
CONSENSUS IN THE PRESENCE OF PARTIAL SYNCHRON¥

(Preliminary Version)

Cynthia Dwork
Laboratory for Computer Science

MIT
Cambridge, MA 02139

Nancy Lynch
Laboratory for Computer Science

MIT
Cambridge, MA 02139

Larry Stockmeyer
IBM Research Laboratory

San Jose, CA 95193

1. INTRODUCTION

1.1. Background
Tile problem of reaching agreement among

separated processors is of fundamental importance to
dishibuted computing, and has provided a rich set of
interesting mathematical problems. (See [F] for a
survey. Also see [GLPT,Sc,G.DLPSW,LM], for
example.) One version of this problem considers a
collection of N processors, Pt PN' which
communicate by sending messages to one another.
Initially each processor pi has a value vi drawn from
some domain V of vahJes, and the correct processors
must all decide on the same value; moreover, if the
initial values are all the sarne, say v, then v must be the
common decision. In addition, the consensus protocol
should operate correctly if some of the processors are
faulty, e.g., crash (fail-stop faults), fail to send
messages when they should (omission faults), or send
erroneous messages (Byzantine faults).

Given assumptions about the properties of the
message system and the processors and given the
types of faults which can occur, one would like to know
the maximum number of faults that can be tolerated;

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 A C M 0-89791-143-1 /84/008 '0103 $00.75

we call this number the resi l iency of the system. For
example, it might be assumed that there is a fixed
bound A on the time for messages to be delivered
(communication is synchronous), and a fixed bound
on the rate at which one processor's clock can run
faster than another's (processors are synchronous),
and that these bounds are known a pr ior i and can be
"built into" the protocol. In this case, N-resilient
consensus protocols exist for Byzantine failures with
authentication [LSP,DS] and, therefore, also for fail-
stop and omission failures: in other words, any number
of faults can be tolerated. For Byzantine faults without
authentication, t-resilient consensus is possible iff N >
3t [LSP,L1].

Hc'cent wo~k has shown that the existence el botll
bounds A and ~1~ is necessaly to achieve any resiliency,
even under the weakest type of faults. Dolor, Dwork
arid Stockmeyer [DDS], building ,),~ earlier work of
Fischer, Lynch and Paterson [FLP], prove that either if
a fixed upper bound A on message delivery time does
not exist (communication is asynchronous) or if a fixed
[~ppdr bound {1~ on relative processor speeds does not
exist (processors are asynchronous), then there is no
consensus protocol resilient to even one fail-stop fault.

In this paper, we define and study the consensus
problem in practically motivated situations which lie
between the completely synchronous and the
completely asynchronous cases.

1.2. Part ial ly Synchronous Communicat ion
We first consider the case in which processors are

svnchronous ((t) exists and is known a prior i) and
cemmunication lies "between" synchronous and

103

asynchronous. There are several natural ways in
which communication might be partially synchronous.

One reasonable situation could be that an upper
bound A on message delivery time exists but we do not
know what it is a priori. On the one hand, the
impossibility results of [FLP,DDS] do not apply since
communication is, in fact, synchronous. On the other
hand, participating processors in the known consensus
protocols need to know '~ in order to know how long to
wait during each round of message exchange (we are
assuming a lower bound on processor step time). Of
course, it is possible to pick some arbitrary A to use in
designing the protocol, and say that whenever a
message takes longer than this 5, then either the
sender or the receiver is considered to be faulty. This
is not an acceptable solution to the problem since if we
picked & too small, all the processors could soon be
considered faulty, and by definition the decisions of
faulty processors do not have to be consistent with the
decision of any other processor. What we would like is
a protocol that does not have h "built in". Such a
protocol would operate correctly whenever it is
executed in a system where some fixed upper bound &
exists. It should also be mentioned that we do not
assume any probability distribution on message
transmission time which would allow A to be estimated
by doing experiments.

Another situation could be that we know A, but the
message system is sometimes unreliable, delivering
messages late or not at all. As noted above, we do not
want to consider a late or lost message as a fault.
However, without any further constraint on the
message system, this "unreliable" message system is
at least as bad as a completely asynchronous one, and
the impossiblity results of [DDS] apply. The additional
constraint is that there is a sufficiently large number L
such that if at any time during the execution, the
message system respects the upper bound & for L
units of time, then all correct processors will reach a
common decision sometime before the end of this
"reliable interval". Moreover, the protocol never
produces an inconsistent decision (two correct
processors deciding differently) during the "unreliable
period" when & does not hold,

The same argument as in the previous case shows
one problem with treating lost or delayed messages in
the same way as processor faults. There is also
another problem with this idea. In typical systems, the
loss or delay of a message is a much more likely event
than a processor failure. Treating undesirable
message behavior as processor faults tends to lead to
a drastic overestimate of processor faults. Since
consensus protocols introduce expensive mechanisms
to cope with each additional processor fault, it seems

better to separate consideration of the two kinds of
events, and to try to use less costly mechanisms to
cope with undesirable message behavior.

A third situation we consider is a technical variant on
the second, which strengthens it in two ways. In this
model, messages are never lost and A must hold from
some point on after some finite "unreliable period".
We prove that this model is equivalent to the first
model, in which A exists but is unknown.

For succinctness, we say that communication is
partially synchronous if one of these three situations
holds: A exists but is not known a priori, or A is known
but has to actually hold only for a sufficiently long
period, or & is known and has to hold from some point
on.

Our results determine precisely the maximum
resiliency possible in cases where communication is
partially synchronous, for four interesting fault models.
For fail-stop or omission faults, we show that t-resilient
consensus is possible iff N > 2t. For Byzantine faults
with authentication, we show that t-resilient consensus
is possible iff N > 3t. Also, for Byzantine faults without
authentication, we show that t-resilient consensus is
possible iff N > 3t. (The lower bound follows
immediately from the result for the completely
synchronous case in [LSP].) For the first three types of
faults, the number of bits of communication required is
a polynomial in N, t, and either (1) GST (the global
stabilization time, or time when the messages start
observing their required bound) for the models in
which A holds eventually or sufficiently long, or (2) A
for the model in which A is unknown. On the other
hand, our algorithm for the unauthenticated Byzantine
case uses an exponential amount of communication.
We also have a t-resilient consensus protocol for
Byzantine faults without authentication, which uses a
polynomial amount of communication, but which
requires N > 4t. (We do not know whether it is possible
to obtain such a protocol for 3t < N < 4t.)

Table 1 shows the maximum resiliency in various
cases and compares our results with previous work. In
each case, the table gives the smallest value of N for
which there is a t-resilient protocol (t > 1). Except
where indicated {by "exp") the algorithms require
communication polynomial in N, t, and either GST or A.

It is interesting to note that for fail-stop, omission and
Byzantine faults with authentication, the maximum
resiliency for the partially synchronous case lies strictly
between the maximum resiliency for the synchronous
and asynchronous cases. It is also interesting to note
that in the partially synchronous case, authentication
does not improve resiliency. Results in the
synchronous column are due to [LSP,DS,DFFLS], while
those in the asynchronous column are due to
[FLP,DDS].

104

Of the new results, the more interesting and difficult
are the protocols and associated upper bounds. Our
protocols use variations on a common method: a
processor p tries to get other processors to change to
some value v which p has found to be "acceptable"; p
decides v if it receives sufficiently many
acknowledgements from others that they have
changed their value to v, so that a value different from v
will never be found acceptable at a later time. This
general method and similar methods have already
appeared in the literature, (cf. Skeen [Sk], Bracha and
Toueg [BT]). Reischuk [R] and Pinter [P] have also
obtained consensus results which treat message and
processor faults separately.

1.3. Part ia l ly Synchronous Communicat ion
and Processors

It is easy to extend the models described in 1.2 to
allow processors, as well as communication, to be
partially synchronous. That is, ¢ (the upper bound on
relative processor speed) can exist but be unknown, or
¢ can be known but actually hold only for a sufficiently
long period, or @ can be known and actually have to
hold from some point onward. We obtain results which
completely characterize the resiliency in cases where
both communication and processors are partially
synchronous, for all four of the classes of faults. In
such cases, we assume that communication and
processors possess the same type of partial synchrony,
that is, either both ¢ and A are unknown, or both hold
during the same sufficiently long period, or both hold
from some point on.

S'Jrp~isingly, the bounds we obtain are exactly the
same as for the case where communication alone is
p..qrtially synchronous. In the earlier case, the fact that
q; w.3s kpown implied that each processor could
maintain a local time that was guaranteed to be closely
synchronized with the clocks of other processors. In
this case, no such notion of time is available. We give
two new protocols allowing processors to simulate
disUibuted clocks. (These are fault tolerant variations
on the cluck used by Lanlport in [I_2].) One uses 2t + 1
processors and tolerates t fail-stop, omission, or
au'.,henticated Byzantine taults, while the other uses 3t
+ 1 processors and tolerates t unauthenticated
Byzantine faults. When the appropriate clock is
cornbinod with each of our protocols for the preceding
case, the result is a new protocol for the new case.

1.4. Part ia l ly Synchronous Processors
In complete analogy to our treatment of partial

communication synchrony, it is easy to define models
where processors are partially synchronous and
communication is completely synchronous (A exists
and is known a priori). In Table 2 we summarize our

results about N, the smallest numeer of processors tor
which t-resiliency is possible for each of the four fault
models.

Technical Remarks:
Except where we have indicated otherwise, all of our

protocols use only a polynomial amount of
communication, that is, the number of bits of
communication sent before all correct processors
make a decision is polynomial in N, t, and either GST or
@ and A, depending on the particular model of partial
synchrony.

Our protocols assume that an atomic step of a
processor is to either receive a set of messages or
send a message to a single processor, but not both;
there is no atomic receive/sendl operation nor an
atomic broadcast operation. We adopt this rather weak
definition of a processor's atomic step in this paper
because it is realistic in practice and seems consistent
with assumptions made in much of the previous work
on distributed agreernent. However, our lower bound
arguments are still valid if a processor can receive and
broadcast to all processors in a single atomic step.

The strong unanimity condition requires that if all
initial values are the same, say v, then v must be the
common decision. Weak unanimity requires this
condition to hold only if no processor is faulty. Unless
noted otherwise, our consensus protocols achieve
strong unanimity, and our lower bounds hold even for
weak unanimity.

Our consensus protocols are designed for an
arbitrary value domain V, whereas our lower bounds
hold even for the case IVl = 2.

The remainder of this paper is organized as follows.
Section 2 contains definitions. Section 3 contains our
results for the model in which processors are
synchronous and communication is partially
synchronous. The distributed clocks are defined in
Section 4, where we also discuss how to combine our
results of Section 3 with the clocks to produce
protocols for the model in which both processors and
communication are partially synchronous.

The results for the model in which communication is
synchronous and processing is partially synchronous
are omitted here for lack of space, as are the proofs of
some of the results in Sections 3 and 4. All of the
omitted material appears in [DLS], the complete
version of the paper.

2. DEFINITIONS

2.1. Model of Computation

Ou~ formal model of computation is based on tile
models of [FLP,DDS]. I-k~re we review the basic

105

features of the model informally. The communication
system is modeled as a collection of N sets of
messages, called buffers, one for each processor. The
buffer of Pi represents messages which have been sent
to Pi but not yet received. Each processor follows a
deterministic protocol involving the receipt and
sending of messages. Each processor Pi can perform
one of the following instructions in each step of its
protocol:

Send(rn.p) - places message m in p,'s buffer;
Receive(pi) j- removes some (possibly empty) set S of
messages frorn Pi'S buffer and delivers them to Pi'

In the Send(m,pj) instruction, p can be any
processor, i.e., the communcation network is
completely connected. A processor's state is
determined by the contents of its memory, including
any special registers (e.g., program counter). A
processor's protocol is specified by a state transition
diagram; the number of states can be infinite. The
instruction to be executed next depends on the current
state, and the execution causes a state transition. For
a Receive instruction, the next state depends on the set
S of delivered messages. The initial state of a
processor Pi is determined by its initial value v i in V. At
some point in its computation, a processor can
irreversibly decide on a value in V.

For subsequent definitions, it is useful to imagine that
there is a "real-time clock" outside the system that
measures time in discrete steps. At each tick of real
time, some processors each take one step of their
protocols. A run of the system is described by
specifying for each real-time step: (1) the processors
which take steps, (2) the instruction which each
processor executes, and (3) for each Receive
instruction, the set of messages delivered. Runs can
be finite or infinite. Given an infinite run R, the
message m is lost (in run R) if m is sent by some
Send(m,pj), .pj executes infinitely many Receive
instructions ~n R, and m is never delivered by any
Rec;eive(Pi).

2.2. Fai lures
A processor executes correctly if it always performs

i~,structions of its protocol (tra",sition diagram)
correctly. A processor is correct ip. run R if it executes
correctly in R and. if R is infinite, it takes infinitely many
steps in R. We consider four types of increasingly
destructive faulty behavior.

l-all-stop: The r,~ocessor executes correctly but can
stop al any time. Once stopped it cannot restart.

Om~s.~.ion: The processor executes correctly except
Ihat Send(m.f.)l) might not place m i l l Pl'S buffer.

Autt~cr',t,',',uted Byzaf]tm.,?: The processor exhibits
arbitrary bc!~avior. However. messages can be signed
with the [lLinlo Of tile sending prc~ce.,_'.sor in SUCh a way
that tiffs signature cannot be fOtf, Od bv any ()tiler

processor.
Byzantine: The processor exhibits arbitrary behavior,

and there is no mechanism for signatures. However,
we assume that the receiver of a message knows the
identity of the sender.

2.3. Pa r t i a ISynch rony
Let I = [t 1,t 2] be an interval of real time and let R be a

run. We say that the communication bound ~ holds in I
for run R provided that if message m is placed in Pi'S
buffer by some Send(m,P i) at a time s 1 in I, and i fp j
executes a Receive(pj) at a time s 2 in I with s 2 > s 1 +
A, then m must be delivered to Pi at time s 2 or%arlier.
This says intuitively that A is an upper bound on
message transmission time in the interval I .The
processor bound (I) holds in I for R provided that in any
contiguous subinterval of I containing tl) steps, every
correct processor takes at least one step. This implies
that no correct processor can run more than (t, times
slower than another in the interval I.

The following conditions, which define varying
degrees of communication synchrony, place
constraints on the kinds of runs that are allowed.

(1) delta is known: there is a fixed ~ which holds in
[1,00) for every run R; this is the usual definition of
synchronous communication.

(2) delta is unknown: for every run R there is a A
which holds in [1,00).

(3) delta holds eventually: there is a fixed & such
that, for every [-un R, there is a time tO such that ,_& holds
in [tO,OO), and no messages are lost in Iq.

(4) delta holds sufficiently long: them, is a fixed z~ and
sufficiently large L such that, for every run R, there is a
time tO such that ,3 holds in fro,to + L].

If (2), (3). or (4) hold. we say that communication is
partially synchronous. In (3) and (4), tO is called the
global stabilization time (GST). In (4), L will in general
depend on 4, ¢ and N. By replacing 3 by ¢ above, (1)
defines synchronous processors, and (2)-(4) define
three types of partially synchronous processors.

Fix any of the four possible fault models. In [DLS] we
show results that can be paraphrased as (4) --> (3), (3)
--> (2) and (2) --> (3). lhus, in a sense, (2) and (3) are
equivalent, in that the existence of a consensus
protocol in one of these models implies the existence
of a consensus protocol in the other, while (4) is a
weaker model. However, this strengtl~ens our results,
since all our protocols work for the (4) variant, while all
our lower bounds work for the (3) and (2) variants.

2.4. Cor rec tness of a Consensus Protocol
Given assumptions A about processor and

communication synchrony, given a fault mooe F, and
given a number N of processors and an integer t with 0
< t < N, correctness of a t.resilient c~nsensus

106

protocol is defined as follows.
For any set C containing at least N-t processors and

any run R satisfying A and in which the processors in C
are correct and the behavior of the processors not in C
is allowed by the fault mode F, the protocol achieves:

Consistency. No two different processors in C decide
differently.

Eventual Agreement. If R is infinite then every
processor in C makes a decision.

Unanimity. There are two types:
Strong Unanimity: if all initial values are v then if any

processor in C decides, then it decides v.
Weak Unanimity: if all initial values are v and C

contains all processors, then if any processor decides,
then it decides v.

3. PARTIALLY SYNCHRONOUS
COMMUNICATION AND SYNCHRONOUS
PROCESSORS

In this section we assume that processors are
synchronous and communication is partially
synchronous. Throughout most of this section we
assume that the processor bound ~1~ = 1 to sirnplify the
exposition of the main ideas. Remarks at the end of the
section then indicate several ways to extend the results
to the case ¢ > 1. Since processors operate in lock-
step synchrony, it is useful to imagine that each
(correct) processor has a clock which is perfectly
synchronized with the clocks of other correct
processors. Initially, the clock is O, and a processor
increments its clock by 1 every time it takes a step. 1-he
assumption ¢ = 1 implies that the clocks of all correct
processors are exactly the same at any real time step.

The next three subsections give consensus protocols
and lower bounds for the four types of faults.

3.1 Fail-Stop and Omission Faults

The consensus protocols in the following three
subsections are all designed for the model in which
holds sufficiently long, and they handle arbitrary value
domains V. In case (1~ = 1, as noted above, we can
imagine that all (correct) processors have access to a
common clock. Time. as measured by this clock, is
divided into phases, and phases are subdivided into
rounds o[message exchange of length R each. The
number R = N + ~ + 1 is chosen largo enough to allow
processors to "broadcast" a n~essage to all N
processors (including themselves), and for all these
messages to be received. Since our model does not
have an atomic broadcast operation, this is done by
sending the message to al! processors, one at a time.
Of course, our algorithms must allow for the possibility
ttt&t ,3 faulty processor could fait in the middle of a
"broadcast", and for ~he possibility that messages sent

before GST could be lost or arrive late. It will be seen
that these possibilities do not affect the correctness of
our algorithms. A processor always attaches a phase
identifier (number) to messages, and any message sent
during a phase h which arrives late during some phase
h' > h is ignored. Thus, one can imagine that
communication during one phase is independent of
communication during any other phase.

To argue that our protocols achieve strong
unanimity, we use the notion of a proper value defined
as follows: if all processors start with the same value v,
then v is the only proper value; if there are at least two
different initial values, then all values in V are proper.
In al! protocols, each processor will maintain a local
variable PROPER, whictl contains a set of values which
the processor" knows to be proper. Processors will
always piggyback their current PROPER sets on all
messages. The way of updating the PROPER sets will
vary from algorithm to algorithm.

The first algorithm is used for either fail-stop or
omission faults. It achieves strong unanimity for an
arbitrary value domain V.

Algorithm 1: N >_ 2t + 1

Initially, each processor's set PROPER contains just
its own initial vslue. Each processor attaches its
current value of PROPER to every message that it
sends. Whenever a processor p receives a PROPER
set from another processor that contains a particular
value, v, then p puts v into its own PROPER set. It is
easy to check that each PROPER set always contains
only proper values.

Processing is divided into alternating trying and lock
release phases, with pairs of corresponding phases
being numbered by consecutive integers starting with
1, where each trying phase is of length 3R and each
lock rele&sc phase is el length R. We say that trying
phase i mod N belongs to processor i.

At various times during the algorithm, a processor
may lock a value v. A phase number is associated with
every lock. If p locks v with associated phase number k
_=: i mod N, it means that p thinks that processor i might
decide v at phase k. Processor p only releases a lock if
it learns that its supposition was false. A value v is
acceptable to p if p does not have a lock on any value
other than v.

We now describe the processing during a particular
trying phase k. Let s denote the time of the beginning
of the first round in phase k, and assume k _= i mod
N. At time s, each processor (including i) sends a list of
all its acceptable values which are also in its PROPER
set to processor i (in the form of a (list, k) message). (If
V is very large or infinite, it is more efficient to send a
list of proper values and a list of unacceptable values,
Given these lists, the proper acceptable values are

107

easily deduced.) At time s + R, processor i attempts to
choose a value to propose. In order for processor i to
propose v, it must have heard that at least N - t
processors (possibly including itself) find value v
acceptable and proper at the beginning of phase k. It is
possible that there might be more than one possible
value which processor i might propose; in this case,
processor i will choose one arbitrarily. Processor i
then broadcasts a message (lock v,k).

If any processor receives a (lock v,k) message by
time s + 2R, it locks v, associating the phase number k
with the lock, and sends an acl~nowledgement to
processor i (in the form of an (ack, k) message). In this
case, any earlier lock on v is released. (Any locks on
other values are not released at this time.)

If processor i receives acknowledgements from at
least t + 1 processors by time s + 3R, then processor i
decides v. After deciding v, processor i continues to
participate in the algorithm.

Lock release phase k begins at time s + 3R. At time
s + 3R. processors broadcast messages of the form
(v,h), indicating that the sender has a lock on v with
associated phase h. If any processor has a lock on
some value v with associated phase h, and receives a
message (w,h') with w =~ v and h' > h, then the
processor releases its lock on v.

Lemma 1: It is impossible for two distinct
values to acquire locks with the same
associated phase.

Proof: In order for two values v and w to
acquire a lock at trying phase k, the
processor to which phase k belongs must
send conflicting (lock v,k) and (lock w,k)
messages, which it will never do in this fault
model.

Lemma 2: Suppose that some processor
decides v at phase k, and k is the smallest
numbered phase at which a decision is
made. Then at least t + 1 processors lock v
at phase k. Moreover, each of the processors
that locks v at phase k will, from that time
onward, always have a lock on v with
associated phase number at least k.

Proof:
It is clear that at least t + 1 processors lock

v at phase k. Assume that the second
conclusion is false. Then let I be the first
phase at which one of the locks on v set at
phase k is released without immediately
being replaced by another, higher-numbered
lock on v.

In this case the lock is released during lock
release phase I. when it is learned that some
processor has a lock on some w =~ v with

associated phase h, where k .< h < I. Lemma
1 irnplies that no processor has a lock on any
w ~= v with associated phase k. Therefore,
some processor has a lock on w with
associated phase h, where k < h _< I. Thus, it
must be that w is found acceptable to at least
N - t processors at the first round of some
phase numbered h, k < h < I, which means
that at least N . t processors do not have v
locked at the beginning of that phase. Since
t + 1 processors have v locked at least
through the first round of I, this is impossible.
B

Lemma 3: Immediately after any lock
release phase which occurs completely in
the interval [GST,GST + L] the set of values
locked by processors contains at most one
value.

Proof: Straightforward from the lock
release rule. i

Theorem 4: Assume the model with fail-
stop or omission faults, where the processors
are synchronous with @ = 1 and
communication is partially synchronous (&
holds sufficiently long). Assume N > 2t + 1.
Then Algorithm 1 achieves strong unanimity
for an arbitrary value domain.

Proof:
First, we show that disagreement cannot be

reached. Suppose that some correct
processor i decides v at phase k, and this is
the smallest numbered phase at which a
decision is made. Then Lemma 2 imples that
at all times after phase k, at least t + 1
processors have v locked. In consequence,
at no later phase can any value other than v
ever be acceptable to N - t processors, so no
processor will ever decide any value other
than v.

Next, we argue eventual agreement.
Consider any trying phase, k, belonging to a
correct processor, i, which is executed after
a lock rcle~tso phase, both occurring during
[GST,GST + L]. We claim that processor i will
reach a decision at trying phase k (if it has
not done so already). By Lemma 3, there is
at most one value locked by correct
processors at the start of trying phase k. If
there is such a value, v, then sufficient
communication has occurred by the
beginning of trying phase k so that v is in the
PROPER set of each correct processor.
Moreover, any initial value of a correct
processor is ir~ the PROPER set of each

108

correct processor at the beginning of trying
phase k. It follows that a proper, acceptable
value will be found for processor i to
propose, and that the proposed value will be
decided upon by processor i at trying phase
k.~l

The following lower bound shows that the resiliency
of Theorem 4 cannot be improved, even for weak
unanimity and a binary value domain.

Theorem 5: Assume the model with fail-
stop or omission faults, where the processors
are synchronous and communication is
partially synchronous (A holds eventually
and no messages are lost). Assume N < 2t.
Then there is no t-resilient consensus
protocol which achieves weak unanimity for
binary values.

Proof:
Assume the contrary, that there is an

algorithm immune to fail-stop faults satisfying
the required properties. We will derive a
contradiction,

Divide tl~e processors into two groups, P
and Q, each with at least 1 and at most t
p:ocessors. First consider the following
situation A: all initial values are O, the
processors in Q are initially dead and all
messages sent from processors in P to
processors in P are do!ivered in exactly time
1. By t4esiiiency, the processors in P must
reach a decision; s:~:~ that this occurs after
tirne t A. The decision must be O. For if it
were 1, we could modify the situation to one
where the processors in Q are alive, but all
messages sent from Q to P take more than
time t A to be delivered. In the modified
situation, the processors in P still decide 1,
contradicting weak unanimity.

Consider situation B: all initial values are 1,
the processors in P are initially dead, and
messages sent from Q to Q are delivered in
exactly time 1. By a similar argument, the
processors in Q decide 1 after t B steps for
some finite t B.

Consider situation C (for Contradiction):
processors in P have initial values O,
processors in Q have initial values 1, all
processors are alive, messages sent from P
lo P or from Q to Q are delivered in exactly
t~me 1. and messages sent from P to Q or
from Q to P take more than max(tA,tB) steps
to be delivered. The processors in group P
(reap.. group Q) act exactly as they do in
situation A Oesp., situation B). This yields a
contradiction, la

3.2. Byzantine Faults with Authentication
The second algorithm achieves strong unanimity for

an arbitrary value set V, in the case of Byzantine faults
with authentication.

Algor i thm 2: N ~ 3t + 1

,Initially, each processor's PROPER set contains just
its own initial value. Each processor altaches its
PROPER set and its initial value to every message it
sends. If a processor p ever receives 2t + 1 initial
values from different processors, among which there
are not t + 1 with the same value, then p puts all of V
(the total value domain) into its set PROPER. (Of
course, p would actually just set a bit indicating that
PROPER contains all of V.) When a processor p
receives claims from at least t + 1 other processors
that a particular value v is in their PROPER sets, then p
puts v into its own PROPER set. It is not difficult to
check that each PROPER set for a correct processor
indeed contains only proper values.

Processing is again divided into alternating trying and
lock release phases, with phases numbered as before
and of the same length as before.

As before, at various times during the algorithm,
processors may lock values. In algorithm 2, not only is
a phase number associated with every lock, but also a
pro.of of acceptability of the locked value, in the form of
a set of signed messages, sent by N - t processors,
saying that the locked value is acceptable and in their
PROPER sets at the begin~ing of the given phase. As
before, a value v is acceptable to p if p does not have a
lock on any value other than v.

We now describe the processing during a particular
trying phase k. Let s denote the time of the beginning
of the first round in phase k, and assume k ~ i mod
N. At time s, each processor j (including i) sends a list
of all its acceptable values which are also in its
PROPER set to processor i, in the form Ej(list, k), where
E i is an at, thentication function. At time s +" R,
processor i attct,~pts to choose a value to propose. In
order for processor i to propose v, it must have heard
that at least N - t processors find value v acceptable
and proper at phase k. Again, if there is more than one
possible value wMch processor i might propose, then it
will choose one arbitrarily. Processor i then
broadcasts a message Ei(Iock v,k,proof), where the
proof consists of the set of signed messages Ej(list,k)
received from the N - t processors which found v
acceptable and proper.

If any processor receives a E(Iock v,k,proof)
message by time s + 2R, it decodes the proof to check

z , "~| that N-t processors find v a~.cept~,elc and proper at

109

phase k. It the proof is valid, it locks v, associating the
phase number k and the message Ei(Iock v,k,proof)
with the lock, and sends an acknowledgement to
processor i. In this case, any earlier lock on v is
released. (Any locks on other values are not released
at this time.) If the processor should receive such
messages for more than one value v, it handles each
one similarly. The entire message Ei(Iock v,k,proof) is
said to be a valid lock on v at phase k.

If processor i receives acknowledgements from at
least 2t + 1 processors, then processor i decides
v. After deciding v, processor i continues to participate
in the algorithm.

Lock release phase k begins at time s + 3R. At time
s + 3R, processors broadcast messages of the form
Ei(Iock v,h,proof), indicating that the sender has a lock
on v with associated phase h and the given associated
proof, and processor i sent the message at phase h
which caused the lock to be placed. If any processor
has a lock on some value v with associated phase h,
and receives a properly signed message Ej(Iock
w,h',proof') with w =~ v and h' > h, then the processor
releases its lock on v.

The proofs for Lemmas 6 through 8 and of Theorem
9 are analogous to the proofs of the corresponding
results for Algorithm 1.

Lemma 6: It is impossible for two distinct
values to acquire valid locks at the same
trying phase, if that phase belongs to a
correct processor. II

Lemma 7: Suppose that some correct
processor decides v at phase k, and k is the
smallest numbered phase at which a
decision is made by a correct processor.
Then at least t + 1 correct processors lock v
at phase k. Moreover, each of the correct
processors that locks v at phase k will, from
that time onward, always have a lock on v
with associated phase number at least k. i

Lemma 8: Immediately after any lock
release phase which occurs completely in
the interval [GST,GST+ L] the set of values
locked by correct processors contains at
most one value. !

Theorem 9: Assume the model with
Byzantine faults and authentication where
the processors are synchronous with ~1~ = 1
and comrnunication is partially synchronous
(delta holds sufficiently long). Assume N >
3t + 1. Then Atgodthm 2 acilioves strong
unanimity for an ar bitrary value domain, l

The following lower bound result again applies in the
case of weak unanimity and a binary value domain.

Theorem 10: Assume the model with
Byzantine faults and authentication, where
the processors are synchronous and
communication is partially synchronous
(delta holds eventually and no messages are
lost). Assume N _< 3t. Then there is no t-
resilient consensus protocol which achieves
weak unanimity for binary values. I

3 .3 . B y z a n t i n e Fau l ts w i t h o u t A u t h e n t i c a t i o n
Here, we will describe two protocols. The first,

simpler, protocol, is t-resilient and uses 4t + 1
processors. It uses a polynomial amount of
communication. The second protocol needs only 3t +
1 processors, thereby achieving the maximum possible
resiliency (as implied by the lower bound result of the
previous section), but it uses more than a polynomial
amount of communication.

Both algorithms are designed for the model in which
.~ holds sufficiently long and for arbitrary value
domains.

In both algorithms, the processors' PROPER sets are
handled exactly as in Algorithm 2.

Algor i thm 3: N >_ 4t + 1
Processing is again divided into alternating trying and

lock release phases, with phases numbered as before.
Now, however, the trying phases are of length 4R.

As before, at various times during tl~e algorithm,
processors may lock values. In algorithm 3, only a
phase number is associated with every lock. As before,
a value v is acceptable to p if p does not have a lock on
any value other than v.

We now describe the processing during a particular
trying phase k. Let s denote the time of the beginning
of the first round in phase k, and assume k ---- i rood
N. At time s, each processor broadcasts a list of all its
acceptable values which are also in its PROPER set, in
the form (list, k). At time s + R, each processor p
broadcasts a vector which says, for each processor q,
which values q sent to p at the preceding round. At
time s + 2R, processor i attempts to choose a value to
propose. In order for processor i to propose v, it must
have heard that each of at least N - 2t processors
claims that at least N - 2t processors find value v
acceptable and proper at phase k. As before,
ambiguities are resolved arbitrarily. Processor i then
broadcasts a message (lock v,k).

If any processor receives a (lock v,k) message by
time s + 3R, and also has heard that each of at least N

3t processors claims that at least N - 2t processors
find value v acceptable and proper at phase k, it locks
v, associating the phase number k with the lock, and
sends an acknowledgement to processor i. Release of
other locks on v is handled as before.

110

If processor i receives acknowledgements from at
least 3t + 1 processors, then processor i decides
v. After deciding v, processor i continues to participate
in the algorithm.

Lock release phase k begins at time s + 4R. At time
s + 4R, processors broadcast messages of the form
(v,h), indicating that the sender has a lock on v with
associated phase h. If any processor has a lock on
some value v with associated phase h, and receives t +
1 messages indicating that t + 1 distinct processors all
have locks of the form (w,h') with w ~= v and h' > h,
then the processor releases its lock on v. (The values
of w and h' need not be the same in all of these locks.)

Lemma 1 1 : It is ~mpossible for two distinct
values to acquire locks by correct
processors at the same trying phase, if that
phase belongs to a correct processor.

P~oof: The proof is similar to previous
proofs and is left to the complete paper. I

Lernma 12: Suppose that some correct
processor decides v at phase k, and k is the
smallest numbered phase at which a
decision is made by a correct processor.
Then at least 2t + 1 correct processors lock
v at phase k. Moreover, each of the correct
processors that locks v at phase k will, from
that time onward, a!ways have a lock on v
'with associated phase number at least k.

P roof:
It is clear that at least 2t + 1 correct

processors lock v at phase k. Assume that
the second conclusion is false. Then let I be
the first phase at which one of the locks on v
set at phase k is released without
immediately being replaced by another,
higher numbered lock on v.

Then the lock is released during lock
release phase I, ;.A~en it is learned that at
least t + 1 processors have locks on values
w =~ v with ~ ; .~ assL. c,,,.,.d phases h, where k < h
<: I. TherJor~, at least one correct
processor, say j, h&s such a lock. Lemma
11 implies that no correct processor has a
lock on any w .= v with associated phase
k. Therefore, the correct processor j has a
lock on w ~ v with associated phase h,
where k < h <: I. In order for j to place this
lock on w. at least N-3t processors each
claim that at least N-2t processors find w
acceptable at the first round of phase
h. Su~ce N-3t >_ t + l , at least one correct
processor makes this claim, so at least N-2t
processors actually find w acceptable. Since
2t + 1 correct processors have v locked at

least through the first round of I, this is
impossible. II

Lemma 13: Immediately after any lock
release phase which occurs completely in
the interval [GST,GST + L] either no value is
locked or there exists some locked value v
such that at most t correct processors hold
locks on values other than v.

Proof: Straightforward from the lock
release rule. (Consider some v whose lock is
from the earliest phase from which any lock
persists.) II

Theorem 14: Assume the model with
Byzantine faults without authentication,
where the processors are synchronous with
@=1 and communication is partially
synchronous (..& holds sufficiently long).
Assume N > 4t + 1. Then Algorithm 3
achieves strong unanimity for an arbitrary
value domain.

Proof:
The proof that disagreement cannot be

reached follows easily from Lemma 12 as in
the proof of Algorithm 1.

Next, we argue eventual agreement.
Consider any trying phase, k, belonging to a
correct processor, i. which is executed after
a lock release phase, both occurring during
[GST.GST + L]. We claim that processor i will
reach a decision at trying phase k (if it has
not done so already). There are two cases.
if some value v is locked at the beginning of
trying phase k, then by Lemma 13, there is
some locked value v such that at most t
correct processors have values other than v
locked at the start of trying phase
k. Therefore, v is acceptable to at least N-2t

2t+ 1 correct processors. Thus, by the
beginning of trying phase k, these 2t+ 1
correct processors have communicated to all
correct processors that v is proper, so every
correct processor will have v in its PROPER
set. In the second case, no va!ue is locked,
so all values are acceptable. If there are at
least t+ 1 processors with the same initial
value v, then v is in the PROPER set of each
correct processor at the beginning of trying
phase k. On the other hand, if this is not the
case, then all values in the value set are in
the PROPER set of all correct processors at
the beginning of trying phase k. It follows in
either case that a proper, acceptable value
will be found for processor i to propose.

111

Moreover~ any va!ue v which is proposed by
processor i must have had N - 2t processors
tell i that N - 2t processors found v to be
acceptable and proper. Then at least N - 3t
processors must tell all other processors that
N - 2t processors found v to be acceptable
and proper, so that all the correct processors
will acknowledge the proposal. Thus, the
proposed value will be decided upon by
processor i at trying phase k. |

]he second protocol of this section uses only N > 3t
+ 1 processors, but the amount of communication and
the time to reach a decision after GST grows roughly
like N t in the worst case.

Algor i thm 4: N > 3t + 1
Instead of rotating processors in successive phases,

we rotate pairs (S,i), where S is a size N - t subset of the
set of processors and i is a distinguished processor in
that set. Each phase k is owned by the corresponding
S, and the distinguished processor i plays the role of
the coordinator.

Processing is again divided into alternating trying and
lock release phases. We first describe the processing
during a particular trying phase k. Assume that phase k
is owned by the set S of N-t processors and that i is the
distinguished processor. Each trying phase has four
rounds. During the first round each processor in S
broadcasts a list of all its acceptable values which are
also in its PROPER set, in the form (list, k). Based on
this information, processor i attempts to choose a value
to propose. In order for processor i to propose v, it
must have heard that all processors in S find v to be
acceptable and proper. As before, ambiguities are
resolved arbitrarily. During the second round,
processor i broadcasts a message (propose v,k). If a
processor j in S receives a message (propose v,k) from
i and if j heard from all processors in S during the first
round that v is acceptable and proper, then j
broadcasts (lock v,k) during the third round. If a
processor in S receives (lock v.k) messages from all in
S, then it locks v and sends an acknowledgement to
processor i. If processor i receives acknowledgemnts
from all in S, then i decides v. After deciding, processor
i continues to participate in the algorithm.

Each lock release pi~.qse has three rounds. During
the first round, processors broadcast messages of tile
form (v.h) indicating th,~t the sender has a lock on v at
associated phase h. It a processor receives a message
(v,h), tllen during the next two rounds it checks if (v,h)
is val/d by determining the set S of processors that
owns phase h, and asking each processor in S whether
it sent a message (lock v.h} at phase h. If at least N-2t
processors in S respond affirmatively by the end of the

third round then (v.h) ~s valid: otherwise it is not valid.
If a processor has a lock on v with associated phase h
and it receives a valid message (w.h') with w * v and h'
>_ h, then it releases the lock on v.

Lernma 15: Suppose that some correct
processor decides v at phase k, and k is the
smallest numbered phase at which a
decision is made by a correct processor.
Then at least t + 1 correct processors lock v
at phase k. Moreover, each of the correct
processors that locks v at phase k will, from
that time onward, always have a lock on v
with associated phase number at least k.

Proof:
It is clear that at least t + 1 correct

processors lock v at phase k. Assume that
the second conclusion is false. As before, let
I be the first phase at which one of the locks
on v set at phase k is released without
immediately being replaced by another,
higher-numbered lock on v.

Therefore, some correct processor
received a valid message (w,h) during lock
release phase I. where w ~ v and k < h <
I. Since (w.h) is valid, at least N-2t > t+ 1
processors said that they sent a message
(lock w.h) at phase h. Therefore, at least one
correct processor j actually sent (lock w,h).
If h = k, then j would have sent both (lock
w,k) and (lock v,k), which is impossible.
Therefore, k < h ~ I. Since j sent (lock w,h), j
heard during phase h that N-t processors
(namely. the set that owns phase tl) found w
to be acceptable at phase h. But since at
least t + 1 correct processors have v locked
at least through the first round of trying
phase I, this is impossible. §

Lemma 16: Immediately after any lock
release phase which occurs after GST, the
set of values locked by correct processors
contains at most one value.

Proof: Say that processor i has a lock on v
with associated phase h and processor j has
a lock on w with associated phase h' where v
=~ w. Say that h' > h. During the lock release
phase, i will receive the message (w,h') from
j. Since j received the message (lock w,h')
from at least N-t processors during trying
phase h' and since at least N-2t of these are
correct, i will determine that (w,h') is valid.
Therefore i will release the lock on v. |

112

Theorem 17: Assume the model with
Byzantine faults without authentication,
where the processors are synchronous with

=1 and communication is partially
synchronous (delta holds sufficiently long).
Assume N > 3t + 1. Then Algorithm 4
achieves strong unanimity for an arbitrary
value domain.

Proof:
The argument that disagreement cannot be

reached is similar to before.

Next, we argue eventual agreement.
Consider any trying phase, k, belonging to a
set S consisting entirely ot correct
processors. Assume i is tile disting.uished
processor at phase k. We claim that
processor i will reach a decision at trying
phase k (if it has not done so already). By
Lemma 16, it follows as in previous proofs
that a proper, acceptable value will be found
for processor i to propose. Moreover, since
all processors in S are correct, it is obvious
that the entire trying phase k will complete
successfully, and processor i will make a
decision at the end. ~1

Our lower bound is tight for the case of
unauthenticated Byzantine faults with no further
restrictions. If we consider the problem with the
requirement that communication be bounded by a
polynomial, or that time be bounded by something
linear in N after GST, then we do not know how to close
the gap.

Remarks

1. Algorithms 1, 2 and 3 have tile property that all
correct processors make a decision witMn O(N) rounds
after GST. The time to ,each agreement after GST can
be .improved to O(t) rounds by some simple
modifications. The bound O(t) is optimal to within a
constant factor since [!4, FLa] show that t + 1 rounds
are necessary even in case communication and
processors are both synchronous and failures are fail-
stop. A modification to all the algorithms is to have a
processor broadcast the message "Decide v"
whenever it decides v. This message is not tagged with
a phase number, and other processors should accept a
"Decide v" message at any time. For Algorithm 1 (fail-
stop and omission faults) a processor can decide v
when it receives any "Decide v" message. For
Algorithms 2 and 3 (Byzantine faults), a processor can
decide v when it receives t + 1 "Decide v" messages
from different sources. Easy arguments show that the
modified algorithms are still correct and that all correct
processors make a decision within O(t) rounds after

GST, and these arguments are left to the reader.
These modifications also give termination conditions
for the processors, in models where no messages are
lost. For fail-stop or omission faults, a processor can
terminate after it broadcasts a "Decide v" message.
For Byzantine faults, a processor can terminate after it
has broadcast a "Decide v" message and has received
"Decide v" messages fiom 2t other processors. In the
model where messages can be lost before GST, it is not
hard to argue that in any consensus protocol resilient
to one fail-stop fault, at least one correct processor
must continue sending messages forever. The
argument is similar to Theorems 5 and 10.

2. We have described our algorithrns for the model in
which delta hotds sufficiently long. We can then apply
the model reductions mentioned at the beginning of
section 2 to show that the same resiliency is possible in
the rnodel where delta is unknown. Although this is
theoretically convenient, it may not give the most
efficient protocols for the model where delta is
unknown. An alternative is to modify the algorithms.
Instead of using a fixed ~ to determine the length R of a
round, A 0s increased as time progresses. For
exampie, one might use A = 2 L h / N J during phase
number h. If &' is the "actual" ~ that holds in the
particular run that the the algorithm is executing, then
the effective GST (the time when the increasing z~
reaches the actual & will be polynomial in N and ,&').

3. If ,1~ > 1, we can again imagine that the processors
have internal clocks, but that the clocks drift apart at a
rate bounded above by q~. One approach to designing
a protocol for this model is to use one of the clock
synchronization algorithms of [HSS, DHS, LL]. There
are clock synchronization algorithms resilient to
several Byzantine failures, even without authentication,
and which have two properties: (1) the clocks of
correct processors never differ by more than a fixed
additive constant, and (2) the clocks of correct
processors never run slower or faster than real time by
more than some fixed multiplicative constant. Property
(1) permits time to be divided into rounds so that no
two correct processors are in different rounds at the
same real time. Property (2) ensures that the
algorithms run no slower than some constant times real
time. Together. these two properties allow us to run
the consensus protocols of this section, with
processors reading their internal (private) clocks
instead of a shared clock.

In Section 4 we show that the resiliency achieved by
the protocols of this section can also be achieved if
both processors and communication are partially
synchronous. Of course, these stronger results imply
that the same resiliency is achievable if communication
is partially synchronous and processors are
synchronous with some ¢ > 1, and this provides an
alternate way of handling the case @ > 1.

113

4. PARTIALLY SYNCHRONOUS
COMMUNICATION AND PROCESSORS

In this section we show that the protocols of the
previous section can be modified to work, with the
same resiliencies, in models where both
communication and processors are partially
synchronous. Moreover, algorithms 1, 2, and 3 will still
use a polynomial amount of communication. We
describe the modified protocols in detail for the case
where ¢ and A both hold sufficiently long; that is, there
are fixed constants ¢ and z~, such that for any run,
there is a time GST such that both ¢ and z~ hold in the
interval [GST,GST+L] for a sufficiently large L
depending polynomially on N, ¢, and &. As described
in Remark 2 at the end of the previous section, the
protocols can be modified for the model where both @
and A are unknown by letting the "built in" ¢ and A
increase as time progresses.

In the previous section, the processors had a
common notion of time which allowed time to be
divided into phases. If ,:I~ does not always hold, no such
common notion of time is available. Therefore, the first
step is to describe a protocol which gives the
processors some approximately common notion of
time, at least during the reliable interval [GST,GST + L].
We call such a protocol a distributed clock. Each
processor has a private (software) clock. Before GST,
the private clocks of correct processors could be very
far apart. However, during the reliable interval
[GST,GST+ L] there are two correctness conditions
which the private clocks of all correct processors must
satisfy: within some constant amount of real time after
GST (1) tile private clocks must grow at a rate within
some constant factor of real time, and (2) at any. real
time the difference in the values of any two private
clocks is bounded above by an additive constant
known to the processors. The three "constants" here
depend polynomially on N, @ and A.

Once we have defined the distributed clocks, the
prolccols of the previous section are modified by
letting each processor use its private clock to
determine which round (and therefore, wMch phase) it
is in. For convenience, processors alternate receiving
and sending operations. Alternate pairs of receive-
send operations are used to maintain the distributed
clock, with the other receive-send pairs being used by
the consensus protocol. We first describe what
happens during the clock mcintenance steps for two
different distributed clocks. The first handles
Byzantine faults without authentication and requires N
> 3t + 1. The second handles Byzantine faults with
authentication and requires N > 2t + 1. (In [DLS] we
define anothes distributed clock which handles only
fail-stop faults, but is N-resilient. This cleck is not
needed for the results presented in this paper.)

4.1. A Distributed Clock for Byzantine Faults
wi thout Authent ica t ion

Throughout this section we assume that N :> 3t + 1.
The term step refers to a real-time step; real-time steps
are numbered O, 1, 2 Processors participate in our
distributed clock protocols by sending ticks to one
another. For convenience, we define a master clock
whose value at any step s depends on the past global
behavior of the system and is a function of the ticks
that have been sent before s. Even approximating the
value of the master clock requires global information
about what ticks have been sent to which processors.
We therefore introduce a second type of message,
called a claim, in which processors make assertions
about the ticks they have sent.

An i-tick is the message 'T'. A >i-tick is a j-tick for
any j > i. We say p has broadcast an i-tick if it has sent
a >_i-tick to all N processors.

An i-claim is the message "1 have broadcast an i-
tick". A ~i-claim is a j-claim for anyj ~ i. We say p has
broadcast an i-claim if it has sent a >i-claim to all N
processors.

We adopt the conver~tion that all processors have
exchanged ticks and claims of size 0 before step 0.
-lhese messages are not actually sent, but they are
considered to have been sent and received.

The master clock, C: N -. N, is defined at any real-
time step s by

C{s) = maximum j such that t + 1 correct processors
have broadcast a j-tick by the beginning of step s.

Since all processors are assumcd by convention to
have broadcast a 0-tick before step 0, C(0) = 0.

For each processor Pi the private clock, cj: N , N, is
defined by

ci(s) = maximum j such tt~at at the beginning of step
s Pi has received either (1) 2t+ 1 ~j-claims or (2)
messages from t + 1 processors, where each message
is either a).z'(J + 1)-tick or a _>(j + 1).claim.

Since Pi is assumed to have received 0-claims from
all N processors by step 0, ci(0) = 0.

Let Pi be a correct processor. In sending ticks, Pi'S
goal is to increment the master clock, so ideally we
would like Pi to send a (C(s)+l)- t ick at step
s. However, knowing C(s) requires global information.
Instead, Pi uses c i, its view of C, to compute its next
tick, sending a (ci(s) + 1)-tick at step s. We will show in
Lemma 18 that ci(s) < C(s), so Pi will never force the
master clock to skip a value. We will also show that
"soon" after GST the value of the master clock
exceeds tt~ose of the private clocks by only a constant
amount, so during the reliable interval Pi will not be
pusMng the master clock fat ahead of the private
clocks of the other processors.

114

Each processor Pi repeatedly cycles through all N
processors, broadcasting, in diHerent cycles, ticks and
claims. The private clock of Pi is stored in a local
variable ci. Processor Pi updates its private clock every
time it executes a receiving clock maintenance
operation by considering all the ticks and claims it has
received and updating its private clock according to
the definition of the private clock given above (thus, the
private clock is updated every fourth step that Pi takes).
The following two programs describe the tick and claim
broadcasting procedures. A processor begins the
distributed clock protocol by setting ci to 0 and calling
TICK(O), where TICK(b) is the protocol shown in Figure
1. Note that the value of ci may change during an
execution of TICK(b), but the claim is made only for a
(b+ 1)-tick. This is consistent with our definition of
what it means to have broadcast a (b + 1)-tick.

TICK(b):
j<--0;
while j < N do
begin

j< - - j+ 1;
send (ci + 1)-tick to pj;

end;
call CLAIM(b).

CLAIM(b):
send (b + 1)-claim to all processors;
if ci > b then call TICK(ci); else call CLAIM(b).

Figu re 1: Procedure TICK

The proofs of Lemmas 18 and 19 are fairly
straightforward from the definitions and the protocol.
Lemma 20 is proved by a simple induction, using
Lemma 19.

Lemma 18: For all s >- 0 and for all i such
that Pi is correct, ci(s) _ C(s). II

Lemma 19: For all s >- 0 the largest tick
sent by a correct processor at step s has size
at most C(s) + 1. II

Lemma 20: For all s,x > 0, C(s+ x) < C(s)
+x . II

The above lemmas are independent of both
communication and processor synchrony.

Tile next r'ew lemmas discuss the behavior of the
clocks during the reliable interval I = [GST,GST + L].
Lemma 2~1 says lhat the private clocks increase at most
a constant factor more slowly than real time. Lemma
23 has two parts. The first says that the master cloak
exceeds the value of the private clocks by at most an
additive constant. This, together with Lemma 18,
bounds the difference between any two private clocks
at any instant of real time. The second part of Lemma

23 says that, at least during the reliable interval, the
master clock runs at a rate at most a a constant factor
more slowly than real time. Let D = z~ + 4~I~. Note that
if a message is sent to a correct processor p at step s
>- GST and s + D is in I, then p will receive the message
by step s+ D; the message will be delivered by step
s+z~ and within 4~b more steps p will execute a
receiving clock maintenance operation.

Lemma 21: Let s and j be such that s >-
GST, s+ 16N~I~ + D is in I, and ci(s) _> j for all
correct Pi" Then ci(s + 16N,,b + D) >- j + 1 for
all correct Pr II

Lemma 22: Let T = C(GST). Then
C(GST + 52Nci) + 4D) >- T + 2. II

Lemma 23: Let s o be the minimum s such
that C(s) = C(GST)+ 2 (s o exists by Lemma
22).

(1) For all x in I such that x >- So+ D and for
all correct processors i, ci(x) >- C(x)-D-1.

(2) For all y >- s o such that y + 32N£b + 3D
is in I C(v + 32N~ + 3D) >- C(y) + 1. II

Lemmas 18, 20, 21, and 23 yield the correctness
conditions which must be satisfied by the private
clocks of all correct processors. Specifically, Lemma
21 says that the private clocks do not grow too slowly,
while Lemmas 18 and 20 say they do not grow too
quickly. That is, within a constant amount of time after
GST the private clocks grow within a constant factor of
real time. As pointed out above. Lemmas 18 and 23 (1)
say that soon after GST the private clocks of any two
correct processors differ by at most a known, additive
constant, at least during the reliable interval.

4.2. A Dis t r ibu ted Clock for Byzant ine Faults
wi th Authent ica t ion

The new clock is very similar to the one just
described. We only explain the differences. Here we
assume N >- 2t + 1.

An i-claim is a signed message "1 have broadcast an
i-tick". A >-i-claim is a j-claim for any j >- i. For i > 1,
an i-tick is the message "<i,i-proof>" where a l -proof is
the empty string and where an i-proof (i > 1) is a list of
t+ 1 >(i-1)-clairns each signed by a different
processor.

A >i-t ick is a j-tick for any j > i. The definitions of
broadcast an i-tick and broadcast an i-claim are the
same as before.

Tile master clock C: N -, N is defined by
C(s) = maximum j such that some correct processor

has broadcast a j-tick by the beginning of step s.
The private clock ci: N ---, N is defined by
cj(s) = maximum j such that Pi has received t + l

>-j-claims (from different sources), either directly, or

115

indirectly as part of a tick, by the beginning of step s.
The definition of the clock protocol is the same as

before with the addition that whenever a processor
sends a (b+l)-c laim in the procedure CLAIM(b), it
attaches the largest size tick which it can construct
(this will always be a >(b+ l) - t i ck) . A correct
processor will ignore any received j-claim if it does not
come with an attached >_j-tick.

Lemma 24: Lemmas 18, 19, 20, 21, 22,
and 23 hold for the authenticated Byzantine
clock, il

In addition, we need one more lemma to support our
claim of a polynomial amount of communication. The
proof is immediate from the definitions.

Lemma 25: Any tick or claim sent by a
correct processor at step s can be
represented by O(t Iog(C(s))) bits. II

4.3. Using the Clocks
As desceibed above, alternate pairs of receive-send

operations are used to maintain a distributed clock,
and the other receive-send pairs are used to run one of
the protocols of Section 3. For Algorithm 1 (fail.stop
and omission faults) we use the authenticated
Byzantine clock, simplified appropriately because the
signatures are not needed and because we cannot
assume the authentication capablity. Note that the
consensus protocol and the distributed clock protocol
have the same constraint on the number of processors,
N > 2t+ 1. For Algorithms 3 and 4 (unauthenticated
Byzantine faults), we use the unauthenticated
Byzan!ine clock. For Algorithm 2 (authenticated
Byzantine faults) either clock could be used. For all
four cigorithms L, the length of the reliable period, is
somewhat larger in the new model.

Processing is divided into alternating rounds and
waiting periods of length R and W respectively.
Specifically, R = 4N4) + ~ + 44) is the time required for
N processors to broadcast a message and for this
message to be received, and W = 52N(b + 4(A + 44)) is
the maximum difference between the private clocks of
any two correct processors during [GST + Sl, GST + L],
where s 1 = 52N¢ +5(~ +4q~) (see Lemmas 18, 22, and
23). When running the consensus protocol, a
processor uses its private clock to determine its
current phase and round. In addition to labelling
messages with phase numbers, processors label
messages with round numbers. During any given
round, only messages labelled with the same round
number are accepted: other messages are ignored.
During any given waiting period, only messages from
either of the two adjacent rounds are accepted. No
messages are sent during waiting periods.

For all four of the co,]sensus protocols, the proofs
that no two correct processors decide differently are
identical to the proofs given in Section 3, since at no
point in those proofs did we use the fact that different
processors are executing the sarne phase at the same
real time. For example, in Algorithm 1, if a processor i
decides v at its phase k, then at least t + 1 processors
lock v at their phase k. and one argues as in Lemma
2 that these locks will never be released at any higher
numbered phase.

To argue eventual ag~cement after GST, note that by
choice of W no two correct processors are
simultaneously .executing. different rounds at the same
time x, lor any x in the interval [GST+s 1, GST+L].
Further, any message labelled with a given round, say
k, and sent to a correct processor during
[GST+sl ,GST+L.D] , will be received and accepted
before that processor begins round k+ 1. We now
choose tile lengths T T and T R of phases large enough
so that all required communication during a phase will
have time to complete, at least for all phases which
take place entirely within [GST + s 1 ,GST + L].

Theorern 26: Assume the model where
communication and processors are both
partially synchronous (delta and phi both
hold sutficiently long). If Algorithms 1, 2, 3
and 4 are modified as decribed above,
Theorems 4, 9, 14, 17 still hold. II

Our claims that the modified algorithms 1, 2 and 3
use a polynomial amount of communication and that
agreement is reached within a polynomial amount of
real time after GST follow from the fact that the master
clock, during [GST + sl,GST + L], is running at a rate no
slower than 1/(32N*@ +3(3 + 4~D)) times real time (see
Lemma 23).

The results for the case in which processors are
partially synchrenous and communication is
synchronous are deferred to the complete paper.

Acknowledgment. Joe Halpern asked whether the
impossibility results of [FLP,DDS] would continue to
hold in case the parameters 4) or ,k exist but are not
known a priori, and this led to th,9 formulation of the
version of partial synchrony where 4) or & are
unknown.

REFERENCES

[BT] Bracha, G., and Toueg, S.. "Resilient consensus
protocols," Prec. 2nd PODC, 1983, pp. 12-26.

[D] Do!ev, D.. personal communication.
[DDS] Dolev, D., Dwork, C., and Stockmeyer, L., "On

the minimal Synchronism needed for distributed
consensus," Prec. 24th Syrup. on Foundations of
Computer Science, 1983, pp. 393-402.

116

[L3FFLS] Dolev, D., Fischer, M.J., Fowler, R., Lynch,
N.A., and Strong, H.R., "Efficient Byzantine agreement
without authentication," Information and Control (to
appear); see also IBM Research Report RJ3428 (1982).

[DHS] Dolev, D., Halpern, J., and Strong, H. R., "On
the possibility and impossibility of achieving clock
synchronization," Proc. 16th ACM Symp. on Theory of
Computing, 1984.

[DLPSW] Dolev, D., Lynch, N., Pinter, S., Stark,
E. and Weihl, W., "Reaching approximate agreement in
the presence of faults," Proceedings of 3rd Annual
IEEE Symposium on Reliability in Distributed Software
and Database Systems,1983.

[DLS] Dwork, C., Lynch, N., Stockmeyer, L.,
"Consensus in the Presence of Partial Synchrony," in
preparation.

[DS] Dolev, D. and Strong, H.R., "Authenticated
algorithms for Byzantine agreement," SIAM
J. Computing 12 (1983), pp. 656-666.

[F] Fischer, M., "The consensus problem in
unreliable distributed systems (a brief survey)," Report
YALEU/DCS/RR-273, Yale University, June, 1983.

[FLa] Fischer, M. and Lamport, L., "Byzantine
Generals and Transaction Commit Protocols," SRI
Technical Report, Op. 62.

[FL] Fischer, M. and Lynch, N., "A lower bound for
the time to assure interactive consistency," Info. Proc.
Lett. 14, 4 (1982), pp. 183-186.

[FLP] Fischer, M., Lynch, N.A. and Paterson, M.,
"Impossibility of distributed consensus with one faulty
process," Proc. of 2nd Symposium on Principles of
Database Systems, Atlanta, GA, 1983.

[G] Garcia-Molina, H., Pittelli, F., and Davidson, S.,
"Is Byzantine agreement useful if] a distributed
database?" Manuscript.

[GLPT] Gray, J.N., Lorie, R.A., Putzulo, G.R., and
Traiger, I.L., "Notes on Database Operating Systems,"
Operating Systems: An Advanced Course, Vol. 60,
Lecture Notes in Computer Science, Springer-Verlag,
N.Y., 1978, pp. 393-481.

[I-I] Hadzi!acos V., "A Lower Bound for Byzantine
Agreement with Fail-stop Processors," TR-21-83,
Harvard University, 1983.

[HSS] Halpern J., Simons, B., and Strong, H. R., "An
efficient fault-tolerant algorithm for clock
synchronization," Report RJ 4094, IBM Research
Division, San Jose, CA, Nov., 1983.

[L I] Lamport, L., "The weak Byzantine generals
problem," J.ACM 30 (1983), pp. 668-676.

[L2] Lamport, L., "Time, clocks, and the ordering of
events in a distributed system," CACM 21, No. 7,
(1978), pp. 558-564.

[LL] Lundelius, J., and Lynch, N. "A New Fault-
Tolerant Algorithm for Clock Synchronization" These
Proceedings.

[LM] Lamport, L., and Melliar-Smith, P.M.,
"Synchronizing clocks in the presence of faults,"
Technical Report, SRI International, March, 1982.

[LSP] Lamport, L., Shostak, R., and Pease, M., "The
Byzantine generals problem," ACM Trans. on
Programming Languages and Systems 4 (1982), pp.
382-401.

[P] Pinter, S., "Distributed computation systems:
modelling, verification and algorithms," PhD Thesis,
Boston University, 1984.

[R] Reischuk, R., "A new solution for the Byzantine
generals problem," IBM Report RJ3673, November,
1982.

[Sc] Schneider, F.B., "Byzantine generals in action:
implementing fail-stop processors," Manuscript,
August, 1983.

[Sk] Skeen, D., "A quorum based commit protocol,"
Report TR 82-483, Dept. of Computer Science, Cornell
Univ., Feb., 1982.

f

117

F a i l u r e mode Synchronous Asynchronous

Fai l -stop t oo

Omission t oo

Byzantine with
Authentication t oo

Byzantine without
Authentication 3t+I oO

P a r t i a l l y
Synchronous

2 t + I

2t+1

3 t + I

3 t + I (exp)
3 t ~ N ~ 4 t + I

Tab le 1 : Smallest number of processors N (N > 2) for which
there exists a t-resilient consensus protocol (t >_ 1).

F a i l - s t o p : N = t

Omiss ion : t ~ N ~ 2 t + I

B y z a n t i n e w i t h N = 3 t + I
A u t h e n t i c a t i o n : 2 t ~ N ~ 2 t + I f o r the

case o f "weak u n a n i m i t y " I F]

B y z a n t i n e w i t h o u t N = 3 t + I (e x p o n e n t i a l commun ica t i on)
A u t l l e n t i c a t i o n : 3 t < N ~ 4 t +] (p o l y n o m i a l commun ica t i on)

Tab le 2: The smallest number of processors N for which t-resiliency
!s possible in the model with synchronous communication and

partially synchronous processors.

118

