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1. Introduction 

In designing fault-tolerant distributed systems, one often encounters questions of 
agreement among processes. In the Byzantine Generals problem [ 10, 121, the 
objective is for nonfaulty processes to agree on a value, in spite of the presence of 
a small number of “Byzantine” types of faults-completely arbitrary, even possibly 
malicious, behavior. Several variations on the problem can be considered-the 
model can be synchronous or asynchronous, and either exact or approximate 
agreement can be demanded. In this paper we consider a variant on the traditional 
Byzantine Generals problem, in which processes start with arbitrary real values 
and where approximate, rather than exact, agreement is the desired goal. Approx- 
imate agreement can be used, for example, for clock synchronization and for 
stabilization of input from sensors. 

We assume a model in which processes can send messages containing arbitrary 
real values and store arbitrary real values as well. We assume that each process 
starts with an arbitrary real value. For any preassigned E > 0 (as small as desired), 
an approximate agreement algorithm must satisfy the following two conditions: 

-Agreement. All nonfaulty processes eventually halt with output values that are 
within t of each other. 

-Validity. The value output by each nonfaulty process must be in the range of 
initial values of the nonfaulty processes. 

Thus, in particular, if all nonfaulty processes should happen to start with the 
same initial value, the final values are all required to be the same as the common 
initial value. This is consistent with the usual requirements by Byzantine agreement 
algorithms. However, should the nonfaulty processes start with different values, we 
do not require that the nonfaulty processes agree on a unique final value. 

We consider both synchronous and asynchronous versions of the problem. 
Systems in which there is a finite bounded delay on the operations of the processes 
and on their intercommunication are said to be synchronous. In such systems, 
unannounced process deaths, as well as long delays, are considered to be faults. 
For synchronous systems, we give a simple and rather efficient algorithm for 
achieving approximate agreement. This algorithm works by successive approxi- 
mation, with a provable convergence rate that depends on the ratio between the 
number of faulty processes and the total number of processes. The algorithm is 
guaranteed to converge when the total number of processes is more than three 
times the number of possible faulty processes. Termination is achieved using a 
technique that ensures that all nonfaulty processes halt, but different processes are 
allowed to terminate at different times. 

For asynchronous systems, in which a very slow process cannot be distinguished 
from a dead process, exact agreement cannot be reached by any algorithm that is 
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guaranteed to terminate [5, 91. (Exact agreement can, however, be attained by 
algorithms that only terminate with probability 1 [ 1, 31. An interesting contrast to 
the results in [5] and [9] is our second algorithm, which enables processes in an 
asynchronous system to get as close to agreement as one chooses. Our algorithm 
for the asynchronous case also works by successive approximation. In this case, 
however, the total number of processes required by the algorithm is more than five 
times the number of possible faulty processes. As in the synchronous case, we 
achieve termination using a technique that ensures that all nonfaulty processes halt 
but permits different processes to terminate at different times. 

Our algorithms for obtaining approximate agreement are of a very simple form. 
Namely, at each round, until termination is reached, each process sends its latest 
value to all processes (including itself). On receipt of a collection V of values, the 
process computes a certain function f(V) as its next value. The function f is a 
kind of averaging function. Here we use functions that are appropriate for handling 
t faulty processes. We show that these functions have particularly nice approxima- 
tion behavior. In particular, we show that, for algorithms of a specific form, no 
approximation function can provide uniformly faster convergence than the func- 
tions used in this paper. An earlier paper [6] presented similar algorithms but used 
approximation functions that provided slower convergence than is achieved by the 
functions used in this paper. 

The remainder of this paper is organized as follows: In Section 2, we prove some 
combinatorial properties of the approximation functions on which our algorithms 
depend. Then, in Section 3, we introduce the synchronous model and present the 
synchronous approximate agreement algorithm, and in Section 4, we present the 
asynchronous model and algorithm. Next, in Section 5, we present lower bounds 
on the convergence rate for algorithms of the form presented in Sections 3 and 4, 
and show that the approximation functions used in our algorithms are optimal. In 
Section 6, we discuss the resilience properties of our algorithms. Finally, in Section 
7, we conclude with a short summary and some open questions. 

2. Properties of the Approximation Functions 
In this section, we state and prove the relevant properties of the approxi- 
mation functions. First, we require some preliminary definitions and properties 
of multisets. 

2.1 PRELIMINARY DEFINITIONS. Let Jf be the natural numbers, including 0, 
and let 9 be the real numbers. We view a finite multiset U of reals as a function 
U: %? + M that is nonzero on at most finitely many r E 9. Intuitively, the function 
U assigns a finite multiplicity to each value r E 9. The cardinality of a multiset CT 
is given by Era U(r), and is denoted by ] U 1. We say that a multiset is empty if 
its cardinality is zero; otherwise it is nonempty. The difirence U-V of multisets U 
and V is the multiset W defined by 

W(r) = 
{ 

;O-) - W9 if U(r) - V(r) I 0, 
otherwise. 

The intersection U rl I/ of multisets U and V is the multiset I+’ defined by 
W(r) = min(U(r), V(r)). 

In what follows, the term multiset always refers to finite multisets of real numbers, 
as above. If g is a function on multisets, then gk denotes the k-fold iteration of g; 
thus g’ = g, g2 = g 0 g, etc. 
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The minimum min( U) of a nonempty multiset U is defined by 

min( U) = minlr E 9 : U(r) # 0). 

The maximum max( U) is defined similarly. If U is nonempty, let p(U) (the 
range of U) be the interval [min(U), max( U)], and let 6(U) (the diameter of U) be 
max( U) - min( U). The mean mean(U) of a nonempty multiset U is defined by 

mean(U) = ,g (u( . 

If U is a nonempty multiset, we define the multiset s(U) (intuitively, the multiset 
obtained by removing one occurrence of the smallest value in U) to be the multiset 
Wdefmed by 

W-J = 
1 

U(r) - 1 if r = min(U), 
U(r) otherwise. 

The multiset j(U) (remove one occurrence of the largest value in U) is defined 
similarly. If ] U ] L 2, then define reduce(U) = s(l( U)), the result of removing the 
largest and smallest elements of U. 

The first lemma shows that the number of common elements in two nonempty 
multisets is reduced by at most 1 when the smallest (or the largest) element is 
removed from each. 

LEMMA 1. Suppose that V and Ware nonempty multisets. Then 

(1) ] VII W] - Is(V) r-l s(W)] % 1; 
(2) 1 vn WI - 1 l(V) f-l l(W)1 % 1. 

PROOF. We prove the first inequality; the argument for the second is symmetric. 
If V and W have the same minimum, then the same element is removed from 
each, and hence at most one element is removed from their intersection. If the 
minima of V and Ware not the same, then either the minimum of V is not in W, 
or the minimum of W is not in V. In either case, at most one element is removed 
from the intersection. El 

The next lemma extends the results of the previous lemma to removing the 
j largest and j smallest elements. 

LEMMA 2. Suppose that j is a nonnegative integer and that V and W are 
multisets such that I VI 2 2j and I WI 2 2j. Then 

I V rl W I - I reducej( V) fl reducej( W) I I 2j. 

PROOF. Follows from repeated application of Lemma 1. Cl 

The next lemma is fundamental to the correctness of the algorithms. It states 
that if V and U are multisets such that V contains at most j values not in U, then 
every value in reduce’(V) is in the range of U. For example, if the multiset of 
values held by nonfaulty processes at some point in the algorithm is U, and the 
multiset of values received by some process is V, then at most t of the values in V 
are not in U, where t is the maximum number of faulty processes. The lemma then 
states that reduce’(V) is a multiset whose range is contained in the range of the 
values of the nonfaulty processes. This property is essential in showing that the 
validity condition is satisfied. 
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LEMMA 3. Suppose that j is a nonnegative integer and that U and V are non- 
empty multisets such that I V - U 1 5 j and 1 VI > 2j. Then p(reduce’( V)) C p(U). 

PROOF. Suppose p(reducej( V)) g p(U). Then either min(reducej( V)) < min( U) 
or max(reducej( V)) > max( U). If min(reducej( V)) < min( U), then Cr<min(u) V(r) 
z j + 1. Hence, 1 V - U 1 L j + 1, which contradicts a hypothesis. The case 
max(reduce’( V)) > max( U) is symmetric. •i 

2.2 THE APPROXIMATION FUNCTIONS. Suppose U is a nonempty multiset. Let 
m= lUl,andletuosul 5 ... 5 u,,,-, be the elements of U in nondecreasing 
order. If k > 0, then define selectk(U) to be the multiset consisting of the elements 
UO, uk, UZk, . . . , and ujk, where j = L(m - l)/kJ. Thus, selectk(U) chooses the 
smallest element of U and every kth element thereafter. 

An important role is played by the constants 

where c(m, k) is the number of elements in selectk(U) when U has m elements. 
The constant c(n - 2t, t) appears as the convergence factor for the synchronous 
protocol, and the constant c(n - 3t, 2t) as the convergence factor for the asynchro- 
nous protocol. 

In this paper we use approximation functions drawn from a class of functions 
parameterized by (1) the number t of faulty processes, and (2) a constant k, the 
choice of which depends on t and on whether the algorithm is synchronous or 
asynchronous. For k > 0 and t r 0 define the functionfk,r by 

fk,J V) = mean(selectk(reduce’( V))), 

for all multisets V with 1 V 1 > 2t. The approximation function for the synchronous 
protocol with no more than t faulty processes isf;,r. The approximation function 
for the asynchronous protocol with no more than t faulty processes is&,. We show 
below why these functions are appropriate. 

The next two lemmas describe properties of the approximation functions. 
Lemma 4 is used in verifying the validity condition. 

LEMMA 4. Suppose k > 0 and t L 0 are integers. Suppose that U and V are 
nonempty multisets such that I V - U I zz t and I VI > 2t. Thenj,&( V) E p(U). 

PROOF. Follows easily from Lemma 3 (with j = t). Cl 

Lemma 5 is applied to determine the rate of convergence of the approximation 
rounds. The multisets V and Ware the multisets of values received by two nonfaulty 
processes in a given round, and U is the multiset of values held by nonfaulty 
processes at the beginning of that round. Nonfaulty processes use the appropriate 
approximation function to choose their values for the next round; the lemma tells 
us how quickly those values converge. 

LEMMA 5. Suppose V, W, and U are multisets, and k > 0, t L 0, and m > 2t 
areintegers, with I VI = I WI = m, IV- UI 5 t, I W- UI 5 t, and I W- VI = 
I V- WI zz k. Then 

I.hJV> -h,r(W) I 5 A(U) 
c(m - 2t, k)’ 

PROOF. Let M = reduce’(V) and N = reduce’(W). Since V and Weach contain 
exactly m elements, M and N each contain exactly m - 2t elements, and hence 
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select&V) and select&V) each contain exactly c = c(m - 2t, k) elements. Let 
rnOIrnl I --* P rnceI be the elements of select&), and let no I nl I . . . I ncml 
be the elements of select@). Notice that there are at least ki + 1 elements in h4 
that are less than or equal to m;, and at most ki elements in M that are strictly less 
than m;; similarly for N. 

We begin by showing that max(m;, n;) 5 min(m;+i, n;+J for 0 I i 5 c - 2. It 
suffices to show that mi 5 n;,, ; a symmetric argument demonstrates that ni % mi+, . 

We proceed by contradiction: Suppose that mi > n;+l. As noted above, there are 
at least k(i + 1) + 1 elements in N less than or equal to ni+i . By our supposition, 
these elements are strictly less than mi. However, there are at most ki elements in 
M strictly less than mi. Therefore, there are at least k(i + 1) + 1 - ki (= k + 1) 
elements in N that are not in M; thus, 1 N - M 1 L k + 1. Now by hypothesis, 
(W-1/1~k,soIWnVlrm- k. Then Lemma 2 shows ] N tl MI 2 
m - k - 2t, and hence 1 N - Ml 5 (m - 2t) - (m - k - 2t) = k. This is a 
contradiction, and we conclude that mi I Yli+l . 

Now we use the inequality shown above to obtain the desired result. Using the 
notation defined above, 

I.hJ(n -h,t(W I = I mean(selectk(M)) - mean(select&V)) ] 

=- k Ig (mi - nil 

c I 

5’i IWli 
C i=lJ - nil (by the triangle inequality) 

= k yz: (lllaX(mi, ni) - min(mi, Q)). 
I 

By the inequality demonstrated above, for 0 5 i I c - 2, (max(mi, ni) - 
min(mi, ni)) 5 (min(mi+i, Ili+l) - min(mi, ni)); SO we get 

1 
l.&(V) - fk,,(U/) 1 5 ; [max(m,-,, n,-1) - min(m,-1, n,-I)] 

+ i J (min(mi+l, ai+,) - min(mi, ni)). 
I 

Collecting terms then shows that 

1 
IJJV) -j&w> I 5 c (mxbk, G-I) - min(m0, no)). 

Now, p(M) G p(U) and p(N) G p(V) by Lemma 3 (with j = t), so max(m,-I , n,-i) 
5 max( U) and min(mo, no) 2 min( V). Hence, 

min( V)) 

as desired. 0 
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3. The Synchronous Problem 
A synchronous approximation algorithm P is a system of n processes, n 2 1. Each 
process p has a set of states, including a subset of states called initial states and a 
subset called halting states. There is a value mapping that assigns a real number as 
the value of each state. For each real number r, there is exactly one initial state 
with value r. Each process acts deterministically according to a transition function 
and a message generation function. The transition function takes a nonhalting 
process state and a vector of messages received from all processes (one message per 
process) and produces a new process state. The message generation function takes 
a nonhalting state and produces a vector of messages to be sent to all processes 
(one per process). 

We assume that the system acts synchronously, using a reliable communication 
medium. Each process is able to send messages to all processes (including itself), 
and the sender of each message is identifiable by the receiver. 

A configuration consists of a state for each process. An initial configuration 
consists of an initial state for each process. Let T be any subset of the processes. A 
sequence of configurations (called rounds), CO, C,, C2, . . . , is a T-computation 
provided there exist messages sent by each process at each round such that (a) CO 
is an initial configuration; (b) for every i, and every p E T, the messages sent out 
by p after C; are exactly those specified by p’s message generation function, applied 
to p’s state in Ci; and (c) for every i, and every p E T, p’s state in Ci+l is exactly 
the one specified by p’s transition function applied to p’s state in Ci and the 
messages sent to p after Ci. In a T-computation, processes in T are nonfaulty, 
whereas processes not in T may be faulty. 

For the rest of the paper, assume a fixed small value c, a fixed number of 
processes n, and a fixed maximum number of faulty processes t. 

A synchronous approximation algorithm is said to be t-correct provided that for 
every subset T of processes with ] T ] 1 n - t, and every T-computation, the 
following is true: 

Every p E T eventually enters a halting state, and the following two conditions 
hold for the values of those halting states: 

-Agreement. If two processes in T enter halting states with values r and s, 
respectively, then ] r - s ] 5 c. 

-Validity. If a process in T enters a halting state with value r, then there exist 
processes in T having x and y as initial values, such that x 5 r I y. 

We prove the following theorem. 

THEOREM 1. If n 1 3t + 1, then there exists a t-correct synchronous approxi- 
mation algorithm with n processes. 

Note that the following strategy would suffice to prove Theorem 1. The processes 
could run n executions of a general (unlimited value set) Byzantine Generals 
algorithm, such as the one in [4], in order to obtain common estimates for the 
initial values of all the processes. After this algorithm completes, all processes in T 
will have the same multiset V of values for all the processes. Then each process 
halts with value f(V), where f is a predetermined averaging function that is the 
same for all processes. This algorithm actually achieves exact real-valued agreement, 
with the required validity condition. However, the solution presented below is 
simpler and more elegant and, moreover, extends directly to the asynchronous 
case, for which exact agreement is impossible. The algorithm has two additional 
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advantages over using a Byzantine Generals algorithm: It is more resilient than 
typical Byzantine Generals algorithms, and it can, in some cases, terminate in 
fewer than t + 1 rounds. 

We now present our synchronous approximation algorithm S. First, we describe 
a nonterminating algorithm, SO, and then we discuss how termination is achieved. 
We assume that n r 3 t + 1. 
Synchronous Approximation Algorithm So 

At each round, each nonfaulty process p performs the following steps: 

(1) Process p broadcasts its current value to all processes, including itself. 
(2) Process p collects all the values sent to it at that round into a multiset V. If p does not 

receive exactly one correct value from some particular other process (which means, in 
the synchronous model, that the other process is faulty), then p simply picks some 
arbitrary default value to represent that process in the multiset. The multiset V, therefore, 
always contains exactly n values. 

(3) Process p applies the function&,, to the multiset V to obtain its new value. 

The following result states how the diameter and range of the nonfaulty processes’ 
values are affected by each round of algorithm SO. 

LEMMA 6. Suppose n, t > 0 are such that n I 3t + 1. Let T be a set ofprocesses, 
with 1 T 1 L n - t. Let h be a positive integer. Let U and U’ be the multisets of 
values of processes in T immediately before and after round h, respectively, in a 
particular T-computation of So. Then 

(1) 6(U’) 5 c(n6(;; , t)’ 

(2) P(U’) G P(W. 
PROOF. Let p and q be arbitrary processes in T. Let V and W be the multisets 

of values (including default values) received by p and q, respectively, at round h. 
Then 1 V 1 = 1 W 1 = n. Since there are at most t faulty processes, 1 V - U 1 5 t and 
I W - U 1 5 t. Moreover, since V and W contain identical entries for all the 
processes in T, we know that 1 V- WI = 1 W- F/l 5 t. 
(1) The multisets V, W, and U satisfy the hypotheses of Lemma 5 (with m = n 

and k = t). Thus, 

I.L,l(V -f;l(W I 5 6(U) 
4n - 2t, t) * 

(2) The multisets Vand U satisfy the hypotheses of Lemma 4. ThusJ,,( V) E p(U). 

Since p and q were chosen arbitrarily, the result follows. 0 

Part 1 of Lemma 6 shows that, at each round, the diameter of the multiset of 
values held by nonfaulty processes decreases by a factor of c(n - 2t, t), which is at 
least 2 because n 2 3t + 1. Thus, the diameter of the multiset of values held by 
nonfaulty processes eventually decreases to E or less. In addition, repeated appli- 
cation of part 2 of Lemma 6 shows that, at each round h 2 1, the values held by 
nonfaulty processes immediately before round h are all in the range of the initial 
values of nonfaulty processes. 

It is now easy to see why the function A.1 is appropriate for the synchronous 
algorithm. Since a correct process can receive at most t values in a round from 
faulty processes, t-fold application of reduce is sufficient to ensure that extreme 
values from faulty processes are discarded. Thus, the second subscript off is t. 
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Also, if p and q are correct processes that receive multisets V and IV, respectively, 
in a round, then t is the maximum number of values that can be in V - IV. 
Application of select, to the reduced multisets is therefore sufficient to obtain 
convergence, and the first subscript off is also t. 

Algorithm SO is not a correct synchronous approximation algorithm, for, as 
stated, it never terminates. We modify SO to obtain a terminating algorithm S, as 
follows. At the first round, each nonfaulty process uses the range of all the values 
it has received at that round to compute a round number at which it is sure that 
the values of any two nonfaulty processes will be at most e apart. Each process can 
do this because it knows the value of 6, the guaranteed rate of convergence, and, 
furthermore, it knows that the range of values it receives on the first round includes 
the initial values of all nonfaulty processes. The total number of rounds that must 
be executed (including the first round) is given by Hog(6( V)/t)l, where V is the 
multiset of values received in the first round, and c = c(n - 2t, t). 

In general, different processes might compute different round numbers. Any 
process that reaches its computed round simply halts and sends its value out with 
a special halting tag. When any process, say p, receives a value with a halting tag, 
it knows it has to use the enclosed value not only for the designated round, but 
also for all future rounds (until p itself decides to halt, on the basis of p’s own 
computed round number). Although nonfaulty processes might compute different 
round numbers, it is clear that the smallest such estimate is correct. Thus, at the 
time the first nonfaulty process halts, the range is already sufficiently small. At 
subsequent rounds, the range of values of nonfaulty processes is never increased, 
although we can no longer guarantee that it decreases. The following lemma makes 
these ideas more precise. 

LEMMA 7. Assume that n 2 3t + 1. Let T be a set of processes, with 1 T 1 L 
n - t. Let h be a positive integer. Let U and U’ be the multisets of values of pro- 
cesses in T, immediately before and after round h, respectively, in a particular 
T-computation of S. Then p( U’) C p(U). 

. 
PROOF. Let p be an arbitrary process in T. Let v and v’ be the values held by p 

immediately before and after round h, respectively. It suffices, since p is arbitrary, 
to show that v’ E p(U). If p has terminated prior to the start of round h, then 
v’ = v E p(U). If p has not halted prior to the start of round h, then let V be the 
multiset of values received by p in round h. Then V and U satisfy the hypotheses 
of Lemma 4, and, since v’ =f;J V), it follows that v’ E p(U). Cl 

Algorithm S is summarized in Figure 1. To show that S is a correct synchronous 
approximation algorithm, we must show that all processes terminate, and that the 
agreement and validity conditions are satisfied. It is clear that all processes termi- 
nate. Consider the agreement property. At the first round at which some nonfaulty 
process halts, it is already the case that the values of all nonfaulty processes are 
within e of each other. By Lemma 7, this diameter never increases at subsequent 
rounds, so the final values of all the nonfaulty processes are also within E of each 
other. The validity property also follows from repeated application of Lemma 7. 
This completes the proof of Theorem 1. Cl 

As a final note, observe that algorithm S can be modified so that a process need 
not always wait for its computed round to arrive before halting: It can halt after it 
receives halting tags from at least t + 1 other processes. 
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Round I (First Approximation Round): 
Input v; 
v c SynchExc/?unge( v); 
v +Xt( 0 
H t r10g(6,(d(vyty, where c = c(n - 2t, f). 

Round h (2 5 h 5 H) (Approximation Rounds): 
v + SynchExchange( 
v +.a v). 

FIG. 1. Synchronous approximation algo- 
rithm S. Round H + 1 (Termination Round): 

Broadcust( (v, halted)); 
01rtpttt v. 

Subroutine SynchExchange( 
Broadcast(v); 
Collect n responses; 

l Fill in values for halted processes. 
l Fill in default values, if necessary. 

Return the multiset of responses. 

4. The Asynchronous Problem 

In this section we reformulate the problem in an asynchronous model adapted 
from the one in [9]. In an asynchronous approximation algorithm, we assume that 
processes have states as before, but now the operation of the processes is described 
by a transition function that in one step tries to receive a message, gets back either 
“null” or an actual message, and on the basis of the message, changes state and 
sends out a finite number of other messages. Nonfaulty processes always follow the 
algorithm. Faulty processes, on the other hand, are constrained so that their steps 
at least follow the standard form-in each step they try to receive a message, as do 
nonfaulty processes. However, they can change state arbitrarily (not necessarily 
according to the given algorithm) and can send out any finite set of messages (not 
necessarily the ones specified by the algorithm). A T-computation of an asynchro- 
nous approximation algorithm is one in which the processes in T always follow the 
algorithm, all processes (faulty and nonfaulty) continue to take steps until they 
reach a halting state, and any process that fails to enter a halting state eventually 
receives all messages sent to it. 

An asynchronous approximation algorithm is said to be t-correct provided that, 
for every subset T of processes with ] T ] 2 n - t and every T-computation, every 
process in T eventually halts, and the same agreement and validity conditions hold 
as for the synchronous case. 

It seems simplest here to insist on the standard form being followed by all 
processes. The requirement that faulty processes keep taking steps until they enter 
halting states is not a restriction, since they are free to enter halting states at any 
time they wish. Similarly, the requirement that faulty processes continue trying to 
receive messages is not a restriction, since they are free to do whatever they like 
with the messages received. Finally, the requirement that faulty processes only send 
finitely many messages at each step is needed so that faulty processes are unable to 
flood the message system, preventing messages from other processes from getting 
through. 

We assume that processes take steps at completely arbitrary rates, so that there 
is no way (in finite time) of distinguishing a faulty process from one that is simply 
slow in responding. Also, we assume that the message system takes arbitrary lengths 
of time to deliver messages and delivers them in arbitrary order. 
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We prove the following theorem: 
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THEOREM 2. If n z 5t + 1, then there exists a t-correct asynchronous approxi- 
mation algorithm with n processes. 

We now describe the asynchronous approximation algorithm. As in the synchro- 
nous case, first we describe a nonterminating algorithm Ao, in which processes 
compute better and better approximations, and we then modify AC, to produce a 
terminating algorithm A. Assume that n 2 5t + 1. 

Asynchronous Approximation Algorithm A0 
At round h, each nonfaulty process p performs the following steps: 

(1) Process p labels its current value with the current round number h, and then broadcasts 
this labeled value to all processes, including itself. 

(2) Process p waits to receive exactly n - t round h values and collects these values into a 
multiset V. Since there can be at most t faulty processes, process p will eventually receive 
at least n - t round h values. Note that, in contrast to the synchronous case, process p 
does not choose any default values. 

(3) Process p applies the functionj& to the multiset V to obtain its new value. 

By analogy with Lemma 6, we have the following result, which states the 
convergence properties of the above algorithm. 

LEMMA 8. Suppose n, t > 0 are such that n L 5t + 1. Let T be a set of pro- 
cesses, with 1 T 1 L n - t. Let h be a positive integer. Let U and U’ be the multi- 
sets of values of processes in T, immediately before and after round h, respectively, 
in a particular T-computation of AO. Then 

(1) S(U’) 5 c(n “yi 2t) > 
’ (2) P(U’) c P(U). 

PROOF. Let p and q be arbitrary processes in T. Let V and W be the multisets 
of values received by p and q, respectively, at round h. Then 1 1/l = 1 WI = n - t. 
Since there are at most t faulty processes, I V - U I 5 t and I W - U I 5 t. 
Moreover, since V and W both contain identical entries for all the processes 
in T from which both p and q heard, we know that I I/ n WI 2 n - 3t. Hence, 
IV-WI=IW-VI=IVI-Ivnwl~2t. 

(1) The multisets V, IV, and U satisfy the hypotheses of Lemma 5 (with 
m = n - t and k = 2t). Thus, 

IXdV -h.r(W I 5 6(U) 
c(n - 3t, 2t)’ 

(2) The multisets V and U satisfy the hypotheses of Lemma 4. Thus j&,(V) E 
p(U). Since p and q were chosen arbitrarily, the result follows. Cl 

Part 1 of Lemma 8 shows that, at each round, the diameter of the multiset of 
values of nonfaulty processes decreases by a factor of c(n - 3t, 2t), which is at least 
2 because n 1 5 t + 1. Thus, the diameter of the multiset of values held by nonfaulty 
processes eventually decreases to t or less. In addition, repeated application of part 
2 of Lemma 8 shows that, at each round h 2 1, the values held by nonfaulty 
processes immediately before round h are all in the range of the initial values of 
nonfaulty processes. 
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Round 0 (Initialization Round): 
Input v; 
v + AsynchExchange( v, 0); 
v +-- meun(reduce2’( V)); 
H + rlog(d( V)/c)l, where c = c(n - 3t, 2t). 

Round h (1 5 h s H) (Approximation Rounds): 
V t AsynchExchange(v, h); 

FIG. 2. Asynchronous approximation algo- 
rithm A. 

v +hr,r( V). 

Round H + 1 (Termination Round): 
Broudcust( (v, halted)); 
output v. 

Subroutine AsynchExchunge(v, h): 
Broudcust(( v, h)) 
Collect n - t round h responses: 

l Fill in values for halted processes. 
l Do not fill in default values. 

Return the multiset of responses. 

We can now see why fi,,, is the appropriate approximation function for the 
asynchronous algorithm. The second subscript is t because, as in the synchronous 
case, that is the maximum number of values a correct process can receive in a 
round that are not values of correct processes. The first subscript is 2t because if 
the correct processes p and q receive multisets I/ and IV, respectively, in a round, 
then 2t is the maximum number of values that can be in V - W(t faulty values, 
plus t nonfaulty values received by p but not by q). 

The only remaining problem is termination. We cannot use the same technique 
that we used in the synchronous algorithm, because a process cannot wait until it 
hears from all other processes, and thus it cannot obtain an estimate of the range 
of the initial values of the nonfaulty processes. We solve this problem by adding 
an initialization round at the beginning of the algorithm. In this initialization 
round (round 0), each nonfaulty process p performs the following steps: 

Initialization Roundfor Asynchronous Approximation Algorithm A 

(1) Processp labels its initial value with the round number 0 and then broadcasts this labeled 
value to all processes, including itself. 

(2) Process p waits to receive exactly n - t round 0 values and collects these values into a 
multiset V,. 

(3) Process p chooses an arbitrary element of p(reduce*‘( VP)) (say mean(reduce*‘( VP))) as its 
initial value for use in round 1. Let x, be this chosen value. 

Suppose that p and q are arbitrary nonfaulty processes. Then, since 1 VP 1 > 4t 
and 1 VP - V, 1 I 2t, it follows that VP and V, satisfy the hypotheses for the multi- 
sets V and U, respectively, in Lemma 3 (with j = 2t). An application of this result 
shows that, for any nonfaulty processes p and q, it is the case that 
x, E p( V,). That is, the value x,, computed by process p as the result of the 
initialization round is contained in the range of all values received by process q in 
the initialization round. Since each nonfaulty process q knows (1) that its range 
p( V,) contains all the round 1 values x, for nonfaulty processes p, (2) the value of 
E, and (3) the guaranteed rate of convergence, it can compute, before the beginning 
of round 1, a round number at which it is sure that the values of any two nonfaulty 
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processes will be at most E apart. The total number of rounds that must be executed 
by a process, not including the initialization round, is flog(8( V)/f)l, where V is 
the multiset received in the initialization round and c = c(n - 3t, 2t). 

As in the synchronous case, different processes will calculate different round 
numbers at which they would like to halt. The same modification, of sending a 
value out with a special halting tag, works here as well. We obtain a lemma 
analogous to Lemma 7. 

LEMMA 9. Assume that n 5 5t + 1. Let T be a set of processes, with 1 T 1 2 
n - t. Let h be a positive integer. Let U -and U’ be the multisets of values of 
processes in T immediately before and after round h, respectively, in a particular 
T-computation of A. Then p( U’) G p(U). 

Algorithm A is summarized in Figure 2. The remainder of the proof of Theorem 
2 is analogous to that of Theorem 1. 

5. Lower Bound Results 
In this section we assume that algorithms are of a standard form in which, at each 
round, an old approximation is exchanged with other processes, and a new 
approximation is computed from the multiset of values received, by the application 
of an approximation function f: We assume that f is cautious, as defined below. 
(Our algorithms all lit this pattern.) The results show that, under these assumptions, 
the function f;l gives the best possible single-round convergence factor for a 
synchronous algorithm for n I 3 t + 1, and the function f2[,, gives the best possible 
single-round convergence factor for an asynchronous algorithm for n L 5 t + 1. 

We should note that the results of this section merely show the existence, given 
a particular choice of approximation functions, of multisets that demonstrate the 
worst-case behavior of those approximation functions. These multisets satisfy 
cardinality constraints such that they could be the multisets appearing in some 
round of an actual execution of the algorithm, for example, the first round. 
However, the multisets of values appearing in any round of an execution of the 
algorithm depend, in general, on the behavior of the faulty processes at all preceding 
rounds. We do not necessarily know that the faulty processes can conspire to 
produce worst-case behavior at each round of the algorithm. The results of this 
section do not, therefore, preclude the existence of approximation functions whose 
per-round convergence factor is not constant over the course of the algorithm but 
becomes instead more favorable as the algorithm progresses. 

In [6], an earlier version of this work, we used different approximation functions 
in our algorithms. The discovery of the lower bounds in this section suggested that 
those functions did not give optimal rates of convergence and led us to search for 
the improved approximation functions that appear in this paper. 

In the remainder of this section, let n and t be fixed. 
We say that an approximation function 1; which takes a multiset A4 of real 

numbers to a real numberf(M), is cautious iff(M) E p(U) for all multisets U such 
that ] A4 - U ] 5 t. The cautious requirement seems reasonable for any approxi- 
mation function that will tolerate up to t faults: Regardless of the values received 
from the faulty processes, a cautious function will produce a value in the range of 
the values held by the nonfaulty processes. It is easy to see that fk,, is cautious for 
all k > 0. 
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5.1 THE SYNCHRONOUS PROBLEM. We show the following theorem: 

THEOREM 3. Suppose n, t > 0 are such that n > 3t + 1. Suppose that f and g 
are cautious approximation functions. Then there exist multisets V, W, and U such 
that 

1 VI = 1 W( = 12, 
IUI =n-t, 

1 v- U( = 1 w- UI = t, 
A(U) 

If(v) - g(w) I r c(n _ 2t 9 t) * 

The implications of this result for the synchronous agreement algorithm are the 
following: Suppose we consider algorithms of a standard form in which, at each 
round, a process exchanges its current approximation with all other processes and 
then applies a cautious approximation function to the multiset of values it receives 
to determine its new approximation. Theorem 3 then implies that there exist 
multisets V, W, and U, such that, if correct processes p and q (using approximation 
functions fand g, respectively) receive multisets of values V and W, respectively, 
in some round of execution, and U is the multiset of values held by correct 
processes at the start of that round, then the new approximations held by p and q 
at the end of the round can be no closer than G(U)/c(n - 2t, t). Thus this result 
yields a fundamental limitation on the rate of convergence of algorithms of the 
standard form. The lower bound given by this result also matches the upper bound 
provided by the function&. 

The proof of Theorem 3 requires the following lemma, which asserts the existence 
of a chain of multisets that spans from a multiset MO, upon which every cautious 
approximation function must yield 0, to a multiset MC, upon which every cautious 
approximation function must yield 1, where c = c(n - 2t, t). The chain is defined 
so that 

(1) MO has the value 0 with multiplicity n - t and the value 1 with multiplicity t. 
(2) For 0 5 i 5 c - 1, the multiset Mi+r is obtained from Mi by changing t of the 

values from 0 to 1. 

LEMMA 10. Suppose II, t > 0 are such that n 2 3t + 1. Let c = c(n - 2t, t). 
Then there exist multisets MO, MI, . . . , MC, and U,, UZ, . . . , UC such that 

lM;l = n for 0 5 i 5 c, 
1 Vi I = n - t for 1 zz i 5 c, 

I Mi - ui+, 1 = 1 Mi+, - Ui+l 1 = t for 05 izzc- 1, 

S(Ui) = 1 for 1 5 i 5 c, 

and such that f(Mo) = 0 and f(M,) = 1 whenever f is a cautious approximation 
function. 

PROOF. Define Mi to have the value 0 with multiplicity n - (i + 1)t and the 
value 1 with multiplicity (i + 1)t. Define Ui to have the value 0 with multiplicity 
n - (i + 1)t and the value 1 with multiplicity it. The cardinality and diameter 
constraints on these sets are easily checked. Suppose f is cautious. Then, since MO 
has the value 0 with multiplicity n - t (> t) and the value 1 with multiplicity t (I 
t), it follows that f(Mo) = 0. Also, MC has the value 0 with multiplicity n - (c + l)t 
and the value 1 with multiplicity (c + 1)t. From the definition of c, we know that 
n- 3t<(c- l)t+ 1 =n-2t,so(c+ l)trn-tandn-(c+ l)tIt.Itfollows 
that f(Mc) = 1. 0 
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We can now present the proof of Theorem 3. 
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PROOF. For 0 I i 5 c (= c(n - 2t, t)), let the approximation function hi be f 
if i is even and g if i is odd. By Lemma 10, there exists a chain MO, Ml, . . . , MC, 
andU,,UZ,...,Ucsuchthat 

IMil = n for 0 5 i 5 c, 
1 Uil = n - t for 1 5 i 5 c, 

1 Mj - Vi+1 1 = 1 Mi+l - ui+l I = t for 05i<c- 1, 
S(U;) = 1 for 1 5 i 5 c, 

and such that h&k&J = 0 and h,(M,) = 1. Suppose, to obtain a contradiction, that 
1 hi+l(M;+l) - hi(M;) 1 < I/C for 0 5 i 5 c - 1. Then 

I= I h,(K) - hoWo) I 

= 1 h,(M,) - h,-,(M,-,) + h,-,(M,-1) - h&IL) + . . . + h,(MJ - ho(Mo) I 
5 1 h,(M) - h,-,(M,-1) I + I h,-@L,) -hc-z(Mc-2) I + . . . + I hWd - hoNo) I 

<4 
1” = . 

This is a contradiction, and we conclude that 1 hi+l(M;+l) - hi(Mi) I 2 l/c for 
some i with 1 I i 5 c - 1. If i is even, then hi = fand hi+, = g, SO letting V = Mi, 
W = Mi+r , and U = Ui+l satisfies the requirements of the theorem. If i is odd, then 
instead let V= IV;+,, IV= M;, and U = Ui+l. Cl 

5.2 THE ASYNCHRONOUS PROBLEM. We show the following theorem: 

THEOREM 4. Suppose n, t > 0 are such that n I 5t + 1. Suppose that f and g 
are cautious approximation functions. Then there exist multisets V, W, and U such 
that 

1 VI = I WI = n -t, 
IUI =n-t, 

IV-UI=IW-UI=t, 

If(V) - g(W) I 2 
fvU) 

c(n - 3t, 2t). 

The implications of this result for the asynchronous agreement algorithm are 
analogous to what Theorem 3 has to say about the synchronous algorithm: There 
exist multisets V, W, and U, such that, if correct processes p and q (using 
approximation functions f and g, respectively) receive multisets of values V and 
W, respectively, in some round of execution, and U is the multiset of values held 
by correct processes at the start of that round, then the new approximations held 
by p and q at the end of the round can be no closer than G(U)/c(n - 3t, 2t). The 
lower bound given by this result also matches the upper bound provided by the 
function j&. 

As before, the theorem is proved with the aid of a chain lemma. Let c = 
c(n - 3t, 2t). The chain is defined so that 

(1) MO has the value 0 with multiplicity n - 2t and the value 1 with multiplicity t. 
(2) For 0 I i 5 c - 2, the multiset Mi+i is obtained from Mi by changing 2t of the 

values from 0 to 1. 
(3) If MC-, has the value 0 with multiplicity at least 2t + 1, then MC is obtained 

from MC-, by changing 2t of the values from 0 to 1. If MC-, has the value 0 
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with multiplicity 5 2t, then MC is obtained from MC-, by changing t of the 
values from 0 to 1. Note that MC-i will always have the value 0 with multiplicity 
atleastt+ 1. 

LEMMA 11. Suppose n, t > 0 are such that n L 5t + 1. Let c = c(n - 3t, 2t). 
Then there exist multisets MO, M,, . . . , MC, and U,, UZ, . . . , UC, such that 

lM;j =n-t fir OIiSc, 
1 Ui 1 = n - t for 1 I i 5 C, 

1 M - Ui+l 1 = 1 Mi+l - ui+l I = t for 05 ilc- 1, 
S(Ui) = 1 fir 1 5 i 5 c, 

and such that f(Mo) = 0 and f(MJ = 1 whenever f is a cautious approximation 
function. 

PROOF. From the definition of c, we know that (2~ + 1)t + 1 I n I (2~ + 3)t. 
We split the proof into two cases. In case (2~ + 2)t + 1 5 ~15 (2~ + 3)t, then define 
Mi to have the value 0 with multiplicity n - (2i + 2)t and the value 1 with 
multiplicity (2i + l)t, for each i with 0 I i I c. Define Vi to have the value 0 with 
multiplicity n - (2i + 1)t and the value 1 with multiplicity 2it, for each i with 1 5 
i 5 c. In case (2~ + 1)t + 1 5 n I (2~ + 2)t, we modify slightly the definition of MC 
and UC from the preceding case. That is, define MC to have the value 0 with 
multiplicity n - (2~ + 1)t and the value 1 with multiplicity 2ct. Also, define UC 
to have the value 0 with multiplicity n - 2ct and the value 1 with multiplicity 
(2c - 1)t. 

In both cases it is straightforward to check that the required properties hold. 0 

The proof of Theorem 4 is entirely analogous to the proof of Theorem 3. 

6. Resilience 
The algorithms presented in this paper have some interesting resilience properties, 
stronger than those usually claimed for Byzantine agreement algorithms. So far, 
we have only claimed that the algorithms are resilient to t different processes 
exhibiting Byzantine faults during the entire course of the algorithm. However, we 
can claim more for situations where processes fail and recover repeatedly. Our 
algorithms actually support resilience to any t Byzantine faulty processes at a time 
(under suitable definitions of faultiness at a particular time); the total number of 
faulty processes can be much greater than t, since we can allow different processes 
to be faulty at different times. 

We do not give a formal presentation of our resilience properties. Rather, we 
just give a brief sketch of the main ideas. 

First, consider the synchronous case. A faulty process is able to recover easily 
and reintegrate itself into the algorithm. It can reenter the algorithm at any round, 
just by sending an arbitrary value, collecting values, and averaging them as usual 
to get a new value. The process also needs to obtain an estimate of the number of 
rounds required before termination. It can obtain such an estimate in the reentry 
round, just as it could in the first round. 

The asynchronous case is a little more complicated. A faulty process p needs to 
rejoin the algorithm at some particular (asynchronous) round; however, it must be 
careful to rejoin at some round that is not “out of date.” That is, in the absence of 
additional failures of p, it must be guaranteed to receive all of its messages for that 
and subsequent rounds. Process p could not simply wait until it received n - t 
messages for some particular round k, since those messages might have been 
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delivered very late, and messages for round k + 1 might have already been lost. 
However, it suffices for p to send out a “recovery” message, and await acknowledg- 
ments from n - t processes carrying the number of their current round. Process p 
knows that the t + 1st smallest of these round numbers, plus 1, is an allowable 
round number for it to use for reentry. 

The recovering process is not able to use the same method of estimating a 
termination round as it did initially. Therefore, it seems necessary to modify the 
asynchronous algorithm to enable recovering processes to obtain termination 
estimates when needed. An easy modification that works is to have every process 
piggyback its estimate of the number of rounds to termination on every message 
it sends. Then a recovering process can obtain a new estimate just by taking the 
t + 1st smallest of the estimates it receives at the reentry round. 

7. Summary and Open Questions 
We have defined a problem of approximate agreement on real numbers by processes 
in a distributed system. We integrated simple approximation functions into two 
simple-to-implement algorithms for achieving approximate agreement-one for a 
synchronous distributed system and the other for an asynchronous system. In 
addition, we showed that both algorithms achieve the fastest possible convergence 
rate for algorithms of a particular form. The algorithm for an asynchronous system 
provides an interesting contrast to the results in [5] and [9], which show that exact 
agreement is impossible in an asynchronous system. 

The ideas of this paper have been used in the design of algorithms for synchro- 
nizing clocks in distributed systems [ 1 I]. 

For the synchronous case, it is not difficult to show that 3t + 1 processes are 
necessary to solve the approximate agreement problem. The proof is an adaptation 
of the lower bound proof in [lo] and appears in [8]. For the asynchronous case, 
our number of processes is not optimal. In fact, it appears possible to reduce the 
number of processes to as few as 3t + 1. This reduction is obtained using a more 
complex algorithm, based on some of the interesting ideas of [2]. This algorithm 
has a slower rate of convergence than ours. 

The algorithms presented here have the undesirable property that the faulty 
processes, by their actions in the first round, can cause the range of values received 
by correct processes to be arbitrarily large, and hence can cause the time to 
convergence to be arbitrarily long. It appears that some of the ideas of [2] can also 
be used to obtain improved initialization rounds for the algorithms that eliminate 
this possibility. 

To obtain the lower bound results, we had to restrict our attention to algorithms 
of a standard form (ones that operate by broadcasting values and using received 
values to compute a new approximation) and to functions with a natural, but 
apparently restrictive property (the “cautious” property). It would be interesting to 
obtain answers to the following questions: 

-Can the cautious property be weakened or removed entirely? 
-Can algorithms not of the standard form considered here produce agreement 

faster? 

We would also like to have a better understanding of the relationship between 
the number of processes and the rate of convergence for approximate agreement 
algorithms. For instance, the more complex asynchronous algorithm mentioned 
above uses fewer processes but has a slower rate of convergence than ours. Is there 
a trade-off? 
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We can state a variant of the approximate agreement problem that uses a fixed 
number r of rounds and in which E is not predetermined. Each process starts with 
a real value, as before. After r rounds, the processes must output their final values. 
The validity condition is the same as before. The object of the algorithm is to 
ensure the best possible agreement, expressed as a ratio of the new diameter of the 
nonfaulty processes’ values to the original diameter. For given KZ, t, and r, we would 
like to know the best ratio. 

As before, if the algorithm is constrained to operate round by round, applying 
cautious functions at each round, we obtain lower bounds that are exactly the same 
as these achieved by our averaging functions. However, if the algorithm is uncon- 
strained, the best bounds we have are not at all tight. Consider the synchronous 
case, for example. The best upper bound we have still arises from repeated 
application of our averaging functionA,, and is approximately (t/n)k. We can obtain 
a lower bound by extending our chain argument of this paper to a k-dimensional 
hypercube (along the lines in [7]). This extension gives a lower bound of approxi- 
mately (t/nk)k. This is still a considerable gap, which we would like to see closed. 
Recent work of Fekete (private communication) has made some progress toward 
this goal. 
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