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ABSTRACT

The concept of partial synchrony in a distributed system is introduced. Partial synchrony lies
petween the cases of a synchronous system and an asynchronous system. In a synchronous
system, there is a known fixed upper bound A on the time required for a message to be sent from
one processor to another and a known fixed upper bound @ on the relative speeds of different
processors. in-an asynchronous system, no fixed upper bounds A and & exist. In one version of
partial synchrony, fixed bounds A and & exist but they are not known a priori. The problem is to
design protocols which work correctly in the partially synchronous system regardless of the actual
values of the bounds A and ®. In another version of partial synchrony, the bounds are known but
they are only guaranteed to hold starting at some unknown time T, and protocols must be
designed to work correctly regardless of when the time T occurs. Fault tolerant consensus
protocols are given for various cases of partial synchrony and various fault models. Lower bounds
are also given which show in many cases that our protocois are optimal with respect to the number
of faults tolerated. Our consensus protocols for partially synchronous processors use new
protocols for fault-tolerant "distributed clocks" which allow partially synchronous processors to
reach some approximately common notion of time.
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1. INTRODUCTION
1.1. Background

The role of synchronism in distributed computing has recently received considerable attention
[FLP, DDS, ADG]. One method of comparing two models with differing amounts or types of
synchronism is to examine a specific problem in both models. Because of its fundamental role in
distributed computing, the problem chosen is often that of reaching agreement. (See {F}] for a
survey; see also [GLPT, Sc, G, DLPSW] for example.) One version of this problem considers a
collection of N processors, py, ..., py, Which communicate by sending messages to one another.
Initially each processor p; has a value v; drawn from some domain V of values, and the correct
processors must all decide on the saine value; moreover, if the initial values are all the same, say
v, then v must be the common decision. In addition, the consensus protocol should operate cor-
rectly if some of the processors are faulty, e.g., crash (fail-stop faults), fail to send or receive mes-

sages when they should (omission faults), or send erroneous messages {Byzantine faults).

Fix a particular type of fault. Given assumptions about the synchonism of the message system
and of the processors, one can characterize the model by its resiliency, the maximurm number of
faults which can be tolerated in any protocol in the given model. For example, it might be as-
sumed that there is a fixed upper bound A on the time for messages to be delivered (communication
is synchronous), and a fixed upper bound @ on the rate at which one processor’s clock can run
faster than another’s (processors are synchronous), and that these bounds are known a priori and can
be "built into" the protocol. In this case, N-resilient consensus protocols exist for Byzantine fail-
ures with authentication [LSP, DS} and, therefore, also for fail-stop and omission failures; in other
words, any number of faults can be tolerated. For Byzantine faults without authentication, t-
resilient consensus is possible iff N > 3t+1 [LSP, L1].

Recent work has shown that the existence of both bounds A and @ is necessary to achieve any
resiliency, even under the weakest type of faults. Dolev, Dwork and Stockmeyer [DDS], building
on earlier work of Fischer, Lynch and Paterson [FLP}, prove that either if a fixed upper bound A
on message delivery time does not exist (communication is asynchronous) or if a fixed upper bound
® on relative processor speeds does not exist {processors are asynchronous), then there is no consen-
sus protocol resilient to even one fail-stop fault.

In this paper, we define and study practically motivated models which lie between the com-
pletely synchronous and the completely asynchronous cases.

1.2. Partially Synchronous Communication

We first consider the case in which processors are completely synchronous (thatis, ® = 1) and
communication lies "between'' synchronous and asynchronous. There are at least two natural

ways in which communication might be partially synchronous.



One reasonable situation could be that an upper bound A on message delivery time exists but
we do not know what it is a priori. On the one hand, the impossibility results of [FLP, DDS] do not
apply since communication is, in fact, synchronous. On the other hand, participating processors
in the known consensus protocols need to know A in order to know how long to wait during each
round of message exchange. Of course, it is possible to pick some arbitrary A to use in designing
- the protocol, and say that whenever a message takes longer than this A, then either the sender or
the receiver is considered to be faulty. This is not an acceptable solution to the problem since if
we picked A too small, all the processors could soon be considered faulty, and by definition the
decisions of faulty processors do not have to be consistent with the decision of any other
processor. What we would like is a protocol that does not have A "built in". Such a protocol
would operate correctly whenever it is executed in a system where some fixed upper bound A
exists. It should also be mentioned that we do not assume any probability distribution on message
transmission time which would allow A to be estimated by doing experiments.

Another situation could be that we know A, but the message system is sometimes unreliable,
delivering messages late or not at all. As noted above, we do not want to consider a late or lost
message as a fault. However, without any further constraint on the message system, this "unreli-
able" message system is at least as bad as a completely asynchronous one, and the impossiblity
results of [DDS] apply. Therefore, we impose an additional constraint: that for each execution,
there is a global stabilization time (GST), unknown to the processors, such that the message system
respects the upper bound A from time GST onward.

This constraint might at first seem too strong: in realistic situations, the upper bound cannot
reasonably be expected to hold forever after GST, but perhaps only for a limited time. However,
any good solution to the consensus problem in this model would have an upper bound L on the
amount of time after GST required for consensus to be reached; in this case, it is not really neces-
sary that the bound A hold forever after time GST, but only up to time GST + L. We find it
technically convenient to avoid explicit mention of the interval length L in the model, but will in-
stead present the appropriate upper bounds on time for each of our algorithms.

Instead of requiring that the consensus problem be solvable in the GST model, we might think
of separating the correctness conditions into safety and termination properties. The safety condi-
tions are that no two correct processors should ever reach disagreement, and that no correct
processor should ever make a decision which is contrary to the specified validity conditions. The
termination property is just that each correct processor should eventually make a decision. Then
we might require an algorithm to satisfy the safety conditions no matter how asynchronously the
message system behaves, i.e., even if A does not hold eventually. On the other hand, we might
only require termination in case A holds eventually. It is easy to see that these safety and termi-
nation conditions are equivalent to our GST condition: if an algorithm solves the consensus
problem when A holds from time GST onward, then that algorithm cannot possibly violate a
safety property even if the message system is completely asynchronous. This is because safety vi-
olations must occur at some finite point in time, and there would be some continuation of the vi-
olating execution in which A eventually holds.



Thus, the condition that A holds from some time GST onward provides a second reasonable
definition for partial communication synchrony. Once again, it is not clear how we could apply
previously known consensus protocols to this model. For example, the same argument as for the
case of the unknown bound shows that we cannot treat lost or delayed messages in the same way
as processor faults.

For succinctness, we say that communication is partially synchronous if one of these two situ-
ations holds: A exists but is not known, or A is known and has to hold from some point on.

Qur results determine precisely the maximum resiliency possible in cases where communi-
cation is partially synchronous, for four interesting fault models. For fail-stop or omission faults,
we show that t-resilient consensus is possible iff N> 2t+1. For Byzantine faults with
authentication, we show that t-resilient consensus is possible iff N> 3t+1. Also, for Byzantine
faults without authentication, we show that t-resilient consensus is possible iff N> 3t+1. (The
"only if" direction follows immediately from the result for the completely synchronous case in
[LSP].) For the first three types of faults, the time required for all correct processors to reach
consensus is (1) a polynomial in N and A, for the model in which A is unknown, and (2) GST plus
a polynomial in N and A, for the GST model. On the other hand, our algorithm for the
unauthenticated Byzantine case uses an amount of time which is exponential in t. We also have a
t-resilient consensus protocol for Byzantine faults without authentication, which uses a
polynomial amount of time but which requires N > 4t4+1. We do not know whether it is possible
to obtain such a protocol for 3t+1 < N < 4t. All of our protocols which reach consensus within
time polynomial in parameters such as N and A also have the property that the total number of
message bits sent (after GST) is also bounded above by a polynomial in the same parameters.

Table 1 shows the maximum resiliency in various cases and compares our results with previ-
ous work. The results where communication is partially synchronous and processors are syn-
chronous are shown in column 3 of the table; the results in columns 4 and 5 will be explained
shortly. In each case, the table gives N ;,, the smallest value of N (N > 2) for which there is a
t-resilient protocol (t> 1). (Some of the lower bounds on N, in the "Partially Synchronous
Processors” column of the table have slightly stronger constraints on t and N which are given in
the formal statements of the theorems.) Results in the synchronous column are due to [LSP, DS,
DFFLS] while those in the asynchronous column are due to [FLP, DDS]. A table entry which is
a closed interval [a,b] means that a < N;, <b. Except where indicated, by "(exp)", the algo-
rithms require a polynomial amount of time,

It is interesting to note that for fail-stop, omission and Byzantine faults with authentication,
the maximum resiliency for partially synchronous communication lies strictly between the maxi-
mum resiliency for the synchronous and asynchronous cases. It is also interesting to note that for
partially synchronous communication, authentication does not improve resiliency.

Our protocols use variations on a common method: a processor p tries to get other processors

to change to some value v which p has found to be "acceptable”; p decides v if it receives suffi-

.



Partially
Partially Synchronous Partially
Failure Synchronous Communication Synchronous
Mode Synchronous Asynchronous Communication & Processors Processors
Fail-Stop t ] 2t+1 2t+1 t
Omission t 0 2t+1 2t+1 [2t, 2t+1]
Byzantine t e 3t+1 3t+1 2t+1
Authentication
Byzantine 3t+1 @ 3t+1 (exp) 3t+1 (exp) 3t+1 (exp)
[3t+1, 4t+1] [3t+1, 4t+1] [3t+1, 4t+1]

Table 1. Smallest number of processors N, for which a t-resilient consensus protocol exists.

ciently many acknowledgements from others that they have changed their value to v, so that a
value different from v will never be found acceptable at a later time. Similar methods have al-
ready appeared in the literature (see, for example, Skeen [Sk], Bracha and Toueg [BT]). Reischuk
[R] and Pinter [P] have also obtained consensus results which treat message and processor faults
separately.

1.3. Partially Synchronous Communication and Processors

It is easy to extend the models described in §1.2 to allow processors, as well as communication,
to be partially synchronous. That is, ® (the upper bound on relative processor speed) can exist
but be unknown, or ® can be known but actually hold only from some time GST onward. We
obtain results which completely characterize the resiliency in cases where both communication
and processors are partially synchronous, for all four of the classes of faults. In such cases, we
assume that communication and processors possess the same type of partial synchrony, that is,
cither both ® and A are unknown, or both hold from some time GST on.



Surprisingly, the bounds we obtain are exactly the same as for the case where communication
alone is partially synchronous; see column 4 of Table 1. (The only difference is that in this case
the polynomial bounds on time depend on N, A and ®.) In the earlier case, the fact that ® was
equal to 1 implied that each processor could maintain a local time that was guaranteed to be per-
fectly synchronized with the local times of other processors. In this case, no such notion of time
is available. We give two new protocols allowing processors to simulate distributed clocks. (These
are fault-tolerant variations on the clock used by Lamport in {L2].) One uses 2t+ 1 processors and
tolerates t fail-stop, omission, or authenticated Byzantine faults, while the other uses 3t+1
processoré and tolerates t unauthenticated Byzantine faults. When the appropriate clock is com-
bined with each of our protocols for the case where only communication is partially synchronous,

the result is a new protocol for the case where both communication and processors are partially
synchronous.

1.4. Partially Synchronous Processors

In analogy to our treatment of partial communication synchrony, it is easy to define models
where processors are partially synchronous and communication is synchronous (A exists and is
known a priori). Column 5 of Table 1 summarizes our results for this case. Once again, time is
polynomial (this time in N, A and ®) unless otherwise indicated. The basic strategy used in con-
structing the protocols for this case also involves combining a consensus protocol which assumes
processor synchrony with a distributed clock protocol. For fail-stop faults and Byzantine faults
with authentication, either the distributed clock or the consensus protocol can tolerate more fail-
ures than the corresponding clock or consensus protocol used for the case where both communi-
cation and processors are partially synchronous, so we obtain better resiliencies.

Technical remarks:

1. Our protocols assume that an atomic step of a processor is to either receive messages or send
a message to a single processor, but not both; there is no atomic receive/send operation nor
an atomic broadcast operation. We adopt this rather weak definition of a processor’s atomic
step in this paper because it is realistic in practice and seems consistent with assumptions made
in much of the previous work on distributed agreement. However, our lower bound argu-
ments are still valid if a processor can receive messages and broadcast a message to all
processors in a single atomic step.

2. The strong unanimity condition requires that if all initial values are the same, say v, then v
must be the common decision. Weak unanimity requires this condition to hold only if no
processor is faulty. Unless noted otherwise, our consensus protocols achieve strong unanimity,
and our lower bounds hold even for weak unanimity. However, in the case of Byzantine faults
with authentication and partially synchronous processors, the upper bound 2t+1 in column 5
of Table 1 holds for strong unanimity only if the initial values are signed by a distinguished
"sender". This assumption is also used in the algorithm of [DS] for the completely synchro-
nous case. (For weak unanimity, the upper bound 2t+1 in column 5 holds even without signed
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initial values.) We discuss this further in Section 6 which is the first place where the issue of

whether the initial values are signed has any effect on our results.

3. Our consensus protocols are designed for an arbitrary value domain V, whereas our lower
bounds hold even for the case | V| = 2.

The remainder of the paper is organized as follows. Section 2 contains definitions. Section 3
contains our basic protocols, presented in a basic round model which has more power than the
models in which we are really interested. Section 4 contains our results for the model in which
processors are synchronous and communication is partially synchronous. In particular, the pro-
tocols of Section 3 are adapted to this model. The distributed clocks are defined in Section 5,
where we also discuss how to combine our results of Section 3 with the clocks to produce proto-
cols for the model in which both processors and communication are partially synchronous. Sec-
tion 6 contains our results for the case where processors are partially synchronous and
communication is synchronous.

2. DEFINITIONS
2.1. Model of Computation

Our formal model of computation is based on the models of [FLP, DDS]. Here we review the
basic features of the model informally. The communication system is modeled as a collection of
N sets of messages, called buffers, one for each processor. The buffer of p; represents messages
which have been sent to p; but not yet received. Each processor follows a deterministic protocol
involving the receipt and sending of messages. Each processor p; can perform one of the following
instructions in each step of its protocol:

Send(m,p;): places message m in pj's buffer;

Receive(p;): removes some (possibly empty) set S of messages from p;’s buffer
and delivers them to p;.

In the Send(m,pj) instruction, pj can be any processor, i.e., the communication network is com-
pletely connected. A processor’s protocol is specified by a state transition diagram; the number
of states can be infinite. The instruction to be executed next depends on the current state, and the
execution causes a state transition. For a Send instruction, the next state depends only on the
current state, while for a Receive instruction, the next state depends also on the set S of delivered
messages. The initial state of a processor p;is determined by its initial value v;in V. At some point
in its computation, a processor can irreversibly decide on a value in V.

For subsequent definitions, it is useful ta imagine that there is a real-rime clock outside the sys-
tem that measures time in discrete integer-numbered steps. At each tick of real time, some



processors each take one step of their protocols. A run of the system is described by specifying the
initial states for all processors, and by specifying, for each real-time step:

(1) which processors take steps,

{2) the instruction which each processor executes, and

(3) for each Receive instruction, the set of messages delivered.
Runs can be finite or infinite. Given an infinite run R, the message m is /lost in run R if m is sent

by some Send(m,pj), pj executes infinitely many Reccive instructions in R, and m is never deliv-
ered by any Receive(p;).

2.2, Failures

A processor executes correctly if it always performs instructions of its protocol (transition dia-
gram) correctly. A processor is correct if it executes correctly and takes infinitely many steps in
any infinite run. We consider four types of increasingly destructive faulty behavior of processor
p;.

Fail-stop: The processor p; executes correctly but can stop at any time. Once stopped it cannot
restart.

Omission: Faulty processor p; follows its protocol correctly, but Send(m,pj) might not place m in
pj's buffer and Receive(p;) might cause only a subset of the delivered messages to actually be re-
ceived by p;. In other words, an omission fault on reception occurs when some set S of messages
is delivered to p; and all messages in S are removed from p;’s buffer, but p; follows a state transi-
tion as though some (possibly empty) subset S’ of S were delivered.

Authenticated Byzantine: Arbitrary behavior. However, messages can be signed with the name of
the sending processor in such a way that this signature cannot be forged by any other processor.

Byzantine: Arbitrary behavior, and no mechanism for signatures. However, we assume that the
receiver of a message knows the identity of the sender.

2.3. Partial Synchrony

Let I be an interval of real time and let R be a run. We say that the communication bound A
holds in 1 for run R provided that if message m is placed in pj's buffer by some Send(m,p;) at a time
sy in 1, and if p; executes a Receive(pj) atatimes, in I with s, >s; + A, then m must be delivered
to p; at time s, or earlier. This says intuitively that A is an upper bound on message transmission
time in the interval I. The processor bound ® holds in I for R provided that in any contiguous
subinterval of I containing @ real time steps, every correct processor must take at least one step.
This implies that no correct processor can run more than ® times slower than another inthe in-
terval L.
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The following conditions, which define varying degrees of communication synchrony, place
constraints on the kinds of runs that are allowed. In these definitions, A denotes some particular

positive integer.

(1) A is known: the communication bound A holds in [1,:) for every run R;
delta is known: A is known, for some fixed A.

This is the usual definition of synchronous communication.
(2) delta is unknown: for every run R there is a A which holds in [1,00).

(3) A holds eventually: for every run R, there is a time T such that A holds in [T,e0).
delta holds eventually: A holds eventually, for some fixed A.
Such a time T is called GST, the Global Stabilization Time.

If either (2) or (3) holds, we say that communication is panially synchronous.

It is helpful to view each situation as a game between a protocol designer and an adversary.
If delta is known, the adversary names an integer A and the protocol designer must supply a con-
sensus protocol which is correct if A always holds. If delta is unknown, the protocol designer
supplies the consensus protocol first, then the adversary names a 4, and the protocol must be cor-
rect if that A always holds. If delta holds eventually, the adversary picks A, the designer supplies
a consensus protocol, and the adversary picks a time T when A must start holding.

By replacing A by ® and replacing "delta" by "phi" above, (1) defines synchronous processors,
and (2) and (3) define two types of partially synchronous processors.

2.4. Correctness of a Consensus Protocol

Given assumptions A about processor and communication synchrony, given a fault mode F,
and given a number N of processors and an integer t with 0 <t < N, correctness of a t-resilient
consensus protocol is defined as follows.

For any set C containing at least N—t processors and any run R satisfying A and in which the
processors in C are correct and the behavior of the processors not in C is allowed by the fault
mode F, the protocol achieves:
Consistency: No two different processors in C decide differently,
Termination: If R is infinite then every processor in C makes a decision,
Unanimity: There are two types:
Strong Unanimity: if all initial values are v and if any processor in C decides,
then it decides v.
Weak Unanimity: if all initial values are v, if C contains all processors and if any

processor decides, then it decides v,



3. A BASIC ROUND MODEL

In this section we define the basic round model and present preliminary versions of our algo-

rithms in this model. In the following sections, we show how each of our models can simulate the
basic model.

3.1, Definition of the Model

In the basic round model, processing is divided into synchronous rounds of message exchange.
Each round consists of a Send subround, a Receive subround and a computation subround. In a Send
subround, each processor sends messages to any subset of the processors. In a Receive subround,
some subset of the messages sent to the processor during the corresponding Send subround are
delivered. In a computation subround, each processor executes a state transition based on the set
of messages just received. Not all messages that are sent need arrive, some can be lost; however,
we assume that there is some round GST, such that all messages sent from correct processors to
correct processors at round GST or afterwards are delivered during the round at which they were
sent. Although all processors have a common numbering for the rounds, they do not know when
round GST occurs. The various kinds of faults are defined for the basic model as for the earlier
models.

3.2. Protocols in the Basic Round Model

In the remainder of this section, we show how the consensus problem can be solved for the
basic model, for each of the fault types.

To argue that our protocols achieve strong unanimity, we use the notion of a proper value de-
fined as follows: if all processors start with the same value v, then v is the only proper value; if
there are at least two different initial values, then all values in V are proper. In all protocols, each
processor will maintain a local variable PROPER, which contains a set of values which the
processor knows to be proper. Processors will always piggyback their current PROPER sets on
all messages. The way of updating the PROPER sets will vary from algorithm to algorithm. If
only weak unanimity is desired, the PROPER sets are not needed and the protocols can be sim-

plified somewhat; we leave these simplifications to the interested reader.

3.2.1. Fail-Stop and Omission Faults.

The first algorithm is used for either fail-stop or omission faults. It achieves strong unanimity

for an arbitrary value domain V.



Algorithm 1: N> 2t + 1

Initially, each processor’s set PROPER contains just its own initial value. Each processor at-
taches its current value of PROPER to every message that it sends. Whenever a prdcessor p re-
ceives a PROPER set from another processor that contains a particular value, v, then p puts v into
its own PROPER set. It is easy to check that each PROPER set always contains only proper val-
ues.

The rounds are organized into alternating rrying and lock release phases, where each trying
phase consists of 3 rounds and each lock release phase consists of 1 round. Each pair of corre-~
sponding phases is assigned an integer, starting with 1. We say that phase h belongs to processor h
mod N.

At various times during the algorithm, a processor may lock a value v. A phase number is as-
sociated with every lock. If p locks v with associated phase number k = i mod N, it means that p
thinks that processor p; might decide v at phase k. Processor p only releases a lock if it learns that
its supposition was false. A value v is acceptable to p if p does not have a lock on any value other
than v. Initially, no value is locked.

We now describe the processing during a particular trying phase k. Let s = 4k—3 be the
number of the first round in phase k, and assume k = i mod N. At round s, each processor (in-
cluding p;) sends a list of all its acceptable values which are also in its proper set to processor p; (in
the form of a (list,k) message). (If V is very large or infinite, it is more efficient to send a list of
proper values and a list of unacceptable values. Given these lists, the proper acceptable values are
easily deduced.) Just after round s, i.e., during the computation subround between rounds s and
s+ 1, processor p; attempts to choose a value to propose. In order for processor p; to propose v, it
must have heard that at least N—t processors (possibly including itself) find value v acceptable
and proper at the beginning of phase k. There might be more than one possible value which
processor p; might propose; in this case, processor p; will choose one arbitrarily. Processor p; then
broadcasts a message (lock v, k) at round s+1.

If any processor receives a (lock v, k) message at round s+1, it locks v, associating the phase
number k with the lock, and sends an a'cknowlcdgement to processor p; (in the form of an
(ack, k) message), at round s+2. In this case, any earlier lock on v is released. (Any locks on
other values are not released at this time.)

If processor p; receives acknowledgements from at least t+1 processors at round s+2, then

processor p; decides v. After deciding v, processor p; continues to participate in the algorithm.

Lock-release phase k occurs at round s+3 = 4k. At round s+3, each processor p broadcasts
the message (v,h) for all v and h such that p has a lock on v with associated phase h. If any
processor has a lock on some value v with associated phase h, and receives a message (w,h’) with

w# vand b’ > h, then the processor releases its lock on v.

10



Lemma 3.1.1. It is impossible for two distinct values to acquire locks with the same associated
phase.

Proof. In order for two values v and w to acquire a lock at trying phase k, the processor to which

phase k belongs must send conflicting (lock v, k) and (lock w, k) messages, which it will never do
in this fault model. [J

Lemma 3.1.2. Suppose that some processor decides v at phase k, and k is the smallest numbered
phase at which a decision is made. Then at least t+1 processors lock v at phase k. Moreover, each
of the processors that locks v at phase k will, from that time onward, always have a lock on v with
associated phase number at least k.

Proof. 1t is clear that at least t+1 processors lock v at phase k., Assume that the second conclusion
is false. Then let / be the first phase at which one of the locks on v set at phase k is released
without immediately being replaced by another, higher-numbered lock on v. In this case the lock
is released during lock-release phase Z, when it is learned that some processor has a lock on some
w # v with associated phase h, where k € h € /. Lemma 3.1.1 implies that no processor has a lock
on any w # v with associated phase k. Therefore, some processor has a lock on w with associated
phase h, where k <h £ 4. Thus, it must be that w is found acceptable to at least N—t processors
at the first round of some phase numbered h, k <h < ¢, which means that at least N—t processors
do not have v locked at the beginning of that phase. Since t+1 processors have v locked at least
through the first round of /, this is impossible.

Lemma 3.1.3. Immediately after any lock-release phase which occurs at or after GST, the set of

values locked by correct processors contains at most one value,
Proof. Straightforward from the lock-release rule.

Theorem 3.1. Assume the basic model with fail-stop or omission faults. Assume N > 2t+1. Then
Algorithm 1 achieves consistency, termination and strong unanimity for an arbitrary value do-
main.

Proof. First, we show consistency. Suppose that some correct processor p; decides v at phase k,
and this is the smallest numbered phase at which a decision is made. Then Lemma 3.1.2 implies
that at all times after phase k, at least t+1 processors have v locked. In consequence, at no later
phase can any value other than v ever be acceptable to N—t processors, so no processor will ever
decide any value other than v.

Next, we argue strong unanimity. If all the initial values are v, then v is the only value which

is ever in the PROPER sct of any processor. Thus, v is the only possible decision value.

Finally, we arguc termination. Consider any trying phase k belonging to a correct processor
p; which is executed after a lock-release phase, both occurring at or after round GST. We claim

that processor p; will reach a dccision at trying phase k (if it has not done so already). By Lemma

11
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3.1.3, there is at most one value locked by correct processors at the start of trying phase k. If
there is such a locked value, v, then sufficient communication has occurred by the beginning of
trying phase k so that v is in the PROPER set of each correct processor. Moreover, any initial
value of a correct proces"sor is in the PROPER set of each correct processor at the beginning of
trying phase k. It follows that a proper, acceptable value will be found for processor p; to propose,
and that the proposed value will be decided upon by processor p; at trying phase k. [J

It is easy to see that all correct processors make decisions by round GST + 4(N+1).

3.2.2. Byzantine Faults with Authentication

The second algorithm achieves strong unanimity for an arbitrary value set V, in the case of
Byzantine faults with authentication.

Algorithm 2: N > 3t+1

Initially, each processor’s PROPER set contains just its own initial value. Each processor at-
taches its PROPER set and its initial value to every message it sends. If a processor p ever receives
2t+1 initial values from different processors, among which there are not t+1 with the same value,
then p puts all of V (the total value domain) into its PROPER set. (Of course, p would actually
just set a bit indicating that PROPER contains all of V.) When a processor p receives claims from
at least t+1 other processors that a particular value v is in their PROPER sets, then p puts v into
its own PROPER set. It is not difficult to check that each PROPER set for a correct processor

always contains only proper values,

Processing is again divided into alternating trying and lock release phases, with phases num-
bered as before and of the same length as before. As before, at various times during the algorithm,
processors may lock values. In Algorithm 2, not only is a phase number associated with every
lock, but also a proof of acceprability of the locked value, in the form of a set of signed messages,
sent by N—t processors, saying that the locked value is acceptable and in their PROPER sets at
the beginning of the given phase. A value v is acceprable to p if p does not have a lock on any value
other than v.

We now describe the processing during a particular trying phase k. Let s = 4k—3 be the first
round of phase k, and assume k = i mod N. At round s, each processor pj (including p;) sends a
list of all its acceptable values which are also in its PROPER set to processor p;, in the form
E j(list,k), where Ej is an authentication function. Just after round s, processor p; attempts to
choose a value to propose. In order for processor p; to propose v, it must have heard that at least
N—t processors find value v acceptable and proper at phase k. Again, if there is more than one
possible value which processor p; might propose, then it will choose one arbitrarily. Processor p;
then broadcasts a message E;(lock v, k, proof), where the proof consists of the set of signed mes-

sages E(list, k) received from the N—t processors which found v acceptable and proper.
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If any processor receives an E;(lock v, k, proof) message at round s+1, it decodes the proof to
check that N—t processors find v acceptable and proper at phase k. If the proof is valid, it locks
v, associating the phase number k and the message E;(lock v, k, proof) with the lock, and sends an
acknowledgement to processor p;. In this case, any earlier lock on v is released. (Any locks on
other values are not released at this time.) If the processor should receive such messages for more
than one value v, it handles each one similarly. The entire message E;(lock v,k, proof) is said to
be a valid lock on v at phase k.

If processor p; receives acknowledgements from at least 2t+1 processors, then processor p;

decides v. After deciding v, processor p; continues to participate in the algorithm.

Lock-release phase k occurs at round s+3 = 4k. Processors broadcast messages of the form
E;(lock v, h, proof), indicating that the sender has a lock on v with associated phase h and the given
associated proof, and processor p; sent the message at phase h which caused the lock to be placed.
If any processor has a lock on some value v with associated phase h, and receives a properly signed
message E j(lock w, b, proof') with ws v and h' > h, then the processor releases its lock on v.

Lemma 3.2.1. 1t is impossible for two distinct values to acquire valid locks at the same trying

phase, if that phase belongs to a correct processor.

Proof. In order for different values v and w to acquire valid locks at trying phase k, the processor
p; to which phase k belongs must send conflicting E;(lock v, k, proof) and E;(lockw, k, proof’)
messages, which correct processors can never do. []

Lemma 3.2.2. Suppose that some correct processor decides v at phase k, and k is the smallest
numbered phase at which a decision is made by a correct processor. Then at least t+1 correct
processors lock v at phase k. Moreover, each of the correct processors that locks v at phase k will,
from that time onward, always have a lock on v with associated phase number at least k.

Proof. Since at least 2t+ 1 processors send an acknowliedgement that they locked v at phase k, it
is clear that at least t+1 correct processors lock v at phase k. Assume that the second conclusion
is false. Then let £ be the first phase at which one of the locks on v set at phase k is released
without immediately being replaced by another, higher-numbered lock on v. Then the lock is re-
leased during lock-release phase #, when it is learned that some processor has a valid lock on some
w 3 v with associated phase h, where k < h £ /. Lemma 3.2.1 implies that no processor has a valid
lock on any w # v with associated phase k. Therefore, some processor has a valid lock on w with
associated phase h, where k <h £ ¢. Thus, it must be that w is found acceptable to all but at most
t of the correct processors at the first round of some phase numbered h, k <h £ ¢, which means
that at most t correct processors have v locked at the beginning of that phase. Since t+1 correct

processors have v locked at least through the first round of ¢, this is impossible. [J

Lemma 3.2.3. Immediately after any lock-release phasc which occurs at or after GST, the set of

values locked by correct processors contains at most one value.

i
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Proof. Straightforward from the lock-release rule. []

Theorem 3.2. Assume the basic model with Byzantine faults and authentication. Assume
N2> 3t+1. Then Algorithm 2 achieves consistency, termination and strong unanimity for an ar-
bitrary value domain.

Proof. First, we show consistency. Suppose that some correct processor p; decides v at phase k,
and this is the smallest numbered phase at which a decision is made by a correct processor. Then
Lemma 3.2.2 implies that at all times after phase k, at least t+1 correct processors have v locked.
In consequence, at no later phase can any value other than v ever be acceptable to all but t of the

correct processors, so no correct processor will ever decide any value other than v.

Next, we argue strong unanimity. If v is the initial value of all the processors, then v is the
only value which is ever put into any correct processor's PROPER set, and thus is the only possi-
ble decision value for a correct processor.

Finally, we argue termination. Consider any trying phase k belonging to a correct processor
p; which is executed after a lock-release phase, both occurring at or after GST. We claim that
processor p; will reach a decision at trying phase k (if it has not done so already). By Lemma
3.2.3, there is at most one value locked by correct processors at the start of trying phase k. If
there is such a locked value v, then v was found to be proper to at least N—t processors, of which
N-2t > t+1 must be correct. Therefore, by the beginning of trying phase k, these t+1 correct
processors have communicated to all correct processors that v is proper, so by the way the set
PROPER is augmented every correct processor will have v in its PROPER set by the beginning
of trying phase k. Next consider the case that no value is locked at the beginning of trying phase
k (so all values are acceptable). If there are at least t+1 correct processors with the same initial
value v, then v is in the PROPER sct of each correct processor at the beginning of trying phase k.
On the other hand, if this is not the case, then all values in the value set are in the PROPER set of
all correct processors at the beginning of trying phase k. It follows that a proper, acceptable value
will be found for processor p; to propose, and that the proposed value will be decided upon by
processor p; at trying phase k. [J

As in the previous case, GST +4(N+1) is an upper bound on the number of rounds required
for all the correct processors to reach decisions.

3.2.3. Byzantine Faults without Authentication

Here, we will describe two protocols. The first, simpler, protocol is t-resilient and uses 4t+1
processors. It uses a number of rounds which is given by GST plus a constant times N. The sec-
ond protocol needs only 3t+1 processors, but it does not use a polynomial number of rounds.
Both algorithms achieve strong unanimity for arbitrary valuc domains. In both algorithms, the
processors’ PROPER sets are handled exactly as in Algorithm 2.
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Algorithm 3: N> 4t+1

Processing is again divided into alternating trying and lock release phases, with phases num-
bered as before. Now, however, the trying phases contain 4 rounds rather than 3. As before, at
various times during the algorithm, processors may lock values. In Algorithm 3, only a phase
number is associated with every lock. As before, a value v is acceptable to p if p does not have a
lock on any value other than v.

We now describe the processing during a particular trying phase k. Let s = 5k—4 be the first
round in phase k, and assume k = i mod N. At round s, each processor broadcasts a list of all its
acceptable values which are also in its PROPER set, in the form (list,k). At round s+1, each
processor p broadcasts a vector which says, for each processor g, which values p received from q
at the preceding round. Just after round s+1, processor p; attempts to choose a value to propose.
In order for processor p; to propose v, it must have heard that each of at least N—2t processors
claims that at least N—2t processors find value v acceptable and proper at phase k, As before,

ambiguities are resolved arbitrarily. Processor p; then broadcasts a message {lock v, k).

II any processor receives a (lock v,k) message at round s+2, and also has heard that each of
at least N—3t processors claims that at least N~2t processors find value v acceptable and proper
at phase k, it locks v, associating the phase number k with the lock, and sends an acknowledge-
ment to processor p; at round s+3. Release of earlier locks on v are handled as before. If
processor p; receives acknowledgements from at least 3t+1 processors, then processor p; decides
v. After deciding v, processor p; continues to participate in the algorithm.

The lock-release phase k occurs at round s+4 = 5k. Processors broadcast messages of the
form (v,h}, indicating that the sender has a lock on v with associated phase h. If any processor has
a lock on some value v with associated phase h, and receives t+1 messages indicating that t+1
distinct processors all have locks of the form (w,h’) with w # v and h’ > h, then the processor re-
leases its lock on v. (The values of w and h’ need not be the same in all of these locks.)

Lemma 3.3.1. It is impossible for two distinct values to acquire locks by correct processors at the
same trying phase, if that phase belongs to a correct processor,

Proof. Similar to Lemma 3.2.1, [J

Lemma 3.3.2. Suppose that some correct processor decides v at phase k, and k is the smallest
numbered phase at which a decision is made by a correct processor. Then at least 2t+1 correct
processors lock v at phase k. Moreover, each of the correct processors that locks v at phase k will,

from that time onward, always have a lock on v with associated phase number at least k.

Proof. It is clear that at least 2t+1 correct processors lock v at phase k. Assume that the second
conclusion is false. Then let ¢ be the first phase at which one of the locks on v set at phase k is re-
leased without immediately being replaced by another, higher-numbered lock on v. Then the lock

is released during lock-release phase ¢, when it is learned that at least t+1 processors have locks
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on values w# v with associated phases h, where k ¢h < /. Therefore, at least one correct
processor, say p;, has such a lock. Lemma 3.3.1 implies that no correct processor has a lock on
any w # v with associated phase k. Therefore, the correct processor p; has a lock on w # v with
associated phase h, where k < h £ ¢. In order for p;j to place this lock on w, at least N—3t process-
ors each claim that at least N—2t processors find w acceptable at the first round of phase h. Since
N-3t > t+1, at least one correct processor makes this claim, so at least N-2t processors actually
find w acceptable. Since 2t+1 correct processors have v locked at least through the first round of
' ¢, this is impossible. []

Lemma 3.3.3. Immediately after any lock-release phase which occurs at or after GST, either no
value is locked by a correct processor or there exists some value v locked by a correct processor
such that at most t correct processors hold locks on values other than v.

Proof. Straightforward from the lock-release rule. (Consider some v whose lock is from the ear-
liest phase from which any lock persists.) [J

Theorem 3.3. Assume the basic model with Byzantine faults without authentication. Assume
N> 4t+1. Then Algorithm 3 achieves consistency, termination and strong unanimity for an ar-
bitrary value domain. ’

Proof. The proof of consistency follows easily from Lemma 3.3.2 as in the previous two sub-
sections. The proof of strong unanimity also follows as before.

Next, we argue termination. Consider any trying phase k belonging to a correct processor p;
which is executed after a lock-release phase, both occurring at or after GST. We claim that
processor p; will reach a decision at trying phase k (if it has not done so already). There are two
cases. If some value v is locked by a correct processor at the beginning of trying phase k, then by
Lemma 3.3.3, there is some locked value v such that at most t correct processors have values other
than v locked at the start of trying phase k. Therefore, v is acceptable to at least N—2t correct
processors. Since v is locked by a correct processor, then as in the proof of Theorem 3.2, v is also
in the PROPER set of all correct processors. In the second case, no value is locked by a correct
processor, so all values are acceptable, and as in the proof of Theorem 3.2 some value is in the
PROPER set of all correct processors. It follows in either case that a proper, acceptable value will
be found for processor p; to propose.

Moreover, any value v which is proposed by processor p; must have had N—2t processors tell
p; that N—2t processors found v to be acceptable and proper. Then at least N—3t processors must
tell all other processors that N—2t processors found v to be acceptable and proper, so that all the
correct processors will acknowledge the proposal. Thus, the proposed value will be decided upon
by processor p; at trying phase k. [J '

For this algorithm, GST + S(N+1) is an upper bound on the number of the round by which all

correct processors must reach decisions.
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The second protocol of this subsection uses only N > 3t+1 processors, but the number of
rounds after GST to reach a decision grows roughly as N' in the worst case.

Algorithm 4: N > 3t+1

Instead of rotating processors in successive phases, we cycle repeatedly through all pairs (S,i),
where S is a size N—t subset of the set of processors and p; is a distinguished processor in that set.
Each phase k is owned by the corresponding S, and the distinguished processor p; plays the role of
the coordinator. Processing is again divided into alternating trying and lock release phases, where

each trying phase consists of four rounds and each lock release phase consists of three rounds.

We first describe the processing during a particular trying phase k. Assume that phase k is
owned by the set S of N—t processors and that p; is the distinguished processor. During the first
round each processor in S broadcasts a list of all its acceptable values which are also in its
PROPER set, in the form (list,k). Based on this information, processor p; attempts to choose a
value to propose. In order for processor p; to propose v, it must have heard that all processors in
S find v to be acceptable and proper. As before, ambiguities are resolved arbitrarily. During the
second round, processor p; broadcasts a message (proposev,k). If a processor p; in S receives a
message (proposev,k) from p; and if pj heard from all processors in S during the first round that
v is acceptable and proper, then p; broadcasts (lock v, k) during the third round. If a processor in
S receives (lock v,k) messages from all in S, then it locks v and sends an acknowledgement to
processor p;. If processor p; receives acknowledgements from all in S, then p; decides v. After
deciding, processor p; continues to participate in the algorithm.

Now we describe processing during the lock release phase. During the first round of the lock
release phase, all processors broadcast messages of the form (v,h) indicating that the sender has a
lock on v at associated phase h. If a processor receives a message (v,h), then during the next two
rounds it checks if (v,h) is valid by determining the set S of processors that owns phase h, and
asking each processor in S whether it sent a message (lock v,h) at phase h. If at least N-2t
processors in S respond affirmatively by the end of the third round then (v,h) is valid; otherwise
it is not valid. If a processor has a lock on v with associated phase h and it receives a valid message
(w,h') with w# v and h' > h, then it releases the lock on v.

Lemma 3.4.1. Suppose that some correct processor decides v at phase k, and k is the smallest
numbered phase at which a decision is made by a correct processor. Then at least t+1 correct
processors lock v at phase k. Moreover, each of the correct processors that locks v at phase k will,

from that time onward, always have a lock on v with associated phase number at least k.

Proof. It is clear that at least t+1 correct processors lock v at phase k. Assume that the second
conclusion is false. As before, let ¢ be the {irst phase at which one of the locks on v set at phase k
is released without immediately being replaced by another, higher-numbered lock on v. There-
fore, some correct processor received a valid message (w,h) during lock-relcase phase /, where
w#vand k<h</. Since (w,h) is valid, at least N—2t > t+1 processors said that they sent a

message (lock w,h) at phase h. Therecfore, at least one correct processor p; actually sent

17




i

(lockw,h). If h=k, then pj would have sent both (lock w, k) and (fock v, k), which is impossible.
Therefore, k<h < ¢, Since p; sent (lock w,h), p; heard during phase h that N—t processors
(namely, the set that owns phase h) found w to be acceptable at phase h. But since at least t+1
correct processors have v locked at least through the first round of trying phase /, this is impossi-
ble. [

Lemma 3.4.2. Immediately after any lock release phase which occurs at or after GST, the set of
values locked by correct processors contains at most one value.

Proof. Say that processor p; has a lock on v with associated phase h and processor p; has a lock on
w with associated phase h’ where v # w. Say that h’ > h. During the lock release phase, p; will
receive the message (w,h’) from p;- Since p; received the message (lock w,h’) from at least N—t
processors during trying phase h’ and since at least N—2t of these are correct, p; will determine
that (w,h’) is valid. Therefore p; will release the lock on v. 3

Theorem 3.4. Assume the basic model with Byzantine faults without authentication. Assume
N2 3t+1. Then Algorithm 4 achieves consistency, termination and strong unanimity for an ar-
bitrary value domain.

Proof. The arguments for consistency and strong unanimity are similar to before. We argue ter-
mination. Consider any trying phase k belonging to a set S consisting entirely of correct process-
ors, such that this trying phase and the preceding lock release phase occur at or after GST.
Assume p; is the distinguished processor at phase k. We claim that processor p; will reach a deci-
sion at trying phase k (if it has not done so already). By Lemma 3.4.2, it follows as in previous
proofs that a proper, acceptable value will be found for processor p; to propose. Moreover, since
all processors in S are correct, it is obvious that the entire trying phase k will complete success-
fully, and processor p; will make a decision at the end. ]

An upper bound on the number of rounds required is GST + 7(P+1), where P is the number
of subsets S, i.e., P = "N choose t", or approximately N,

Remark 1. Algorithms 1,2 and 3 have the property that all correct processors make a decision
within O(N) rounds after GST. The time to reach agreement after GST can be improved to O(t)
rounds by some simple modifications. The bound O(t) is optimal to within a constant factor since
[FLa] shows that t+1 rounds are necessary even in casec communication and processors are both
synchronous and failures are fail-stop. A modification to ali the algorithms is to have a processor
repeatedly broadcast the message “"Decide v" after it decides v. For Algorithm 1 (fail-stop and
omission faults) a processor can decide v when it rececives any "Decide v" message. For Algo-
rithms 2 and 3 (Byzantine faults), a processor can decide v when it receives t+1 "Decide v"
messages from different sources. Easy arguments show that the modified algorithms are still cor-
rect and that all correct processors make a decision within O(t) rounds after GST, and these ar-
guments are left to the reader.
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4. PARTIALLY SYNCHRONOUS COMMUNICATION AND SYNCHRONOUS PROCESSORS

In this section we assume that processors are completely synchronous (¢ = 1) and communi-
cation is partially synchronous. We show how to use these models to simulate the basic model of

Section 3.1, and thus to solve the same consensus problem.

Since processors operate in lock-step synchrony, it is useful to imagine that each {correct)
processor has a clock which is perfectly synchronized with the clocks of other correct processors.
Initially, the clock is 0, and a processor increments its clock by 1 every time it takes a step. The
assumption ® = 1 implies that the clocks of all correct processors are exactly the same at any real
time step.

As presented in the definitions section, there are two different definitions of partially syn-
chronous communication: (a) delta is unknown, and (b} delta holds eventually. We consider
these two cases separately. Section 4.1 describes the upper bound results for the model in which
delta holds eventually. Section 4.2 describes the upper bound results for delta unknown. Finally,
Section 4.3 contains the lower bound results,

4.1. Upper Bounds When Delta Holds Eventually

We {irst consider the model in which delta holds eventually. Fix any of the four possible fault
models. We show that if there is a t-resilient consensus protocol in the basic model, then there is
one in the model where delta holds eventually. To see the implication, fix A, and assume algo-
rithm A works for the basic model. From A we will define an algorithm A’ for the model in which
A holds eventually. ‘

Let R = N + A, Each processor divides its steps into groups of R each, and uses each group to
simulate its own actions in a single round of algorithm A. More specifically, the processor uses the
first N steps of group r to send its round r messages to the N processors, sending to one processor
at a time, and uses the last A steps to perform Receive operations. The state transition for round
r is simulated at the last step of group r. (The number R is large enough to allow all processors to
exchange messages within a single group of steps, once GST has been reached.) Each processor
always attaches a round identifier (number) to messages, and any message sent during a round r
which arrives late during some round r’ >r is ignored. Thus, communication during each round

is independent of communication during any other round.

For any run €’ of A’, it is easy to show that there exists a corresponding run € of A with the
following properties:

(1) all processors which are correct in €’ are also correct in e;
(2) the types of faults exhibited by the faulty processors are the same in ¢’ asin e;

(3) every state transition of a correct processor in e is simulated by the corresponding correct
processor ine’.
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Since A is assumed to be a t-resilient consensus protocol for the basic round model, consensus is
eventually reached in e, and so in €', as needed.

By applying the transformation just described to Algorithms 1-4, we obtain algorithms 11-4!
respectively. We immediately obtain the following result.

Theorem 4.1. Assume that processors are completely synchronous (& = 1) and communication is
partially synchronous (A holds eventually).

(a) For the fail-stop or omission fault model, if N> 2t+1, then Algorithm 1! achieves consist-

ency, termination and strong unanimity for an arbitrary value domain.

(b) For the authenticated Byzantine fault model, if N> 3t+1, then Algorithm 2! achieves con-

sistency, termination and strong unanimity for an arbitrary value domain.

(c) For the unauthenticated Byzantine fault model, if N> 4t+1, then Algorithm 31 achieves
consistency, termination and strong unanimity for an arbitrary value domain.

(d) For the unauthenticated Byzantine fault model, if N> 3t+1, then Algorithm 4! achieves
consistency, termination and strong unanimity for an arbitrary value domain.

It is easy to see that Algorithms 1! and 2! guarantee that decisions are reached by all correct
processors within time 4(N+1)(N+4) after GST. The corresponding bound for Algorithm 3l s
S(N+1)}(N+A). For Algorithm 41, an upper bound of GST+7(P+1)(N+A) holds, where P is ap-
proximately N!. Thus, the time for Algorithms 1!-3! is bounded above by GST plus a polynomial
in N and A, while the time for Algorithm 4! is bounded above by GST plus a quantity which is
exponential in t. Remark 1 at the end of Section 3 shows how these time bounds can be improved.

4.2. Upper Bounds for Delta Unknown

Now we consider the model in which delta is unknown. Fix any of the four possible fault
models. We show that if there is a t-resilient protocol in the basic model, then there is one in the
model where delta is unknown. Let algorithm A work for the basic model. As before, we define
A’ from A so that every execution of A’ is a simulation of an execution of A.

Let R, = N+r. Each processor in A’ divides its steps into groups so that its r'd group contains
exactly R, steps. As before, the processor uses each group to simulate its own actions in a single
round of algorithm A. Thus, the processor uses the first N steps of group r to send its round r

. messages to the N processors, one processor at a time, and uses the last r steps to perform Receive
operations. The round r state transition is simulated at the last step of group r. Again, each
processor always attaches a round identifier (number) to messages, and any message sent during
a round r which arrives late during some round r’ > r is ignored.

Now consider any run €’ of A’, and assume that the communication bound A holds in ¢’. As
before, it is easy to define a corresponding run e of A. All processors which are correct in ¢’ are

also correct in e, and the types of faults exhibited by the faulty processors are the same in both
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cases. Moreover, the number of steps in €' which are allotted for the simulation of any round
r 2 A is sufficient to allow all messages which are sent during round r to get received. Thus, e is
an allowable run of A (with A as its GST round). Since A is assumed to be a t-resilient consensus
protocol for the basic model, consensus is eventually reached in e, and so in €', as needed.

By applying this transformation to Algorithms 1-4, we obtain algorithms 12-42 respectively,
and immediately obtain the following result.

Theorem 4.2. In the model in which processors are completely synchronous (& = 1) and commu-
nication is partially synchrononous (delta is unknown) claims (a)-{d) of Theorem 4.1 hold for al-
gorithms 12-42, respectively,

We now bound the time required by Algorithms 12-42. Consider Algorithm 12, for example,
and fix any execution e with corresponding message bound A. Then round A is the GST for the
execution of Algorithm 1 simulated by e. It requires at most time A(N+A) for processors to
complete their simulation of the first A rounds of Algorithm 1 (A rounds, with N+A as the maxi-
mum time to simulate a single round). Then an additional 4(N+1) rounds, at most, must be sim-
ulated. These additional rounds require at most time 4(N+1)(N+A+4(N+1)), where the term
(N+A+4(N+1)) represents the maximum time to simulate one of these rounds (the last and
largest one). Thus, the total time is bounded by A(N+A)+4(N+1)(N+A+4(N+1)), or
O(N2+A?), The same bound holds for Algorithm 22, The corresponding bound for Algorithm 32
is A(N+A) +5(N+1)(N+A+5(N+1)), and for Algorithm 42, an upper bound of
A(N+A) + 7{P+1)(N+A+7(P+1)) holds, where P is approximately N'. Thus, the time for Algo-
rithms 12-32 is bounded above by a polynomial in N and A, while the time for Algorithm 42 is
bounded above by a quantity which is exponential in t. Again, these bounds can be improved us-
ing the ideas in Remark 1 at the end of Section 3.

Remark 2. If we strengthen the model where delta holds eventually to require that no messages
are ever lost, but that messages sent before GST can arrive late, then we can modify Algorithms
11-4! 1o allow processors to terminate. Specifically, we use the ideas described in Remark 1 at the
end of Section 3. However, in the present case, each processor need only broadcast a single "De-
cide v" message, at the time when it decides v. This message is not tagged with a round number,
and other processors should accept a "Decide v"' message at any time. For fail-stop or omission
faults, a processor can stob participating in the algorithm immediately after it broadcasts its ""De-
cide v" message. Further, it can decide v immediately after receiving a "Decide v"' message. For
Byzantine faults, a processor can decide v after receiving t+1 "Decide v'"' messages, but it cannot
stop participating in the.algorithm until after it has broadcast its "Decide v'" message and has re-

ceived "Decide v" messages from a total of 2t+1 processors.

If messages can be lost before GST, it is not hard to argue that in any consensus protocol re-
silient to one fail-stop fault, at least one correct processor must continue sending messages forever.

The argument is similar to those for Theorems 4.3 and 4.4 in the next subsection.
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Remark 3. All the results of this section have assumed ® = 1, If processors are synchronous with
®> 1, and communication is partially synchronous, we would hope to obtain the same results.
We show that this extension holds by proving a more general set of results: in Section 5 we show
that the resiliency achieved by the protocols of this section can also be achieved if both processors
and communication are partially synchronous. These stronger results imply that the same
resiliency is achievable if communication is partially synchronous and processors are synchronous
with > 1,

4.3. Lower Bounds.

In this section, we give our lower bound results for partially synchronous communication and
completely synchronous processors. The first lower bound shows that the resiliency of Theorems
4.1 and 4.2, part (a), cannot be improved, even for weak unanimity and a binary value domain.

Theorem 4.3. Assume the model with [ail-stop or omission faults, where the processors are syn-
chronous and communication is partially synchronous (cither delta holds eventually or delta is
unknown). Assume t> 1 and 2 <N <2t. Then there is no t-resilient consensus protocol which
achieves weak unanimity for binary values.

Proof. The proof is the same for both definitions of partially synchronous communication. As-
sume the contrary, that there is an algorithm immune to fail-stop faults satisfying the required
properties. We will derive a contradiction.

Divide the processors into two groups, P and Q, each with at least 1 and at most t processors.
First consider the following Scenario A: all initial values are 0, the processors in Q are initially
dead and all messages sent from processors in P to processors in P are delivered in exactly time 1.
By t-resiliency, the processors in P must reach a decision; say that this occurs within time T,. The
decision must be 0. For if it were 1, we could modify the Scenario to one where the processors in
Q are alive, but all messages sent from Q to P take more than time T, to be delivered. In the
modified Scenario, the processors in P still decide 1, contradicting weak unanimity.

Consider Scenario B: all initial values are 1, the processors in P are initially dead, and messages
sent from Q to Q are delivered in exactly time 1. By a similar argument, the processors in Q de-
cide 1 within Ty steps for some finite Tg.

Cdnsider Scenario C (for Contradiction): processors in P have initial values 0, processors in Q
have initial values 1, all processors are alive, messages sent from P to P or from Q to Q are deliv-
ered in exactly time 1, and messages sent from P to Q or from Q to P take more than
max(T,,Tg) steps to be delivered. The processors in group P (resp., group Q) act exactly as they
do in Scenario A (resp., Scenario B). This yields a contradiction. [
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The following lower bound result again applies in the case of weak unanimity and a binary
value domain. It shows that the resiliency of Theorems 4.1 and 4.2, part (b), cannot be improved,

even for the case of weak unanimity and a binary value domain.

Theorem 4.4. Assume the model with Byzantine faults and authentication, where the processors
are synchronous and communication is partially synchronous (either delta holds eventually or
delta is unknown). Assume t> 1 and 2 € N <3t. Then there is no t-resilient consensus protocol
which achieves weak unanimity for binary values.

Proof. Again, the proof is the same for both definitions of partially synchronous communication.
Assume the contrary. We will derive a contradiction.

If N = 2, then the theorem follows from the previous lower bound, Theorem 4.3, Assume
then that N > 3. Divide the processors into three groups, P, Q, and R, each with at least one and
at most t processors. First consider the following Scenario A: all initial values are 0, the process-
ors in R are initially dead and all messages sent from processors in P u Q to processors in P u Q are
delivered in exactly time 1. By t-resiliency, the processors in P u Q must reach a decision; say that
this occurs within time T,. As in the previous lower bound proof, the decision must be 0.

Consider Scenario B: all initial values are 1, the processors in P are initially dead, and messages
sent from Q u R to Q UR are delivered in exactly time 1. By a similar argument, the processors
in Q UR decide 1 within Ty steps for some finite Tg.

Consider Scenario C: processors in P have initial values 0, processors in R have initial values
1, and processors in Q are faulty. The processors in Q behave with respect to those in P exactly
as they do in Scenario A, and with respect to those in R exactly as they do in Scenario B. The
messages sent from P to P u Q and from R to R u Q are delivered in exactly time 1, but all mes-
sages from P to R or from R to P take more than max(T ,,Tg) steps to be delivered. The process-

ors in group P (resp., group R) act exactly as they do in Scenario A (resp., Scenario B). This yields
a contradiction. [J

The preceding lower bound is tight, for the case of unauthenticated Byzantine faults with no
further restrictions (Theorems 4.1 and 4.2, part (d)). If we consider the problem with the re-
quirement that time be bounded by a polynomial, then we do not know how to close the gap be-
tween Theorem 4.4 and Theorems 4.1 and 4.2, part (c).

5. PARTIALLY SYNCHRONOUS COMMUNICATION AND PROCESSORS

In this section, we consider the case in which both communication and processors are partially
synchronous. We show the existence of protocols with the same resiliencies as in the previous
section, where only communication was partially synchronous. Moreover, the algorithms for

corresponding cases still require similar amounts of time (polynomial or exponential) to the earlier
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case. Again, we proceed by showing how to use the models of this section to simulate the basic
model of Section 3.

In the previous section, the processors had a common notion of time which allowed time to be
divided into rounds. In this case, where phi does not always hold, or is unknown, no such com-
mon notion of time is available. Therefore, our first task is to describe protocols which give the

processors some approximately common notion of time. We call such protocols distributed clocks.

Our distributed clocks do not use explicit knowledge of A or ®. They are designed to be used
in either kind of partially synchronous model, delta and phi holding eventually or delta and phi
unknown. However, the properties that the clocks exhibit do depend on the particular bounds A
and @ which hold (eventually) during the particular run.

Each processor maintains a private (software) clock. The private clocks grow at a rate which
is within some constant factor of real time, and the private clocks remain within a constant of
each other. For the model with delta and phi unknown, these conditions hold at all times. For the
GST model, however, these conditions are only guaranteed to hold after some constant amount
of time after GST. The three "constants" here depend polynomially on N, ® and A. We have
made no effort to optimize these constants, as this would obfuscate an already difficult and tech-
nical argument. In addition, the number of message bits sent by correct processors is polyndmially
bounded in N, A, ®, and GST.

Once we have defined the distributed clocks, the protocols of Section 3 are simulated by let-
ting each processor use its private clock to determine which round it is in. Several "ticks" of each
private clock are used for the simulation of each round in the basic model. In order to use a dis-
tributed clock in such simulations, we need to interleave the steps of the distributed clock algo-
rithm with steps belonging to the underlying algorithm being simulated. Moreover, the distributed
clock algorithm itself is conveniently described as interleaving Receive steps, which increase the
recipient’s knowledge of other processors’ local clocks, with Send steps, which allow the sender to
inform others about its local clock. To be specific, we assume that processors alternately execute
a Receive operation for the clock, a Send operation for the clock, and a step of the algorithm being
simulated.

In this section, we describe what happens during the clock maintenance steps for two different
distributed clocks. The first, presented in Section 5.1, handles Byzantine faults without
authentication and requires N > 3t+1. The second, presented in Section 5.2, handles Byzantine
faults with authentication and requires N > 2t+1. This clock obviously handles fail-stop and
omission faults as well. In Section 5.3, the upper bounds for the model in which delta and phi hold
eventually are given. In Scction 5.4, we present the upper bound results for the model in which
dclta and phi are unknown. We do not prove lower bounds in this section, since the lower bounds

obtained in Section 4 apply to the current models.
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5.1. A Distributed Clock for Byzantine Faults without Authentication

Throughout this section we assume that N > 3t+1. We again assume that real times are num-
bered 0, 1,2 .... Processors participate in our distributed clock protocols by sending ticks to one
another. As an expositional convenience, we define a master clock whose value at any time s de-
pends on the past global behavior of the system and is a function of the ticks that have been sent
before s. Even approximating the value of the master clock requires global information about
what ticks have been sent to which processors. We therefore introduce a second type of message,
called a claim, in which processors make assertions about the ticks they have sent.

An i-tick is the message "i". Ani*-tick is a j-tick for any j> i. We say p has broadcast an i-tick
if it has sent an i¥-tick to all N processors. .

An i~claim is the message "1 have broadcast an i-tick". An i*-claim is a j-claim for any j2 i.

We say p has broadcast an i-claim if it has sent an i *-claim to all N processors.

We adopt the convention that all processors have exchanged ticks and claims of size O before
time 0. These messages are not actually sent, but they are considered to have been sent and re-
ceived. When we say that a certain event, such as the receipt of a certain message, has occurred
"by time s" we mean that the event has occurred at some real time step <s.

The master clock, C: N - N, is defined at any real time s by
C(s) = maximum j such that t+1 correct processors have broadcast a j-tick by time s.

Since all processors are assumed by convention to have broadcast a 0-tick before time 0, C(0) =
0. Note that C(s) is a nondecreasing function of s.

For each processor p; the private clock, c;: N = N, is defined by

¢;(s) = maximum jsuch that by time s, p; has received either
(1) messages from 2t+ 1 processors where each message is a j*-claim, or
(2) messages from t+1 processors, where each message is either a (j+1)*-tick or a
(j+1)*-claim.

Since p; is assumed to have received 0O-claims from all N processors before time 0, ¢;(0) = O for all
correct p;. Note that ¢;(s) is nondecreasing for all correct p;.

Let p; be a correct processor. In sending ticks p;’s goal is to increment the master clock, so
ideally we would like p; to send a (C(s)+1)-tick at time s. However, knowing C(s) requires global
information. Instead, p; uses c;, its view of C, to compute its next tick, sending a (c;(s) +1)-tick at
times. We will show in Lemma 5.1 that ¢;(s) < C(s), so p; will never force the master clock to skip
a value. We will also show that "soon" after GST for the GST model, the value of the master
clock exceeds those of the private clocks by only a constant amount, so that p; will not be pushing

the master clock far ahead of the private clocks of the other processors.
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Each processor p; repeatedly cycles through all N processors, broadcasting, in different cycles,
ticks and claims. The private clock of p; is stored in a local variable ¢;. Processor p; updates its
private clock every time it executes a Receive operation in the clock protocol by considering all
the ticks and claims it has received and updating its private clock according to the definition of the
private clock given above (thus, the private clock is updated every second clock step, i.e. every
third step, that p; takes). The following two programs describe the tick and claim broadcasting
procedures. A processor begins the distributed clock protocol by setting c; to 0 and calling
TICK(0), where TICK(b) is the protocol shown in Figure 1. Note that the value of ¢; may change
during an execution of TICK(b), but only a (b+1)-claim (rather than a (c;+1)-claim) is sent
during execution of CLAIM(b). - This is consistent with our definition of what it means to have
broadcast a (b+1)-tick.

TICK(b):
for j=1,..Ndo
send (c;+ 1)-tick to |
CLAIM(b).

CLAIM(b):
forj=1,.,Ndo
send (b+1)-claim to P
if ¢; > b then TICK(c;) else CLAIM(b).

Figure 1.

The following lemmas describe limitations on the rates of the master clock and the local
clocks. The first three lemmas do not involve A and @, and so apply to either partially synchro-
nous model (delta and phi holding eventually or delta and phi unknown).

Lemma 5.1. For all s > 0 and for all i such that p; is correct, ¢;(s) < C(s).
Proof. Let j = c;(s). By the definition of the private clock, there are two possibilities.

(1) p; has received jt-claims from 2t+1 different processors. Since at least t+1 of these
j*-claims are from correct processors, C(s) > j by definition of the master clock.

(2) p; has received messages from t+1 different processors, each of which is either a (j+1)*-tick

or a (j+1)*-claim. Consider the earlicst real time, sg. when some correct processor, say py, sends

a (j+1)*-tick. By definition of the protocol, ci(sp) 2 j, so case (1) applies to py, and therefore
C(s) 2 Clsp) 2 cp(sg) 2 j. O

Lemma 5.2. For all's > 0 the largest tick sent by a correct processor at real time s has size at most
C(s)+1.
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Proof. Immediate from the protocol and Lemma 5.1. [
Lemma 5.3. Foralls,x> 0, C(s+x) < C(s) + x.

Proof. The proof is by induction on x. For the basis, let x = 1. By Lemma 5.2 the largest tick sent
by a correct processor by time s has size at most C(s)+1, so the maximum tick that can be

broadcast by t+1 processors by time s+1 is a (C(s)+1)-tick. Thus, C(s+1)<C(s)+1. Assume
the lemma holds for some x. Then

C(s + 1) + x by the induction hypothesis

Ces+X+1))=C{(s+1)+x) <
A < C(s) + (x + 1) by the basis. []

The preceding lemmas are independent of both communication and processor synchrony.
Now we give several lemmas that assume such synchrony. We would like to state the lemmas in
a way which applies to both kinds of partially synchronous models (delta and phi holding eventu-
ally and delta and phi unknown). So fix A and ® (for either case). Also fix GST for the model in
which A and @ hold eventually. For the model in which delta. and phi are unknown, define GST
= 0, for uniformity.

The next few lemmas discuss the behavior of the clocks after GST. Lemma 5.4 says that the
private clocks increase at most a constant factor more slowly than real time. Lemmas 5.5 and 5.6
are technical lemmas used to prove the lemmas following them. Lemma 5.7 has two parts. The
first says that, at any particular real time, the master clock exceeds the value of the private clocks
by at most an additive constant. The second part of Lemma 5.7 says that, at least after GST, the

master clock runs at a rate at most a constant factor slower than real time.

Let D = A +3®. Note that if a message is sent to a correct processor p at time s > GST, then
p will receive the message by time s+D: the message will be delivered by time s+A, and within
an additional time 3@, p will execute a Receive operation in the clock protocol.

Lemma 5.4. Assumes> GST and lets’ = s+ 12N® + D. Let j be such that ci(s) 2 j for all correct
p;- Then ci(s') > j+1 for all correct p;.

Proof. Attime s, p; could be executing TICK(b) for some b < j. However, within time 6N® after
s, p; will call TICK(b') or CLAIM(b') for some b’ > j, and within an additional 6N® steps, p; will
broadcast a (j+1)-claim. Therefore, every correct processor will broadcast a (j+1)-claim by time
s+ 12N®. By times’, each correct p; will receive at least 2t+1 (j+1)*-claims, so ci(s') >i+l. O

Lemma 5.5. Assume s> GST. and lets’ = s+ 39N® +4D. Then C(s") > C(s)+2.

Proof. Let j = C(s). By definition of the master clock, t+1 correct processors have broadcast a
j-tick by time s. These t+1 processors send a tick or claim of size at least j to every processor

within the first 3N® steps after time s. Since these messages are sent after GST, they are received
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within D steps, so c{(s+3N®+D) > j~1 for all correct p;- By 3 applications of Lemma 5.4,
ci(s') 2 j+2. SoC(s") 2 j+2 by Lemma 5.1. [

Lemma 5.6. Let sy be the minimum time such that C(sg) > C(GST)+2. (Time sg exists by Lemma
5.5.) Lets>sg+D. Then c;(s) 2 C(s—D) — 1 for all correct ;.

Proof. Let j = C(s—D). Then t+1 correct processors broadcast a j-tick by s—D. By Lemma 5.2,
the largest tick sent by a correct processor by GST is a (C(GST)+1)-tick. Since j= C(GST)+2,
the j-ticks from correct processors are broadcast entirely after GST, so they are received by time
s. Thus, for all correct p;, ¢i(s) 2 j—1. J

Lemma 5.7. Let sp be the minimum time such that C(sg) 2 C(GST)+2.
(1) For all s > s5+D and for all correct processors P ci(s) > C(s)-D—-1.
(2) Foralls> sgand for s’ = s+ 24N® + 3D, C(s") > C(s)+1.

Proof. (1) Lemma 5.6 implies that ¢i(s) 2 C(s~D)~1. By Lemma 5.3, C(s) < C(s—D) + D
<ci(s)+ 1 +D. Thus, ¢i(s) > C(s) =D —~1.

(2) Let x = s+D. Lemma 5.6 implies that ci(x) 2 C(s) — 1 for all correct p;- By two applica-
tions of Lemma 5.4, ci(s') > C(s)+1. SoC(s") > C(s)+1 by Lemma 5.1. [J
5.2. A Distributed Clock for Byzantine Faults with Authentication

The new clock is very similar to the one just described. We only explain the differences. Here
we assume N > 2t+1.

An i-claim is a signed message "I have broadcast an i-tick". An i*-claim is a j-claim for any
jzi. For i2 1, an i-tick is the message "<i,i-proof>" where a 1-prof is the empty string and
where an i-proof (i> 1) is a list of t+1 (i—1)*-claims each signed by a different processor. An
i*-tick is a j-tick for any j> i. The definitions of broadcast an i-tick and broadcast an i-claim are the
same as before. '

The master clock C: N - N is defined by
C(s) = maximum j such that some correct processor has broadcast a j-tick by time s.
The private clock ¢;: N = N is defined by

¢;(s) = maximum j such that p; has received t+1 j*-claims (from different sources),
either directly, or indirectly as part of a tick, by time s.

The definition of the clock protocol is the same as before with the addition that whenever a
processor sends a (b+1)-claim in the procedure CLAIM(b), it attaches the largest size tick which

it can construct (this will always be a (b+1)*-tick). A correct processor will ignore any received

28



j-claim if it does not come with an attached j*-tick. The reason for this modification is so that
correct processors will not accept claims that are much too large from faulty processors and in-
corporate these large claims into proofs.

Lemma 5.8. Lemmas 5.1-5.7 hold for the authenticated Byzantine clock.

Proof. The proofs are virtually identical to the proofs for the unauthenticated Byzantine clock,
and most details are omitted. The major differences are the following,

The proof of Lemma 5.1 is easier since there is only one case. Letting j = ¢;(s), processor p;
has received t+1 j"'-claims from different processors, at least one of which must be correct. Since
a correct processor sends a j*-claim only after it has broadcast a j-tick, we have C(s) > j by defi-
nition of the master clock.

The proofs of Lemmas 5.2 and 5.3 are unchanged.

In the proof of Lemma 5.4, change "2t+1" to "t+1".

In the proof of Lemma 5.5, letting j = C(s), we can only say that at least one correct proéessor
has broadcast a j-tick by time s. However, this j-tick contains a j-proof consisting of t+1

(j=1)*-claims, so we can conclude that ¢i(s+3N®+D) 2 j~1 for all correct p; as before. The
proof of Lemma 5.6 is changed similarly.

The proof of Lemma 5.7 follows from previous lemmas by calculations, and this proof is un-
changed. (O

We need one more lemma to support our claim that the number of message bits sent by cor-
rect processors is bounded above by a polynomial in GST, N, A and ®.

Lemma 5.9. For all s > 0, the largest tick sent by any processor {correct or faulty) at real time s
has size at most C(s)+2.

Proof. A j-tick sent at time s contains t+1 (j—1)*-claims, at least one of which was sent by a
correct processor. The conclusion now follows from Lemma 5.2. [

From this lemma and the definition of the protocol it follows easily that any tick or claim sent

by a correct processor at time s can be encoded in O(tlog C(s)) bits.

Remark 4. The clocks of sections 5.1 and 5.2 arc similar to the one discovered independently by
Attiya, Dolev and Gil [ADG].
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53, Upper Bounds When Delta and Phi Hold Eventually

We now present our upper bound results for partially synchronous communication and
processors, for the model where delta and phi hold eventually. Fix any of the four possible fault
models. We show that if there is a t-resilient protocol in the basic model, then there is one in the
model where delta and phi hold eventually. To see the implication, fix A and ®, and assume algo-
rithm A works for the basic model. We define A’ from A as f ollows, so that A" works for the
model where A and ® hold after GST.

As described above, two out of every three steps of each processor are used to maintain a dis-
tributed clock, and the other step is used to simulate Algorithm A. For fail-stop or omission faults,
we use the authenticated Byzantine clock, simplified appropriately because the signatures are not
needed and because we cannot assume the authentication capability. Note that the consensus
protocol and the distributed clock protocol have the same constraint on the number of processors,
N2> 2t+1. For unauthenticated Byzantine faults, we use the unauthenticated Byzantine clock.
For authenticated Byzantine faults, either clock could be used,

The Receive steps of Algorithm A’ are designated as belonging to either the clock simulation
or the algorithm simulation. However, each time a Receive step of A occurs, it is possible that
messages for either or both simulations will be received. We assume that each processor maintains
a pair ol message buffers, one for each of the two simulations it is carrying out. When the
processor does a Reccive step that belongs to the clock simulation, it saves any messages for the
algorithm simulation in the algorithm message buffer, and vice versa. Also, each time the
processor does a Receive step that belongs to the clock simulation, it collects not only the new in-
coming messages, but all those in the clock message buffer, to use in its clock simulation step;
analogous assumptions are made for the algorithm simulation.

Fix R = 3N® + 2D + 2, where as before, D = A + 3®. Each processor uses its private clock to
determine the round of Algorithm A currently being simulated. Namely, if (r—1)R < ¢;(s) < R,
then processor p; determines at real time s that the current round is r. Processors label messages
with round numbers. As long as a processor determines that the current round is r, it uses its
protocol simulation steps to simulate steps of round r in the basic model. The first N protocol
simulation steps are used for sending the round r messages to all the processors, and the remaining
steps are spent executing Receive operations. Unlike in the simulations in Section 4, it is possible
that there will be insufficient time for a processor to actually send all of its round r messages.

Processor p; simulates its state transition for round r at its first algorithm simulation step at
which it decides the current round is strictly greater than r. More specifically, assume that
processor p; has reached an algorithm simulation step, s, at which the current round is k, and as-
sume that the round at processor p;’s last algorithm simulation step was h<k. Then processor p;
simulates its state transitions for rounds h, h+1, ... k—1, all at the beginning of step s. In simulat-

ing these state transitions, processor p; simulates all of its sending steps for these rounds, that is, it
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makes the appropriate state transitions but does not actually send any messages, and it simulates
the receipt of all the messages which are in the algorithm message buffer.

For any run €' of A’ it is easy to define a corresponding run e of A. We see that all processors
which are correct in €' are also correct in e, and that the types of faults exhibited by the faulty
processors are the same in both cases. We must argue that, within a short time after GST, the
number of ticks in ¢’ which are allotted for the simulation of any round r is sufficient to allow all
round r méssages to be sent and received. More precisely, the "short time after GST" is chosen
so that parts (1) and (2) of Lemma 5.7 hold.

We must first show that there is sufficient time for each correct processor p; to send all its
round r messages and then to do at least one Receive operation. Assume that s is the first real time
at which processor p;'s private clock reaches or exceeds (r—1)R. Then processor p; would finish
sending all its round r messages and doing one Receive operation by real time s + 3(N+1)®. We
must show that processor p;'s clock up to real time s + 3(N+1)® remains less than rR, i.e. that

(5.3.1) c(s+3(N+1)®) <rR.

We must also show that there is sufficient time for all the round r messages sent by processor p; to
be received. Fix a correct processor p;. We show that processor p; has sufficient time to receive
a round r message from processor p;, before going on to simulate round r+ 1. Again letting s be the
first real time for which ¢;(s) 2 (r—1)R, p; will send the message to p; by real time s + 3N®, and
p; will receive the message by real time s + 3N® + D. Therefore, we must show that

(53.2) ci(s+3N2+D)<rR.

Since D > 3® and since clocks are nondecreasing, we can prove both (5.3.1) and (5.3.2) by
showing that, for any correct processor py,

c (s +3N® + D) <rR.

This follows because

cx(s + 3N® + D) C(s + 3N® + D) by Lemma 5.1
Cs—1)+3N®+D+1 byLemmas5.3
¢i(s = 1) + 3N® + 2D + 2 by Lemma 5.7(1)
(r = DR + 3N® + 2D + 2 by assumption

rR.

A A A A

Since A is assumed to be a t-resilicnt consensus protocol for the basic model, consensus is
. . . ’
eventually reached in e, and so in €', as needed.

By applying the transformation just described to Algorithms 1-4, we obtain algorithms 13.43
respectively. We immediately obtain the following result.
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Theorem 5.1. Assume that communication and processors are partially synchronous (delta and
phi hold eventually). -

(a) For the fail-stop or omission fault model, if N> 2t+1, then Algorithm 13 achieves consist-

ency, termination and strong unanimity for an arbitrary value domain.

(b) For the authenticated Byzantine fault model, if N> 3t+1, then Algorithm 23 achieves con-
sistency, termination and strong unanimity for an arbitrary value domain.

(o1 or the unauthenticate zantine fault model, i > 4t+1, then Algorithm achileves
(c) For th henticated Byzantine fault model, if N 1, th gorithm 33 achi

consistency, termination and strong unanimity for an arbitrary value domain.

(d) For the unauthenticated Byzantine fault model, if N> 3t+1, then Algorithm 43 achieves
consistency, termination and strong unanimity for an arbitrary value domain..

As before, we claim that Algorithms 13-33 reach agreement within a polynomial (in N, A and
@) amount of time after GST, while the time for Algorithm 43 is bounded above by GST plus a
quantity which is exponential in t. Our claims of polynomial time performance follow from the
fact that the master clock, a short time after GST, runs at a rate no slower than
1/(24N® + 3(A+3®)) times real time (see Lemma 5.7(2)). Finally, the total number of message
bits sent by correct processors is polynomiaily bounded in N, A, ®, and GST, since the number of
bits in each message sent by a correct processor is polynomially bounded in these quantities.

5.4. Upper Bounds for Delta and Phi Unknown

Next, we present our upper bound results for partially synchronous communication and
processors, for the model where delta and phi are unknown. The ideas are a simple combination
of ideas from Sections 4.2 and 5.3. Again, fix any of the fault models. We show that if there is a
t-resilient protocol A in the basic model, then there is a t-resilient protocol A’ in the model where
delta and phi are unknown. In A’, processor steps are interleaved exactly as in the previous con-
struction, and the same clocks are used for the same fault models as before. This time, define
bound R, = 3Nr + 8r + 2 to describe the number of ticks to be used for the simulation of round r.
(This bound is obtained from the previous bound by replacing both A and @ by r.) The simulation
of the message exchange is carried out just as before. For any rune’ of A, we again define a cor-
responding run e of A. We must argue that, for sufficiently large rounds r, the number of ticks in
¢’ which are allotted for the simulation of round r is sufficient to allow all round r messages to be
sent and received. The argument is as in Section 5.3, once r has exceeded A and ®. Thus, e is an

aliowable run of A, and since consensus is eventually reached in e, it is also reached in €.
By applying this transformation to Algorithms 1-4, we obtain algorithms 14-4* respectively,

Theorem 5.2. Assume that communication and processors are partially synchronous (delta and

phi are unknown). Then claims (a)-(d) of Theorem 5.1 hold for Algorithms 14-44, respectively,

32



N

As before, we claim that Algorithms 1%-3% reach agreement within a polynomial (in N, A and
@) amount of time, while the time for Algorithm 4% is bounded above by an exponential in t.

Remark 5. In the simulation of the basic model described in Sections 5.3 and 5.4, we have said
that if the round number of processor p;'s last algorithm simulation step was h and processor p;
updates its clock and finds that it is now simulating some round k > h, then all the state transitions
in rounds h through k-1 are simulated (except that no messages are sent). For a general simu-
lation of the basic model, these transitions must all be simulated since they may involve state
transitions which processor p; must make in order that the simulation of the algorithm in the basic
model be correct. However, it is not hard to see that for the particular Algorithms 1-4 designed
for the basic model in Section 3.2, processor p; can just simulate the state transition for round h
and continue the simulation at round k, without simulating the "missed"” transitions in rounds
h+1 through k—1. This can be done since the state information in Algorithms 1-4 (not including
the current round number) consists of the PROPER sets, which values are locked, and other in-
formation associated with each lock. Changes in this state information are caused only by the re-
ceipt of certain messages. Since we have shown consistency for Algorithms 1-4 even if messages
are lost before GST, it follows that the algorithms remain consistent if processors, including cor-
rect ones, skip state transitions before GST.

6. PARTIALLY SYNCHRONOUS PROCESSORS AND SYNCHRONOUS COMMUNICATION

In this section we consider models where processors are partially synchronous and communi-
cation is synchronous, that is, there is a fixed upper bound A on message transmission time which
always holds (in particular, no messages are lost). Of course, the protocols of the previous section
with their associated resiliencies work for such models, but by using the fact that communication
is now synchronous, we can achieve higher resiliencies in some cases.

it is convenient to base our consensus algorithms on another basic model, which we call the
basic model with signals. In section 6.1, we define this new basic model and give consensus algo-

_ rithms which are designed to work in the basic model with signals. We then show how to use the

eventual phi and unknown phi models to simulate the basic model with signals. As in Section 5,
we use distributed clocks to give the processors some approximately common notion of time. The
clocks are discussed in Section 6.2. Section 6.3 contains algorithms for the case where phi holds
eventually, and Section 6.4 contains algorithms for phi unknown. Section 6.5 contains lower
bounds.

6.1. A Basic Model With Signals

The basic model with signals is just like the basic model, except that the Receive subround also
includes the possible receipt of a signal by each processor. In any round r, the receipt of a signal
by processor p; implies that all processors receive the round r messages sent to them by processor

p;. The non-receipt of a signal does not imply anything. At round GST and afterwards, we as-
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sume that all correct processors receive signals at each round. The next two subsections, 6.1.1 and
6.1.2, give consensus protocols for the basic model with signals which are resilient to two types of
faults. ’

6.1.1, Fail-Stop Faults
The next algorithm achieves strong unanimity for an arbitrary value domain V.
Algorithm S: N>t

Each processor has a local variable VALUE, initialized at its initial va..e. We say that each

round k = i mod N belongs to processor p;- Processing in an arbitrary round ¥ is as follows:

Processing for p;, where round k belongs to p;:
Broadcast VALUE;
If a signal is received, then decide on VALUE.

Processing for p;, where round k does not belong to pj
If a message is received with contents v, then set VALUE := v.

Lemma 6.1. Assume that processor p; decides v at round k, and this is the smallest numbered
round at which a decision is made. Then no message containing value w# v is ever sent at any
round > k.

Proof. Assume for the sake of contradiction that the lemma is false, and let h be the smallest
numbered round > k when a message containing value w# v is sent. It is clear that h #k since
faults are fail-stop. Let p;j be the processor that owns round h.

Since processor p; receives a signal at round k, it must be the case that processor p;j receives
value v from processor p; at round k, and therefore sets its VALUE to v. By assumption, no
message with value different from v is sent at rounds after k and before h. Therefore, processor
pj's VALUE remains equal to v until the beginning of round h. This contradicts the assumption
that processor p; sends w at round h. [J

Theorem 6.1. Assume the basic model with signals, with fail-stop faults. Assume N>t. Then
Algorithm 5 achieves consistency, termination and strong unanimity for an arbitrary value do-

main.

Proof. First, we show consistency. Suppose that some correct processor p; decides v at round k,
and this is the smallest numbered round at which a decision is made. Then Lemma 6.1 implies
that no message containing value w 3 v is ever sent at any round > k. But a processor can decide
on a value w only if it first sends out messages containing w. Therefore, no processor ever decides
onavaluew#y,
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Strong unanimity is obvious, since a message with contents v is only sent if v was the initial
value of some processor.

Since a signal is received by each correct processor at every round on or after GST, by defi-
nition of the basic model with signals, it is obvious that each round on or after GST results in a
decision for its owner if that owner has not already decided. []

6.1.2. Authenticated Byzantine Faults

The next algorithm, Algorithm 6, achieves weak unanimity for an arbitrary value domain.
Algorithm 6: N> 2t+1

The protocol is similar to Algorithm 2 of Section 3.2.2, with a few changes as indicated below.
Because we are only dealing with weak unanimity, the PROPER sets are not used. This time, the
rounds are divided into trying phases of 2 rounds each and lock release phases of one round each.
A trying phase of Algorithm 6 is the same as the first two rounds of the corresponding trying
phase of Algorithm 2 except that if a processor, during one of its trying phases, is choosing a value
to propose and if several values are acceptable, the processor chooses its own initial value if that
value is acceptable, or chooses arbitrarily otherwise. The third round is omitted; processor p; does
not wait for messages from others claiming that they have responded to a message
E;j(lock v, k, proof) by locking v. Instead, it checks that a signal has been received at the second
round of the trying phase. If a signal is received, then processor p; decides v.

In Algorithm 2, processor p; needed at least 2t+1 acknowledgement messages to conclude that
at least t+1 correct processors actually locked v at phase k. Now we can argue that if a signal is
received, then all correct processors will have actually locked v at phase k, and since N> 2t+1
there are at least t+1 correct processors.

The proof of the following theorem is very similar to that of Theorem 3.2 (the result about
Algorithm 2), and details are left to the reader.

Theorem 6.2. Assume the basic model with signals, with authenticated Byzantine faults. Assume
N2 2t+1. Then Algorithm 6 achieves consistency, termination and weak unanimity for an arbi-
trary value domain.

One version of the consensus problem studied in the literature supposes that a distinguished
processor, called the "general”, gives the initial values v; to all the processors. In the case of
Byzantine faults with authentication, it is usually assumed that the general signs these initial val-
ues with its own unforgeable signature. Thus, if the general is correct, there is a single value v such
that the general gives a signed v to every processor; in this case, strong unanimity requires that v
is the value decided by all correct processors. If the general is faulty, the general can give out dif-

ferent values, and can even give two different values, both signed, to the same processor; in this
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case, strong unanimity does not require any particular value to be the decision value. This issue
was not raised earlier because it is irrelevant to the results of Sections 3, 4 and 5 ; that is, our pro-
tocols for the authenticated Byzantine case are designed to work even if the general does not sign
the initial values, and our lower bound Theorem 4.4 is still valid if the general does sign the initial
values. (If the general does sign the initial values, updating of the PROPER sets in Algorithm 2
can be considerably simplified.) This distinction is important in the completely synchronous case:
N-resilient strong unanimity is possible in the authenticated Byzantine case (column 1, row 3 of
Table 1) only if the general signs the initial values.

This distinction also matters in this section of the paper. Namely, consider the basic model
with signals, with authenticated Byzantine faults, where the general signs the initial values, and
where N2> 2t+1. Then a slight variant of Algorithm 6 achieves consistency, termination and
strong unanimity for an arbitrary value domain.

" Algorithm 7: N> 2t+1

The algorithm is identical to Algorithm 6 except that PROPER sets are used. Initially, the
PROPER set of processor p; contains its initial value v; which is signed by the general. Each
processor piggybacks its initial value, signed by the general, on all messages. If p; ever receives a
value different from v; which is also signed by the general, then p; puts all of V in its PROPER set.
1t is clear that a correct processor’s PROPER set always contains proper values,

6.2. Distributed Clocks

Recall that in this section there is some known communication bound A which always holds.
Because the previous clocks have limited resiliency, we first describe a distributed clock which is
resilient to any number of fail-stop faults. The general form of the clock is similar to the clocks
of Sections 5.1 and 5.2.

of

As in Section 5.1, an i-tick is the message "i" and an i-claim is the message "'I have broadcast
an i-tick". The definitions of i*-tick, i*-claim, broadcast an i-tick and broadcast an i-claim are also
the same as in Section 5.1. The clock protocol is given by TICK(b) and CLAIM(b) as in Figure
1.

The master clock is:
C(s) = maximum jsuch that some processor has broadcast a j-tick by time s.
The private clock c; is:
¢i(s) = maximum j such that p; has received either a j*-claim or a (j+ 1) *-tick by time s.

We claim that the new fail-stop clock and the authenticated Byzantine clock of Section 5.2
when used in the model of this section have the following properties.
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(A1) For all s and all correct p;, ¢;(s) £ C(s).
(A2) Foralls,x>0, C(s+x) <C(s) +x.

(A3) Consider a run in which the processor bound & holds after time GST (in the unknown phi
model, GST =0 for uniformity as explained before), and let D=73® + A. There are con-
stants a; and a, depending polynomially on A and @ such that:

(A3.1) For all correct p; and all s > GST+a,, ¢;(s) 2 C(s)-D - 1.
(A3.2) Foralls> GST+ay, C(s+a;) > C(s)+1.

(A4) For all s at which the correct processor p; executes a Reccive operation in the clock proto-
col,
C(s) — (A+1) <c;(s).

In the fail-stop case, we consider a processor to be "correct” up until the time that it fails. This
should cause no confusion since in the fail-stop mode!, a faulty processor acts as a correct
processor up until the time when it fails.

For the authenticated Byzantine clock, we have already proved (A1), (A2) and (A3) in
Lemmas 5.1, 5.3 and 5.7, respectively, with modifications as described in the proof of Lemma 5.8.
To prove that these properties hold for the fail-stop clock, we first note that Lemmas 5.1-5.4 hold
for the fail-stop clock; the proofs are very similar to the proofs given in Section 5.1 and are left to
the reader. Lemma 5.5 is not needed. Since A always holds, we can prove a stronger version of
Lemma 5.6 for the fail-stop clock.

Lemma 5.6". For all s > GST+D and all correct p;» ¢i(s) > C(s—D) - 1.
Proof. Let j = C(s—D). By definition of the master clock, some processor has broadcast a j-tick

by time s—D, so every correct processor will receive a j*-tick by time s. Therefore, ci(s) > j~1,
by definition of the private clock. [J

Now Lemma 5.7 follows from Lemma 5.6’ and previous Lemmas as before. (However, we
only need s > GST+D for part (1) and s > GST for part (2)).

The proof of (A4) is similar for both clocks. Let j = C(s—A). A j-tick has been broadcast by
time s—A, so processor p;, by time s, will receive a j*-tick. For the authenticated Byzantine clock,
this j*-tick contains t+1 {(j—1)*-claims. For cither clock, by definition of the private clock and

by property (A2),

ci(s)2j=1=C(s=A)~12C(s)-A—1.
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6.3. Upper Bounds When Phi Holds Eventually

The only improvements over the case in which both phi and delta hold eventually are for fail-
stop faults and authenticated Byzantine faults (the latter either for weak unanimity or for strong
unanimity with a general signing the initial values‘). Fix one of these fault models. We show that
if there is a t-resilient protocol in the basic model with signals, then there is one in the model
where phi holds eventually. Fix A and ® and assume Algorithm A works for the basic model with
signals. Define A’ as follows.

Two out of every three steps of each processor are used to maintain a distributed clock, and
the other step is used to simulate Algorithm A. For fail-stop faults we use the new fail-stop clock
of Section 6.2, while for authenticated Byzantine faults we use th> authenticated Byzantine clock

.

Message buffers are maintained as before,

Fix R = 3N® + (2D+2) + (A+1) where, as before, D = A +3®. Each processor determines
the current round being simulated and conducts the rest of the simulation exactly as in Section
5.3. We must describe how signals are simulated. If a processor p; has sent all of its messages for
a particular round r, performed a Receive operation in the clock protocol and updated its private
clock, and if the clock then satisfies

c; <rR — (2A+1),
then p; assumes that it has received a signal for round r.

For any run ¢’ of A’, we define a corresponding run e of A. Again, faults are preserved. Since
the R in this section is larger than the R used in Section 5.3, it follows as in Section 5.3 that, within
a short time after GST, the number of ticks in €’ which are allotted for the simulation of any
round r is sufficient to allow all round r messages to be sent and received. It remains to show that

signals behave correctly:

(a) whenever a correct processor p; receives a signal at any round r, it means that all of the
messages sent by processor p; at round r to correct processors actually get received, and

(b) within a short time after GST, all correct processors receive signals at all rounds.

We first show (a). Assume that correct processor p; receives a signal at round r, that p; sends
a message to correct processor p; at round r, and that s is the real time when the message is sent.
Then the message arrives at processor p; by real time s+A. Processor p; might not actually receive
the message at this time since it is not executing a Receive operation at this time. However, the
key fact for the simulation is that the message will be received the next time that pj executes a
Receive operation, and that when this Receive occurs, p; has not yet started any round greater
than r. That is, we must show that

cj(s+A’ <rR.
To show this, first note that since processor p; receives a signal for round r there must be a real
time s’ with s’ > s such that p; executes a Receive operation in the clock protocol at time s’ and
ci(s") < rR — (2A+1).
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Now

cj(s +4) < C(s+4A) by(Al)

< C(s’ +A) sinces’> s
< Cs")+4 by(A2)

< ci(s') +2A+1 by(A4)
<

TR by the condition defining signalling.

Next, we show (b). Fix some round number r after GST, and let s be the earliest time at
which p;’s private clock reaches or exceeds (r—1)R. Processor p; can broadcast a message to all
processors and execute a Receive operation in the clock protocol within 3(N+1)® steps after s.
Therefore, we must show that ’

Ci(s+3(N+1)®) < rR — (2A+1).
This is true because

Ci(s +3(N + 1)®) < C(s + 3(N + 1)®) by (A1)
SCE-1D+3(N+1)P+1 by (A2)
Scls—=1)+3(N+1)d+D+2 by(A3.1)

< (r=DR+3(N+ 1)+ D+2 byassumption .
<

fR ~ (2A + 1) by calculation.

Thus, e is an allowable run of A, so consensus is reached in €, and so in €', as needed. By ap-

plying this transformation to Algorithms 5, 6 and 7, we obtain Algorithms 5!, 6! and 7!, respec-
tively.

Theorem 6.3. Assume that communication is synchronous, and processors are partially synchro-
nous (phi holds eventually).

{a) For the fail-stop model, if N> t, then Algorithm 5! achieves consistency, termination and
strong unanimity for an arbitrary value domain.

(b) For Byzantine faults with authentication, if N> 2t+1, then Algorithm 6! achieves consist-
ency, termination and weak unanimity for an arbitrary value domain.

(c) For Byzantine faults with authentication, if N > 2t+1 and if the general signs the initial val-
ues, then Algorithm 7! achieves consistency, termination and strong unanimity for an arbi-
trary value domain,

6.4. Upper Bounds for Phi Unknown

The strategy is the same as in Sections 4.2 and 5.4. Namely, we use the algorithm of Section
6.3 where R; = 3Nr + 6r + 34 + 3 steps are allowed for the simulation of round r, where R, is ob-
tained from the R of Section 6.3 by replacing @ by r. It is important to note that the verification
of (a) in Section 6.3 (namely that if a signal is received by p; at round r then all messages sent by
p; during round r to correct processors arrive before the other processor starts any round greater

39



L

than r) did not depend in any way on ®. Therefore, (a) holds even for rounds r where r is smaller
than the actual (unknown) ® which holds in the run. Applying this transformation to Algorithms
5.6 and 7, we obtain Algorithms 52, 62 and 72, respectively,

Theorem 6.4. Assume that communication is synchronous and processors are partially synchro-

" nous (phi is unknown). Then claims (a), (b) and (c) of Theorem 6.3 hold for Algorithms 52, 62

and 72, respectively.

Our claim of a polynomial time bound (after GST) for the algorithms of Sections 6.3 and 6.4
follows from clock property (A3.2) which states that the master clock runs fast enough after GST.

We should also mention that Remark 5 at the end of Section 5 does not apply to the simu-
lations of Sections 6.3 and 6.4. Here, if a processor’s clock makes a big jump so that rounds are
missed, all steps of the consensus protocol during the missed round(s) must be simulated, If the
correct p; sends a message to a correct p; and receives a signal during round r, then p; must receive
the message and make the appropriate state transition caused by this reception, even if pj's clock
makes a large jump which causes it to miss round r.

6.5. Lower Bounds

The following lower bound shows that the resiliency of Theorems 6.3 and 6.4, parts (b) and
(c). cannot be improved. The method used to prove this lower bound was suggested by Dolev [D].

Theorem 6.5. Assume the model with Byzantine faults with authentication, synchronous com-
munication, and partially synchronous processors. Assume t > 2 and 4 < N <2t. Then there is no
t-resilient consensus protocol which achieves weak unanimity for binary values, even if the gen-
eral signs the initial values.

Proof. Assume to the contrary that a consensus algorithm exists. The proof is identical for both
variations of partially synchronous processors. In the foliowing, we assume without loss of gen-
erality that all messages are delivered in one real time step. Divide the processors into four groups
P, Q, {b} and {r}, where groups P and Q each contain at least 1 and at most t—1 processors and
where b and r are single processors. We say that a processor wakes up at real time s if it takes the
first step of its protocol at real time s. We say that a processor runs fast in the real time interval

[sy.s,] if it takes a step of its protocol at each real time step in the interval,

Consider Scenario CP where the processors in P u {b} have initial values 0, wake up at time 1
and run fast in the interval [1,=), and the other processors are initially dead. By t-resiliency, the
processors in P make some decision within some finitc time Tp. We claim the decision must be 0.
For if it were 1, we could modify the scenario to onc in which all initial values are 0, and the
processors in Q U {r} are correct but do not wake up until after time Tp. The processors in P still
decide 1 in the modified scenario, which contradicts weak unanimity,
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Consider the analogous Scenario CQ where the processors in P U §r} are initially dead, and the
processors in Q U {b} wake up at time | with initial values 1 and run fast in the interval [1,).
Therefore, the processors in Q decide 1 after some finite time To.

Consider the following Scenario BP. Processors in P u {b} are Byzantine. The processors in P
have value 0, and b has both 0 and 1 (so the general is Byzantine). They wake up at time 1, with
b acting as if its value is 0, and they run fast in the interval [1,Tpl. They send the same messages
to r as are sent in Scenario CP, but no messages are sent to Q. After time Tp, the processors in P
die. The processors in Q are correct. They wake up at time Tp+1 and run fast thereafter. Start-
ing at time Tp+ 1, the Byzantine processor b starts behaving towards Q and r exactly as it does in
Scenario CQ, as if its value is 1, except that a message sent at real time s in Scenario CQ is sent at
time Tp+s in Scenario BP. Since Q has received no messages from P, the processors in Q decide 1
at time Tp+Tg, and they all behave exactly as in Scenario CQ except that everything happens Tp
real time steps later. Attime Tp+Tq+1, the correct processor r wakes up and runs fast thereafter.
The initial value of r is irrelevant. Note that at most t processors are faulty in this run. In the
model where phi is unknown, the processor bound & = Tp+Tqg+1 holds in this run; in the model
where phi holds eventually, the proéessor bound ®=1 holds after GST = Tp+Tq+1. Since the
correct processors in Q have already decided 1 before r wakes up, r must decide 1 at some real
time T,.

Consider now Scenario BQ. The processors in P are correct and begin with value 0. They run
fast in the interval [1,Tp], but take no more steps until after time T;. In the time interval [1,Tp],
the Byzantine processor b behaves towards P and r exactly as it does in Scenario CP, acting as if
it has initial value 0. Therefore, at time Tp the processors in P decide 0. The processors in Q are
Byzantine. They wake up at time Tp+1 with value 1 and behave with respect to r exactly as they
do in scenario BP, that is, the messages which have been sent from P to Q during the interval
[1,Tp] are ignored by Q. At time Tp+1, b starts acting toward r exactly as it does in Scenario BP,
as if it had intial value 1. The correct processor r wakes up at time Tp+Tq+1 and runs fast
thereafter. It is easy to see that the messages received by r between time Tp+Tqg+1 and time T,
are exactly the same in scenario BQ as in scenario BP. Therefore, r decides 1 at time T,, which is
a contradiction because the correct processors in P decided 0. [J

In the preceding proof, note that the processors in P and Q exhibit only omission faults: P fails
to scnd messages to Q in Scenario BP and Q fails to receive messages from P in Scenario BQ.
Processor b is the only one which exhibits Byzantine behavior stronger than omission faults.
Thercfore, it can be checked that the same proof can be carried out for omission faults with three
groups of processors, P, Q and {r} where P and Q each contain at least 1 and at most t—1
processors. This proves the following, which shows that the resiliency of Theorems 5.1 and 5.2,
part (a), when applied to the case of omission faults and partially synchronous processors, cannot
be improved by more than 1.
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Theorem 6.6. Assume the model with omission faults, synchronous communication, and partially
synchronous processors. Assume t> 2 and 3 <N <2t—1. Then there is no t-resilient consensus
algorithm which achieves weak unanimity for binary values.

For the case of strong unanimity and Byzantine faults with authentication, but where the ini-
tial values are not signed by a general, Theorems 5.1 and 5.2, part (b), give consensus algorithms
if N 2 3t+1. The following shows that this resiliency is the best possible for this case.

Theorem 6.7. Assume the model with Byzantine faults with authentication, synchronous com-
munication, and partially synchronous processors. Assume t>1and 3<N <3t. If the general
does not sign the initial values, there is no t-resilient consensus protocol which achieves v.strong
unanimity for binary values.

Proof. Assume N <3t. Divide the processors into three groups, P, Q and R, each containing at
least 1 and at most t processors.

Consider the following Scenario A. Processors in P ‘have initial values 0, processors in Q have
initial values 1, processors in P u Q wake up at time 1 and run fast thereafter, and processors in R
are initially dead. Therefore, the processors in P U Q must make some decision after some finite
time. By symmetry we can assume, without loss of generality, that they decide 1 within time Ta.

Consider Scenario B. All processors have initial value 0, processors in R are correct but do not
wake up until after time T, and processors in Q are Byzantine and behave with respect to P ex-
actly as they do in Scenario A. The processors in group P aét exactly as they do in Scenario A, so
they decide 1. This contradicts strong unanimity. [J

7. OPEN QUESTIONS

(1} For the case of partially synchronous models and Byzantine faults without authentication,
we have shown that any t-resilient consensus protocol which reaches consensus within polynomial
time (after GST) needs at most 4t+1 processors, and it is known that 3t+1 processors are re-
quired (since [LSP] proves this even in a completely synchronous system without the polynomial
time constrdint). It would be interesting to close this gap.

(2) We have noted in Remark 1 at the end of Section 3 that the basic consensus Algorithms 1, 2,
and 3, with minor modifications, have the property that the number of rounds required to reach
agreement after round GST is optimal to within constant factors (at most 10). We have not tried
t,é reduce these constants. Some reduction is probably possible, say by overlapping trying phases
with lock release phases, although it would be surprising if the number of rounds could be made
to match the known lower bound of t+1 rounds. On the other hand, partial synchrony might
provide a model for which the lower bound t+1 could be strengthened to something larger.
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(3) A general direction for future research is to study other distributed computing problems in
partially synchronous models.
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