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Abstract: Upper and lower bounds are proved
for the real time complexity of the problem of
reaching agreement in a distributed network, in
the presence of process failures and inexact infor-
mation about time. It is assumed that the amount
of (real) time between any two consecutive steps
of any nonfaulty process is at least c; and at most
c2; thus, C = cafc1 is a measure of the timing
uncertainty. It is also assumed that the time for
message delivery is at most d. Processes are as-
sumed to fail by stopping, so that process failures
can be detected by timeouts.

Let T denote the worst-case time to detect a
failure, i.e., the elapsed time between the failure
of some process p and the time when all correct
processes determine that p has failed; a straight-
forward approach yields T roughly equal to Cd.
Letting f denote the number of faults to be toler-
ated, a simple adaptation of an (f +1)-round syn-
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chronous agreement algorithm takes time (f+1)T,
or roughly (f + 1)Cd.

The first principal result of this paper is an
agreement algorithm in which the worst-case time
T for a timeout is incurred at most once, yield-
ing a running time of approximately 2f6 + T in
the worst case, where § is an upper bound on the
message delay that actually occurs in a given ex-
ecution. This represents a significant reduction in
complexity in case C > 1 or § € d. The second
principal result is a lower bound of (f — 1)d + Cd
on the running time of any agreement algorithm,
for the case where § = d; this is close to the upper
bound of 2fd + Cd for this case.

-

1 Introduction

Distributed computing theory has studied the
complexity requirements of many problems in syn-
chronous ard asynchronous models of computa-
tion. There is an important middle ground, how-
ever, between the synchronous and asynchronous
extremes: models that include inexact informa-
tion about timing of events. This middie ground is
reasonable for modeling real distributed systems,
in which the amount of time required for processes
to take steps, for clocks to advance, and for mes-
sages to be delivered are generally only approxi-
mately known.

We are interested in determining the complex-
ity of problems of the sort arising in distributed
computing theory in models with inexact timing
information. In particular, in this paper, we con-
sider the time complexity of the problem of fault-
tolerant distributed agreement. In the version of



the agreement problem we consider, there is a sys-
tem of n processes, pi,...,Pn, Where each p, is
given an input value v;. Each process that does
not fail must choose a decision value such that
(i) no two processes decide differently, and (ii) if
any process decides v then v is the input value
of some process. We assume that processes fail
only by stopping. This abstract problem can be
used to model a variety of problems in distributed
computing, e.g., agreement on the value of a sen-
sor in a real-time computing system, or agreement
on whether to commit or abort a transaction in a
database system.

The time complexity of the distributed agree-
ment problem has been well studied in the syn-
chronous “rounds” model. In this model, the com-
putation proceeds in a sequence of rounds of com-
munication. In each round, each non-failed pro-
cess may send out messages to all processes, re-
ceives all messages sent to it at that round, and
carries out some local computation. (See, for ex-
ample, [8, 11, 13, 15, 17, 20, 21, 22, 23, 24] for
results involving time complexity in this model.)
The most basic time bound results in these papers
are matching upper and lower bounds of f+ 1 on
the number of synchronous rounds of communica-
tion required for reaching agreement in the pres-
ence of at most f faults.

We consider how these bounds are affected by
using, instead of the synchronous model, one in
which there is inexact timing information. In par-
ticular, we assume that the amount of time be-
tween any two consecutive steps of any nonfaulty
process is at least ¢; and at most ¢y, where ¢
and c; are known constants; thus, C = cp/c;1 is
a measure of the timing uncertainty. We also as-
sume that the time for message delivery is at most
d.! Since the agreement algorithm is not required
to be correct if any message delay exceeds d, one
might choose a conservative (large) upper bound
d. Since actual message delays during particu-
lar executions of the algorithm could be smaller

"Results of [9, 16] imply that if either one of the bounds
bounds ¢; or d does not exist, then there is no agreement
algorithm tolerant to even one fault. In the case that only c;
does not exist, agreement tolerant to one fault is impossible
assuming that receiving and sending are not part of the
saIme atomic step.
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than the worst-case bound d, we use a different
parameter § to denote the maximum actual mes-
sage delay. Since processes are assumed to fail
only by stopping, process failures can be detected
by “timeouts”; that is, if an expected message
from some process is not received within a suf-
ficiently long time, then that process is known to
have failed.

Let T denote the worst-case time to detect a
failure, i.e., the elapsed time between the failure
of some process p and the time when all correct
processes determine that p has failed; a straight-
forward implementation of the timeout yields T
roughly equal to C'd. To see why d is multiplied by
C in the bound, note that in order to ensure that
time d has elapsed (e.g., in order to guarantee that
no messages remain to be delivered), a process
must wait for d/c; of its own steps, since it might
be running “fast” (i.e., time c; between steps).
But if the process is actually running “slow” (i.e.,
time cy between steps), the actual waiting time
will be ca(d/c1) = Cd.

Initially, we hoped to be able to adapt known
results about the rounds model to obtain good
bounds for the version with inexact timing. In-
deed, an (f + 1)-round algorithm can be adapted
in a straightforward way to yield an algorithm for
the timing-based model that requires time at most
(f + )T, or roughly (f + 1)Cd. However, the
problem turned out to be considerably more com-
plicated. To illustrate this, we consider two inter-
esting cases of the problem and note that, in each
case, there is a large gap between the naive upper
bound and known lower bounds.

The first case focuses on uncertainty in process
speed, i.e., C can take on any value greater than or
equal to 1, while assuming that § = d. Taking § =
d models a common assumption made in analyzing
distributed algorithms, that actual message delays
are as large as the worst-case bound d. In this
case, as in the general case, the naive upper bound
is roughly (f+1)Cd. On the other hand, a simple
modification to the proof that f + 1 rounds are
required in the rounds model gives a lower bound
of time (f + 1)d. This leaves a gap of a factor
equal to the timing uncertainty C.

The second case focuses on uncertainty in mes-
sage delivery time, while assuming that processes



Case || Upper Bound Lower Bound

§=d || 2fd+Cd | (f-1)d+Cd

C=1|(@f-1)6+d | (2f-n)6+d if n<2f

Table 1: Summary of Time Bounds

take steps in lock-step synchrony at a constant
rate. That is, C = 1, and the actual message
delivery time ¢ is any value that is less than or
equal to the worst-case message delivery time d.
(This model is studied in the context of end-to-end
communication problems in [19].) In this case, the
naive upper bound is roughly (f+1)d, even in ex-
ecutions with § < d; thus, the naive algorithm
does not take advantage of small message delays
when they occur. On the other hand, the (f + 1)-
round lower bound for the rounds model yields a
lower bound of time (f + 1) in executions with
actual message delay 6. This leaves a gap of a
factor equal to the ratio d/$.

Thus, it appears that straightforward exten-
sions of known results for the rounds model do
not yield tight bounds for the version of the prob-
lem with inexact timing. In this paper, we obtain
much closer upper and lower bounds for the tim-
ing model. In particular, to a large extent, we
answer the question of how the time complexity
depends on C and é6.

The first principal result of this paper is an
agreement algorithm in which the worst-case time
T for a timeout is incurred at most once, yield-
ing a running time of approximately (2f - 1)6 +7T
in the worst case.? This represents a significant
reduction in complexity over the naive algorithm
in case C > 1 or § € d. An interesting fea-
ture of the algorithm is that it can be viewed as
an asynchronous algorithm that uses a fault de-
tection (e.g., timeout) mechanism. That is, the
timing bounds c¢j,cy,d are used only in the fault

?We say “approximately” since, in our formal model, a
message could be delivered in time 6 and it could take an
additional time c; for the receiver to take a step and send a
response. To simplify the expression of our bounds in this
Introduction, we approximate the bounds by assuming that
¢z € ¢ and neglecting the ¢; term. The formal statements
of our results in later sections give the precise bounds.
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detection mechanism. This algorithm uses timing
information in a novel way to achieve fast time
performance.

We then consider the two cases described above.
Our results for these cases are summarized in Ta-
ble 1. The upper bound in each case is obtained
from the time bound of the main algorithm by
substituting an upper bound for T. We also prove
lower bounds for both cases. The lower bound
for the case § = d (where the focus is on uncer-
tainty in process step time) is our second principal
result. Its proof is unusual in that it combines,
in a nontrivial way, three different lower bound
techniques: a “chain argument”, used previously
([6, 8, 11, 13, 15, 20, 22]) to prove that f + 1
rounds are required in the synchronous rounds
model; a “bivalence” argument, used previously
([9, 16]) to prove that fault-tolerant agreement
is impossible in an asynchronous system; and a
“time stretching” argument, used previously ([3])
to prove lower bounds for resource allocation prob-
lems. Our bounds are reasonably tight: in the
§ = d case, they demonstrate that the time com-
plexity only involves Cd, the timeout bound, in
a single additive term; Cd is not multiplied by f
(the total number of potential failures) as in the
naive algorithm. Likewise, in the C = 1 case, our
results demonstrate that the time complexity only
involves d in a single additive term; d is not mul-
tiplied by f.

Regarding related work, there has been a con-
siderable amount of previous work on the agree-
ment problem in various models; a representative
selection of references to this work appears above.
However, there has been very little work so far on
this problem with inexact timing information.

Some prior work on distributed agreement in
a model with inexact timing information appears
in [12]. The main emphasis in [12] was on deter-
mining the maximum fault tolerance possible for
various fault models; only rough upper bounds on
the time complexity of the algorithms were given,
and no lower bounds on time were proved. In con-
trast, the main emphasis of the present paper is
on time complexity.

Related work on the latency (the worst-case
elapsed time as measured on the clock of any cor-
rect process) of reaching agreement when proces-



sors are not completely synchronous appears in [5]
and [27]. These papers assume that processor
clocks are synchronized to within some fixed ad-
ditive error, and the case § < d is not considered.
Unlike the results in our paper, these results are
stated in terms of clock time rather than absolute
real time. Although it is possible to translate re-
sults from those papers into our model, doing so
appears to yield results with a less precise depen-
dency on the timing uncertainty than we obtain
here.

This work is part of an emerging study of the
real-time behavior of distributed systems. Other
work in this area includes the extensive literature
on clock synchronization algorithms (see [26] for
a survey). More recently, the mutual exclusion
problem has been studied in a timing-based model
with C > 1 [3]. Also, the time complexity for
a synchromnizer algorithm to operate in a timing-
based network is studied in [4], and the time com-
plexity of leader election algorithms in a timing-
based model appears in [7].

2 Definitions

In this section, we outline the definitions for the
underlying formal model; complete definitions ap-
pear in the full paper [2].

An algorithm P consists of n processes
P1,--.,Pn. Bach process p; is modeled as a (possi-
bly infinite) state machine whose state set contains
a distinguished initial state and a distinguished
fail state. A configuration C is a vector consist-
ing of local states of all processes. The initial
configuration is the vector of initial states. Pro-
cesses communicate by sending messages (taken
from some alphabet M) to each other. A send
action send(j,m) represents the sending of mes-
sage m to p,. Processes can receive inputs from
some set V of values. Each process p; follows a de-
terministic local protocol that determines its state
transitions and the messages it sends.

We model a computation of the algorithm as a
sequence of configurations alternated with events.
Events are classified as either process steps, deliv-
ery events or input events. A step of process p;
is, in turn, either a computation event or a failure
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event. In a computation event, based on its cur-
rent state, p, may perform a set S of send actions
and may update its state.> In a faslure event, the
state determines a set S of send actions as before,
but some arbitrary subset of these send actions are
actually performed. The process p, then enters
the fail state. It is convenient to assume that p,
continues to take computation steps after failing,
although it stays in the fail state and no messages
are sent at steps after p,’s failure event.

A delivery event at p, represents the delivery
of a message m € M 1o p,, and an input event
represents the delivery of an input value v € V to
p,.* In these events, the process p,, based on m
(or v) and its local state, may change its state.

A timed event is a pair (7,t), where 7 is an
event and t, the “time”, is a nonnegative real
number. A timed sequence is an infinite sequence
of alternating configurations and timed events
a = Co,(71,t1),Ch,...,(7),t,),C,, ..., where the
times are nondecreasing and unbounded.

Fix real numbers cj, ¢z, and d, where 0 < ¢; <
ca < oo and 0 < d < oo, Letting o be a timed
sequence as above, we say that o is a timed eze-
cution of P provided that the following all hold:
(a) Co,7m1,C1,...,m,,C,, ... is alegal execution of
P as described above, where Cy is the initial con-
figuration, (b) each process takes infinitely many
steps in o, including a step at time 0, (c) for each
p., the time between each pair of successive steps
of p; is at least c¢; and at most c3, and (d) if mes-
sage m is sent to p, at time ¢ then the matching
delivery of m to p; occurs at some time t' with
t<t!' <t+d.

For the rest of the paper let D denote d + c3.
For any timed execution o, we define delay(a) to
be the maximum delay of any message delivery in
. When « is clear from context, we will often
use the notation § to denote delay(c), and will let

*In all our algorithms the set S of send actions will be
broadcast(m), that is, {send(1,m),..., send(n,m)}.

*The original definition of the problem in synchronous
systems (e.g., [21]) assumes that all processes begin exe-
cuting simultaneously with their initial values already in
their states. This degree of initial synchronization is not
very realistic in a distributed network. Since we are inter-
ested in capturing timing uncertainty, we have included in-
put events in the definitions to permit asynchronous starts
of the algorithm.



A=6+cs.

We now define the agreement problem. Let V be
a set of values. We assume that each p, can irre-
versibly decide on a value v € V (say by entering
a special decision state). A timed execution o is
f-admissible if at most f processes fail in o and &
contains exactly one input event for each p;. De-
fine start(«) to be the minimum time ¢ such that,
by time ¢, every p, has received its input value and
taken at least one step.

Fix constants cy, c2, d as above and fix a nonneg-
ative integer f. Let B be a mapping from the posi-
tive reals to the positive reals. An algorithm solves
the agreement problem for f faults within time B
provided that each of its f-admissible timed exe-
cutions o satisfies the following conditions:

1. (Agreement) No two different processes de-
cide on different values;

. (Validity) If some process decides on v, then
some process receives input value v in o;

3. (Time Bound) Every process either has a
failure event or makes a decision by time

start(a) + B(delay(a)).

We carry out the main development using a
Boolean version of the problem, ie., ¥V = {0,1}.
In the full paper ([2]) we show that the main algo-
rithm can be extended to the case of an arbitrary
value set.

3 The Algorithm

3.1 The Timeout Task

In the algorithm we describe below, it will be con-
venient to describe each p; as a parallel composi-
tion of two tasks, a “timeout” task and a “main”
task. The timeout task of p, contains the state
component halted, a subset of {1,...,n}, contain-
ing the indices of processes whose halting (in par-
ticular, whose failure) has been detected by p;.
We can describe and analyze the main algorithm
without knowing how the timeout task works in
detail. We need only that it satisfy the following
two properties:
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T1. If any p; adds j to halted at time %, then p,
halts, and every message sent from p, to p; is
delivered strictly before time t.

T2. There is a constant T such that, if p, halts at
time t, then every p, either halts or adds j to

halted by time ¢t + T.

We indicated earlier that a timeout task can be
implemented with 7 roughly equal to Cd; more
precisely, the task can be implemented with T ap-
proximately equal to Cd + 6. Here we sketch a
simple construction. At each step, each process
broadcasts a message alive. A process stops send-
ing alive messages if it decides. If some process p,
has run for sufficiently many steps without receiv-
ing an alive message from the process p,, then p,
concludes that p, has halted.® Specifically, “suf-
ficiently many steps” is |D/c1| + 1 steps. Intu-
itively, a process should wait for about d/c; steps
to ensure that time d has elapsed. It is not hard
to verify that properties T1 and T2 hold with a
timeout bound of ' < Cd + 6 + (C + 2)ca, or
approximately Cd + § if c; < d.

3.2 Description of the Algorithm
The following is our basic upper bound result.

Theorem 3.1 Assume the ezistence of a timeout
task with time bound T. There is an algorithm
which, for any f < n, solves the agreement probd-
lem for f faults within time

(2f - 1)A + max{T,3A}.

Assuming c; € § and T > 34, the time is ap-
proximately (2f — 1)6 + T. Assuming T is ap-
proximately equal to Cd + 6§ as above, the time is
approximately 276 + Cd.

Now we give an informal description of the
“main” task for process p,, and we outline the ar-
guments showing that the algorithm is correct. In
Section 3.3 we state the key lemmas used in the
formal correctness proof. The algorithm is given
in more detail in Figure 1 in precondition-effect
style. In this code, v, holds the input value of p;,

SWhile this strategy gives a good bound in theory,
it has high message complexity. A more reasonable ap-
proach in practice would be to send the alive message only
periodically.



Precondition: initial next-phase transition
r=0
vp = 1
Effect:
broadcast((0,1))
r=1
Precondition: initial decision transition
r=0
v, =0
Effect:
broadcast((1,1))
decide(0)

Precondition:
r>1
there exists a j such that (r,j) € buff

Effect:
broadcast((r,1))
ri=r+1

next-phase transition

Precondition: decision transition
r>1
for all j & halted, (r —1,7) € buff
there is no j such that (r,j) € buff
Effect:
broadcast((r + 1,%))

decide(r mod 2)

Figure 1: The “main” task of the agreement algo-
rithm for process p;.

i.e., an input event which delivers v to p, sets v,
to v and causes the algorithm to start. The local
variable 7 is a phase number, initially 0. The state
component buff is a message buffer which holds all
received messages.

The algorithm proceeds in a sequence of phases,
numbered consecutively starting with 0. Each
process attempts to reach a decision at each phase;
however, at even-numbered phases, processes are
only permitted to decide on 0, whereas at odd-
numbered phases they can only decide on 1. Fur-
thermore, a process is only permitted to decide at
a phase r provided it knows that no process has
decided at phase r — 1. Thus, if any process de-
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cides at phase r, the algorithm ensures that no
process can decide at phase r + 1. More strongly,
in this case the algorithm ensures that every non-
failed, undecided process learns in phase r+2 that
no process has decided at phase r + 1, and then
decides at phase r + 2. Since r + 2 and r have the
same parity, it follows that all decisions agree.

Validity is ensured by forcing all non-failed pro-
cesses to decide at phase O in case they all have
input 0, and at phase 1 in case they all have in-
put 1. To ensure termination, if a phase r oc-
curs during which no process fails, and such that
no process has decided up through phase r, then
the algorithm ensures that every nonfaulty pro-
cess will decide no later than phase 7 + 1. (Such
a phase must occur among the first f + 1 phases.)

The mechanism used by the algorithm to guar-
antee all of these properties is the following. If
a process does not decide at phase r, it broad-
casts the number r before going on to the following
phase r+1. On the other hand, if a process decides
at phase r, it “skips” broadcasting r and instead
broadcasts r+ 1, before deciding and terminating.
In order for a process to decide at phase r > 1,
it ensures that it has received the message r — 1
from all non-halted processes, and no message r
from any process. This ensures that if a process
decides at phase 7 then no process has decided at
phase r — 1.

Also, if some process p decides at phase r, every
undecided process receives the message r+1 from
p at phase r + 1, but no message r from p (since p
skips sending r). This ensures that each undecided
and non-failed process broadcasts r+1 and goes on
to phase r + 2. Then every undecided, non-failed
process will receive the message r+1 from all non-
halted processes, and no message v + 2 from any
process. It follows that each undecided, non-failed
process decides at phase r + 2.

The algorithm allows any process having input
0 to decide at phase 0. If all processes have in-
put 1, then no process decides at phase 0. In this
case, every non-failed process broadcasts 0 and no
process sends 1, so that every process has its pre-
condition for decision satisfied at phase 1. Validity
is thus guaranteed.

For termination, let r be a phase during which
no process fails; such a phase must occur among



phases 0,1,...,f, so r < f. If some process de-
cides at a phase numbered at most r, then as
argued above all non-failed processes decide by
phase r 4 2 < f 4+ 2. On the other hand, if ro
process has decided up to and including phase 7,
then no process sends the message r+ 1 and all
non-failed processes broadcast the message r. So
the preconditions for every process to decide at
phase r + 1 are satisfied.

Remark. Our algorithm does not require an a pre-
ori upper bound on the number of faults. All non-
faulty processes decide no later than phase f + 2,
where f is the number of faults that actually occur
in the execution. In consequence, the algorithm is
an “early stopping” algorithm (cf. [10]). As noted
above, the algorithm also has the property that if
all initial values are the same then all nonfaulty
processes decide by the end of phase 1, regardless
of the number of faults.

3.3 Correctness Proof

We first give a definition that is central to both
the correctness proof and the timing analysis. A
phase r is quiet if there exists a process p; such
that no process p; sends the message (r,7) to p;.

We now state the key lemmas used in the proof
of correctness. The proofs are similar to the ar-
guments outlined above, and all details are given
in [2]. We give here the proofs of Lemmas 3.4 and
3.5 since they are short and illustrate why a quiet
phase is a useful concept and how it is used. When
we say that a process begins a transition, we mean
that the precondition for the transition is satis-
fied and either the associated computation event
or an associated failure event is performed. The
first lemma shows that nonfaulty processes do not
get “stuck” in a phase.

Lemma 3.2 Letr > 0, and let p, be a nonfaulty
process. Then p, either decides at a phase strictly
less than r, or begins a next-phase or decision
transition at phase r.

Lemma 3.3 If some process decides at phaser >
0, then no process begins o decision transition at
phaser + 1 (so no process decides at phaser+1).
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Lemma 3.4 If phaser 1s quiet, then all processes
esther fail or decide by the end of phaser.

Proof: If some p, does not fail or decide by the
end of phase r, then by Lemma 3.2 it success-
fully broadcasts the message (r, 7) while executing
a next-phase transition at phase r. This contra-
dicts the assumption that phase r is quiet. [ |

Lemma 3.5 Assume that some process decides at
phaser. Then phaser+2 is quiet (so all processes
either fail or decide no later than phase r + 2).

Proof: By Lemma 3.3, no process begins a de-
cision transition at phase r + 1. Since the earliest
sending of a message containing r + 2 must occur
at a decision transition at phase r + 1, it follows
that phase 7 + 2 is quiet. n

Since a process must decide r mod 2 at phase
r, Lemmas 3.3, 3.4, and 3.5 imply the agreement
property.

Termination follows from Lemma 3.4 and the
following:

Lemma 3.6 Any f-admissible timed ezrecution
contains o quiet phase, numbered no larger than

FH2

The validity property is easy to prove, as out-
lined above.

3.4 Timing Analysis

We outline the proof that the time required for
this algorithm to terminate only involves a single
occurrence of the timeout bound T =~ Cd + §, not
multiplied by f. (The complete proof appears in
the full paper [2].)

Fix an arbitrary f-admissible timed execution
o. All definitions are with respect to «.

Note that the only transition that occurs be-
cause of a timeout is the (non-initial) decision
transition. Suppose this transition is begun by
a process p, at a phase h and no (hk,j) message
ever arrives at p;; in particular, phase h is quiet.
Then the timeout can take time T, but then by
Lemma 3.4 all nonfaulty processes will decide no
later than phase A.



On the other hand, suppose that, at all phases r
prior to some particular phase h, whenever a pro-
cess p; begins the decision transition, some (r,j)
message does arrive at p;. Then all (r,j) mes-
sages must arrive at p; after the decision transi-
tion (or the transition would not be enabled). For
each r > 1, denote by f, the number of processes
whose failure step is a transition during which the
message 7 should be broadcast. Then we claim
that each such phase r takes only time depending
on f,6, but not on 7. This is because each (r, )
message originates (either directly or via a chain
of rebroadcasts) when some process performs a de-
cision transition at phase 7 — 1. The length of a
shortest such chain can be at most fr + 1 (be-
cause a non-failed process succeeds in communi-
cating its message to everyone). Therefore, the
time for phase 7 is bounded by (f;+1)§, the length
of the chain multiplied by the time to deliver each
message in the chain. Note that a process has at
most one failure step and thus, in all f-admissible
executions, Y .51 fr < f.

More precisely, for r > 0, define ¢, to be the
minimum time ¢ such that all processes either fail,
decide, or perform a transition from phase r to
phase 7 + 1 no later than time t. Note that ¢, <
tr+1 for all 7, and to < s where s = start(o). We
show:

Lemma 3.7 For any non-quiet phaser > 1,
tr <tr—1+ A(fr + 1).

Let k be the smallest number of a quiet phase.
By induction we have:

Corollary 3.8 For everyr with 1 < r < h -1,
t <Ay (fi+ 1) +s.

To summarize, Corollary 3.8 bounds the time
taken up to the first quiet phase h. Phase h can
take time T, but all non-failed processes decide no
later than phase h. Recall also from Lemma 3.6
that h < f + 2.

We now prove an upper bound result that is
slightly weaker than the one in Theorem 3.1.

Theorem 3.9 There i3 an algorithm to solve the
agreement problem for f faults within time
2f+1)A+T.
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Proof: By Lemma 3.4, all processes either fail
or decide no later than time t,. It is easy to see,
for any phase r, that t, < t,—1 +7T. Therefore, all
processes either fail or decide no later than time
th—1 + T. Now

ther+T < A-SENf+1)+T+s
by Corollary 3.8,

< (f+h=-1))A+T+s
< @f+1DA+T+s

by Lemma 3.6 .

The smaller bound given in Theorem 3.1 re-
quires a finer analysis which we leave to the full
paper [2]. For C > 2, there is an example
showing that the smaller bound is close (within
O(c2(C + f))) to the actual worst-case runmning
time of the algorithm. The better bound is ob-
tained by considering the latest time at which a
failure occurs. The time T taken by the timeout
task can then be measured starting from the time
of the latest failure.

4 Upper and Lower Bounds for
Two Cases

In this section, we consider the two cases described
in the Introduction, emphasizing the uncertainty
In process step time and message delivery time,
respectively. In each case, we specialize our al-
gorithm to obtain an upper bound, and we sepa-
rately prove a corresponding lower bound result.

4.1 The Case 6§ =d

In this case, the general upper bound specializes
to yield approximately 2fd + Cd. To simplify the
expression of the exact bound, we assume C > 2.5
Recall that D = d + ca.

Theorem 4.1 Assume C > 2. There is an algo-
rithm which, for any f < n, solves the agreement
problem for f faults within time 2fD + CD + ca.

8If C < 2, the straightforward upper bound (f + 1)Cd
is smaller than 2fd + Cd.



We can prove a lower bound which has a
similar form to the upper bound, except that
2fd is replaced by (f — 1)d. The proof of the
lower bound (f — 1)d + Cd requires three steps
and employs techniques used elsewhere in prov-
ing lower bounds and impossibility results in the
synchronous rounds model, the completely asyn-
chronous model, and the timing-based model. The
first step is an adaptation of the proof showing
that f + 1 rounds are necessary for Byzantine
agreement in the rounds model [6, 8, 11, 13, 15,
20, 22]). This yields the existence of two “long”
execution prefixes (taking time at least (f — 1)d),
each having only f - 1 faults, distingnishable only
to one correct process, and each extendible to an
execution with a different decision value. The
second step mimics a key lemma in the proof
that agreement is impossible in asynchronous sys-
tems [9, 16]. In this step it is shown that at
least one of the two long execution prefixes just
described is actually “bivalent,” in that it has
two possible extensions with no additional failures,
each yielding a different decision value, and in each
of which processes take steps as quickly as possi-
ble. This long bivalent execution is developed a
bit more in a technical lemma that shows it can
be extended to a “maximal” fast bivalent execu-
tion containing at most f— 1 faults. The last step
exploits the one remaining fault, via a technique
of [3], to show that after this maximal bivalent ex-
ecution at least one “long timeout” (taking time
at least Cd) is necessary. Leaving the many de-
tails to the full paper [2], we state the lower bound
result.

Theorem 4.2 Assume 1 < f < n—1. There is
no algorithm in the timing-based model that solves
the agreement problem for f faults within time
strictly less than (f — 1)d + Cd. This lower bound
holds even in the case that all processes receive
their input values at time 0.

4.2 The Case C =1

In the case where C = 1, we can use an “opti-
mized” timeout task that works with T < d + 2¢;.
Using Theorem 3.1 again, we obtain an upper
bound of approximately (2f — 1)5 + 4. To eim-
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plify the expression of the exact bound, we assume
d > 36.

Theorem 4.3 Assume C =1 and d > 36. There
i3 an algorithm which, for any f < n, solves the

agreement problem for f faults within time
f -1DA+d+ 3ci.

By adapting part of the argument used in the
previous lower bound, and adding one new idea,
we show the following lower bound; the proof is
given in [14].

Theorem 4.4 Assume C =1 and f+1 < n <
2f. There is no algorithm in the timing-based
model that solves the agreement problem for f
faults within time strictly less than (2f — n)d + d.
This lower bound holds even in the case that all
processes receive their input values at time 0.

Note that if n = f + 1, the lower bound is
(f = 1)é +d which is similar to the previous lower
bound. As n approaches 2f, however, the lower
bound degenerates to d. Concerning the case
n > 2f, methods of [12] give an agreement al-
gorithm with running time O(f6), showing that
the time bound need not depend on d at all in
this case; the details can be found in [14].

5 Conclusions and Open Ques-
tions

Although there is a gap between our lower bound
of (f—1)d+Cd and our upper bound of 2fd+Cd,
we feel we have substantially answered the ques-
tion of how the time requirement depends on the
timing uncertainty, as measured by C = c3/cy. In
particular, we have shown that only a single “long
timeout” (i.e., a timeout requiring time Cd) is re-
quired, and this long timeout cannot be avoided.
We reach a similar conclusion for the § < d case.

An obvious open problem is to close the gaps
that remain between the upper and lower bounds
for the two cases. Another question is whether
these results can be extended to other types of fail-
ures such as Byzantine or omission failures. Some
results on this last question have been obtained
by Ponzio [25].



A more general direction for future research is to
try to extend the techniques described in this pa-
per to permit simulation of arbitrary round-based
fault-tolerant algorithms in the model with timing
uncertainty. The hope is that such a simulation
will not incur the multiplicative overhead of T of
the simple transformation described in the Intro-
duction. If a problem can be solved by reduction
to agreement (by first agreeing on the input val-
nes of all processes and then locally applying some
function to the agreed upon values), then our al-
gorithm can be used to solve the problem within
time approximately 2f§ + 7. However, there are
problems whose round complexity is significantly
smaller than the round complexity of agreement;
for example, an algorithm in [18] can be used to
solve the renaming problem ([1]) within O(logn)
rounds, even in the presence of up to n — 1 faults.
For such problems, reducing the dependency on
T is achieved at the cost of increasing the depen-
dency on 6.

As mentioned earlier, the work presented in
this paper is part of an ongoing effort to ob-
tain a precise understanding of the role played by
time, and timing uncertainty in particular, in dis-
tributed systems. The upper bound presented in
this paper is based on an approach that departs
from known algorithms for agreement in the syn-
chronous model. We believe that there are many
other fundamental tasks in distributed systems
whose study might lead to the discovery of new
approaches for coping with timing uncertainties.
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