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Abstract: Upper and lower bounds are proved

for the real time complexity of the problem of

reaching agreement in a distributed network, in

the presence of process failures and inexact infor-

mation about time. It is assumed that the amount

of (real) time between any two consecutive steps

of any nonfaulty process is at least c1 and at most

CZ; thus, C = c2/cl is a measure of the timing

uncertainty. It is also assumed that the time for

message delivery is at most d. Processes are as-

sumed to fail by stopping, so that process failures

can be detected by timeouts.

Let T denote the worst-case time to detect a

failure, i.e., the elapsed time between tlhe failure

of some process p and the time when all correct

processes determine that p has failed; a straight-

forward approach yields T roughly eqr.lid to Cd.

Letting ~ denote the number of faults to be toler-

ated, a simple adaptation of an (~+ 1)-rownd syn-
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chronous agreement algorithm takes time (~+ l)T,

or roughly (~+ l) Cd.

The first principal result of this paper is an

agreement algorithm in which the worst-case time

T for a timeout is incurred at most once, yield-

ing a running time of approximately 2ffi + T in

the worst case, where 6 is an upper bound on the

message delay that actually occurs in a given ex-

ecution. This represents a significant reduction in

-complexity in case C >> 1 or 6 << d. The second

principal result is a lower bound of (~ – l)d + Cd

on the running time of any agreement algorithm,

for the case where 6 = d; this is close to the upper

bound of 2fd + Cd for this case.

.

1 Introduction

Distributed computing theory has studied the

complexity requirements of many problems in syn-

chronous and asynchronous models of computa-

tion. There is an important middle ground, how-

ever, between the synchronous and asynchronous

extremes: models that include inexact informa-

tion about timing of events. This middle ground is

reasonable for modeling real distributed systems,

in which the amount of time required for processes

to take steps, for clocks to advance, and for mes-

sages to be delivered are generally only approxi-

mately known.

We are interested in determining the complex-

ity of problems of the sort arising in distributed

computing theory in models with inexact timing

information. In particular, in this paper, we con-

sider the time complexity of the problem of fault-

tolerant distributed agreement. In the version of
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the agreement problem we consider, there is a sys-

tem of n processes, PI, . . . . p~, where each p, is

given an input value vi. Each process that does

not fail must choose a decision value such that

(i) no two processes decide differently, and (ii) if

any process decides v then v is the input value

of some process. We assume that processes fail

only by stopping. This abstract problem can be

used to model a variety of problems in distributed

computing, e.g., agreement on the value of a sen-

sor in a real-time computing system, or agreement

on whether to commit or abort a transaction in a

database system.

The time complexity of the distributed agree-

ment problem has been well studied in the syn-

chronous “rounds” model. In this model, the com-

putation proceeds in a sequence of rounds of com-

munication. In each round, each non-failed pro-

cess may send out messages to all processes, re-

ceives all messages sent to it at that round, and

carries out some local computation. (See, for ex-

ample, [8, 11, 13, 15, 17, 20, 21, 22, 23, 24] for

results involving time complexity in this model.)

The most basic time bound results in these papers

are matching upper and lower bounds of j + 1 on

the number of synchronous rounds of communica-

tion required for reaching agreement in the pres-

ence of at most ~ faults.

We consider how t~ese bounds are affected by

using, instead of the synchronous model, one in

which there is inexact timing information. In par-

ticular, we assume that the amount of time be-

tween any two consecutive steps of any nonfaulty

process is at least c1 and at most C2, where c1

and C2 are known constants; thus, C = c2/cl is

a measure of the timing uncertainty. We also as-

sume that the time for message delivery is at most

d.1 Since the agreement algorithm is not required

to be correct if any message delay exceeds d, one

might choose a conservative (large) upper bound

d. Since actual message delays during particu-

lar executions of the algorithm could be smaller

lResults of [9, 16] imply that if either one of the bounds

bounds c1 or d does not exist, then there is no agreement

algorithm tolerant to even one fault. In the case that only cz

does not exist, agreement tolerant to one fault is impossible

assuming that receiving and sending are not part of the

same atomic step.

than the worst-case bound d, we use a different

parameter 6 to denote the maximum actual mes-

sage delay. Since processes are assumed to fail

only by stopping, process failures can be detected

by “timeouts”; that is, if an expected message

from some process is not received within a suf-

ficiently long time, then that process is known to

have failed.

Let T denote the worst-case time to detect a

failure, i.e., the elapsed time between the failure

of some process p and the time when all correct

processes determine that p has failed; a straight-

forward implementation of the timeout yields T

roughly equal to Cd. To see why d is multiplied by

C in the bound, note that in order to ensure that

time d has elapsed (e.g., in order to guarantee that

no messages remain to be delivered), a process

must wait for d/cl of its own steps, since it might

be running “fast” (i.e., time c1 between steps).

But if the process is actually running ‘(slow” (i.e.,

time C2 between steps), the actual waiting time

will be c2(d/cl) = Cd.

Initially, we hoped to be able to adapt known

results about the rounds model to obtain good

bounds for the version with inexact timing. In-

deed, an (~+ I)-round algorithm can be adapted

in a straightforward way to yield an algorithm for

the timing-based model that requires time at most

(~ + l)T, or roughly (j + I) Cd. However, the
problem turned out to be considerably more com-

plicated. To illustrate this, we consider two inter-

esting cases of the problem and note that, in each

case, there is a large gap between the naive upper

bound and known lower bounds.

The first case focuses on uncertainty in process

speed, i.e., C can take on any value greater than or

equal to 1, while assuming that 6 = d. Taking 6 =

d models a common assumption made in analyzing

distributed algorithms, that actual message delays

are as large as the worst-case bound d. In this

case, as in the general case, the naive upper bound

is roughly (~+ I) Cd. On the other hand, a simple

modification to the proof that ~ + 1 rounds are

required in the rounds model gives a lower bound

of time (~ + l)d. This leaves a gap of a factor

equal to the timing uncertainty C.

The second case focuses on uncertainty in mes-

sage delivery time, while assuming that processes
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1C=l (2f - 1)6+ d (2 f–n)6+d if n~2f

Table 1: Summary of Time Bounds

take steps in lock-step synchrony at a, constant

rate. That is, C = 1, and the actual message

delivery time 6 is any value that is less than or

equal to the worst-case message delivery time d.

(This model is studied in the context of end-to-end

communication problems in [19]. ) In this case, the

naive upper bound is roughly (~+ l)d, even in ex-

ecutions with 8 << d; thus, the naive algorithm

does not take advantage of small message delays

when they occur. On the other hand, the (~+ l)-

round lower bound for the rounds model yields a

lower bound of time (~ + 1)6 in executions with

actual message delay 6, This leaves a gap of a

factor equal to the ratio d/J.

Thus, it appears that straightforward exten-

sions of known results for the rounds model do

not yield tight bounds for the version of the prob-

lem with inexact timing. In this paper, we obtain

much closer upper and lower bounds for the tim-

ing model. In particular, to a large extent, we

answer the question of how the time cc)mplexity

depends on C and 6,

The first principal result of this paper is an

agreement algorithm in which the worst-case time

T for a timeout is incurred at most once, yield-

ing a running time of approximately (2f – 1)6 + T

in the worst case.2 This represents a significant

reduction in complexity over the naive algorithm

in case C >> 1 or 6 << d. An interesting fea-

ture of the algorithm is that it can be viewed as

an asynchronous algorithm that uses a fault de-

tection (e.g., timeout) mechanism. That is, the

timing bounds c1, C2, d are used only in the fault

‘We say ‘[approximately” since, in our formal model, a

message could be delivered in time 6 and it could take an

additional time C2 for the receiver to take a step and send a

response. To simplify the expression of our bounds in this

Introduction, we approximate the bounds by assuming that

cz << 6 and neglecting the C2 term. The formal statements

of our results in later sections give the precise bounds.

detection mechanism. This algorithm uses timing

information in a novel way to achieve fast time

performance.

We then consider the two cases described above.

Our results for these cases are summarized in Ta-

ble 1. The upper bound in each case is obtained

from the time bound of the main algorithm by

substituting an upper bound for T. We also prove

lower bounds for both cases. The lower bound

for the case b = d (where the focus is on uncer-

tainty in process step time) is our second principal

result. Its proof is unusual in that it combines,

in a nontrivial way, three different lower bound

techniques: a “chain argument”, used previously

([6, 8, 11, 13, 15, 20, 22]) to prove that j + 1

rounds are required in the synchronous rounds

model; a ‘(bivalence” argument, used previously

([9, 16]) to prove that fault-tolerant agreement

is impossible in an asynchronous system; and a

‘(time stretching” argument, used previously ([3])

to prove lower bounds for resource allocation prob-

lems. Our bounds are reasonably tight: in the

6 = d case, they demonstrate that the time com-

plexity only involves Cd, the timeout bound, in

a single additive term; Cd is not multiplied by ~

(the total number of potential failures) as in the

naive algorithm. Likewise, in the C = 1 case, our

results demonstrate that the time complexity only

involves d in a single additive term; d is not mul-

tiplied by ~,

Regarding related work, there has been a con-

siderable amount of previous work on the agree-

ment problem in various models; a representative

selection of references to this work appears above.

However, there has been very little work so far on

this problem with inexact timing information.

Some prior work on distributed agreement in

a model with inexact timing information appears

in [12]. The main emphasis in [12] was on deter-

mining the maximum fault tolerance possible for

various fault models; only rough upper bounds on

the time complexity of the algorithms were given,

and no lower bounds on time were proved. In con-

trast, the main emphasis of the present paper is

on time complexity.

Related work on the iatency (the worst-case

elapsed time as measured on the clock of any cor-

rect process) of reaching agreement when proces-
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SOIS are not completely synchronous appears in [5]

and [27]. These papers assume that processor

clocks are synchronized to within some fixed ad-

ditive error, and the case 6< d is not considered.

Unlike the results in our paper, these results are

stated in terms of clock time rather than absolute

real time. Although it is possible to translate re-

sults from those papers into our model, doing so

appears to yield results with a less precise depen-

dency on the timing uncertainty than we obtain

here.

This work is part of an emerging study of the

real-time behavior of distributed systems. Other

work in this area includes the extensive literature

on clock synchronization algorithms (see [26] for

a survey). More recently, the mutual exclusion

problem has been studied in a timing-based model

with C > 1 [3]. Also, the time complexity for

a synchronizer algorithm’ to operate in a timing-

based network is studied in [4], and the time com-

plexity of leader election algorithms in a timing-

based model appears in [7].

2 Definitions

In this section, we outline the definitions for the

underlying formal model; complete definitions ap-

pear in the full paper [2],

An algorithm P consists of n processes

pi,. . . , pn. Each process pi is modeled as a (possi-

bly infinite) state machine whose state set contains

a distinguished initial state and a distinguished

fail state. A con$guration C is a vector consist-

ing of local states of all processes. The initial

co njiguTation is the vector of initial states. Pro-

cesses communicate by sending messages (taken

from some alphabet M) to each other. A send

action send(j, m) represents the sending of mes-

sage m to p~. Processes can receive inputs from

some set V of vaiues. Each process pi follows a de-

terministic local protocol that determines its state

transitions and the messages it sends.

We model a computation of the algorithm as a

sequence of configurations alternated with events.

Events are classified as either process steps, deliv-

ery events or input events. A step of process pi

is, in turn, either a computation event or a failure

event. In a computation event, based on its cur-

rent state, p, may perform a set S of send actions

and may update its state. 3 In a ~adure event, the

state determines a set S of send actions as before,

but some arbitrary subs et of these send actions are

actually performed. The process p, then enters

the jail state. It is convenient to assume that p,

continues to take computation steps after failing,

although it stays in the ~ail state and no messages

are sent at steps after p,’s failure event.

A deliveTy event at p, represents the delivery

of a message m G M to p,, and an input event

represents the delivery of an input value v G V to

P%.4 In these events, the process p,, based on m

(or v) and its local state, may change its state,

A timed event is a pair (7r, t), where r is an

event and t, the “time”, is a nonnegative real

number. A timed sequence is an infinite sequence

of alternating configurations and timed events

CY=co, (7fl, tl), cl,..., (Tj, tJ), C3,. . .. where the

times are nondecreasing and unbounded.

Fix real numbers c1, C2, and d, where O < c1 <

C2 < co and O < d < co. Letting a be a timed

sequence as above, we say that CYis a timed exe-

cution of P provided that the following all hold:

(a) CO,~~,C~,...,~j,Cj,... is a legal execution of

P as described above, where Co is the initial con-

figuration, (b) each process takes infinitely many

steps in a, including a step at time O, (c) for each

p,, the time between each pair of successive steps

of pa is at least c1 and at most C2, and (d) if mes-

sage m is sent to p% at time t then the matching

delivery of m to pi occurs at some time t’with

t<t’~t+d.

For the rest of the paper let D denote d + C2.

For any timed execution a, we define deiay(a) to

be the maximum delay of any message delivery in

a. When CYis clear from context, we will often

use the notation 6 to denote deiay(a), and will let

31n all our algorithms the set S of send actions will be

broadcast(m), that is, {seno!(l, m), . . . . seno!(n, m)}.

4The original definition of the problem in synchronous

systems (e. g., [21]) assumes that all processes begin exe-

cuting simultaneously with their initial values already in

their states. This degree of initial synchronization is not

very realistic in a distributed network. Since we are inter-

ested in capturing timing uncertainty, we have included in-

put events in the definitions to permit asynchronous starts

of the algorithm.
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A=6+c2.

Wenowdefine the agreement problem. Let Vbe

a set of values. We assume that each p? can irre-

versibly decide on a value v G V (say by entering

a special decision state). A timed execution a is

f-admissible if at most f processes fail in CYand a

cent ains exactly one input event for ea,ch pi. De-

fine start(a) to be the minimum time t such that,

by time t, every p, has received its input value and

taken at least one step.

Fix constants c1, C2, d as above and fix a nonneg-

ative integer ~. Let l? be a mapping from the posi-

tive reals to the positive reals. An algorithm solves

the agreement prob/em foT f fauits wa’thin time B

provided that each of its f-admissible timed exe-

cutions a satisfies the following conditions:

1.

2.

3.

(Agreement) No two different prclcesses de-

cide on different values;

(Validity) If some process decides on v, then

some process receives input value v in a;

(Time Bound) Every process either has a

failure event or makes a decision by time

start(a) + B(deiay(cr)).

We carry out the main development using a

Boolean version of the problem, i.e., V = {O, 1}.

In the full paper ([2]) we show that the lmain algo-

rithm can be extended to the case of an arbitrary

value set.

3 The Algorithm

3.1 The Timeout Task

In the algorithm we describe below, it will be con-

venient to describe each pi as a parallel composi-

tion of two tasks, a “timeout” task and a “main”

task. The timeout task of p, contains the state

component halted, a subset of {1, . . . . n],, contain-

ing the indices of processes whose halting (in par-

ticular, whose failure) has been detected by pi.

We can describe and analyze the main algorithm

without knowing how the timeout task works in

detail. We need only that it satisfy the following

two properties:

T1.

T2.

If any pc adds j to halted at time t, then p]

halts, and every message sent from PJ to pi is

delivered strictly before time t.

There is a constant T such that, if pj halts at

time t,then every p, either halts or adds j to

baited by time t + T.

We indicated earlier that a timeout task can be

implemented with T roughly equal to Cd; more

precisely, the task can be implemented with T ap-

proximately equal to Cd + 6. Here we sketch a

simple construction. At each step, each process

broadcasts a message alive. A process stops send-

ing alive messages if it decides. If some process p,

has run for sufficiently many steps without receiv-

ing an alive message from the process pj, then p,

concludes that pj has halted.5 Specifically, “suf-

ficiently many steps “ is lD/cl~ + 1 steps. Intu-

itively, a process should wait for about d/cl steps

to ensure that time d has elapsed. It is not hard

to verify that properties T1 and T2 hold with a

timeout bound of T ~ Cd + d + (C + 2)c2, or

approximately Cd+ b if C2 << d.

3.2 Description of the Algorithm

The following is our basic upper bound result.

Theorem 3.1 Assume the ezistence o~ a timeout

task with time bound T. There is an aigorithm

which, for any f < n, solves the agreement pTob-

lem for f faults within time

(2f - l)A + max{T,3A}.

Assuming C2 <<6 and T > 36, the time is ap-

proximately (2f - 1)6 + T. Assuming T is ap-

proximately equal to Cd+ 6 as above, the time is

approximately 2f6 + Cd.

Now we give an informal description of the

“main” task for process p,, and we outline the ar-

guments showing that the algorithm is correct. In

Section 3.3 we state the key lemmas used in the

formal correctness proof. The algorithm is given

in more detail in Figure 1 in precondition-effect

style. In this code, v, holds the input value of pi,

5While this strategy gives a good bound in theory,

it has high message complexity. A more reasonable ap-

proach in practice would be to send the alive message only

periodically.
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Precon&ltion: initial next-phase transition

T=O

Vi=l

Effect:

broadcast((O, z))

r’:=1

Precondition:
r=o

V;=()

Effect:

broadcast((l, i))

decide(0)

Precondition:

T>]

there exists

Effect:

initial decision transition

next-phase transition

a j such that (r, j) e buff

broadcast((~, z))

T:= 7-+1

Precondition: decision transition

r~l

for all j @ halted, (r – l,j) e bufl

there is no j such that (r, j) ~ buff

Effect:

broadcast((r + 1, z))

decide(r mod 2)

Figure 1: The “main” task of the agreement algo-

rithm for process pi.

i.e., an input event which delivers v to pt sets v,

to v and causes the algorithm to start. The local

variable r is a phase number, initially O. The state

component bufl is a message buffer which holds all

received messages.

The algorithm proceeds in a sequence of phases,

numbered consecutively starting with O. Each

process attempts to reach a decision at each phase;

however, at even-numbered phases, processes are

only permitted to decide on O, whereas at odd-

numbered phases they can only decide on 1. Fur-

thermore, a process is only permitted to decide at

a phase r provided it knows that no process has

decided at phase r – 1. Thus, if any process de-

cides at phase r, the algorithm ensures that no

process can decide at phase ~ + 1. More strongly,

in this case the algorithm ensures that every non-

failed, undecided process learns in phase r+ 2 that

no process has decided at phase r + 1, and then

decides at phase r +2. Since r + 2 and r have the

same parity, it follows that all decisions agree.

Validity is ensured by forcing all non-failed pro-

cesses to decide at phase O in case they all have

input O, and at phase 1 in case they all have in-

put 1. To ensure termination, if a phase r oc-

curs during which no process fails, and such that

no process has decided up through phase r, then

the algorithm ensures that every nonfaulty pro-

cess will decide no later than phase r + 1. (Such

a phase must occur among the first j + 1 phases.)

The mechanism used by the algorithm to guar-

antee all of these properties is the following. If

a process does not decide at phase r, it broad-

casts the number r before going on to the following

phase r+l. On the other hand, if a process decides

at phase r, it “skips)’ broadcasting r and instead

broadcasts r +1, before deciding and terminating.

In order for a process to decide at phase r z 1,

it ensures that it has received the message r – 1

from all non-halted processes, and no message r-

from any process. This ensures that if a process

decides at phase r then no process has decided at

phase r– 1.

Also, if some process p decides at phase r, every

undecided process receives the message r + 1 from

p at phase r + 1, but no message r from p (since p

skips sending r). This ensures that each undecided

and non-failed process broadcasts r+ 1 and goes on

to phase r + 2. Then every undecided, non-failed

process will receive the message ~+ 1 from all non-

halted processes, and no message ~ + 2 from any

process. It follows that each undecided, non-failed

process decides at phase r + 2.

The algorithm allows any process having input

O to decide at phase O. If all processes have in-

put 1, then no process decides at phase O. In this

case, every non-failed process broadcasts O and no

process sends 1, so that every process has its pre-

condition for decision satisfied at phase 1. Validity

is thus guaranteed.

For termination, let r be a phase during which

no process fails; such a phase must occur among
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phases 0,1,. ... ~, so r ~ j, If some process de-

cides at a phase numbered at most r, then as

argued above all non-failed processes decide by

phase r + 2 < ~ + 2. On the other hand, if no

process has decided up to and including phase r,

then no process sends the message r -t 1 and all

non-failed processes broadcast the message ~. So

the preconditions for every process to decide at

phase r + 1 are satisfied.

Remark. Our algorithm does not require an a prz-

OTZ upper bound on the number of faults. All non-

faulty processes decide no later than ph a,se ~ + 2,

where ~ is the number of faults that actually occur

in the execution. In consequence, the algorithm is

an “early stopping” algorithm (cf. [10]). As noted

above, the algorithm also has the property that if

all initial values are the same then all nonfaulty

processes decide by the end of phase 1, regardless

of the number of faults.

3.3 Correctness Proof

We first give a definition that is central to both

the correctness proof and the timing analysis. A

phase r is quiet if there exists a process pi such

that no process pj sends the message (r, j) to pi.

We now state the key lemmas used in the proof

of correctness. The proofs are similar to the ar-

guments outlined above, and all details are given

in [2]. We give here the proofs of Lemmiis 3.4 and

3.5 since they are short and illustrate why a quiet

phase is a useful concept and how it is used. When

we say that a process begins a transition, we mean

that the precondition for the transition is satis-

fied and either the associated computation event

or an associated failure event is performed. The

first lemma shows that nonfaulty processes do not

get “stuck” in a phase.

Lemma 3.2 Let r ~ O, and let p, be a nonfaulty

proce9s. Then p, either decides at a phase stTictly

less than r, OT begins a next-phase or decision

transition at phase T.

Lemma 3.3 If some pTocess decides at phase T ~

O, then no pTocess begins a decision transition at

phase T + 1 (so no pTocess decides at phase T+ 1).

Lemma 3.4 Ifphase ~ is quiet, then all processes

either fail or decide by the end of phase r.

Proofi If some pj does not fail or decide by the

end of phase T, then by Lemma 3.2 it success-

fully broadcasts the message (T, j) while executing

a next-phase transition at phase r. This contra-

dicts the assumption that phase T k quiet. 1

Lemma 3.5 Assume that some process decides at

phase T. Then phase T+2 is quiet (so all processes

eitheT fad OT decide no iate?” than phase T + 2).

Proofi By Lemma 3.3, no process begins a de-

cision transition at phase T + 1, Since the earliest

sending of a message conta.king T + Z must occur

at a decision transition at phase r + 1, it follows

that phase r + 2 is quiet. ■

Since a process must decide r mod 2 at phase

T, Lemmas 3.3, 3.4, and 3.5 imply the agreement

property.

Termination follows from Lemma 3.4 and the

following:

Lemma 3.6 Any f-admissible timed execution

contains a quiet phase, numbered no larger than

f+2.

The validity property is easy to prove, as out-

lined above.

3.4 Timing Analysis

We outline the proof that the time required for

this algorithm to terminate only involves a single

occurrence of the timeout bound 7’ % Cd+ 6, not

multiplied by ~. (The complete proof appears in

the full paper [2],)

Fix an arbitrary ~-admissible timed execution

a. All definitions are with respect to a.

Note that the only transition that occurs be-

cause of a timeout is the (non-initial) decision

transition, Suppose this transition is begun by

a process p~ at a phase h and no (h, j) message

ever arrives at p;; in particular, phase h is quiet.

Then the timeout can take time T, but then by

Lemma 3.4 all nonfault y processes will decide no

later than phase h.
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On the other hand, suppose that, at all phases r

prior to some particular phase h, whenever a pro-

cess pi begins the decision transition, some (r, j)

message does arrive at p;. Then all (r, j) mes-

sages must arrive at pi ajter the decision transi-

tion (or the transition would not be enabled). For

each r ~ 1, denote by fr the number of processes

whose failure step is a transition during which the

message T should be broadcast. Then we claim

that each such phase T takes only time depending

on ~r15, but not on 2’. This is because each (r, j)

message originates (either directly or via a chain

of rebroadcasts) when some process performs a de-

cision transition at phase r – 1. The length of a

shortest such chain can be at most j, + 1 (be-

cause a non-failed process succeeds in communi-

cating its message to everyone). Therefore, the

time for phase ~ is bounded by (~, +1)6, the length

of the chain multiplied by the time to deliver each

message in the chain. Note that a process has at

most one failure step and thus, in all ~-admissible

executions, X,>l ~, < .f.

More preciseiy, for T > 0, define t, to be the

minimum time t such that all processes either fail,

decide, or perform a transition from phase T- to

phase r + 1 no later than time t. Note that t, <

t,+l for all r, and tO < s where s = start(a). We

show :

Lemma 3.7 FOT any non-quiet phase r ~ 1,

tr < t,-1 + A(f, + 1).

Let h be the smallest number of a quiet phase.

By induction we have:

Corollary 3.8 For every r with 1 ~ r ~ h – 1,

t, < A . ~;=l(~, + 1) + S.

To summarize, Corollary 3.8 bounds the time

taken up to the first quiet phase h. Phase h can

take time T, but all non-failed processes decide no

later than phase h. Recall also from Lemma 3.6

that h< f+2.

We now prove an upper bound result that is

slightly weaker than the one in Theorem 3.1.

Theorem 3.9 There is an algorithm to soive the

agreement problem foT f faults within time

(2j+l)A+T.

k’ ro Ot-: My Lemma J .4, all processes either fail

or decide no later than time -th.It is easy to see,

for any phase r, that t, < t,-1 + T. Therefore, all

processes either fail or decide no later than time

t~–l + T. NOW

th-l+T < A.~~j~(~;+l)+T+s

by Corollary 3.8,

S (f+(h-l))A+T+s
< (2 f+l)A+T+s

by Lemma 3.6.

■

The smaller bound given in Theorem 3.1 re-

quires a finer analysis which we leave to the full

paper [2]. For C z 2, there is an example

showing that the smaller bound is close (within

O(cz(C + f))) to the actual worst-case running

time of the algorithm. The better bound is ob-

tained by considering the latest time at which a

failure occurs. The time T taken by the timeout

task can then be measured starting from the time

of the latest failure.

4 Upper and Lower Bounds for

Two Cases

In this section, we consider the two cases described

in the Introduction, emphasizing the uncertainty

in process step time and message delivery time,

respectively, In each case, we specialize our al-

gorithm to obtain an upper bound, and we sepa-

rately prove a corresponding lower bound result.

4.1 The Case 6 = u!

In this case, the general upper bound specializes

to yield approximately 2fd + Cd. To simplify the

expression of the exact bound, we assume C ~ 2.6

Recall that D = d + CZ.

Theorem 4.1 Assume C > 2. There is an algo-

n’thm which, foT any f < nj solves the agreement

pToblem foT f faults within time 2fD + CD + c2.

bIf C <2, the straightforward upper bound (f+ l)cd

is smaller than 2fd + Cd.
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We can prove a lower bound which has a

similar form to the upper bound, except that

2~d is replaced by (~ – l)d. The proof of the

lower bound (~ – l)d + Cd requires three steps

and employs techniques used elsewhere in prov-

ing lower bounds and impossibility results in the

synchronous rounds model, the completely asyn-

chronous model, and the timing-based model, The

first step is an adaptation of the proof showing

that ~ + 1 rounds are necessary for Byzantine

agreement in the rounds model [6, 8, 11, 13, 15,

20, 22]. This yields the existence of two “long”

execution prefixes (taking time at least (~ – I)d),

each having only ~ -1 faults, distinguishable only

to one correct process, and each extendible to an

execution with a different decision va,lue. The

second step mimics a key lemma in the proof

that agreement is impossible in asynchronous sys-

tems [9, 16]. In this step it is shown that at

least one of the two long execution prefixes just

described is actually “bivalent,” in that it has

two possible extensions with no additional failures,

each yielding a different decision value, and in each

of which processes take steps as quickly as possi-

ble. This long bivalent execution is developed a

bit more in a technical lemma that shc~ws it can

be extended to a “maximal” fast bivalent execu-

tion containing at most ~ – 1 faults. The last step

exploits the one remaining fault, via a technique

of [3], to show that after this maximal bivalent ex-

ecution at least one ‘(long timeout” (taking time

at least Cd) is necessary. Leaving the many de-

tails to the full paper [2], we state the lower bound

result.

Theorem 4.2 Assume 1 < ~ < n – 1. There is

no algorithm in the timing-based model that solves

the agreement problem for J jaults within time

strictly less than (f – l)d + Cd. This lower bound

holds even in the case that all processes receive

their input values at time O.

4.2 The Case C = 1

In the case where C = 1, we can use iin “opti-

mized” timeout task that works with T ~: d + 2C1.

Using Theorem 3.1 again, we obtain am upper

bound of approximately (2f – 1)6 + d. To sim-

plify the expression of the exact bound, we assume

d z 36.

Theorem 4.3 Assume C = 1 and d ~ 36. There

is an aigorithm which, foT any f < n, ~olves the

agreement problem JOT f ]aults within time

(2 f-l) A+d+3cl.

By adapting part of the argument used in the

previous lower bound, and adding one new idea,

we show the following lower bound; the proof is

given in [14].

Theorem 4.4 Assume C = 1 and f + 1 < n <

2f. There is no algorithm in the timing-based

model that solves the agreement problem for f

faults within, time stTictly less than (2f - n)t$ + d.

This lower bound holds even in the case that all

processes Teceive their input values at time O.

Note that if n = f + 1, the lower bound is

{f – 1)6 + d which is similar to the previous lower

bound. As n approaches 2f, however, the lower

bound degenerates to d. Concerning the case

n > 2f, methods of [12] give an agreement al-

gorithm with running time 0( f 6), showing that

the time bound need not depend on d at all in

this case; the details can be found in [14].

5 Conclusions

t io ns

Although there is a gap

and Open Ques-

between our lower bound

of (f – l)d+Cd and our upper bound of 2fd+Cd,

we feel we have substantially answered the ques-

tion of how the time requirement depends on the

timing uncertainty, as measured by C = c2/cl. In

particular, we have shown that only a single “long

timeout” (i.e., a timeout requiring time Cd) is re-

quired, and this long timeout cannot be avoided.

We reach a similar conclusion for the 6< d case.

An obvious open problem is to close the gaps

that remain between the upper and lower bounds

for the two cases. Another question is whether

these results can be extended to other types of fail-

ures such as Byzantine or omission failures. Some

results on this last question have been obtained

by Ponzio [25].
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A more general direction for future research is to

try to extend the techniques described in this pa-

per to permit simulation of arbitrary round-based

fault-tolerant algorithms in the model with timing

uncertainty. The hope is that such a simulation

will not incur the multiplicative overhead of T of

the simple transformation described in the Intro-

duction. If a problem can be solved by reduction

to agreement (by first agreeing on the input val-

ues of all processes and then locally applying some

function to the agreed upon values), then our al-

gorithm can be used to solve the problem within

time approximately 2~6 + T. However, there are

problems whose round complexity is significantly

smaller than the round complexity of agreement;

for example, an algorithm in [18] can be used to

solve the ~enaming problem ([1]) within O(log n)

rounds, even in the presence of up to n – 1 faults.

For such problems, reducing the dependency on

T is achieved at the cost of increasing the depen-

dency on 6.

As mentioned earlier, the work presented in

this paper is part of an ongoing effort to ob-

tain a precise understanding of the role played by

time, and timing uncertainty in particular, in dis-

tributed systems. The upper bound presented in

this paper is based on an approach that departs

from known algorithms for agreement in the syn-

chronous model. We believe that there are many

other fundamental tasks in distributed systems

whose study might lead to the discovery of new

approaches for coping with timing uncertainties.
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