakened, at a corresponding cost in run time.

28



1. For any i ∈ F , we have wi(t) ∈ [ w̄
(1+20δ) , (1 + 20δ)w̄].

2. For any i /∈ F , we have wi(t) ≤ 1
k2 `max

.

Let
φ(t) =

∑
i≤k

wi.

We now give some structural properties.

Observation B.2. For every i and t,

wi(t) ∈ [0, 1]. (3)

Moreover, for all i 6∈ F , wi is monotonically decreasing.

Proof. We can show this by induction. Using the inductive hypothesis wi(t − 1) ∈ [0, 1]. we have
wi(t−1) ≤ z(t−1) ≤

∑
j∈F wj(t−1) ≤ k. Thus wi(t) = wi(t−1)+ηz(t−1)(1−z(t−1)wi(t−1)) ≤

wi(t− 1) + ηk(1− wi(t− 1)wi(t− 1)) ≤ 1. Thus set wi(t− 1) = 1− λ for some λ > 0 and we get

wi(t) ≤ 1− λ+ ηk(1− (1− λ)2) ≤ 1− λ+
1

2
(2λ− λ2) ≤ 1.

Similarly, wi(t) ≥ wi(t− 1)− ηkz(t− 1)wi(t− 1) ≥ wi(t− 1)(1− ηk2) ≥ 0.
It remains to argue that for all i 6∈ F , wi is monotonically decreasing. This holds since,

wi(t) ≤ wi(t− 1)− ηkz(t− 1)wi(t− 1) ≤ wi(t− 1).

The following lemma show that φ(·) does not change too much an interval of length T .

Lemma B.3. Assume E holds. For every t and t′ ≤ T we have

φ(t)

(
1− 8

b

)
≤ φ(t+ t′) ≤ φ(t)

(
1 +

8

b

)
.

Proof. First note that z(t) ≤ φ(t) ≤ k. Observe that φ(t + 1) ≤ φ(t) + ηφ(t)k = φ(t)(1 + 1
Tbk ).

Thus,

φ(t+ t′) ≤ φ(t)(1 +
1

Tbk
)T ≤ φ(t)e

1
bk ≤ φ(t)e

1
b ≤ φ(t)(1 +

8

b
)

for b ≥ 1. Thus, for b ≥ 8,

φ(t+ t′) ≥ φ(t)− Tηmax
t′′≤T

φ(t+ t′′)2k ≥ φ(t)− Tηφ(t)2(1 +
8

b
)2k ≥ φ(t)− 8

b
φ(t) = φ(t)(1− 8

b
).

From this we derive the following two corollaries bounding the change of the weights (Lemma B.4)
as well as the change of the first two moments of z (Lemma B.5).

Lemma B.4. Assume E holds. For every t and t′ ≤ T we have

− ηT (1 + 8/b)2φ(t)2wi(t) ≤ wi(t+ t′)− wi(t) ≤ ηT (1 + 8/b)φ(t) (4)

From this it follows that
(1− δ)wi(t) ≤ wi(t+ t′) ≤ (1 + δ)wi(t) (5)
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Lemma B.5. Assume E holds. For every t and t′ ≤ T we have

(1− 2δ)pTφ(t) ≤
∑
t′≤T

z(t+ t′) ≤ (1 + 2δ)pTφ(t). (6)

and
(1− 2δ)pT

∑
i≤k

w2
i (t) ≤

∑
t′≤T

z2(t+ t′). (7)

Proof. By Lemma B.4 and assuming that E holds,∑
t′≤T

z(t+ t′) ≥ (1− δ)pT
∑
i≤k

(
wi(t)− ηT (1 + 8/b)2φ(t)2wi(t)

)
.

Using (1 + 8/b)2 ≤ 2 and φ(·) ≤ k, we get∑
t′≤T

z(t+ t′) ≥ (1− δ)pTφ(t)(1− 2/b) ≥ (1− 2δ)pTφ(t)

To show the r.h.s. of (6), we apply Lemma B.3, and derive

∑
t′≤T

z(t+ t′) ≤ (1 + δ)pT

φ(t) +
∑
i≤k

ηT (1 + 8/b)φ(t)

 ≤ (1 + 2δ)pTφ(t).

We now prove (7). By Lemma B.4 and assuming that E holds,∑
t′≤T

z2(t+ t′) ≥ (1− δ)pT
∑
i≤k

(
wi(t)− ηT (1 + 8/b)2φ(t)2wi(t)

)2
≥ (1− δ)pT

∑
i≤k

(
w2
i (t)− 2wi(t)ηT (1 + 8/b)2φ(t)2wi(t)

)
≥ (1− δ)pT

∑
i≤k

w2
i (t)

(
1− 2ηT (1 + 8/b)2φ(t)2

)
≥ (1− δ)pT

∑
i≤k

w2
i (t)

(
1− 2ηT2k2

)
≥ (1− 2δ)pT

∑
i≤k

w2
i (t),

where we used that (1 + 8/b)2 ≤ 2 and φ(·) ≤ k.

The following lemma shows that the potential increases exponentially until it is of order √p

Lemma B.6. Assume E holds. Fix any t and t′ ≤ T . Let φ(t) =
∑

i≤k wi. For every t with
φ(t) ≤ √p/8 we have that

φ(t+ T ) ≥
(

1 +
ηTp

4

)
φ(t).

Furthermore, Once φ(t) ≥ √p/8 we have for all t′ ∈ [t, O(n6)] that φ(t′) ≥ √p/16.
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Proof. Note that z(t′) ≤ φ(t′) ≤ √p/4. Note that when xi(t′) = 1, the potential increases at least
by ηwi(t′) ≥ (1− δ)ηwi(t). This will happen at least pT (1− δ) times. Summing over all i ≤ k gives
an increase of at least

pTη(1− δ)2
∑
i≤k

wi(t) = pTη(1− δ)2φ(t).

Otherwise, for xi(t′) = 0, (which only happens for at most T (1 − p(1 − δ)) rounds), the potential
decreases by

η
∑
i≤k

z(t′)2wi(t
′) ≤ η

∑
i≤k

z(t)2wi(t)(1 + δ)3 ≤ η
(√

p

4

)2

φ(t)(1 + δ)3.

Note that (1− p(1− δ))(1 + δ)3 ≤ 4 and (1− δ)2 ≥ 3/4. Thus

φ(t+ T ) ≥ ηpT (1− δ)2φ(t)− T (1− p(1− δ))η
(√

p

4

)2

φ(t)(1 + δ)3 ≥ Tηpφ(t)/4.

The second part follows from Lemma B.3.

Lemma B.7. Consider the process P ′, which, after every round, resets the weights of all weights
that exceed the bounds of Lemma B.3 and the second part of Lemma B.4. The exceeding weights are
set back to the weights at the beginning of the round. For any t′ ≤ T. Let Ft denote the filtration up
to time t, which informally speaking fixes all the random decisions during the first t rounds.

E
[
z(t+ t′) | Ft

]
≥ (1− δ)pφ(t+ t′)

and

E
[
z(t+ t′)2wi∗(t+ t′) | Ft

]
≤ (1 + δ)3pφ(t) ((1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t))

Proof. In the following, the randomness is over xi(t+ t′). We have

E
[
z(t+ t′) | w(t+ t′),Ft

]
= pφ(t′)m.

Moreover,

E
[
z(t+ t′)2 | w(t+ t′),Ft

]
=
∑
i≤k

pwi(t+ t′)2 + p2wi(t+ t′)
∑

j≤k,j 6=i
wj(t+ t′)


=
∑
i≤k

(
pwi(t+ t′)2 − p2wi(t+ t′)2 + p2wi(t+ t′)φ(t+ t′)

)
= (p− p2)

∑
i≤k

wi(t+ t′)2 + p2φ(t+ t′)2.
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Combining this with the assumption of the process P ′, in which the weights do not diverge too
much, we get

E
[
z(t+ t′)2wi∗(t+ t′) | Ft

]
≤ wi∗(t+ t′)(1 + δ)2

(p− p2)
∑
i≤k

wi(t)
2 + p2φ(t)2


≤ wi∗(t+ t′)(1 + δ)2

(p− p2)
∑
i≤k

wi(t)
2 + p2φ(t)2


≤ wi∗(t)(1 + δ)3

(
(p− p2)wmax(t)φ(t) + p2φ(t)2

)
≤ (1 + δ)3pφ(t) ((1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t)) .

Lemma B.8. Consider the process P ′, which, after every round, resets the weights of all weights
that exceed the bounds of Lemma B.3 and the second part of Lemma B.4. The exceeding weights are
set back to the weights at the beginning of the round. Fix an arbitrary time t. We have, with high
probability,

ψ(t+ T ) ≤ max

{
ψ(t)− ηTφ(t)p2w̄

w̄ − wi∗
4

, (1 + 10δ)w̄

}
.

Proof. By Lemma B.4, each weight increases throughout [t, t+ T ] at most by a factor (1 + δ) and
decrease by at most a factor (1− δ).

W.l.o.g. assume

w̄

wmin(t)
≥ (1− 2δ)

wmax(t)

w̄
. (8)

Note that for all i ≤ k with wi(t) ≥ (1 + 2δ)wmin, we have wi(t+T ) ≥ (1 + δ/50)wmin. Thus, we
only consider the neurons i∗ with wi∗(t) ∈ [wmin, (1 + 2δ)wmin]. By the second part of Lemma B.7,
for t′ ≤ T

E
[
z(t+ t′)2wi∗(t+ t′)

]
≤ (1 + δ)3pφ(t) ((1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t)) .

We now bound the terms in the parentheses. First note that

wi∗(t)wmax(t) ≤ (1 + 2δ)wmin(t)wmax(t) ≤ (1 + 6δ)w̄2

and furthermore,

wi∗(t)φ(t) ≤ (k − 1)(1 + δ)wi∗(t)wmax + (1 + δ)wi∗(t)wi∗(t)

≤ (1 + 8δ)
(
(k − 1)w̄2 + wi∗(t)

2
)

= (1 + 8δ)
(
kw̄2 + wi∗(t)

2 − w̄2
)

(1− p)wmax(t)wi∗(t) + pwi∗(t)φ(t) ≤ (1 + 8δ)
(
(1− p)w̄2 + pkw̄2 + p(wi∗(t)

2 − w̄2)
)

= (1 + 8δ)
(
1− p(w̄2 − wi∗(t)2)

)
Therefore,

E
[
z(t+ t′)2wi∗(t+ t′)

]
≤ (1 + 13δ)pφ(t)

(
1− p(w̄2 − wi∗(t)2)

)
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(1 + 8x)(1 + x)3 ≤ (1 + 13x) for x ≤ 0.69. Finally, using the definition of S (Equation 2) and
combining the above with the first part of Lemma B.7,

E [S ] ≥ T
(
E
[
z(t+ t′)

]
− E

[
z(t+ t′)2wi∗(t+ t′)

])
≥ Tφ(t)p

(
(1− δ)− (1 + 13δ)

(
1− p(w̄2 − wi∗(t)2)

))
≥ Tφ(t)p2 w̄

2 − wi∗(t)2

2
,

where we used that (1 − y)(1 − 13y)(1 − x) ≥ x · y/2 for x ≤ 0.9 and y ≤ 1/20. We seek to apply
Theorem D.1 to S. Let Xi be the random choices of the pk children that fire in round i (in the
definition of the noisy learning). Recall that S =

∑
t′≤T z(t+t

′)·(xi∗(t+ t′)− z(t+ t′) · wi∗(t+ t′)) .
We define Yi = E [S | Xi, . . . , X1 ] and observe that S = E [S | XT , . . . , X1 ] = YT . We seek to show
that Y0, Y1, . . . , YT is a (Doob) martingale with respect to the sequence X0, X1, . . . XT . Indeed we
have, using the tower rule,

E [Yi | Xi−1, . . . , X1 ] = E [E [S | Xi, . . . , X1 ] | Xi−1, . . . , X1 ] = E [S | Xi−1, . . . , X1 ] = Yi−1.

Thus, we can apply Theorem D.1 to the Doob martingale YT , YT−1, . . . , Y1 with |Yi+1 − Yi| ≤ k2

for all i. we derive

P
[
|S − E [S ] | ≥ E [S ]

2

]
≤ 2 exp

−2
(
E[S ]

2

)2

4Tk2

 ≤ 2 exp

−
(
Tφ(t)p2 w̄

2−wi∗ (t)2

2

)2

8Tk2


≤ 2 exp

−T
(
φ(t)p2 w̄

2−wi∗ (t)2

2

)2

32k2

 ≤ 2 exp (−10 log n) ≤ 1

n5
,

where the last inequality follows from

T

(
φ(t)p2 w̄

2 − wi∗(t)2

2

)2

≥ T
(
φ(t)p2 w̄

2(1− (1− δ)2)

2

)2

≥ T
(
φ(t)p2 δw̄

2

2

)2

≥ k2 210k2 log n

4p6δ2
φ(t)2p4 δ

2

2k2
≥ 320k2 log n,

where we used that wi∗(t) ≤ (1− 2δ)w̄.

Thus, we have that

wi∗(t+ T ) ≥ wi∗ + ηS ≥ wi∗ + η
E [S ]

2
≥ wi∗ + ηTφ(t)p2 w̄

2 − wi∗(t)2

4
.

Proving that values close to wmax(t) decrease in a similar fashion, is analogous.

Proof of Lemma B.1. By Lemma B.6, it takes at most T · 4
ηT examples to be shown for the potential

φ to double. The the required number of samples for the potential to reach a value of Ω(
√
p) is at

most O
(
`max

4 log(k)
η

)
. From there on, by Lemma B.7, we have for small wi∗(t),

wi∗(t+ T )− wi∗ ≥ ηTφ(t)p2 w̄
2 − wi∗(t)2

4
≥ ηTφ(t)p2w̄

w̄ − wi∗(t)
4

≥ ηTφ(t)p2w̄2δ

4
≥ ηTp2.5w̄2δ

50
.

Hence, after showing another 50
ηp2.5w̄2δ

examples all wi, i ≤ k are w̄ up to an additive error of 10δ.
Note that 1/w̄2 = pk + 1 − p. Using p ≥ r2 gives the desired bound on the number of examples
required per concepts. Note that once the potential is within a multiplicative factor of (1 + 10δ), it
will always remain (for O(n6) rounds) within a multiplicative factor of (1 + 20δ).
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B.3 Proof of Theorem 6.1

We are ready to prove the main theorem.

Proof of Theorem 6.1. As mentioned at the beginning of the section, it suffices to consider the
learning of one concept. Generalizing to a concept hierarchy is analogous to the noise-free case.

We now argue how the learning of one concept follows from Lemma B.1. By Lemma B.1, all
weights in F are at least w̄

(1+20δ) and most (1 + 20δ)w̄. Hence, if c ∈ supportedr2(B), then we
can show by a similar induction as in the proof of Theorem 5.3 that each rep fires since, the
potential is at least r2k

w̄
(1+20δ) = τ , which means that the corresponding rep fires. On other

other hand, if c 6∈ supportedr1(B), then there will be a neuron that does not fire since all weights
are, by Lemma B.1, at most (1 + 20δ)w̄. Therefore, the potential for rep(c) will be at most
r1k(1 + 20δ)w̄ < r2k

w̄
(1+20δ) = τ .

r1k(1 + 10δ)w̄ + k`max
1

k2 `max
< r1k(1 + 10δ)w̄ − 1√

k
+

1√
k
≤ r2k

w̄

(1 + 10δ)
= τ.

We note again that the results we used were for the process P ′ with bounded weight change,
but as mentioned earlier, the event E implies a successful coupling of the original process P with
P ′ holding with high probability. Thus, all the results also apply to the original process with high
probability. Finally, applying union bound over all intervals yields the result.

C Lower Bounds Proofs

Proof of Theorem 7.1. Assume for contradiction that N recognizes C. Let c denote any one of the
concepts in C2, i.e., a level 2 concept in C. Then c has k children, each of which has k children of
its own, for a total of k2 grandchildren.

Each of the k2 grandchildren must have a rep in layer 0, but neither c nor any of its k children
do, because layer 0 is reserved for level 0 concepts. So in particular, rep(c) is a layer 1 neuron. By
the structure of the network, this means that the only inputs to rep(c) are from layer 0 neurons.
Since we assume total connectivity, we have an edge from each layer 0 neuron to rep(c). We define:

• W (b), for each child b of c in the concept hierarchy: The total weight of all edges (u, rep(c)),
where u is a layer 0 neuron that is the rep of a child of b.

• W : The total weight of all the edges (u, rep(c)), where u is a layer 0 neuron that is a rep of
a grandchild of c. In other words, W = Σb∈children(c)W (b).

We consider two scenarios. In Scenario A (the "must-fire scenario"), we choose input set B to
consist of enough leaves of c to force rep(c) to fire, that is, we ensure that c ∈ supportedr2(B),
while trying to minimize the total weight incoming to rep(c). Specifically, we choose the r′2k ≥ r2k
children b of c with the smallest values of W (b). And for each such b, we choose its r′2k children
with the smallest weights. Let B be the union of all of these r′2k sets of r′2k grandchildren of c.
Since r′2 ≥ r2k, it follows that c ∈ supportedr2(B).
Claim 1: In Scenario A, the total incoming potential to rep(c) is at most (r′2)2W .

In Scenario B (the "can’t-fire scenario"), we choose input set B to consist of leaves of c that force
rep(c) not to fire, that is, we ensure that c /∈ supportedr1(B), while trying to maximize the total
weight incoming to rep(c). Specifically, we choose the r′1k < r1k children b of c with the largest
values ofW (b), and we include all of their children in B. For each of the remaining (1−r′1)k children
of c, we choose its r′1k < r1k children with the largest weights and include them all in B. Since r′1k
is strictly less than r1k, it follows that c /∈ supportedr1(B).
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Claim 2: In Scenario B, the total incoming potential to rep(c) is at least (r′1)W + (1 − r′1)r′1W =
2r′1W − (r′1)2W .
Proof of Claim 2: We define:

• W1: The total of the weights W (b) for the r′1k children b of c with the largest values of W (b).

• W2 = W −W1: The total of the weights W (b) for the remaining (1− r′1)k children of c.

• W3: We know that W1 ≥ r′1W , since W1 gives the total weight for the r′1k children of c with
the largest weights, out of k children. Define W3 = W1− r′1W ; then W3 must be nonnegative.

Then the total incoming potential to rep(c) is

≥W1 + r′1W2,

= r′1W +W3 + r′1(W −W1),

= r′1W +W3 + r′1(W −W3 − r′1W ),

= 2r′1W − (r′1)2W + (1− r′1)W3,

≥ 2r′1W − (r′1)2W,

as needed.
End of proof of Claim 2

Now, Claim 1 implies that the threshold τ of neuron rep(c) must be at most (r′2)2W , since it
must be small enough to permit the given B to trigger firing of rep(c). On the other hand, Claim
2 implies that the threshold must be strictly greater than 2r′1W − (r′1)2W , since it must be large
enough to prevent the given B from triggering firing of rep(c). So we must have

2r′1W − (r′1)2W < τ ≤ (r′2)2W.

But this contradicts our assumption that (r′2)2 ≤ 2r′1 − (r′1)2.

Proof of Theorem 7.2. Assume for contradiction that N recognizes C. Let c denote any one of the
concepts in C3, i.e., a level 3 concept in C. Then c has k children (level 2 concepts); each of which
has k children of its own (level 1 concepts), so c has k2 grandchildren. Moreover, each of these k2

grandchildren also has k children of its own (level 0 concepts).
The proof involves a case analysis, based on which layers can contain reps of c, its children, and

its grandchildren. First, because layer 0 is reserved for inputs, we have:
Claim 1: None of c, its children, or its grandchildren has its rep at layer 0.

In the next two claims, we use arguments similar to those in the proof of Theorem 7.1 to show
that neither c nor any of its children can have its rep at level 1.
Claim 2: For each child b of c, rep(b) is not in layer 1.
Proof of Claim 2: Suppose it is; then we can get a contradiction by arguing as in the proof of
Theorem 7.1. In the modified proof, we argue about rep(b), which is in layer 1, and the reps of its
grandchildren, which are in layer 0. The two scenarios and the calculations are the same as before.
End of proof of Claim 2
Claim 3: rep(c) is not in layer 1.
Proof of Claim 3: Suppose it is; then we can again get a contradiction by an argument similar
to that for Theorem 7.1. But now we argue about rep(c), which is in layer 1, and the reps of its
great-grandchildren, which are in layer 0.

A difference is that this time, for each grandchild b′ of c, we consider all of its children as a
group. Thus, we define a "weight" for b′, W (b′), equal to the sum of the weights of the edges
from the (layer 0) neurons that are reps of children of b′ to rep(c), that is, the sum of the

35



weights of all edges (u, rep(c)) where u ∈ rep(children(b′)). Then for each child b of c, we de-
fine W (b) = Σb′∈children(b)W (b′), and define W = Σb∈children(c)W (b). The rest of the proof proceeds
as in Theorem 7.1.
End of proof of Claim 3

Having ruled out all other possibilities, the only remaining case is that rep(c) is in layer 2, along
with the reps of all its (level 2) children; so assume that this is the case. This means that rep(c)
cannot be affected by the firing of the reps of its children, but only (possibly) by the reps of its
grandchildren and great-grandchildren.

Now the argument becomes somewhat different from before. For each (level 1) grandchild b′ of c,
consider what happens when exactly the the set of level 0 concepts children(b′) (which are great-
grandchildren of c) is presented. This firing triggers some layer 1 neurons, say N(b′), to fire. These
are not necessarily representations of anything in particular, just layer 1 neurons that happen to be
triggered by this particular presentation. They might include rep(b′), and possibly other neurons.

Now define a weight that the grandchild b′ contributes as input to rep(c):

W (b′) = Σu∈N(b′)weight(u, rep(c)).

This is the total weight from all the layer 1 neurons that are triggered by the presentation of
children(b′).

Next, consider any child b of c. Define a weight for b based on the total weight that its children
(which are grandchildren of c) contribute to rep(c):

W (b) = Σb′∈children(b)W (b′).

We claim that this sum is the correct total weight incoming to rep(c) when all of the concepts in
leaves(b) (the grandchildren of b) are presented at the same time. This follows from Assumption 4,
the Noninterference Assumption, which says that no new layer 1 neurons are triggered to fire, other
than those that are triggered by the presentation of separate sets children(b′).

Now define a weight for c based on the total weight that its children contribute to rep(c):

W = Σb∈children(c)W (b).

We claim, again by Assumption 4, that this sum is the correct total weight incoming to rep(c) when
all of the concepts in leaves(c) (the great-grandchildren of c) are presented at the same time.

The rest of the argument is analogous to the argument for Theorem 7.1. For the "must-fire"
scenario, choose the r′2k children b of c with the smallest values of W (b), and for each of these,
the r′2k children b′ with the smallest values of W (b′). Let the presented set B be the set of all the
children b′′ of these chosen b′. Then c ∈ supportedr2(B). Again using Assumption 4, we get:
Claim 4: The total weight of edges incoming to c that is triggered by presenting B is at most
(r′2)2W .

For the "can’t-fire" scenario, choose the r′1k < rk children b of c with the largest values of W (b)
and for each of these, all their children b′. And for the remaining (1 − r′1)k children b of c, choose
their r′1k < rk children b′ with the largest weights. Let the presented set B be the set of all the
children b′′ of these chosen b′. Then c /∈ supportedr1(B). We get:
Claim 5: The total weight of edges incoming to c that is triggered by presenting B is at least
(2r′1 − (r′1)2)W .

Combining Claims 4 and 5 yields, as before, that the threshold τ for c satisfies the extended
inequality

2r′1W − (r′1)2W < τ ≤ (r′2)2W,

which contradicts our assumption that (r′2)2 ≤ 2r1 − (r′1)2.
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Proof of Lemma 7.4. We prove this by induction on `. We use two base cases. For ` = 1, the result
is obvious because layer 0 is reserved for the level 0 concepts. For ` = 2, suppose for the sake of
contradiction that the claim in the theorem statement doesn’t hold, that is, some level 2 concept c
has rep(c) at layer 1. Then again arguing as in the proof of Theorem 7.1, we get a contradiction.

For the inductive step, assume that ` ≥ 3, and assume the inductive claim holds for all levels
≤ ` − 1. Assume for contradiction that, for some c, rep(c) is in some layer `′, 1 ≤ `′ ≤ ` − 1. The
inductive hypothesis implies that each concept b ∈ children(c) has its rep at some layer ≥ ` − 1.
This means that there are no connections from the reps of children of c to rep(c). So again, we
consider c’s grandchildren.

Thus, for each (level ` − 2 ≥ 1) grandchild b′ of c, consider what happens when exactly the set
leaves(b′) is presented. This firing triggers some layer `′− 1 neurons, say N(b′), to fire. Now define
a weight that the grandchild b′ contributes as input to rep(c):

W (b′) = Σu∈N(b′)weight(u, rep(c)).

Next, consider any child b of c. Define a weight for b based on the total weight that its children
(which are grandchildren of c) contribute to rep(c):

W (b) = Σb′∈children(b)W (b′).

We claim that this sum is the correct total weight incoming to rep(c) when all of the concepts in
leaves(b) are presented at the same time. This follows from Assumption 4, the Noninterference
Assumption.

Now define a weight for c based on the total weight that its children contribute to rep(c):

W = Σb∈children(c)W (b).

Again by Assumption 4, this sum is the correct total weight incoming to rep(c) when all of the
concepts in leaves(c) are presented at the same time.

The rest of the argument is analogous to those for Theorem 7.1 and Theorem 7.2. For the "must-
fire" scenario, choose the r′2k children b of c with the smallest values of W (b), and for each of these,
the r′2k children b′ with the smallest values of W (b′). Let the presented set B be the set of all
the leaves of these chosen b′. Then c ∈ supportedr2(B), and the total weight of edges incoming to
c that is triggered by presenting B is at most (r′2)2W (using Assumption 4 once again). For the
"can’t-fire" scenario, choose the r′1k < r1k children b of c with the largest values of W (b) and for
each of these, all their children b′. And for the remaining (1 − r′1)k children b of c, choose their
r′1k < r1k children b′ with the largest weights. Let the presented set B be the set of all the leaves
of all these chosen b′. Then c /∈ supportedr1(B), and the total weight of edges incoming to c that is
triggered by presenting B is at least (2r′1 − (r′1)2)W .

Combining these two claims yields, as before, that the threshold τ for c satisfies

2r′1W − (r′1)2W < τ ≤ (r′2)2W,

which contradicts our assumption that (r′2)2 ≤ 2r′1 − (r′1)2.

D Auxiliary Claims

The following is a slight modification from Theorem 5.2 in [3].

Theorem D.1 (Azuma-Hoeffding inequality - general version [3]). Let Y0, Y1, . . . be a martingale
with respect ot the sequence X0, X1, . . . . Suppose also that Yi satisfies ai ≤ Yi − Yi−1 ≤ bi for all i.
Then, for any t and n

P [ |Yn − Y0| ≥ t ] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.
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