
Building a Theory of Distributed Systems: Work

by Nancy Lynch and Collaborators

Nancy Lynch

December 4, 2024

Building a Theory of Distributed 
Systems

Work by Nancy Lynch and 
Collaborators

Figure 1: If this were a book, this could be its cover design. The school of fish
is a kind of natural distributed system. The school could also represent all the
collaborators.

1 Introduction

In this writeup, I summarize research by myself and my very many students and
other collaborators, on developing a theory for the field of distributed comput-
ing. I hope that it provides an interesting look at some of the early work that
helped to build this field.

The main theme of our research in distributed computing theory is simply
this: Distributed systems are everywhere, and we need a usable formal theory
to support their design and development. Moreover, a formal theory for dis-
tributed computing requires new kinds of models and theoretical techniques,

1



different from those used for sequential computing. The new theory should sup-
port formal description of distributed algorithms and systems, proofs of their
correctness, and analysis of their performance. Also, it should support proofs
of impossibility results. Impossibility results are very hard to prove for sequen-
tial algorithms, but they are feasible for distributed algorithms, because the
platforms on which distributed algorithms run are much less well-behaved.

Contents of this writeup: Our research in distributed computing theory
spans from 1976 until the present (almost 50 years!), and is contained in many
hundreds of papers—far too many for any reader to sort through. To make this
manageable, I have selected a small number of ”key publications” on which to
focus: 25 papers and 3 books. In choosing these, I have favored papers that were
influential in the field, papers that were influential in our own later work, papers
that I was especially invested in, and some other favorites. I apologize ahead
of time for the many other wonderful papers that I have omitted, particularly
some excellent papers by my graduate students. Although I have focused the
discussion on these 28 publications, along the way I mention many more.

The writeup begins with a brief Section 2 describing my background in com-
plexity theory, which is what I worked on before I got interested in distributed
computing. Sections 3 and 4 describe our early work on the beginnings of the
field, through 1990, starting at Georgia Tech and continuing at MIT. My work at
Georgia Tech included basic algorithms and lower bounds for shared-memory
distributed systems solving problems such as mutual exclusion and resource
allocation. It also included preliminary work on the problem of distributed con-
sensus, which became a very popular research direction for the field, and on
general formal models for distributed computing. My early MIT work involved
extensive research on distributed consensus, including exact and approximate
versions of the problem, and work based on different timing models. Formal
models for asynchronous distributed computing were another focus, as well as
applications to distributed database transaction processing.

Sections 5 and 6 describe work at MIT during the period 1990-2005. This
included two distinct threads of research. Section 5 describes work on algo-
rithms and lower bounds, including work on communication protocols, on tim-
ing aspects of algorithms, on variations of the consensus problem, and on data
consistency. I also wrote my Distributed Algorithms textbook during this time.
Section 6 describes work on formal models and methods for distributed sys-
tems, including work on timed system models, hybrid (continuous/discrete)
system models, and probabilistic system models. Section 6 also includes some
applications of these formal models and methods, to some data management
algorithms, timed and hybrid systems, and security protocols.

Section 7 summarizes our recent work (after 2005) on algorithms for wireless
networks, including algorithms for distributed data management and algorithms
built over a Virtual Node abstraction layer. Finally, Section 8 touches very
briefly on our recent work on biological distributed algorithms, specifically, for
insect colonies and brain networks.

2



Accessing the papers: For some help in accessing the various papers, here
is a link to a web page that contains a list of the key publications listed in
this writeup, with some information about places where they can be found:
https://groups.csail.mit.edu/tds/lynch-papers-highlights.html. In most cases,
we have pointed to the publishers’ pages for the final versions of the papers. For
a few papers that we cannot locate easily, or for which we have made significant
corrections post-publication, we have included a .pdf.

2 Complexity Theory

Abstract complexity theory: I wrote my PhD thesis in the subfield of ab-
stract complexity theory, working with Profs. Albert Meyer and Michael Fischer.
The paper [105] summarizes my PhD work. Briefly, this paper and thesis ex-
tended Manuel Blum’s axiomatic treatment of the computational complexity
of partial recursive functions to relatively computable functions, as computed,
for example, by Turing machines with oracles. The paper went on to study
reducibilities that are defined by complexity bounds.

So does this have anything to do with the topic of this writeup, which is the
foundations of distributed computing? Well, a general and loose connection is
that reducibilities are about solving computational problems in terms of other
computational problems. This is a theme that arises as key in distributed com-
puting theory, in the form of decomposing complex distributed algorithms into
smaller pieces.

Polynomial-time reducibilities: The paper [73], joint with Richard Lad-
ner and Alan Selman, moved away from abstract complexity theory to study
polynomial-time reducibilities, such as the two defined by Cook [23] and Karp [68]
respectively. The point of the paper [73] was that many different forms of
polynomial-time reducibility had been defined, or could be defined, varying ac-
cording to the structure of the reducibility. The paper [73] established the
relative strengths of the different reducibilities, with inclusion and separation
results.

But after this I changed research areas...

3 Early Explorations of Theory for Distributed
Computing, at Georgia Tech, 1976-1981

I started a faculty job at Georgia Tech’s School of Information and Computer
Science in 1976, where I spent my first year or two exploring new areas of
research. I was looking for places where theoretical computer science methods
might apply to practical computing. Pretty quickly, I gravitated to the new
area of distributed computing.

3



At that time, the Arpanet was fairly new, and researchers and developers
had begun talking about a new type of computing that they called ”distributed
computing”. At Georgia Tech, I was influenced by Prof. Phil Enslow’s work
and advocacy for the new area. He wrote an interesting position paper [67]
that delineated many features that a distributed system should have. Basically,
his vision amounted to a higher-level, general-purpose programming platform
running over a communication network like the Arpanet. It was supposed to
manage distributed data processing, and also coordination of tasks to be per-
formed on many computers.

I became inspired by these possibilities. Phil suggested many papers for
me to read, notably, papers on distributed database concurrency control. He
understood that I was interested in theoretical aspects of distributed computing,
and pointed me to relevant papers by Lamport and Dijkstra. I became very
interested in the area.

As I began thinking about distributed systems issues, I talked with Mike
Fischer at one of the theoretical computer science conferences. It turned out
that Mike was already working on problems in this area, with his PhD student
Gary Peterson. Their emphasis was on shared-memory algorithms for mutual
exclusion; see [116]. Mike and I began discussing the area, along with Gary and
my (first) PhD student Jim Burns.

Before too long, in around 1978, Mike was able to arrange to take a sabbatical
at Georgia Tech in order to work with me and Jim Burns on this topic. Together
we hosted a series of short visits, by Leslie Lamport, Eshrat Arjomandi, Alan
Borodin, and others. At this time, Lamport was already well known for his early
work on distributed computing theory, in particular, for the Bakery Algorithm
and a collection of algorithms for implementing read/write registers; he had also
begun working on distributed consensus. Also during this time, Prof. Nancy
Griffeth joined the School at Georgia Tech; she worked on database algorithms,
and also began working with us on distributed resource allocation algorithms.

Overall, I think my years at Georgia Tech were quite productive, in terms
of producing concrete theoretical results in the new research area of distributed
computing theory. I discuss some of the highlights of this work below.

3.1 Key publications

3.1. James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer, and
Gary L. Peterson. Data requirements for implementation of N-process mutual
exclusion using a single shared variable. Journal of the ACM, 29(1):183–205,
January 1982.

3.2. James E. Burns and Nancy A. Lynch. Bounds on shared memory for mu-
tual exclusion. Information and Computation, 107(2):171–184, December 1993.
Originally appeared in Jim Burns’s thesis, around 1981.

3.3. Nancy A. Lynch and Michael J. Fischer. On describing the behavior and im-
plementation of distributed systems. Theoretical Computer Science, 13(1):17–

4



43, 1981. Special issue on Semantics of Concurrent Computation.

3.4. Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. Efficiency
of synchronous versus asynchronous distributed systems. Journal of the ACM,
30(3):449–456, July 1983.

3.5. Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Information Processing Letters, 14(4):183–186,
June 1982.

3.2 Mutual exclusion in shared-memory models

We started by considering the problem of mutual exclusion in shared-memory
systems. We considered the problem both with test-and-set shared memory and
with read/write shared memory.

Bounds on test-and-set shared memory for mutual exclusion and re-
source allocation: The first paper I was involved in, in the area of distributed
computing theory, was Paper 3.1 [14]. This was based on a shared memory
model, in which a collection of N processes operating completely asynchronously
use a small shared memory to arbitrate access to critical regions of their code.
To do this, they execute two protocols, a trying protocol to try to gain access
to the critical region, and an exit protocol to leave the region gracefully.

This paper followed the paradigms of sequential algorithms, though for a
very different type of setting. This paper gave formal specifications of problems
to be solved in these systems, and gave algorithms and nearly-matching lower
bounds for these problems. The problems in [14] involved mutual exclusion
with a variety of liveness and fairness guarantees, ranging from no guarantees,
to simple absence of deadlock, to avoidance of lockout, to bounds on the number
of times one process could bypass another.

The paper was somewhat influenced by a series of papers by Dijkstra, Knuth,
and others, on clever algorithms for mutual exclusion. However, a difference
was that those papers assumed read/write shared memory. Our paper used a
stronger type of shared memory, which we called test-and-set memory. In our
version of test-and-set, a process could, in one step, read the value of a single
shared variable and make some arbitrary changes to both its local state and the
shared variable, all atomically.

For me, an earlier, and stronger influence was a previous unpublished Uni-
versity of Southern California technical report by Armin Cremers and Tom
Hibbard. I learned about this work when I was on the USC faculty together
with Cremers and Hibbard (during 1973-1976). Their paper used the test-and-
set model. It showed that two processes cannot achieve mutual exclusion with
fairness using a shared variable that can take on only two values.

This paper showed me that, because distributed computing platforms were
so badly behaved, one could hope to prove nontrivial lower bound results. This
was quite different from the situation in the theory of sequential algorithms, in

5



which lower bound results were (and still are) very hard to come by. The work
of Cremers and Hibbard demonstrated how distributed systems might support
interesting lower bounds, which later proved to be a key component of work in
this area.

Our Paper 3.1 [14] generalized the earlier work of Cremers and Hibbard to
more processes and more types of fairness conditions. It showed that one can
prove nontrivial lower bound results for distributed algorithms.

3.1. James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer, and
Gary L. Peterson. Data requirements for implementation of N-process mutual
exclusion using a single shared variable. Journal of the ACM, 29(1):183–205,
January 1982.

Briefly, we assumed a single shared variable (this restriction doesn’t matter
for the powerful test-and-set model), and tried to determine the size of a variable
that is sufficient to solve the mutual exclusion problem. It turned out that the
answer depends strongly on the type of fairness conditions required.

For instance, a simple 2-valued semaphore is adequate if we do not re-
quire any fairness but just absence of deadlock. But if we require fairness
to all requesting processes, we need some coordination. Here is where we en-
countered the characteristic difficulties of distributed computing with limited
communication—how could separate processes, operating independently and
asynchronously, manage to coordinate for coherent access to their critical re-
gions? It seemed that things could get very confusing and chaotic. The way
out that we found in this work was to use an abstraction—a conceptual Virtual
Supervisor process, which could be emulated by the other processes. The role of
the Virtual Supervisor was to offload the coordination information into its own
state instead of using the small shared variable, and to manage the coordination
via communication with the competing processes using the narrow-bandwidth
shared variable. In this way, we can say that this paper introduced the impor-
tant idea of levels of abstraction for distributed algorithms.

The algorithms of [14] are not particularly practical. But they use some
interesting algorithmic strategies, mainly the Virtual Supervisor idea.

The paper also contained nontrivial lower bounds for mutual exclusion with
fairness guarantees. These use explicit, intricate constructions of executions
that lock out some processes, given too-few values of the shared variable. These
results were inspired by, and generalize considerably, the 2-process construction
of Cremers and Hibbard.

We continued our work with many papers delineating the power of the test-
and-set shared memory model to solve problems related to mutual exclusion.
For example, in [49], we extended the model and problem to consider multiple
resources and process failures.

Limitations for read/write shared memory: The next paper, Paper 3.2 [15],
deviated from the test-and-set model, assuming instead the much-more-stringent

6



limitations of read/write shared memory. The main limitation of this model is
that processes can overwrite each other’s updates, which can cause information
to be lost. For the read/write case, unlike the test-and-set case, it turns out the
number of variables matters.

The results of [15] originally appeared in Jim Burns’s Georgia Tech PhD
thesis, around 1981. However, for some reason, we did not get around to pub-
lishing this until a full 12 years later.

3.2. James E. Burns and Nancy A. Lynch. Bounds on shared memory for
mutual exclusion. Information and Computation, 107(2):171–184, December
1993.

This paper deals with a simple version of the mutual exclusion problem,
requiring only mutual exclusion and absence of deadlock, but not requiring any
fairness conditions. The paper contains a simple algorithm using only binary
shared variables, and only single-writer multi-reader variables. This is in con-
trast to Lamport’s Bakery Algorithm, which has unbounded-size variables, and
to Dijkstra’s mutual exclusion algorithm, which uses multi-writer shared vari-
ables.

The more interesting result in the paper (to me) is the lower bound. It says
that n processes must use at least n shared read/write variables. No matter how
many values the variables may take on, and even if the variables allow multiple
writers, we still need at least as many variables as processes!

The proof of this lower bound is by a really clever construction, mainly due
to Jim. The key is that it is possible to maneuver a process so that it is poised,
”about to write” a shared variable. Then if other processes engage in activity
that affects that variable, we can later resume the stopped process and overwrite
what all the other processes wrote. If we can maneuver multiple processes so
they are poised, ”about to write” several different shared variables, then we can
hide the activity of other processes that affect all of those variables.

3.3 Models for distributed systems

Even in our earliest days of working on algorithms and lower bounds for shared-
memory distributed systems, we felt the need for new formal models to support
the algorithmic work. We were already aware that we wanted to help start a
new research field of distributed computing theory, and it seemed clear that the
field should have its own general models to provide a foundation.

The field of sequential complexity theory was based on well-established mod-
els, like Turing machines and Random Access Machines (RAMs). Researchers
working on sequential algorithms shared a common foundation for their algo-
rithmic work. For synchronous parallel shared-memory computing, researchers
used models such as Parallel Random Access Machines (PRAMs). But now we
were looking for something quite different—a model for algorithms that were
supposed to run on distributed systems consisting of asynchronously operating,

7



interacting processes. It was not obvious at all what a general model should
look like.

First, we knew that we wanted to base our model on a foundation of set
theory and automata theory, rather than on any particular logical language.
This was consistent with the situation for sequential algorithms and synchronous
parallel algorithms. But it contrasted with a large body of work that was going
on at the time on models for concurrent systems, by Hoare, Milner, and other
process algebraicists. Their work described concurrent processes using formal
logical expressions, rather than using automata. Systems could be built up
from simpler components using formally-defined operators, composition being
the most important one. The operators became part of an algebraic language
for describing systems of processes, and algebraic equations were used to assert
equivalence of systems built using different algebraic expressions. Essentially all
reasoning about the systems was carried out within a formal logical system.

But since we were emphasizing algorithms and complexity, we preferred a
different style, based on set theory and automata. We did not want to force the
reasoning about the algorithms—their correctness and performance—into any
particular logical framework.

General model for asynchronous shared-memory computing: Since we
started working on theory for distributed computing by studying asynchronous
shared-memory algorithms, we defined our first version of a general model for
systems of asynchronous processes interacting using shared memory. Our initial
modeling paper was Paper 3.3 [88]:

3.3. Nancy A. Lynch and Michael J. Fischer. On describing the behavior and im-
plementation of distributed systems. Theoretical Computer Science, 13(1):17–
43, 1981. Special issue on Semantics of Concurrent Computation.

The paper is a sort of manifesto. It outlines our goals in terms of creating
a general model as the foundation for a new algorithmic theory for distributed
systems, and explains our particular design choices. It explains why we need new
models for distributed algorithms, different from those for sequential algorithms.
We also need new kinds of problem definitions—not just functions as before, but
definitions that include ongoing behavior and nondeterminism. We also need
new definitions of what it means for an instance of the model to ”solve” a
particular problem—something that is obvious for sequential algorithms.

Section 2 of the paper contains the formal definitions for our automata-
theoretic shared-memory model. It also introduces a composition operator for
systems, which is intended to be useful in describing systems in terms of more
primitive systems. Section 3 describes how to define a problem to be solved by
an automaton, as a set of (finite and/or infinite) sequences of steps involving
shared variables. Section 4 describes what it means for a distributed algorithm,
expressed as an automaton within our model, to solve a problem, also expressed
within our model. Specifically, the set of sequences comprising the behavior of

8



the algorithm can be any subset of the set of sequences defining the problem.
The paper continues by defining a useful measure of time complexity for

asynchronous distributed systems, based on assuming real-time upper bounds
on the time between basic events such as processes accessing shared variables.
In contrast to the usual handling for sequential algorithms, we do not consider
the costs of local computation, which are generally regarded as insignificant for
distributed algorithms compared to the costs of interaction. The paper goes on
to present examples illustrating how very different distributed algorithms can
be used to solve the same problem—here, the problem of fair mutual exclu-
sion. It includes analysis of the time complexity of the three algorithms, and a
comparison.

As it turned out, the particular model of this paper did not end up seeing
widespread use as a foundation for the field. However, it was a direct precur-
sor for the more impactful Input/Output Automata model of Lynch and Tut-
tle [101, 102]. Note that the I/O Automata work includes treatment of levels
of abstraction. Levels of abstraction have turned out to be another important
way of decomposing distributed algorithms, along with composition, but they
do not appear in [88]. I discuss I/O Automata in Section 4.6.

Synchronous vs. asynchronous shared memory systems: While we
were working on our algorithms and models for shared-memory distributed com-
puting, Prof. Eshrat Arjomandi from York University visited us at Georgia
Tech. She had been working on parallel algorithms for solving graph problems,
using PRAM models. Like the models we were considering, the PRAM model
is a shared-memory parallel model. However, unlike in our model, its processes
operate in synchronous rounds. See, for example, [6].

This led us to wonder about the difference in computing power, specifi-
cally, in time efficiency, between synchronous and asynchronous versions of the
shared-memory parallel model, which eventually led to Paper 3.4 [7]. Here we
proved the perhaps-surprising result that there are some problems that can be
solved faster with a synchronous parallel shared-memory algorithm than with
any asynchronous shared-memory algorithm. This is not a comparison of the
behavior of a particular synchronous algorithm with a particular asynchronous
algorithm—rather, it is a result about all possible asynchronous algorithms in
our model.

3.4. Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. Efficiency
of synchronous versus asynchronous distributed systems. Journal of the ACM,
30(3):449–456, July 1983.

The problem we focused on was a simple abstract problem that we called
the ”s-session problem”. In this problem, all of the processes should cooperate
to perform a number s of ”sessions”, in each of which each process must output
at least one signal. Then all processes must halt, producing no further out-
puts. It is easy to devise a synchronous algorithm that performs s sessions in s

9



rounds, i.e., in time s. However, we show that any asynchronous algorithm that
is guaranteed to produce s sessions and then halt must take at least approxi-
mately s log n time, where n is the number of processes. Here time is measured
according to the asynchronous time measure described in Paper 3.3 [88].

To prove the lower bound for asynchronous algorithms, we assumed an asyn-
chronous algorithm A that worked in less time than what we claim. We started
with a synchronous execution of A. Then we reordered the steps of the exe-
cution, while maintaining the dependencies of the algorithm and reducing the
number of sessions to below s.

The significance of this paper is that it removes the following hope: we
might like to design asynchronous distributed algorithms by first designing syn-
chronous versions and then transforming them systematically to run in asyn-
chronous systems, while preserving correctness. This result says that such an
approach would necessarily increase the worst-case running time significantly.

3.4 Other early results

Resource allocation in networks: With Nancy Griffeth, we studied more
elaborate resource-allocation problems [89, 46]. We assumed an arbitrary place-
ment of resources at the nodes of a graph network. The problem was to service
requests that arrive at random nodes in the network, matching requests to re-
sources. The model used in this work was a network message-passing model
rather than a shared-memory model.

The first paper [89] presented request-resource matching algorithms and an-
alyzed their time requirements. We assumed here that requests arrive on-line,
and may overlap: new requests may arrive before previous requests have been
matched to their resources. The worst case for this algorithm turned out to
be when the requests arrive sequentially, because some optimization is possible
when concurrent requests interact. The second paper [46] assumed that the
requests arrive at random locations, all at once. Here we measured the sum of
the lengths of paths connecting requests to their matched resources.

Global states: We also wrote a paper describing a new global snapshot algo-
rithm for distributed systems [47]. This paper was inspired by work on dis-
tributed database concurrency control. We assumed a system of ”ordinary
transactions”, which could execute in an interleaved manner, and added to this
system a new ”snapshot transaction”, which was required to appear atomic with
respect to the ordinary transactions. The snapshot transaction was required to
return a ”consistent” global state of the system—one that ”could have hap-
pened” as a result of running all the ordinary transactions that preceded the
snapshot to completion, along with some subset of the ordinary transactions
that were concurrent with the snapshot. In this sense, the algorithm produced
a consistent global snapshot.

A special case of this snapshot algorithm is one in which the ”ordinary
transactions” correspond to transfers of money from one banking location to

10



another. The snapshot transaction can then be used to calculate the total
money at all of the locations.

3.5 Distributed consensus

Much of our best-known early work was on the topic of distributed consen-
sus. This research direction was inspired by early work of Leslie Lamport with
Marshall Pease and Robert Shostak [115, 77].

Leslie visited Mike Fischer and myself at Georgia Tech, for about a week
during Mike’s sabbatical. In preparation for Leslie’s visit, Mike and I read a
number of Leslie’s papers, including a preliminary (unpublished) manuscript
entitled ”The Albanian Generals Problem” (the problem was later renamed to
the ”Byzantine Generals Problem”).

In reading these papers, we noted that all of the algorithms in the papers
used f +1 rounds to reach agreement in the presence of f faulty processes. We
tried to find faster algorithms, but failed. Then just before Lamport’s visit, we
proved a lower bound of f + 1 rounds. This result appears in the short Paper
3.5 [48]

3.5. Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Information Processing Letters, 14(4):183–186,
June 1982.

This proof used a chain argument. We constructed a chain of executions
spanning between two extreme executions in which the decisions for the non-
faulty processes are required to be 0 and 1, respectively. In this case, we con-
sidered an execution with all inputs of 0 and no failures, vs. an execution with
all inputs of 1 and no failures. Then we constructed the chain so that every
pair of consecutive executions in the chain looks the same to some process that
is nonfaulty in both. So that process must decide in the same way in both
executions. It follows that there can be no particular point in the chain where
the decision changes, which yields the contradiction.

Another version of this proof appears in my textbook [86]; That version
proves a stronger result, for stopping failures, not just very Byzantine failures.

Chain arguments have been used subsequently to prove other lower bound
results, including the ”FLP” impossibility result [52], which I discuss in Sec-
tion 4.2. Also, chain arguments have been extended to multiple dimensions,
using topological machinery. Such arguments appear in the Godel-prize win-
ning work on the topological structure of asynchronous computability [64], as
well as our lower bound for synchronous solutions to k-consensus [19], which I
discuss in Section 5.

Thus, Paper 3.5 [48] marked the beginning of our work on consensus, a topic
that we continued to study for quite a few years.

11



In these early papers, we have already seen quite a few lower bound results.
Lower bounds and other impossibility results have turned out to be a major
part of distributed computing theory. We have seen that the main reason why
lower bounds and other impossibility results can be proved here is the strong
limitations imposed by locality in distributed systems. Each process can see only
its own state, the values it reads in shared memory, the messages it receives,
etc. The lack of global knowledge is a very strong restriction that enables lower
bounds and other impossibility results.

We will see more lower bounds in this writeup, and others are discussed in
the papers [82] and [39].

4 Early Work at MIT: Distributed Consensus,
Models, and Atomic Transactions, 1981-1990

I went to MIT for a sabbatical year in 1981-1982, visiting Prof. Barbara Liskov’s
research group in distributed systems. This was because of my interest in dis-
tributed database concurrency control: Barbara’s group was then working on a
system called Argus, which implemented a programming model based on nested
atomic transactions. I was interested in working on theoretical underpinnings
for such systems.

I worked with Barbara, and with her group members Bill Weihl and Maurice
Herlihy, to model and verify some popular algorithms for distributed database
concurrency control, including algorithms based on locking, timestamping, op-
timistic concurrency control, and replication. This work involved generalizing
many of the standard concurrency control algorithms to the case where transac-
tions could be nested; Barbara had already done that for locking, but there was
more to do for other algorithms. In addition to algorithm design, this turned
into an exercise in formal modeling and verification of complex distributed al-
gorithms with strong correctness requirements.

In addition, I continued work on distributed consensus and consensus-related
problems, mainly with Mike Fischer. This work culminated at the end of the
year with the famous ”FLP” result on impossibility of consensus.

Another interesting event during this sabbatical year was the start of the
Principles of Distributed Computing (PODC) Conference. The first of these
conferences was held in Ottawa in the summer of 1982, and the conference has
been going strong since then. As I recall, I played some role in starting up this
conference, while the main organizers were Mike Fischer, Robert Probert, and
Nicola Santoro.

At the end of the sabbatical year, I accepted an offer of a tenured Associate
Professorship at MIT, where I have remained for the 40+ years since then. Along
with the offer, I was given a five-year chair, the first ”Ellen Swallow Richards
Chair”, funded by the MIT Alumnae with the purpose of bringing senior women
faculty to MIT. At that time, there were very few.

For the next few years, I built my research group and worked on a combi-

12



nation of consensus algorithms and lower bounds, and nested transaction al-
gorithms and system modeling. The work on nested transactions contributed,
in turn, to the development of the Input/Output automaton model for asyn-
chronous systems communicating via shared actions.

Although this was all theoretical work, I remained for these years in the
distributed systems group at MIT, since distributed computing was still not a
popular theoretical discipline.

4.1 Key publications

4.1. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossi-
bility of distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

4.2. Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of faults.
Journal of the ACM, 33(3):499–516, July 1986.

4.3. Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock
synchronization. Information and Control, 62(2-3):190–204, August/September
1984.

4.4. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

4.5. Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibil-
ity proofs for distributed consensus problems. Distributed Computing, 1(1):26–
39, January 1986.

4.6. Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs
for distributed algorithms. In Proceedings of the Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 137–151, Vancouver, British
Columbia, Canada, August 1987.]

4.7. Nancy Lynch and Mark Tuttle. An introduction to Input/Output Au-
tomata. CWI-Quarterly, 2(3):219–246, September 1989. Centrum voorWiskunde
en Informatica, Amsterdam, The Netherlands.

4.8. Nancy A. Lynch, Michael Merritt, William E. Weihl, and Alan D. Fekete.
Atomic Transactions. Morgan Kaufmann series in data management systems.
Morgan Kaufmann, 1993.

4.2 FLP

Paper 4.1 [52] is, by far, my most cited paper. We obtained the main result in
late summer of 1982, at the end of my sabbatical year and just before I started

13



my real job on the faculty at MIT. We first published the result in a Principles
of Database Systems conference in 1983 [51]. The final journal version appeared
in 1985 [52].

4.1. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossi-
bility of distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, April 1985.

As I recall, I thought of this, at first, as a purely theoretical problem. Hav-
ing proved a lower bound for the number of rounds for synchronous Byzantine
agreement [48], I thought it was natural to consider what happens in the asyn-
chronous case. I did not know how this would turn out ahead of time; I worked
both on trying to find an algorithm and trying to prove an impossibility re-
sult. Some sense that this might be solvable arose from our early thoughts on
the approximate agreement problem, discussed in Section 4.3, for which natu-
ral synchronous algorithms had straightforward extensions to the asynchronous
setting.

Mike Fischer and I met at MIT during the summer of 1982 and discussed
this problem. Mike said that he had also been thinking about this problem,
motivated by some systems issues suggested to him by Butler Lampson during
a visit by Mike to Xerox PARC. Mike Paterson joined the collaboration when
he visited Mike Fischer at Yale sometime after our MIT meeting.

So we ended up proving the impossibility result. The result was stated in
terms of simple stopping failures, and required only a single failure! The proof
was quite elementary, but certainly not obvious. It was based on assuming that
a solution exists, and then characterizing how the decision could be made in
such a solution. It turns out that the decision can be localized to what happens
at a single location in the network, based simply on the order of arrival of two
different messages at one node. But if the node in question fails, the rest of the
system cannot distinguish the order in which the messages arrived, so cannot
decide differently in the two cases.

But why was this result so widely appreciated? It was an interesting, maybe
surprising theoretical result. But the main reason for the widespread appreci-
ation was the fact that it had significance for the practical distributed systems
community. Namely, the problem was closely related to the distributed transac-
tion commit problem, where the processes involved in processing a transaction
must agree on whether the transaction should commit or abort. Systems re-
searchers were making informal claims about what their algorithms guaranteed,
and this impossibility result seemed to contradict what they wanted to claim.

I admit to being surprised by how much attention this result got, in the
distributed systems community. Though I was quite pleased with the result
and proof as theory.

Our paper was awarded the second Dijkstra Prize (after Lamport’s famous
”Time, Clocks,...” paper). Here is a citation for that award, written by Jennifer
Welch and Nir Shavit:

14



The result of this paper (commonly known as FLP) is that, sur-
prisingly, it is impossible for a set of processors in an asynchronous
distributed system to agree on a binary value, even if only a single
processor is subject to an unannounced crash. Although the result
was motivated by the problem of committing transactions in dis-
tributed database systems, the proof is sufficiently general that it
directly implies the impossibility of a number of related problems,
including consensus.

This result has had a monumental impact in distributed computing,
both theory and practice. Systems designers were motivated to clar-
ify their claims concerning under what circumstances the systems
work.

On the theory side, people have attempted to get around the im-
possibility result by changing the system assumptions or the prob-
lem statement. Work on changing the system assumptions includes
the study of partially synchronous models and of various kinds of
failure detectors. Modified problem statements include randomized
algorithms, approximate agreement, k-set agreement, and condition-
based approaches.

The proof technique used in FLP, valency arguments, has been used
and adapted to show many other impossibility and lower bound re-
sults in distributed computing. These include impossibility results
for consensus, k-set consensus, and renaming in various models, and
lower bounds on contention and on the number of rounds for syn-
chronous consensus.

The FLP result forms the basis of work on the wait-free hierarchy,
in which data types are classified and compared according to the
maximum number of processes for which they can solve wait-free
consensus. The calculation of consensus numbers relies on valency
arguments.

Finally, work on applying ideas from topology to fault-tolerant dis-
tributed computing were inspired by the posing of the k-set consen-
sus problem, which in turn was inspired by the FLP result.

4.3 More results related to consensus

During the sabbatical year 1981-1982 and the next few years at MIT, we con-
tinued working on problems related to distributed consensus. There were many
questions to consider, and this general topic became a popular direction for the-
oretical computer science research during that time. My collaborators during
this time were my own group members, and others, including Mike Fischer, Bill
Weihl, and Jim Burns.

15



Low-communication consensus: One of our first results involved improving
the amount of communication needed. The papers by Lamport et al. [115, 77]
give algorithms for Byzantine agreement that used an exponential amount of
communication—the number of bits exchanged was exponential in the num-
ber of faulty processes that were tolerated. Dolev and Strong [32] obtained a
polynomial-communication algorithm, and we improved this further, obtaining
an algorithm that required only O(nt+ t3 log t) bits [29].

Approximate agreement: Another consensus-related problem that we con-
sidered was that of approximate agreement, which we introduced in Paper 4.2
[31].

4.2. Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of faults.
Journal of the ACM, 33(3):499–516, July 1986.

This problem is a variant of the Byzantine Generals problem in which pro-
cesses start with arbitrary real values rather than values from a discrete domain,
and in which approximate agreement, rather than exact agreement, is the de-
sired goal. We devised algorithms to reach approximate agreement in both syn-
chronous and asynchronous systems; the latter provides a contrast to the FLP
impossibility result, which says that exact agreement with guaranteed termina-
tion is not attainable in an asynchronous system with even one faulty process.
It turns out that the situation is quite different if we require only approximate
agreement.

The algorithms operate in rounds; for the asynchronous case, this required
defining a new fault-tolerant notion of asynchronous rounds. The algorithms
work by successive approximation. At each round, they use a fault-tolerant
averaging function—one that discards a number of extreme values corresponding
to the number of process failures to be tolerated. We proved a convergence rate
that depends on the ratio between the number f of faulty processes and the
total number n of processes. We also proved lower bounds on the convergence
rate, which imply that our algorithms are optimal.

Clock synchronization: We also studied the problem of distributed clock
synchronization. This used a model that is somewhere between synchronous
and asynchronous. Namely, processes have individual real-valued ”clocks” that
they can read and use in determining their behavior. The clocks of differ-
ent processes may differ slightly from each other, and they may run at rates
that differ slightly from that of real time. Therefore, they may drift apart.
Other complications include (possibly Byzantine) faulty processes and varia-
tions in communication time. It is desirable to keep the clocks synchronized, as
closely as possible, by making small adjustments or using them to implement
approximately-synchronized logical clocks.

As I recall, the approximate agreement problem that we introduced in [31]

16



was originally inspired by the clock synchronization problem, since it may be
viewed (roughly speaking) as a simpler special case.

A collection of fault-tolerant clock synchronization algorithms appeared in [76,
107, 62]. My PhD student Jennifer Lundelius (Welch) and I contributed to this
direction [125] with a new clock synchronization algorithm that was directly
inspired by our asynchronous approximate agreement algorithm of [31]. As in
that algorithm, the new clock synchronization algorithm proceeds in rounds,
adjusting the clocks using a fault-tolerant averaging function.

In addition, in Paper 4.3 [80], Jennifer and I proved matching upper and
lower bound results for a simple special case of the problem, in which clocks
do not drift and there are no failures. However, the clocks at different pro-
cesses may have different initial values, and the communication delay between
the processes is uncertain. In terms of the number n of processes and a bound
ϵ on the uncertainty in communication delay, we obtained matching upper and
lower bounds of O(ϵ(1 − 1/n)) for the achievable closeness of synchronization.
The basic technique involves constructing alternative executions by shifting the
times of events at different processes.

4.3. Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock
synchronization. Information and Control, 62(2-3):190–204, August/September
1984.

Finally, in another interesting paper on fault-tolerant clock synchronization
around the same time, Dolev, Halpern, and Strong [30] proved impossibility of
Byzantine-fault-tolerant clock synchronization for 3f processes and f failures.
We noted that the Byzantine agreement algorithms of Lamport et al. also used
3f +1 processes, and the authors proved that this was necessary. These results
suggest that there might be something inherent about needing 3f +1 processes
to tolerate f Byzantine failures, in general. I will have more to say about this
in Section 4.5.

The Byzantine Firing Squad problem: Jim Burns and I invented a new
synchronization problem, called the Byzantine Firing Squad problem [117], and
developed a new algorithm to solve it. The problem assumes that processes
operate in synchronous rounds but do not have a common start time. We as-
sumed that one or more nonfaulty processes receive an external START signal
at some point, and all the nonfaulty processes are supposed to fire at some later
round. Moreover, if any nonfaulty process fires in some round, then all the
nonfaulty processes must fire in that same round. As for the previous Byzan-
tine agreement and Byzantine clock synchronization algorithms, our Byzantine
Firing Squad algorithm also uses 3f + 1 processes to tolerate f Byzantine fail-
ures. This was not surprising, because our algorithm uses a standard Byzantine
agreement algorithm to agree on a firing preference at every round.

17



4.4 Consensus with partial synchrony

The strong impossibility result in the FLP paper was worrisome, because the
consensus problem is very important to solve in practice, including in situations
in which failures might occur. We (and many others) considered how to get
around the problem. Our solution appears in Paper 4.4 [38]. It involves using
notions of partial synchrony, which are between pure synchrony and pure asyn-
chrony.

4.4. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.

The paper covers many different types of failures and different notions of
partial synchrony. The simplest case involves simple stopping failures and a
notion of partial synchrony in which message delays are bounded after some
Global Stabilization Time (GST). The algorithm for this case requires a majority
of nonfaulty processes.

The first key idea in the paper was to consider the safety requirements
(agreement and validity) as separate, and higher priority, than the termination
requirement. The safety requirement should be absolute, never permitted to be
violated, regardless of the occurrence of failures or timing anomalies. However,
the termination requirement might be permitted to depend on stability in the
system’s behavior, with respect to timing and failures. This seemed reasonable,
for use in practice. I recall that this type of separation might have also appeared
in early work by Flaviu Cristian.

The second key idea was to have the algorithm make multiple attempts to
achieve consensus, where each attempt involved a protocol, led by a coordinator,
to gather enough votes for agreement on a particular value. If the system
stabilized for long enough, then an attempt initiated during the stable period
would be able to complete.

The danger of this approach is that multiple attempts could lead to con-
tradictory decisions by different processes. This motivated the third key idea,
which was a mechanism designed to keep the results of different partial attempts
consistent. For this, we used a protocol in which processes can ”lock” proposed
values. Each lock is associated with a particular consensus attempt. A process
can lock a value for a certain attempt when it learns that the coordinator of
that attempt has proposed that value for a decision value. A process can release
a lock when it hears about a lock for a different value for a later attempt.

To determine a value to propose, the coordinator of an attempt gathers
information from a majority of processes. The requirement is that each of the
processes in the majority must deem the value to be ”acceptable”, meaning that
it doesn’t have a lock on any different value. Once the coordinator determines
the value to propose, it sends messages to all processes, requesting that they
lock this value for this attempt. If it hears that a majority have done this, the
coordinator can decide on this value.

This paper was a precursor of the well-known Paxos algorithm [75]. Paxos

18



used the same basic idea for consensus, but incorporated this consensus protocol
into a larger protocol for implementing an ongoing replicated state machine;
basically, Paxos achieves consensus on each successive update. Also, Paxos
was designed to tolerate more concurrency in the attempts—our attempts were
sequential—but the same sort of consistency mechanism still works. Paxos is
also designed to tolerate more practical types of failures, such as crashes that
obliterate volatile memory. Variants of Paxos have been engineered and widely
used in practice.

The significance of the work in [38] was well recognized in both the theoretical
and practical distributed systems communities. We designed this as a theoretical
result, but it turned out to have considerable significance in practice. This paper
was awarded the 2007 Dijkstra Prize. Here is the citation (which I think was
written by Dahlia Malkhi):

This paper introduces a number of practically motivated partial syn-
chrony models that lie between the completely synchronous and the
completely asynchronous models, and in which consensus is solvable.
It gave practitioners the right tool for building fault tolerant systems,
and contributed to the understanding that safety can be maintained
at all times, despite the impossibility of consensus and progress is
facilitated during periods of stability. These are the pillars on which
every fault tolerant system has been built for two decades. This
includes academic projects such as Petal, Frangipani, and Boxwood,
as well as real life data centers, such as the Google file system.

In distributed systems, balancing the pragmatics of building soft-
ware that works against the need for rigor is particularly difficult
because of impossibility results such as the FLP theorem. The pub-
lication by Dwork, Lynch, and Stockmeyer was in many respects
the first to suggest a path through this thicket, and has been enor-
mously influential. It presents consensus algorithms for a number
of partial synchrony models with different timing requirements and
failure assumptions: crash, authenticated Byzantine, and Byzantine
failures. It also proves tight lower bounds on the resilience of such
algorithms.

The eventual synchrony approach introduced in this paper is used
to model algorithms that provide safety at all times, even in com-
pletely asynchronous runs, and guarantee liveness once the system
stabilizes. This has since been established as the leading approach
for circumventing the FLP impossibility result and solving asyn-
chronous consensus, atomic broadcast, and state-machine replica-
tion.

In particular, the distributed systems engineering community has
been increasingly drawn towards systems architectures that reflect
the basic split between safety and liveness cited above. Dwork,
Lynch, and Stockmeyer thus planted the seed for a profound re-

19



thinking of the ways that we should build, and reason about, this
class of systems. Following this direction are many foundational
solutions. First, these include state machine replication methods
such as Lamport’s seminal Paxos algorithm and many group com-
munication methods. Another important branch of research that
directly follows this work is given by Chandra and Toueg’s unreli-
able failure detector abstraction, which is realized in the eventual
synchrony model of this paper. As Chandra and Toueg write: “we
argue that partial synchrony assumptions can be encapsulated in
the unreliability of failure detectors. For example, in the models of
partial synchrony considered in Dwork et al. it is easy to imple-
ment a failure detector that satisfies the properties of Diamond-W.”
Finally, the insight by Dwork, Lynch, and Stockmeyer also led to
various timed-based models of partial synchrony, such as Cristian
and Fetzer’s Timed-Asynchronous model and others.

4.5 Easy impossibility proofs:

We (and others) observed the common 3f + 1 processes bound for Byzantine
fault-tolerant algorithms, including Byzantine agreement, Byzantine clock syn-
chronization, and the Byzantine Firing Squad problem. All the known algo-
rithms for these problems used 3f + 1 processes to tolerate f faults. Earlier
papers [77] and [30] included proofs that 3f + 1 is a lower bound, for Byzan-
tine agreement and clock synchronization, respectively. These were special-case
proofs, for particular problems.

Mike Fischer, Michael Merritt, and I thought that there must be some com-
mon reason that 3f + 1 was necessary for accomplishing anything interesting
with Byzantine faults. In Paper 4.5 [50], we described a systematic way to prove
such lower bounds, and applied it to five problems: Byzantine agreement, weak
Byzantine agreement [74], approximate agreement, clock synchronization, and
the Byzantine Firing Squad problem. I think that our approach yields some
unifying insight.

4.5. Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibil-
ity proofs for distributed consensus problems. Distributed Computing, 1(1):26–
39, January 1986.

The key idea of the approach can be expressed nicely at a high level. Con-
sider the special case of showing that three processes cannot solve Byzantine
agreement if one of the processes might be faulty. Assume for contradiction that
such a system of three processes, A, exists. Now construct another system S,
this one of six processes, which is essentially two copies of the 3-process system
A. In S, start half the processes with input 0 and the other half with input
1. Then, under some reasonable assumptions, it turns out that we can deduce
behaviors for the 6-process system S by using the correctness requirements of
the 3-process system A. This depends on the fact that processes in S cannot

20



distinguish themselves from their counterparts in A, provided that a Byzantine
faulty process in A pretends to be a string of four processes in S. Deducing
enough behaviors for the 6-process system S yields a contradiction.

As usual, the proof depends on the limitations of local knowledge in a dis-
tributed system. The proof is expressed generally and abstractly, not dependent
on precise details of the model.

Very similar proofs hold for weak Byzantine agreement, approximate agree-
ment, Byzantine clock synchronization, and Byzantine Firing Squad. In fact,
this paper essentially provides a general approach to proving such lower bounds.
In addition to all of these results about the number of required processes, the
paper also shows general limitations of 2f + 1 on network connectivity.

By 1986, distributed computing theory had become an established field of theo-
retical study, and impossibility results had become a main characteristic of the
new field. At some point there were so many, that I felt compelled to write a
paper summarizing all of those that I could find at the time [82].

4.6 Models

In parallel with working on consensus problems, I did a deep dive into the the-
ory of distributed database algorithms, based on atomic transactions. Barbara
Liskov introduced me to nested transactions, a generalization of the traditional
transaction model that allows transactions to have subtransactions which were
atomic with respect to each other, and so on. Many interesting algorithms were
developed for implementing distributed transactions, and all could be extended
to the nested case.

I will return to nested transactions in Section 4.7. Here, I mention them as
one of my motivations for developing new formal models for distributed systems.
Other motivating examples included projects on modeling resource allocation
in networks [101], synchronizers [44], distributed minimum spanning tree al-
gorithms [124], communication channels [92], shared atomic objects [11] and
dataflow systems [100].

What we needed for all of this work was a new model for asynchronous
distributed systems, in which processes communicated with each other, not us-
ing shared memory as in [88], but using abstract input and output actions. A
shared action model seemed to work better than a shared memory model with
network-style examples like those listed above. Still, the spirit of the model is
similar. We presented the model in two papers, Papers 4.6 [101] and 4.7 [102].

4.6. Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs
for distributed algorithms. In Proceedings of the Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 137–151, Vancouver, British
Columbia, Canada, August 1987.

4.7. Nancy Lynch and Mark Tuttle. An introduction to Input/Output Au-
tomata. CWI-Quarterly, 2(3):219–246, September 1989. Centrum voorWiskunde

21



en Informatica, Amsterdam, The Netherlands.

The papers give definitions for individual I/O Automata, including a treat-
ment of fair executions that capture the idea that separate automata, or even
tasks within automata, continue taking steps regardless of what other automata
do. This notion is essential for a treatment of concurrently executing processes,
but did not appear in previous models for concurrent systems.

I/O Automata include distinguished input and output actions. I/O Au-
tomata are input-enabled, which means that any input action may occur from
any automaton state, i.e., an automaton cannot block its inputs. In contrast, in
the process-algebraic models that were popular at the time, actions are not clas-
sified as input vs. output, which meant that actions that are shared by different
automata could cause synchronization delays. Such delays would not be conve-
nient in a model that is intended to be used for analyzing the time complexity
of algorithms. The distinction between input and output actions, together with
the input-enabling property, remove the problem of synchronization delays.

The papers [101] and [102] also define problems to be solved by I/O Au-
tomata; a problem is modeled as a set of sequences of input and output actions.
The papers also define what it means for an I/O automaton to solve a problem:
an automaton solves a problem if the set of its external behaviors is a subset
of the set defined by the problem. The paper also define composition for I/O
Automata and showed that it respects external behavior.

A main emphasis in this work was the use of levels of abstraction for pre-
senting and verifying distributed algorithms. A distributed algorithm might be
modeled abstractly and proved correct in terms of the abstract model. Then
more detailed, lower-level versions of the algorithm could be given, and shown
to be correct by mapping them formally to the abstract model, in a way that
preserves external behavior. So algorithm correctness carries over from the high-
level algorithm to the lower-level version. This idea has turned out to be crucial
as a way of understanding and proving correctness of distributed algorithms.

As an example to illustrate levels of abstraction, we described a simple ”ar-
biter” algorithm that fairly allocates a single unsharable resource among pro-
cesses located at the nodes of an undirected acyclic graph [101]. We first pre-
sented the algorithm at a high level, in terms of request tokens and a resource
token moving around the graph. Then we gave a lower-level algorithm in terms
of actual processes and communication channels. We proved that the higher-
level algorithm fairly allocates the resource, and that the lower-level algorithm
implements the higher-level algorithm and so also fairly allocates the resource.

Another paper [100] demonstrates how an important principle studied in
some other models of concurrency can be expressed and proved using I/O Au-
tomata. We defined a subclass of I/O Automata called determinate, which
means just that its input/output relation is a function. We showed that de-
terminate I/O Automata compute continuous functions; moreover, the function
associated with a composition of determinate automata is also continuous, and
can be characterized as the least fixed-point of a certain continuous functional
associated with the network. This latter result was known as Kahn’s Principle

22



in the concurrency theory area. Although the result was already known, our
contribution here lies in the fact that the I/O Automata model can express the
result easily and yields extremely simple proofs.

The I/O Automata model has been used fairly extensively to describe dif-
ferent types of asynchronous distributed algorithms. For example, my books
Atomic Transactions [84] and Distributed Algorithms [86] use the I/O Automata
model as the foundation for presenting all of the asynchronous distributed al-
gorithms contained therein. Herlihy used (a slightly simplified version of) I/O
Automata as the foundation for his theory for wait-free synchronization [63],
and Herlihy and Shavit used them for their well-known work on the topological
structure of asynchronous computability [64]. Chockler, Keidar and Vitenberg
used I/O Automata as a unifying framework to describe and unify many spec-
ifications that were developed in the group communications research area [22].
Manadhata and Wing used them as the basis for developing metrics for software
security [106]. Abraham et al. used them to explain the Byzantine disk Paxos
algorithm [3]. Doherty at al. used them to specify transactional memory [28].
And so on.

4.7 Nested transactions

I have already mentioned our work on nested transactions, several times. This
was a major effort to understand, in rigorous terms, a collection of algorithms for
implementing the nested transactions programming framework for distributed
databases. My collaborators in this work included Michael Merritt, Bill Weihl,
Alan Fekete, Maurice Herlihy, James Aspnes, and my PhD student Ken Gold-
man.

Our work was originally inspired by the Argus system designed by Barbara
Liskov and her research group. Argus used a simple distributed locking algo-
rithm, but we also studied algorithms based on timestamps, algorithms that
were hybrids of locking and timestamps, optimistic algorithms, and algorithms
that used replicated data. Some of these algorithms had been designed for or-
dinary single-level transactions, but we extended them to allow multiple levels
of nesting.

We produced a large body of work represented in many papers; I won’t go
into these results in more detail here. This work culminated later in Publication
4.8, the book [84]. The work all rests on I/O Automata as a formal foundation.

4.8. Nancy A. Lynch, Michael Merritt, William E. Weihl, and Alan D. Fekete.
Atomic Transactions. Morgan Kaufmann series in data management systems.
Morgan Kaufmann, 1993.

So far, I have described our early work on building a theory for distributed
systems, including basic work on theoretical algorithms and impossibility re-
sults, formal models for distributed systems, and applications such as nested
transactions. This work contributed to establishing the theory of distributed
systems as a research field.

23



Our main contributions up to 1990 included developing formal foundations
for describing distributed algorithms, and using them to describe and prove
properties of many theoretical distributed algorithms and practical distributed
systems. We also proved many new impossibility results. In doing this, we
demonstrated that impossibility results are characteristic of the field of dis-
tributed algorithms, because of the very strong limitations of local knowledge.
We also designed a few interesting algorithms, most notably the Dwork, Lynch,
Stockmeyer algorithm for consensus with partial synchrony.

By 1990, distributed computing theory was an active research field. It in-
cluded much interesting theory, but also connections with various kinds of dis-
tributed systems. The Principles of Distributed Computing (PODC) conference
was well established and active.

Around the year 1990, I moved from the Distributed Systems Group at MIT
to the Theoretical Computer Science Group; our work had become more the-
oretical during the previous nine years, diverging from the distributed systems
engineering work. Meanwhile, distributed computing theory had become a rec-
ognized discipline within theoretical computer science. We continued after 1990
with theoretical work on algorithms and impossibility results, and modeling and
verification. Later, we moved to consider different types of distributed systems:
wireless networks and mobile systems, and most recently biological systems.

In the rest of this writeup, I will describe some of our work since 1990. This
includes additional algorithms and impossibility results in Section 5, and work
on formal models of distributed systems in Section 6. This new work considered
not just synchronous and asynchronous systems, but other types of systems,
such as timed systems, hybrid continuous-discrete systems, which one might use
for distributed software that interacts with an environment, and probabilistic
systems. I will also mention, in Sections 7 and 8, some recent work on wireless
network algorithms and biological distributed algorithms.

5 Later Work: Algorithms and Impossibility Re-
sults, 1990-2005

During the period 1990-2005, I worked with my students and other collaborators
on many algorithms and lower bounds related to problems involving communi-
cation, consensus, and data consistency. Timing aspects of algorithms were a
major focus. I have selected a few papers and tried to identify some important
themes.

Also during this period, I wrote my ”Distributed Algorithms” textbook,
[86].

5.1 Key publications

5.1. Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds
on the time to reach agreement in the presence of timing uncertainty. Journal

24



of the ACM, 41(1):122–152, January 1994.

5.2. Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle.
Tight Bounds for k-Set Agreement. Journal of the ACM, pages 47(5):912-943,
September, 2000.

5.3. Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33(2):48-
51, June 2002.

5.4. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

5.2 Communication

Alan Fekete, Yishay Mansour, and I explored capabilities for communication be-
tween two processes on a single channel, as in the data link communication layer
in the OSI stack of communication layers. We found two results, both giving in-
herent limitations for this layer of communication. One showed impossibility of
reliable communication if the physical channels could reorder messages—unless
we add some extra mechanism such as sequence numbers. The other showed
impossibility of reliable communication in the presence of processor crashes.

Both results appeared in preliminary form in [92]. Later journal versions
involved other collaborators John Spinelli, Yehuda Afek, Hagit Attiya, Michael
Fischer, Da-Wei Wang, and Lenore Zuck, and appeared in [43] and [5]. Again,
I/O Automata were used as the underlying model.

5.3 Timing aspects of algorithms

An important focus of our algorithmic work during these years involved timing
aspects of distributed algorithms.

Time cost of achieving wait-freedom: In [10], we considered the time cost
of requiring fault-tolerance in solving the problem of approximate agreement.
This paper recasts the approximate agreement problem from [31] in terms of
read/write shared-memory computation. The paper contains a collection of
results articulating the costs of requiring the strong wait-free fault-tolerance
property, which says that a process that keeps taking steps is guaranteed to
eventually terminate, regardless of the speed or failure of other processes.

For example, Theorem 7.3 in [10] says that any wait-free algorithm for the n-
process approximate agreement problem has time complexity at least log n. The
proof considers an execution in which all processes start with 0, which results in
a decision of 0 by some process pi. If the schedule is too short, then there is not
enough time for all the processes to ”influence” pi’s decision, so there is some
other process pj that does not influence pi. Then we construct an alternative
execution in which pj starts with 1 and runs on its own, before anyone else
begins. By the wait-free requirement, pj must decide on its own, and must

25



decide 1. Now running all the other processes as before leads to contradictory
decisions.

Mutual exclusion using timing assumptions: In [99], we considered what
happens to the number-of-register and time costs of solving the mutual exclu-
sion problem in a shared read/write memory model, when we strengthen the
asynchronous model to include some assumptions about timing, specifically, up-
per and lower bounds on step times. For this model, we devised an algorithm
that guarantees mutual exclusion and deadlock-freedom, using only two shared
read/write registers. This circumvents the lower bound result of [15]. Its time
cost is also low, depending on the parameters describing the timing uncertainty.
The algorithm guarantees its safety property (mutual exclusion), even if the al-
gorithm is run asynchronously, while the liveness property (deadlock-freedom)
depends on the timing assumptions. We also proved a nearly-matching lower
bound tradeoff between the number of registers and the time bound; this proof
uses techniques like those in [15], extended to the timing-based setting.

The paper [9] also considers mutual exclusion in a setting with timing as-
sumptions. This paper contains algorithms and lower bounds for mutual exclu-
sion in certain centralized and distributed settings, in terms of the parameters
describing the timing uncertainty.

A point of possible interest here is that this work was couched as an attempt
to begin developing a general theory, with upper and lower bounds, for systems
with approximate knowledge of timing. The underlying shared-memory model
used here was expressed in terms of a preliminary type of ”Timed I/O Au-
tomata” model, basically I/O Automata with added time bounds for the tasks.
We developed more general Timed I/O Automata models later, see Section 6.

Consensus: Paper 5.1 [8] provides a study of the time costs of reaching con-
sensus in a setting with timing assumptions. The paper contains new algorithms
and lower bounds for consensus in the uncertain-timing setting. The key dis-
covery is that the inherent time complexity of consensus in the uncertain-timing
setting corresponds essentially to one ”long round”, whose time cost depends
on the timing uncertainty, plus O(f) ”short rounds”, whose time cost is inde-
pendent of the timing uncertainty.

5.1. Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds
on the time to reach agreement in the presence of timing uncertainty. Journal
of the ACM, 41(1):122–152, January 1994.

For the upper bound, we designed an algorithm that uses a simple failure de-
tector, implemented using timeouts. Briefly, the algorithm executes alternating
rounds, in which processes try to decide 0 at even-numbered rounds and 1 and
odd-numbered rounds. Each round is classified as either quiet or non − quiet;
in a non − quiet round, every process receives an explicit message telling it to
advance to the next round, whereas in a quiet round, some process fails to re-

26



ceive such a message. We show that quiet rounds are short, whereas non−quiet
rounds may be long, with their time depending on the timing uncertainty. Oc-
currence of a non− quiet round leads to rapid termination.

For the lower bound, we used an intricate argument that includes a combi-
nation of many ingredients from our previous work on impossibility results: a
chain argument as in [48], plus a bivalence argument as in [52], plus arguments
about shifting, stretching, and shrinking time as in [80, 99].

Gradient clock synchronization: In [40], my PhD student Rui Fan and I
introduced the distributed gradient clock synchronization problem. As in tra-
ditional distributed clock synchronization, we considered a network of nodes
equipped with hardware clocks with bounded drift. Nodes compute logical clock
values based on their hardware clocks and message exchanges, and the goal is
to synchronize the nodes’ logical clocks as closely as possible. The new require-
ment is that the skew between any two nodes’ logical clocks be bounded by a
nondecreasing function of the uncertainty in message delay (distance) between
the two nodes. That is, we require nearby nodes to be closely synchronized,
and allow faraway nodes to be more loosely synchronized. We proved a lower
bound of Ω(d+logD log logD) on the worst case clock skew between two nodes
at distance d from each other, where D is the diameter of the network. This
showed that clock synchronization is not a local property, in the sense that the
clock skew between two nodes depends not only on the distance between the
nodes, but also on the size of the entire network.

Our theoretical effort on algorithms and lower bounds for timed systems
led us to another, parallel research effort, on developing formal ”Timed I/O
Automata” models for distributed systems with timing assumptions and guar-
antees. We wanted these models to serve as the basis for theoretical work as
described here, and also, to be useful for practical system description. See
Section 6 for more about this modeling work.

5.4 k-Set Agreement

We continued work related to fault-tolerant distributed consensus in the basic
synchronous model. Previous results on fault-tolerant consensus in the syn-
chronous model showed that f+1 rounds are both necessary and sufficient, over
a range of different types of failures. Paper 5.2 [20] generalizes these bounds to
the problem of k-set consensus, which allows k possible decisions to be output,
instead of just one. It considers stopping failures only. It turns out, perhaps
surprisingly, that ⌊f/k⌋ + 1 rounds are both necessary and sufficient to solve
k-set consensus for f failures. Thus, allowing k possible answers reduces the
time for ordinary consensus by dividing it by k.

5.2. Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle.
Tight bounds for k-Set agreement. Journal of the ACM, pages 47(5):912-943,

27



September, 2000.

The algorithm is straightforward: every process keeps propagating the min-
imum value that it has ever seen. It turns out that the number of distinct
minimum values remaining at different processes decreases to at most k by the
stated number of rounds.

The lower bound extends the lower bound ideas from [48] to k dimensions,
now allowing executions to ”morph” gradually between k+1 extreme executions
in each of which the initial value is fixed at one of the values 0, . . . , k, and no
failures occur. In each execution, we can identify the output values for all the
non-failed processes. If the executions are too short, then we can apply Sperner’s
lemma from algebraic topology to identify a single execution in the structure
that exhibits k + 1 different output values for non-failed processes.

5.5 Data consistency

We continued working on distributed database issues during this time. Here are
two highlights.

Eventual serializability: In [41], we presented a new specification for a data
service with guarantees that are weaker than the common notion of serializabil-
ity, together with an algorithm that meets the specification. Our specification
and algorithm are based on earlier work by Ladin et al. [72]. We gave a more
abstract, general, formal specification of the guarantees of an eventual serial-
izable distributed data service. We gave an algorithm that generalizes the one
in [72] so that it applies to arbitrary data types and accommodates more kinds
of ordering constraints.

The basic idea is that the system maintains a partial ordering of operations,
which gets refined over time to a total ordering. Operations may get immediate
responses that don’t reflect their entire prefix in the final order, but the client
may specify constraints on which previous operations must be taken into ac-
count. (This sounds vaguely reminiscent of what happens in many blockchain
algorithms.)

Consistency, Availability, and Partition-Tolerance (CAP): Paper 5.3 [58]
is a short paper by my PhD student Seth Gilbert and myself that formalizes a
well-known informal conjecture by Eric Brewer, about capabilities of distributed
data management systems. The paper was published in SIGACT News, rather
than in a standard journal or conference. Nevertheless, it became my third
most-referenced publication, exceeded only by my ”Distributed Algorithms”
book and the FLP paper. This may be because the paper is rather easy to read,
and also because its results seem to say something that is meaningful for real
distributed data services.

The paper formalizes what we thought Brewer meant by his claim that it
is not possible, in general, to implement distributed data services in such a

28



way as to achieve all three of the properties of Consistency, Availability, and
Partition-Tolerance. We formalized everything in terms of operations on atomic
read/write objects, distributed in an network, with all processing being asyn-
chronous. Besides requiring atomicity, we required that all operations must
terminate, even in the presence of lost messages.

5.3. Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
Consistent, Available, Partition-tolerant web services. SIGACT News, 33(2):48-
51, June 2002.

We proved the impossibility result using a familiar network-splitting argu-
ment. We then considered many variations on the model, some with timing
constraints, and some involving weaker notions of consistency than atomicity.
Some of these variations maintained the impossibility result, while others ad-
mitted solutions.

This work led to quite a few later papers and discussions. I won’t try to sur-
vey these, but just point to a ten-years-later issue of IEEE Computer magazine
that was largely devoted to perspectives on the CAP theorem [1].

5.6 Distributed Algorithms book

I also wrote my ”Distributed Algorithms” textbook [86], Publication 5.4, during
this time period.

5.4. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

6 Later Work: Formal Models and Methods,
1990-2005

During the years 1990-2005, in addition to continuing our work on algorithms
and impossibility results as I described in Section 5, my collaborators and I
focused on another major research effort, on developing formal models and proof
methods for describing and reasoning about distributed systems. The need for
formal models and methods arose both from our work on theoretical algorithms,
and from our attempts to model real distributed systems.

We already had three major papers on formal models for distributed sys-
tems [14, 101, 102]. These contained models for asynchronous distributed sys-
tems, with the beginnings of treatment of timing. The new work involved mod-
els for asynchronous and timing-dependent systems, hybrid continuous/discrete
systems, and probabilistic systems.

This work got me involved in the formal methods research community, based
mainly in Europe, and represented by such conferences as CONCUR, CAV,
LICS, and RTSS. Key collaborators during this time were my postdocs Frits
Vaandrager and Dilsun Kirli Kaynar, and my PhD student Roberto Segala.

29



In this section, I describe our formal methods work during 1990-2005. in
the final Subsection 6.4, I give some examples of system modeling and verifica-
tion projects that we carried out during this time, based on our various formal
models.

6.1 Key publications

6.1. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O Au-
tomata. Information and Computation, 185(1):105-157, August 2003.

6.2. Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaan-
drager. The Theory of Timed I/O Automata, Second Edition. Synthesis Lec-
tures on Distributed Computing Theory. Morgan and Claypool Pub- lishers,
2010.

6.3. Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilis-
tic processes. Nordic Journal of Computing, 2(2):250–273, August 1995.

6.4. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Observing Branch-
ing Structure through Probabilistic Contexts. Siam Journal on Computing,
37(4):977-1013, September 2007.

6.5. Alan Fekete, Frans Kaashoek and Nancy Lynch. Implementing Sequentially-
Consistent Shared Objects Using Group and Point-to-Point Communication .
Journal of the ACM, 45(1):35-69, January, 1998.

6.6. Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and Using a
Partitionable Group Communication Service. ACM Transactions on Computer
Systems, 19(2):171-216, May 2001.

6.2 Timed (and untimed) system models

My work with Frits Vaandrager focused on basic automata models for concurrent
systems, first for untimed systems, and then for timed systems.

Untimed system models: Our initial work on untimed systems resulted in
the paper [103]. The focus of that work was the use of abstraction mappings of
various kinds to reason about the correctness of systems modeled as automata;
this general idea was already present in [101]. The paper [103] contains many
new results but can also be read as a comprehensive survey of the area.

The paper covers several different types of mappings, starting with simple
refinements; a refinement is a (single-valued) function from the state of the
lower-level automaton to the state of the higher-level automaton, which pre-
serves step-by-step behavior.

30



The paper continues with forward simulations, which are multivalued map-
pings that again preserve the step-by-step behavior; now the preservation condi-
tion uses existential quantification over the possible choices of the state after the
transition. Forward simulations are more general, more abstract versions of the
concrete history variable mechanism studied earlier by Owicki and Gries [114]
and by Abadi and Lamport [2]. We continued with backward simulations, which
again are multivalued mappings, but that use existential quantification over the
possible choices of the state before the transition. Backward simulations are gen-
eral, abstract versions of the prophecy variable mechanism of [2]. The paper also
contains combinations of forward and backward simulations, which are shown
to be complete for expressing implementation relationships between automata.

Timed system models: During these years, we worked quite a lot on devel-
oping formal models for timed systems, i.e., systems with some timing assump-
tions. Our model evolved to its final version [69] in a series of steps.

First, Hagit Attiya and I followed our work in [9] with another paper that
focused on modeling issues for timed systems [87]. There, we defined timed
automata in terms of untimed I/O Automata plus ”boundmaps” which express
upper and lower bounds on the time required for the next steps of particular
tasks to occur. We intended this as a general, systematic way of incorporating
time information into I/O Automata. By this time, we were convinced of the
value of two particular proof methods for untimed automata: invariant asser-
tions, and abstraction mappings. In order to make these methods work for I/O
Automata with boundmaps, we developed a systematic way of incorporating
the timing information given in boundmaps into the automaton state. We did
this with special new state components representing predictions of when the
tasks will next perform a step. With this addition to the model, it was easy to
adapt invariant and abstraction mapping methods to work in timed systems.

In [104], Frits Vaandrager and I generalized the model used in [87] further,
to allow a timed automaton to have states with arbitrary structure, and to have
both discrete transitions and time-passage steps. We removed the requirement
for the particular ”task” structure of I/O Automata. This generalization turned
out to be able to support the full range of mappings (refinements, forward
simulations, backward simulations, etc.) that we presented for untimed systems
in [103]. A key aspect of these timed automata is their notion of external
behaviors: now they are not just traces, which are sequences of actions, but
timed traces, which are sequences of actions with associated times of occurrence.

Frits Vaandrager, my PhD student Roberto Segala, and I produced a fur-
ther extension in Paper 6.1 [97]. In order to capture the behavior of real-time
systems, such as robot-control systems, we extended the model to include con-
tinuous behavior. The combination of discrete and continuous behavior, i.e.,
hybrid behavior, was a growing research direction at the time, represented by
the new Hybrid Systems Computation and Control conference. In addition to
time-passage steps as in [104], we included trajectories, which describe the evo-
lution of a state through continuous time. The resulting model still supports

31



composition and abstraction; the complete theory appears in [97].

6.1. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid I/O Au-
tomata. Information and Computation, 185(1):105-157, August 2003.

Actually, this paper [97] goes further, allowing not just internal state, but
also input and output variables, to evolve continuously. This provides support
for describing continuous interaction between components, in addition to the
usual discrete interaction via shared actions. But this generality led to some
technical complications involving composition (now we had to worry about solv-
ability of systems of differential equations).

The final version of our Timed I/O Automata model appears in the mono-
graph [69], Publication 6.2. The Timed I/O Automata in this monograph have
all the generality of our Hybrid I/O Automata in [97], except for the external
(input and output) variables. Thus, the model includes trajectories describing
evolution of the internal state, but the only communication between compo-
nents is by discrete input and output actions. This simplification did not seem
to reduce the practical expressive power of the model much, but it did simplify
the theory related to composition and, we thought, would make the model easier
to use for applications.

The monograph [69] contains the complete theory of Timed I/O Automata,
including definitions for timed automata and timed system behavior, invariants,
and simulation relations. It contains the theory for the composition and hiding
operators, and many simple examples.

6.2. Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaan-
drager. The Theory of Timed I/O Automata, Second Edition. Synthesis Lec-
tures on Distributed Computing Theory. Morgan and Claypool Pub- lishers,
2010.

6.3 Probabilistic system models

Paper 6.3 [121] shows how probabilistic systems can also be understood using
abstraction mappings. The conference version of this appeared in CONCUR
in 1994 [120], and just recently won a Test-of-Time award from the CONCUR
community.

6.3. Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilis-
tic processes. Nordic Journal of Computing, 2(2):250–273, August 1995.

Instead of trying to summarize these papers, I give the citation from the
CONCUR Test-of-Time award:

The paper “Probabilistic simulations for probabilistic processes”,
published by Roberto Segala and Nancy Lynch at CONCUR 1994,
receives one award for introducing the ‘simple’ probabilistic au-

32



tomata model. Unlike earlier attempts to embrace probabilities,
transition targets here are probability distributions over states, and
this makes it possible to lift core process algebraic results in a very
elegant manner. Probabilistic automata have quickly been recog-
nised as the pivotal link between classical concurrency theory and
the theory of discrete-state Markov processes. They have become
the central subjects of probabilistic model checking, and are echoed
in a range of very influential modelling formalisms including proba-
bilistic timed automata, probabilistic hybrid automata, and Markov
automata.

There is also a published interview of Roberto and myself about this paper,
by Luca Aceto [4].

Roberto’s 1995 PhD thesis, entitled ”Modeling and Verification of Random-
ized Distributed Real-Time Systems”, defined untimed and timed Probabilistic
I/O Automata and set out their theory [119].

In the following years, Roberto and I continued working on probabilistic
automata, joined at some point by Frits Vaandrager. A key difficulty arose in
our study of composition of probabilistic automata, as a consequence of the fact
that our automata can include both probabilistic and nondeterministic choices.
Namely, this combination implies that, for a notion of external behavior to be
compositional, it must expose ”too much” of the internal branching structure
of the automaton. This is made precise and proved in Paper 6.4 [98]. Roughly
speaking, the problem arises when the nondeterministic choices get resolved by
an adversarial ”scheduler” that makes unfavorable choices based on knowledge
of internal aspects of the prior execution.

6.4. Nancy Lynch, Roberto Segala, and Frits Vaandrager. Observing Branch-
ing Structure through Probabilistic Contexts. Siam Journal on Computing,
37(4):977-1013, September 2007.

To get around the problem demonstrated in [98], it seems necessary to re-
strict the power of the adversarial scheduler that controls the nondeterministic
choices within a probabilistic automaton. Such restrictions have appeared in
some of our subsequent work, such as [21] and [16]. In [21], we proposed a
restricted scheduler based on a predetermined schedule of components and an
adversarial scheduler within components. In [16], we described a framework
for modeling and verifying security protocols, with a restricted scheduler that
is based on an oblivious, global scheduler for tasks (a concept borrowed from
I/O Automata), coupled with a local scheduler for resolving nondeterminism
among the choices of actions within a task. We called the resulting model
Task-Structured Probabilistic I/O Automata.

Other types of restricted schedulers also arise in some of our more recent
work on wireless network communication and neural networks.

33



6.4 Verification examples

We used our formal methods work as the basis for many projects on modeling
and verifying distributed systems, including distributed data processing sys-
tems, real-time control systems, and security protocols. Here is a brief overview,
broken down according to the type of model used.

Asynchronous systems: The nested transaction work that I discussed in
Section 4 was an extended case study, presenting many algorithms based on
ones that were developed in the distributed systems community (generalized in
some cases). We put everything in a uniform framework, in terms of I/O Au-
tomata. We published a comprehensive book summarizing the entire modeling
project [93]. We also modeled and verified other distributed systems algorithms,
and in some cases, found errors in the algorithms and helped to fix them. I de-
scribe a few examples here.

First, in Paper 6.5 [42], my PhD student Alan Fekete and I worked with Frans
Kaashoek to try to understand, in formal terms, an interesting distributed al-
gorithm that Frans had helped to develop for the Orca shared-object system,
at the Vrije University in Amsterdam.

6.5. Alan Fekete, Frans Kaashoek and Nancy Lynch. Implementing Sequentially-
Consistent Shared Objects Using Group and Point-to-Point Communication .
Journal of the ACM, 45(1):35-69, January, 1998.

The algorithm implements a sequentially consistent collection of shared read/update
objects. It caches objects in the local memory of processors according to ap-
plication needs. Each read operation accesses a single copy of the object, while
each update accesses all copies. A process uses broadcast communication when
it sends messages to all the copies of an object, and uses point-to-point commu-
nication when it sends a message to a single copy, and when it returns a reply.
Copies of an object are kept consistent using a strategy based on sequence num-
bers for broadcasts.

We presented the algorithm in two layers. The lower layer uses the given
broadcast and point-to point communication services, plus sequence numbers,
to provide a new communication service called a context multicast channel. The
higher layer uses a context multicast channel to manage the object replication
consistently. Both layers and their combination are described and proved cor-
rect, using I/O Automata.

Actually, while attempting to verify our model of the existing Orca algo-
rithm, we found a logical error in the implemented algorithm, namely, it omit-
ted sequence numbers from some messages that needed to include them. We
produced a corrected version of the algorithm and verified that. The corrected
algorithm was then incorporated into the Orca system.

Second, in Paper 6.6 [45], Alan Fekete, Alex Shvartsman, and I provided
a new formal specification of a partitionable Group Communication Service
(GCS). GCSs were a topic of great interest in the distributed systems research

34



community in the late 1990s, as building blocks for fault-tolerant distributed
applications. A GCS is based on a group membership service, which maintains
changing versions of the set of members of the group. The GCS then manages
communication among the current group members.

6.6. Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and Using a
Partitionable Group Communication Service. ACM Transactions on Computer
Systems, 19(2):171-216, May 2001.

Initially, it was not completely clear to us what the formal specification for
the GCS should be. To pin down the details, we developed our specification
for the GCS in the context of a particular application: an ordered broadcast
service. Specifically, we designed an algorithm to implement ordered broadcast
over a GCS, and proved the algorithm to be correct, based on our new formal
specification of the GCS. This work served to clarify some notions that had been
discussed less formally in the systems research community.

I also collaborated with Ken Birman and Jason Hickey at Cornell, with the
aim of understanding the behavior of their Ensemble GCS, in formal terms. En-
semble was then a widely used GCS that supported distributed programming
by providing precise guarantees for synchronization, message ordering, and mes-
sage delivery. We used I/O Automata again, to formalize, specify, and try to
verify the correctness of the Ensemble implementation [65]. Once again, the
verification effort uncovered an algorithmic error in the implementation, which
was subsequently repaired in the implementation.

Timed and hybrid systems: We used our timed automata and hybrid au-
tomata models extensively, for verifying algorithms derived from practical real-
time systems. Here I mention a few examples.

First, in the early 1990s, I worked with Butler Lampson and my PhD student
Jorgen Sogaard-Anderson on modeling and verifying two At-Most-Once mes-
sage delivery protocols. These were patterned, respectively, after the standard
protocol for setting up network connections used in TCP and other transport
protocols, and a clock-based protocol of Liskov, Shrira, and Wroclawski [78].
We specified the algorithms and verified their key properties, using our Timed
I/O Automata model. The proofs used invariants and abstraction mappings.

Second, I worked with Prof. Shankar Sastry and members of his Berkeley
hybrid systems group, in particular, his PhD student John Lygeros, on modeling
the behavior of automated vehicle systems. In 1998, we carried out a project
modeling strings of automated vehicles and proving certain safety properties
for their behavior [81]. We identified an emergency vehicle maneuver—one in
which one car brakes to decelerate as fast as possible—and identified conditions
under which crashes are guaranteed to be avoided. This work used our Hybrid
I/O Automata model, and inductive proof methods, taking into account both
discrete and continuous transitions. We also identified conditions under which
crashes may occur; these proofs are by construction.

35



Third, in a project involving John Lygeros and my PhD student Carolos
Livadas, we developed a model for the behavior of the recently-introduced air-
craft Traffic alert and Collision Avoidance System (TCAS). In our paper [79],
we provided an abstract model of the essential behavior of the main TCAS
collision avoidance algorithm, and proved that it in fact works to avoid aircraft
collisions. Our work again used our Hybrid I/O Automata model. We presented
this work to TCAS developers at Lincoln Labs. Our approach complemented
the detailed code discussions that were the norm at that time for developers
of such safety-critical software. We advocated for the use of abstract modeling
and formal verification, in addition to detailed code discussions.

Fourth, in 2002, my PhD student Sayan Mitra and I carried out a project
with Prof. Eric Feron in MIT’s Aero-Astro department and his student [108].
This involved modeling a toy helicopter system used for instructional purposes
and verifying its safety properties. Again, we used Hybrid I/O Automata.

Finally, in a little-known, simple paper [83], I showed two ways in which
abstraction mappings could be used for real-time systems modeled using Hy-
brid I/O Automata: for expressing the relationship between a derivative-based
description of a system and an explicit functional description, and to express
the relationship between a system description in which corrections are made at
discrete sampling points and a version in which corrections are made continu-
ously. Both types of relationships can be proved with simple forward simulation
relations.

Probabilistic systems: Our main case study here involved verification of
basic security protocols using Task-Structured Probabilistic I/O Automata [16].
Specifically, using Task-Structured Probabilistic I/O Automata, we modeled
and verified some basic security protocols following Ran Canetti’s Universal
Composability approach. For details, see, for example, [17].

In Sections 5 and 6, I have summarized our contributions during 1990-2005
to the continuing active development of the field of distributed computing the-
ory. Our work included theoretical algorithms and lower bounds, new formal
models and methods for reasoning about distributed algorithms and systems,
and applications. This work was part of the very active development of the field
of distributed computing theory during these years.

Our main contributions during this time included some new of the new the-
oretical algorithms and lower bounds, including various results involving timing
in distributed algorithms. They also included applications of the theory to un-
derstand issues arising in the distributed systems community, such as Brewer’s
CAP conjecture, They included new formal models for timed, hybrid, and prob-
abilistic distributed systems, and applications of these models to verify systems
algorithms. They also included a major textbook for the field,

After 2005, our focus shifted to new types of distributed systems, notably,
wireless networks.

36



7 Still Later Work: Wireless Network Algorithms,
2005 and Later

We continued working on algorithms and lower bounds after 2005, but now
studying new kinds of distributed systems: wireless systems, including mobile
wireless systems.

7.1 Key publications

7.1. Seth Gilbert, Nancy Lynch, and Alex Shvartsman. RAMBO: A Robust,
Reconfigurable Atomic Memory Service for Dynamic Networks. Distributed
Computing, 23(4):225-272, December 2010. This is a slightly corrected version
of the journal version.

7.2. Matthew Brown, Seth Gilbert, Nancy Lynch, Calvin Newport, Tina Nolte,
and Michael Spindel. The Virtual Node Layer: A Programming Abstraction
for Wireless Sensor Networks. ACM SIGBED Review, 4(3), July 2007. Also,
Proceedings of the the International Workshop on Wireless Sensor Network Ar-
chitecture (WWSNA), Cambridge, MA, April, 2007.

7.3. Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. Self-Stabilizing
Robot Formations Over Unreliable Networks. ACMTransactions on Autonomous
and Adaptive Systems, 4(3):17.2-17.27, July 2009.

7.4. Fabian Kuhn, Nancy Lynch and Rotem Oshman. Distributed Computation
in Dynamic Networks. Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC 2010), Cambridge, MA, pages 513-522, June 2010.

7.5. Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keep-
ing Mobile Robot Swarms Connected. In Idit Keidar, editor, Distributed Com-
puting, DISC 2009: 23rd International Symposium on Distributed Computing,
Elche/Elx, Spain, September 23-25 2009, volume 5805 of Lecture Notes in Com-
puter Science, pages 496-511, 2009. Springer.

7.2 Reconfigurable atomic memory

In 2002, we developed the RAMBO (Reconfigurable Atomic Memory for Basic
Objects) algorithm for implementing reliable, reconfigurable atomic read/write
memory in dynamic environments such as mobile wireless networks [85]. This
might be used, for example, by a company of soldiers operating in a hostile
environment, without access to fixed wireless infrastructure.1

1For me, this work was inspired by start of the war in Afghanistan, soon after the events
of September 11, 2001. I imagined the difficulties that soldiers roaming in an unfamiliar area
would have in communicating, and especially, in maintaining reliable data. Of course, no cell
towers would be available, so everything needed to be implemented on the mobile devices

37



The algorithm replicated each object at a set of nodes. Read and write
operations were implemented by accessing read quorums and write quorums
of copies, respectively. That was sufficient for relatively stable situations, in
which only small, transient changes occurred. For larger and more permanent
changes, the algorithm also supported explicit reconfiguration operations. To
move from an old configuration to a new one, the algorithm used the simple
trick of employing both configurations for a while, during the period when the
configuration was changing.

The final version of the paper appeared in 2010, in Paper 7.1 [61], after sev-
eral earlier versions.

7.1. Seth Gilbert, Nancy Lynch, and Alex Shvartsman. RAMBO: A Robust,
Reconfigurable Atomic Memory Service for Dynamic Networks. Distributed
Computing, 23(4):225-272, December 2010. This is a slightly corrected version
of the journal version.

From the abstract:

In this paper, we present Rambo, an algorithm for emulating a
read/write distributed shared memory in a dynamic, rapidly chang-
ing environment. Rambo provides a highly reliable, highly available
service, even as participants join, leave, and fail. In fact, the entire
set of participants may change during an execution, as the initial
devices depart and are replaced by a new set of devices. Even so,
Rambo ensures that data stored in the distributed shared memory
remains available and consistent.

There are two basic techniques used by Rambo to tolerate dynamic
changes. Over short intervals of time, replication suffices to provide
fault-tolerance. While some devices may fail and leave, the data
remains available at other replicas. Over longer intervals of time,
Rambo copes with changing participants via reconfiguration, which
incorporates newly joined devices while excluding devices that have
departed or failed. The main novelty of Rambo lies in the combina-
tion of an efficient reconfiguration mechanism with a quorum-based
replication strategy for read/write shared memory.

The Rambo algorithm can tolerate a wide variety of aberrant be-
havior, including lost and delayed messages, participants with un-
synchronized clocks, and, more generally, arbitrary asynchrony. De-
spite such behavior, Rambo guarantees that its data is stored consis-
tently. We analyze the performance of Rambo during periods when
the system is relatively well-behaved: messages are delivered in a
timely fashion, reconfiguration is not too frequent, etc. We show
that in these circumstances, read and write operations are efficient,
completing in at most eight message delays.

themselves.

38



7.3 Virtual Nodes

We introduced the concept of Virtual Nodes (VNs), as an abstraction for build-
ing applications over mobile wireless networks. The idea is to allow the rather
chaotic collection of mobile nodes to cooperate to implement more reliable and
stable abstract state machines called Virtual Nodes, which could then be pro-
grammed as if they were real machines.2 Our initial efforts focused on Virtual
Mobile Nodes [34], but we later emphasized Virtual Stationary Nodes at fixed
geographical locations.

This work led to many papers including [34, 35, 33, 36, 13, 112, 113, 57],
PhD theses for Tina Nolte [111] and Seth Gilbert [56], and MEng theses for
Matt Brown [12] and Mike Spindel [122]. I highlight three papers here: an early
paper [35] on using VNs to implement atomic memory in mobile networks, a
basic position paper [13] summarizing the general Virtual Node approach, and
an application of VNs to robot swarm motion coordination [59].

First, the paper [35] describes a way in which (reliable) mobile nodes can
implement read/write atomic memory. The idea is simply to have the mobile
nodes implement Virtual Stationary Nodes at fixed locations, and to have the
Virtual Stationary Nodes implement a quorum-based atomic read/write mem-
ory algorithm. In this setting, a VN might fail, when its local area becomes
empty of real mobile nodes. The paper discusses limited reconfiguration mech-
anisms, which can be used to bring a failed VN up-to-date when its local area
becomes repopulated.

Paper 7.2 [13] is a short position paper motivating and describing the Vir-
tual Node approach. It contains an interesting example of Virtual Traffic Lights,
which could be implemented by computers on the cars. Actually, that was not
practical at the time this paper was written since not all cars then had on-board
computers, but now this would be quite feasible.

7.2. Matthew Brown, Seth Gilbert, Nancy Lynch, Calvin Newport, Tina Nolte,
and Michael Spindel. The Virtual Node Layer: A Programming Abstraction
for Wireless Sensor Networks. ACM SIGBED Review, 4(3), July 2007. Also,
Proceedings of the the International Workshop on Wireless Sensor Network
Architecture (WWSNA), Cambridge, MA, April, 2007.

Finally, Paper 7.3 [59] gives an example of an application of Virtual Station-
ary Nodes to robot swarm motion coordination, for example, guiding robots to
surround a hazardous waste spilll.

7.3. Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. Self-Stabilizing
Robot Formations Over Unreliable Networks. ACMTransactions on Autonomous
and Adaptive Systems, 4(3):17.2-17.27, July 2009.

2Virtual Nodes are reminiscent of the Virtual Supervisor abstraction that we used in our
very first paper on distributed computing theory [14]. That was for a shared memory model.

39



7.4 Computing in dynamic networks

In this subsection and the next, I describe two more projects involving com-
puting in mobile networks. Paper 7.4 [71] is a theoretical paper by postdoc
Fabian Kuhn, PhD student Rotem Oshman, and myself, containing algorithms
and lower bounds for dynamic networks in which the network topology changes
from round to round.

7.4. Fabian Kuhn, Nancy Lynch and Rotem Oshman. Distributed Computation
in Dynamic Networks. Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC 2010), Cambridge, MA, pages 513-522, June 2010.

The paper assumes a worst-case model in which the communication links
for each round are chosen by an adversary, and nodes do not know who their
neighbors for the current round are before they broadcast their messages. We
require correctness and termination even in networks that change continually.
Our results rely on a network connectivity property that we called T -interval
connectivity, which says that, in every T consecutive rounds, there is a stable
connected spanning subgraph.

For this model, the paper contains algorithms by which the nodes can deter-
mine the size of the network, and compute any function of their initial inputs,
in O(n2/T ) rounds. It also contains lower bounds for the token dissemination
problem, which requires the nodes to disseminate information to all the nodes
in the network.

7.5 Robot swarm algorithms

PhD student Alejandro Cornejo led a project on algorithms for various motion-
planning tasks in robot swarms; see, for example, [25, 26, 27]. In particular,
Paper 7.5 [25] contains the design for a connectivity service that can adapt
any robot swarm motion planner to ensure that the swarm remains globally
connected for communication throughout the computation. The connectivity
service does not interfere with progress of the robots.

7.5. Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keep-
ing Mobile Robot Swarms Connected. In Idit Keidar, editor, Distributed Com-
puting, DISC 2009: 23rd International Symposium on Distributed Computing,
Elche/Elx, Spain, September 23-25 2009, volume 5805 of Lecture Notes in Com-
puter Science, pages 496-511, 2009. Springer.

We also have recent work on robot swarm computations, but it is a bit too
preliminary to discuss here.

40



7.6 The Dual Graph model

All of the work I have described so far for wireless networks assumes that com-
munication is reliable. We also considered unreliable communication, formalized
in terms of a static Dual Graph model. A Dual Graph consists of a graph G of
edges that support reliable communication and a super-graph G′ containing ad-
ditional edges over which messages might or might not be delivered. The options
for delivery are assumed to be controlled by an adversary. In addition, the net-
works include another type of communication unreliability: message collisions
in which colliding messages are lost.

For this difficult setting, we produced many papers containing upper and
lower bounds for solving problems such as local and global broadcast, for exam-
ple, [70, 53, 54, 18, 96, 60].

Generally speaking, the Dual Graph model was so difficult that we ended
up proving mostly lower bounds on the time costs for solving problems. These
lower bounds served to establish a difference in power between wireless models
with reliable and unreliable communication. We also tried to design algorithms
for the Dual Graph model that worked as well as possible, but their performance
was not great.

One reason why the algorithms for the Dual Graph model did not perform
too well is that they included a combination of probabilistic and nondetermin-
istic choices: the algorithms are probabilistic, and message delivery is nondeter-
ministic, potentially controlled by an adversary. As I noted in Section 6.3, that
can cause technical problems with regard to composition. In the case of typi-
cal wireless network algorithms, like backoff algorithms, it also causes efficiency
problems; see [60]. Our way around the problem in [60] is, again, to weaken the
power of the adversary. In this case, we assume that the adversary is stochastic
rather than worst-case.

Thus, our contributions to the wireless network area mainly involved new algo-
rithms and abstractions to try to make programming of such networks tractable.
In the remaining section of this writeup, I will briefly discuss our recent work
on biological distributed algorithms.

8 Biological Distributed Algorithms, 2012 and
later

During the last 12 years or so, my group has been focusing on very different kinds
of distributed algorithms, namely, those arising in biological systems. Most
biological systems are distributed—think of colonies of insects, and networks of
cells such as brain networks—so it is natural to view them in terms of distributed
algorithms. But they are distributed algorithms of a particular kind: flexible,
robust, and adaptive.

Biological systems, of course, include many biological details. However, we
expect that less detailed, abstract models of these systems can be defined, and

41



can be treated as abstract distributed algorithms. We hope that some of the
algorithm design and analysis methods from traditional distributed computing
theory will carry over to these new kinds of distributed systems. This could
contribute a new type of understanding to the field of biology. We also hope
that, once we understand how the biological mechanisms work, we will be able
to adapt them for use in engineered systems such as robot swarms and neural
networks.

My group and I have mainly worked on two kinds of biological systems. The
work is still in progress, and preliminary, so I will not say too much about it
now.

8.1 Insect colonies

Our project on insect colony algorithms has involved designing algorithms that
capture key aspects of real insect colony behavior, modeling the algorithms
formally, simulating them to try to infer properties of their behavior, and in
some cases, following the simulation results with analysis.

The main problems that we have considered so far include searching for
food, reaching consensus on a new nest (”house-hunting”) [55, 126], task allo-
cation [24, 118, 123, 37], and density estimation [109, 110].

Generally, we have been successful at modeling these types of insect colony
behavior abstractly, and have observed and proved properties that are consis-
tent with experimental observations by insect biologists. We have made a few
observations from our modeling work that might suggest new experiments.

8.2 Brain Networks

The main theme of our work on brain networks is to model mechanisms that
might be used in the brain, for solving various brain problems. We have treated
these mechanisms as abstract distributed algorithms and have proved properties
of their behavior.

Some of our representative papers consider theWinner-Take-All problem [95],
concept representation and memorization [66], and representation and learning
of hierarchically-structured concepts [90, 91]. We also developed a basic formal
modeling framework for brain network algorithms [94], based on synchronous,
stochastic Spiking Neural Networks (SNNs).

9 Conclusions

I hope you have enjoyed this summary of our contributions to the field of Dis-
tributed Computing Theory. I will probably revisit this in the future with more
discussion of the newer work.

42



References

[1] The CAP Theorem’s Growing Impact. IEEE Computer, 2012.

[2] Mart́ın Abadi and Leslie Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253–284, 1991. URL:
https://www.sciencedirect.com/science/article/pii/030439759190224P,
https://doi.org/https://doi.org/10.1016/0304-3975(91)90224-P
doi:https://doi.org/10.1016/0304-3975(91)90224-P.

[3] Ittai Abraham, Gregory V. Chockler, Idit Keidar, and Dahlia
Malkhi. Byzantine disk paxos: optimal resilience with byzan-
tine shared memory. Distributed Comput., 18(5):387–408, 2006.
https://doi.org/10.1007/s00446-005-0151-6 doi:10.1007/s00446-005-0151-
6.

[4] Luca Aceto. An interview with Nancy Lynch and Roberto Segala, CON-
CUR Test-of-Time Award recipients. processalgebra.blogspot.com, April
2020.

[5] Yehuda Afek, Hagit Attiya, Alan D. Fekete, Michael J. Fischer, Nancy A.
Lynch, Yishay Mansour, Da-Wei Wang, and Lenore D. Zuck. Reliable
communication over unreliable channels. J. ACM, 41(6):1267–1297, 1994.
https://doi.org/10.1145/195613.195651 doi:10.1145/195613.195651.

[6] Eshrat Arjomandi and Derek G. Corneil. Parallel computations in graph
theory. In 16th Annual Symposium on Foundations of Computer Sci-
ence, Berkeley, California, USA, October 13-15, 1975, pages 13–18.
IEEE Computer Society, 1975. https://doi.org/10.1109/SFCS.1975.24
doi:10.1109/SFCS.1975.24.

[7] Eshrat Arjomandi, Michael J. Fischer, and Nancy A. Lynch. Efficiency
of synchronous versus asynchronous distributed systems. Journal of the
ACM, 30(3):449–456, July 1983.

[8] Hagit Attiya, Cynthia Dwork, Nancy A. Lynch, and Larry J.
Stockmeyer. Bounds on the time to reach agreement in the
presence of timing uncertainty. J. ACM, 41(1):122–152, 1994.
https://doi.org/10.1145/174644.174649 doi:10.1145/174644.174649.

[9] Hagit Attiya and Nancy A. Lynch. Time bounds for real-time process con-
trol in the presence of timing uncertainty. Inf. Comput., 110(1):183–232,
1994. https://doi.org/10.1006/inco.1994.1030 doi:10.1006/inco.1994.1030.

[10] Hagit Attiya, Nancy A. Lynch, and Nir Shavit. Are
wait-free algorithms fast? J. ACM, 41(4):725–763, 1994.
https://doi.org/10.1145/179812.179902 doi:10.1145/179812.179902.

43



[11] Bard Bloom. Constructing two-writer atomic registers. IEEE Trans.
Computers, 37(12):1506–1514, 1988. https://doi.org/10.1109/12.9729
doi:10.1109/12.9729.

[12] Matthew Brown. Air traffic control using virtual stationary automata.
Master of Engineering Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, September 2007.

[13] Matthew Brown, Seth Gilbert, Nancy A. Lynch, Calvin C. Newport, Tina
Nolte, and Michael Spindel. The virtual node layer: a programming ab-
straction for wireless sensor networks. SIGBED Rev., 4(3):7–12, 2007.
https://doi.org/10.1145/1317103.1317105 doi:10.1145/1317103.1317105.

[14] James E. Burns, Paul Jackson, Nancy A. Lynch, Michael J. Fischer, and
Gary L. Peterson. Data requirements for implementation of n-process
mutual exclusion using a single shared variable. J. ACM, 29(1):183–205,
1982. https://doi.org/10.1145/322290.322302 doi:10.1145/322290.322302.

[15] James E. Burns and Nancy A. Lynch. Bounds on shared mem-
ory for mutual exclusion. Inf. Comput., 107(2):171–184, 1993.
https://doi.org/10.1006/inco.1993.1065 doi:10.1006/inco.1993.1065.

[16] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Task-structured probabilistic I/O
automata. Journal of Computer and System Sciences, 94:63–97, 2018.

[17] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses D. Liskov,
Nancy A. Lynch, Olivier Pereira, and Roberto Segala. Analyzing se-
curity protocols using time-bounded task-pioas. Discret. Event Dyn.
Syst., 18(1):111–159, 2008. https://doi.org/10.1007/s10626-007-0032-1
doi:10.1007/s10626-007-0032-1.

[18] Keren Censor-Hillel, Seth Gilbert, Fabian Kuhn, Nancy Lynch, and Calvin
Newport. Structuring unreliable radio networks. Distributed Computing,
27(1):1–19, 2014.

[19] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R.
Tuttle. A tight lower bound for k-set agreement. In 34th
Annual Symposium on Foundations of Computer Science, Palo
Alto, California, USA, 3-5 November 1993, pages 206–215. IEEE
Computer Society, 1993. https://doi.org/10.1109/SFCS.1993.366866
doi:10.1109/SFCS.1993.366866.

[20] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tut-
tle. Tight bounds for k -set agreement. J. ACM, 47(5):912–943, 2000.
https://doi.org/10.1145/355483.355489 doi:10.1145/355483.355489.

44



[21] Ling Cheung, Nancy A. Lynch, Roberto Segala, and Frits W.
Vaandrager. Switched PIOA: parallel composition via dis-
tributed scheduling. Theor. Comput. Sci., 365(1-2):83–108, 2006.
https://doi.org/10.1016/j.tcs.2006.07.033 doi:10.1016/j.tcs.2006.07.033.

[22] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group
communication specifications: A comprehensive study. ACM Comput.
Surv., 33(4):427–469, dec 2001. https://doi.org/10.1145/503112.503113
doi:10.1145/503112.503113.

[23] Stephen A. Cook. The complexity of theorem-proving procedures. In
Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors,
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,
May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.
https://doi.org/10.1145/800157.805047 doi:10.1145/800157.805047.

[24] Alejandro Cornejo, Anna R. Dornhaus, Nancy A. Lynch, and Rad-
hika Nagpal. Task allocation in ant colonies. In Fabian Kuhn, ed-
itor, Distributed Computing - 28th International Symposium, DISC
2014, Austin, TX, USA, October 12-15, 2014. Proceedings, volume
8784 of Lecture Notes in Computer Science, pages 46–60. Springer,
2014. https://doi.org/10.1007/978-3-662-45174-8 4 doi:10.1007/978-3-
662-45174-8 4.

[25] Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keep-
ing mobile robot swarms connected. In Idit Keidar, editor, 23rd Inter-
national Symposium on Distributed Computing (DISC 2009), Elche/Elx,
Spain, September 23-25, 2009, volume 5805 of Lecture Notes in Computer
Science, pages 496–511. Springer, 2009. Also, Extended version Techni-
cal Report MIT-CSAIL-TR-2009-027, MIT CSAIL, Cambridge, MA, June
2009.

[26] Alejandro Cornejo and Nancy Lynch. Fault-tolerance through k-
connectivity. In IEEE International Conference on Robotics and Automa-
tion (ICRA 2010): Workshop on Network Science and System Issues in
Multi-Robot Autonomy, Anchorage, Alaska, May 2010.

[27] Alejandro Cornejo and Nancy Lynch. Reliably detecting connectivity
using local graph traits. In Mohamed Mosbah Chenyang Lu, Toshim-
itsu Masuzawa, editor, Principles of Distributed Systems (OPODIS 2010),
Tozeur, Tunisia, December 2010, volume 6490 of Lecture Notes in Com-
puter Science, pages 87–102. Springer, 2010.

[28] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. To-
wards formally specifying and verifying transactional memory. Formal
Aspects Comput., 25(5):769–799, 2013. https://doi.org/10.1007/s00165-
012-0225-8 doi:10.1007/s00165-012-0225-8.

45



[29] Danny Dolev, Michael J. Fischer, Robert J. Fowler, Nancy A.
Lynch, and H. Raymond Strong. An efficient algorithm for byzan-
tine agreement without authentication. Inf. Control., 52(3):257–274,
1982. https://doi.org/10.1016/S0019-9958(82)90776-8 doi:10.1016/S0019-
9958(82)90776-8.

[30] Danny Dolev, Joseph Y. Halpern, and H. Raymond Strong. On the
possibility and impossibility of achieving clock synchronization. J.
Comput. Syst. Sci., 32(2):230–250, 1986. https://doi.org/10.1016/0022-
0000(86)90028-0 doi:10.1016/0022-0000(86)90028-0.

[31] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of
faults. J. ACM, 33(3):499–516, 1986. https://doi.org/10.1145/5925.5931
doi:10.1145/5925.5931.

[32] Danny Dolev and H. Raymond Strong. Polynomial algorithms for mul-
tiple processor agreement. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, page 401–407,
New York, NY, USA, 1982. Association for Computing Machinery.
https://doi.org/10.1145/800070.802215 doi:10.1145/800070.802215.

[33] Shlomi Dolev, Seth Gilbert, Limor Lahiani, Nancy Lynch, and Tina Nolte.
Timed virtual stationary automata for mobile networks. In Principles of
Distributed systems: 9th International Conference on Principles of Dis-
tributed Systems (OPODIS 2005), Pisa, Italy, December 12-14, 2005, vol-
ume 3974 of Lecture Notes in Computer Science, pages 130–145. Springer,
2006. Also, Technical Report MIT-LCS-TR-979a, MIT CSAIL, Cam-
bridge, MA 02139, August 2005.

[34] Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Elad Schiller, Alexander A.
Shvartsman, and Jennifer L. Welch. Virtual mobile nodes for mobile ad
hoc networks. In Rachid Guerraoui, editor, Distributed Computing, 18th
International Conference, DISC 2004, Amsterdam, The Netherlands, Oc-
tober 4-7, 2004, Proceedings, volume 3274 of Lecture Notes in Computer
Science, pages 230–244. Springer, 2004. https://doi.org/10.1007/978-3-
540-30186-8 17 doi:10.1007/978-3-540-30186-8 17.

[35] Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Alexander A. Shvarts-
man, and Jennifer L. Welch. Geoquorums: implementing atomic memory
in mobile ad hoc networks. Distributed Comput., 18(2):125–155, 2005.
https://doi.org/10.1007/s00446-005-0140-9 doi:10.1007/s00446-005-0140-
9.

[36] Shlomi Dolev, Limor Lahiani, Nancy Lynch, and Tina Nolte. Self-
stabilizing mobile node location management and message routing. In Se-
bastien Tixeuil Ted Herman, editor, Self-Stabilizing Systems: Seventh In-
ternational Symposium on Self-Stabilizing Systems (SSS 2005), Barcelona,

46



Spain, October 26-27, volume 3764 of Lecture Notes in Computer Science,
pages 96–112. Springer, 2005. Also, Technical Report MIT-LCS-TR-999,
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,
MA, August 2005.

[37] Anna R. Dornhaus, Nancy A. Lynch, Frederik Mallmann-Trenn, Do-
minik Pajak, and Tsvetomira Radeva. Self-stabilizing task allocation in
spite of noise. In Christian Scheideler and Michael Spear, editors, SPAA
’20: 32nd ACM Symposium on Parallelism in Algorithms and Architec-
tures, Virtual Event, USA, July 15-17, 2020, pages 201–211. ACM, 2020.
https://doi.org/10.1145/3350755.3400226 doi:10.1145/3350755.3400226.

[38] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consen-
sus in the presence of partial synchrony. J. ACM, 35(2):288–323, 1988.
https://doi.org/10.1145/42282.42283 doi:10.1145/42282.42283.

[39] Faith Ellen and Eric Ruppert. Hundreds of impossibility results for
distributed computing. Distributed Computing, 16:121–163, 09 2003.
https://doi.org/10.1007/s00446-003-0091-y doi:10.1007/s00446-003-0091-
y.

[40] Rui Fan and Nancy Lynch. Gradient clock synchronization. Distributed
Computing, 18(4):255–266, November 2006.

[41] Alan D. Fekete, David Gupta, Victor Luchangco, Nancy A. Lynch, and
Alexander A. Shvartsman. Eventually-serializable data services. Theor.
Comput. Sci., 220(1):113–156, 1999. https://doi.org/10.1016/S0304-
3975(98)00239-4 doi:10.1016/S0304-3975(98)00239-4.

[42] Alan D. Fekete, M. Frans Kaashoek, and Nancy A. Lynch. Im-
plementing sequentially consistent shared objects using broadcast
and point-to-point communication. J. ACM, 45(1):35–69, 1998.
https://doi.org/10.1145/273865.273884 doi:10.1145/273865.273884.

[43] Alan D. Fekete, Nancy A. Lynch, Yishay Mansour, and John
Spinelli. The impossibility of implementing reliable communica-
tion in the face of crashes. J. ACM, 40(5):1087–1107, 1993.
https://doi.org/10.1145/174147.169676 doi:10.1145/174147.169676.

[44] Alan D. Fekete, Nancy A. Lynch, and Liuba Shrira. A modular proof
of correctness for a network synchronizer (research summary). In Jan
van Leeuwen, editor, Distributed Algorithms, 2nd International Workshop,
Amsterdam, The Netherlands, July 8-10, 1987, Proceedings, volume 312
of Lecture Notes in Computer Science, pages 219–256. Springer, 1987.
https://doi.org/10.1007/BFb0019807 doi:10.1007/BFb0019807.

[45] Alan D. Fekete, Nancy A. Lynch, and Alexander A. Shvarts-
man. Specifying and using a partitionable group communica-
tion service. ACM Trans. Comput. Syst., 19(2):171–216, 2001.
https://doi.org/10.1145/377769.377776 doi:10.1145/377769.377776.

47



[46] Michael J. Fischer, Nancy D. Griffeth, Leonidas J. Guibas, and Nancy A.
Lynch. Optimal placement of identical resources in a tree. Inf. Com-
put., 96(1):1–54, 1992. https://doi.org/10.1016/0890-5401(92)90053-I
doi:10.1016/0890-5401(92)90053-I.

[47] Michael J. Fischer, Nancy D. Griffeth, and Nancy A. Lynch. Global states
of a distributed system. IEEE Trans. Software Eng., 8(3):198–202, 1982.
https://doi.org/10.1109/TSE.1982.235418 doi:10.1109/TSE.1982.235418.

[48] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. Inf. Process. Lett., 14(4):183–186,
1982. https://doi.org/10.1016/0020-0190(82)90033-3 doi:10.1016/0020-
0190(82)90033-3.

[49] Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan
Borodin. Resource allocation with immunity to limited process fail-
ure. In 20th Annual Symposium on Foundations of Computer Science
(sfcs 1979), pages 234–254, 1979. https://doi.org/10.1109/SFCS.1979.37
doi:10.1109/SFCS.1979.37.

[50] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy
impossibility proofs for distributed consensus problems. Distributed
Comput., 1(1):26–39, 1986. https://doi.org/10.1007/BF01843568
doi:10.1007/BF01843568.

[51] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. In Ronald Fagin and
Philip A. Bernstein, editors, Proceedings of the Second ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, March 21-23,
1983, Colony Square Hotel, Atlanta, Georgia, USA, pages 1–7. ACM,
1983. https://doi.org/10.1145/588058.588060 doi:10.1145/588058.588060.

[52] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985. https://doi.org/10.1145/3149.214121 doi:10.1145/3149.214121.

[53] Mohsen Ghaffari, Bernhard Haeupler, Nancy A. Lynch, and Calvin C.
Newport. Bounds on contention management in radio networks. In
Marcos K. Aguilera, editor, Distributed Computing - 26th International
Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Pro-
ceedings, volume 7611 of Lecture Notes in Computer Science, pages
223–237. Springer, 2012. https://doi.org/10.1007/978-3-642-33651-5 16
doi:10.1007/978-3-642-33651-5 16.

[54] Mohsen Ghaffari, Nancy A. Lynch, and Calvin C. Newport. The
cost of radio network broadcast for different models of unreliable
links. In Panagiota Fatourou and Gadi Taubenfeld, editors, ACM

48



Symposium on Principles of Distributed Computing, PODC ’13, Mon-
treal, QC, Canada, July 22-24, 2013, pages 345–354. ACM, 2013.
https://doi.org/10.1145/2484239.2484259 doi:10.1145/2484239.2484259.

[55] Mohsen Ghaffari, Cameron Musco, Tsvetomira Radeva, and Nancy A.
Lynch. Distributed house-hunting in ant colonies. In Chryssis Geor-
giou and Paul G. Spirakis, editors, Proceedings of the 2015 ACM Sym-
posium on Principles of Distributed Computing, PODC 2015, Donostia-
San Sebastián, Spain, July 21 - 23, 2015, pages 57–66. ACM, 2015.
https://doi.org/10.1145/2767386.2767426 doi:10.1145/2767386.2767426.

[56] Seth Gilbert. Virtual Infrastructure for Wireless Ad Hoc Networks. PhD
thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, August 2007.

[57] Seth Gilbert, Nancy Lynch, Sayan Mitra, and Tina Nolte. Self-stabilizing
mobile robot formations with virtual nodes. In Sandeep S. Kulkarni and
Andre Schiper, editors, Stabilization, Safety and Security of Distributed
Systems, 10th International Symposium (SSS 2008), Detroit, Michigan,
November 2008, volume 5340 of Lecture Notes in Computer Science, pages
188–202. Springer, 2008.

[58] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services. SIGACT
News, 33(2):51–59, 2002. https://doi.org/10.1145/564585.564601
doi:10.1145/564585.564601.

[59] Seth Gilbert, Nancy A. Lynch, Sayan Mitra, and Tina
Nolte. Self-stabilizing robot formations over unreliable net-
works. ACM Trans. Auton. Adapt. Syst., 4(3):17:1–17:29, 2009.
https://doi.org/10.1145/1552297.1552300 doi:10.1145/1552297.1552300.

[60] Seth Gilbert, Nancy A. Lynch, Calvin Newport, and Dominik Pa-
jak. On simple back-off in unreliable radio networks. Theor. Com-
put. Sci., 806:489–508, 2020. https://doi.org/10.1016/j.tcs.2019.08.027
doi:10.1016/j.tcs.2019.08.027.

[61] Seth Gilbert, Nancy A. Lynch, and Alexander A. Shvartsman. Rambo: a
robust, reconfigurable atomic memory service for dynamic networks. Dis-
tributed Comput., 23(4):225–272, 2010. https://doi.org/10.1007/s00446-
010-0117-1 doi:10.1007/s00446-010-0117-1.

[62] Joseph Y. Halpern, Barbara Simons, H. Raymond Strong, and Danny
Dolev. Fault-tolerant clock synchronization. In Tiko Kameda, Jayadev
Misra, Joseph G. Peters, and Nicola Santoro, editors, Proceedings of the
Third Annual ACM Symposium on Principles of Distributed Computing,
Vancouver, B. C., Canada, August 27-29, 1984, pages 89–102. ACM,
1984. https://doi.org/10.1145/800222.806739 doi:10.1145/800222.806739.

49



[63] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, jan 1991. https://doi.org/10.1145/114005.102808
doi:10.1145/114005.102808.

[64] Maurice Herlihy and Nir Shavit. The topological structure
of asynchronous computability. J. ACM, 46(6):858–923, 1999.
https://doi.org/10.1145/331524.331529 doi:10.1145/331524.331529.

[65] Jason Hickey, Nancy A. Lynch, and Robbert van Renesse. Specifica-
tions and proofs for ensemble layers. In Rance Cleaveland, editor, Tools
and Algorithms for Construction and Analysis of Systems, 5th Interna-
tional Conference, TACAS ’99, Held as Part of the European Joint Con-
ferences on the Theory and Practice of Software, ETAPS’99, Amster-
dam, The Netherlands, March 22-28, 1999, Proceedings, volume 1579
of Lecture Notes in Computer Science, pages 119–133. Springer, 1999.
https://doi.org/10.1007/3-540-49059-0 9 doi:10.1007/3-540-49059-0 9.

[66] Yael Hitron, Nancy A. Lynch, Cameron Musco, and Merav Parter.
Random sketching, clustering, and short-term memory in spik-
ing neural networks. In Thomas Vidick, editor, 11th Inno-
vations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, volume 151
of LIPIcs, pages 23:1–23:31. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ITCS.2020.23
doi:10.4230/LIPIcs.ITCS.2020.23.

[67] Philip H. Enslow Jr. What is a ”distributed” data processing system?
Computer, 11(1):13–21, 1978. https://doi.org/10.1109/C-M.1978.217901
doi:10.1109/C-M.1978.217901.

[68] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20-
22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA, The IBM Research Symposia Series, pages 85–
103. Plenum Press, New York, 1972. https://doi.org/10.1007/978-1-4684-
2001-2 9 doi:10.1007/978-1-4684-2001-2 9.

[69] Dilsun Kirli Kaynar, Nancy A. Lynch, Roberto Segala, and Frits W. Vaan-
drager. The Theory of Timed I/O Automata, Second Edition. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Pub-
lishers, 2010. https://doi.org/10.2200/S00310ED1V01Y201011DCT005
doi:10.2200/S00310ED1V01Y201011DCT005.

[70] Fabian Kuhn, Nancy A. Lynch, Calvin C. Newport, Rotem Oshman,
and Andréa W. Richa. Broadcasting in unreliable radio networks. In
Andréa W. Richa and Rachid Guerraoui, editors, Proceedings of the 29th
Annual ACM Symposium on Principles of Distributed Computing, PODC

50



2010, Zurich, Switzerland, July 25-28, 2010, pages 336–345. ACM, 2010.
https://doi.org/10.1145/1835698.1835779 doi:10.1145/1835698.1835779.

[71] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed compu-
tation in dynamic networks. In Leonard J. Schulman, editor, Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cam-
bridge, Massachusetts, USA, 5-8 June 2010, pages 513–522. ACM, 2010.
https://doi.org/10.1145/1806689.1806760 doi:10.1145/1806689.1806760.

[72] Rivka Ladin, Barbara Liskov, and Liuba Shrira. Lazy replication: exploit-
ing the semantics of distributed services. In Proceedings of the Ninth An-
nual ACM Symposium on Principles of Distributed Computing, PODC ’90,
page 43–57, New York, NY, USA, 1990. Association for Computing Ma-
chinery. https://doi.org/10.1145/93385.93399 doi:10.1145/93385.93399.

[73] Richard E. Ladner, Nancy A. Lynch, and Alan L. Selman. Comparisons
of polynomial-time reducibilities. In Robert L. Constable, Robert W.
Ritchie, Jack W. Carlyle, and Michael A. Harrison, editors, Proceedings
of the 6th Annual ACM Symposium on Theory of Computing, April 30
- May 2, 1974, Seattle, Washington, USA, pages 110–121. ACM, 1974.
https://doi.org/10.1145/800119.803891 doi:10.1145/800119.803891.

[74] L. Lamport. The weak byzantine generals problem. J. ACM,
30(3):668–676, July 1983. https://doi.org/10.1145/2402.322398
doi:10.1145/2402.322398.

[75] Leslie Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998. https://doi.org/10.1145/279227.279229
doi:10.1145/279227.279229.

[76] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the
presence of faults. 32(1):52–78, 1985.

[77] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.
https://doi.org/10.1145/357172.357176 doi:10.1145/357172.357176.

[78] Barbara Liskov, Liuba Shrira, and John Wroclawski. Ef-
ficient at-most-once messages based on synchronized clocks.
ACM transactions on computer systems, 9(2):125 – 142, 1991.
https://doi.org/10.1145/103720.103722 doi:10.1145/103720.103722.

[79] C. Livadas, J. Lygeros, and N.A. Lynch. High-level modeling and anal-
ysis of the traffic alert and collision avoidance system (tcas). Proceed-
ings of the IEEE, 88(7):926–948, 2000. https://doi.org/10.1109/5.871302
doi:10.1109/5.871302.

[80] Jennifer Lundelius and Nancy A. Lynch. An upper and lower
bound for clock synchronization. Inf. Control., 62(2/3):190–204,

51



1984. https://doi.org/10.1016/S0019-9958(84)80033-9 doi:10.1016/S0019-
9958(84)80033-9.

[81] John Lygeros and Nancy Lynch. Strings of vehicles: Modeling and safety
conditions. In Thomas A. Henzinger and Shankar Sastry, editors, Hybrid
Systems: Computation and Control, pages 273–288, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[82] N. Lynch. A hundred impossibility proofs for distributed computing. In
Proceedings of the Eighth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’89, page 1–28, New York, NY, USA, 1989. As-
sociation for Computing Machinery. https://doi.org/10.1145/72981.72982
doi:10.1145/72981.72982.

[83] Nancy Lynch. A three-level analysis of a simple acceleration maneuver,
with uncertainties. In Aurel Cornell and Dan Ionescu, editors, Real=Time
Systems: Modeling, Design, and Applications, AMAST Series in Comput-
ing, volume 8. World Scientific Publishing Company, 2005.

[84] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic
Transactions. Morgan Kaufmann Publishers, San Mateo, CA, 1994.

[85] Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic
memory service for dynamic networks. In D. Malkhi, editor, Distributed
Computing: 16th International Symposium on DIStributed Computing
(DISC 2002), Toulouse, France, October 2002, volume 2508 of Lecture
Notes in Computer Science, pages 173–190. Springer-Verlag, 2002. Also,
Technical Report MIT-LCS-TR-856, MIT Laboratory for Computer Sci-
ence, Cambridge, MA.

[86] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[87] Nancy A. Lynch and Hagit Attiya. Using mappings to prove
timing properties. Distributed Comput., 6(2):121–139, 1992.
https://doi.org/10.1007/BF02252683 doi:10.1007/BF02252683.

[88] Nancy A. Lynch and Michael J. Fischer. On describing the behavior and
implementation of distributed systems. Theor. Comput. Sci., 13:17–43,
1981. https://doi.org/10.1016/0304-3975(81)90109-2 doi:10.1016/0304-
3975(81)90109-2.

[89] Nancy A. Lynch, Nancy D. Griffeth, Michael J. Fischer, and Leonidas J.
Guibas. Probabilistic analysis of a network resource allocation algo-
rithm. Inf. Control., 68(1-3):47–85, 1986. https://doi.org/10.1016/S0019-
9958(86)80028-6 doi:10.1016/S0019-9958(86)80028-6.

[90] Nancy A. Lynch and Frederik Mallmann-Trenn. Learn-
ing hierarchically-structured concepts. Neural Networks,
143:798–817, 2021. https://doi.org/10.1016/j.neunet.2021.07.033
doi:10.1016/j.neunet.2021.07.033.

52



[91] Nancy A. Lynch and Frederik Mallmann-Trenn. Learning hierarchically-
structured concepts II: overlapping concepts, and networks with feed-
back. In Sergio Rajsbaum, Alkida Balliu, Joshua J. Daymude,
and Dennis Olivetti, editors, Structural Information and Communi-
cation Complexity - 30th International Colloquium, SIROCCO 2023,
Alcalá de Henares, Spain, June 6-9, 2023, Proceedings, volume
13892 of Lecture Notes in Computer Science, pages 46–86. Springer,
2023. https://doi.org/10.1007/978-3-031-32733-9 4 doi:10.1007/978-3-
031-32733-9 4.

[92] Nancy A. Lynch, Yishay Mansour, and Alan D. Fekete. Data link layer:
Two impossibility results. In Danny Dolev, editor, Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing,
Toronto, Ontario, Canada, August 15-17, 1988, pages 149–170. ACM,
1988. https://doi.org/10.1145/62546.62572 doi:10.1145/62546.62572.

[93] Nancy A. Lynch, Michael Merritt, William E. Weihl, and Alan D. Fekete.
Atomic Transactions. Morgan Kaufmann series in data management sys-
tems. Morgan Kaufmann, 1993.

[94] Nancy A. Lynch and Cameron Musco. A basic compositional model for
spiking neural networks. In Nils Jansen, Mariëlle Stoelinga, and Petra
van den Bos, editors, A Journey from Process Algebra via Timed Automata
to Model Learning - Essays Dedicated to Frits Vaandrager on the Occasion
of His 60th Birthday, volume 13560 of Lecture Notes in Computer Science,
pages 403–449. Springer, 2022. https://doi.org/10.1007/978-3-031-15629-
8 22 doi:10.1007/978-3-031-15629-8 22.

[95] Nancy A. Lynch, Cameron Musco, and Merav Parter. Winner-take-all
computation in spiking neural networks. CoRR, abs/1904.12591, 2019.
URL: http://arxiv.org/abs/1904.12591, http://arxiv.org/abs/1904.12591
arXiv:1904.12591.

[96] Nancy A. Lynch and Calvin Newport. A (truly) local broad-
cast layer for unreliable radio networks. In Chryssis Georgiou and
Paul G. Spirakis, editors, Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastián, Spain, July 21 - 23, 2015, pages 109–118. ACM, 2015.
https://doi.org/10.1145/2767386.2767411 doi:10.1145/2767386.2767411.

[97] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager.
Hybrid I/O automata. Inf. Comput., 185(1):105–157, 2003.
https://doi.org/10.1016/S0890-5401(03)00067-1 doi:10.1016/S0890-
5401(03)00067-1.

[98] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Observ-
ing branching structure through probabilistic contexts. SIAM J. Com-
put., 37(4):977–1013, 2007. https://doi.org/10.1147/S0097539704446487
doi:10.1147/S0097539704446487.

53



[99] Nancy A. Lynch and Nir Shavit. Timing-based mutual exclu-
sion. In Proceedings of the Real-Time Systems Symposium -
1992, Phoenix, Arizona, USA, December 1992, pages 2–11. IEEE
Computer Society, 1992. https://doi.org/10.1109/REAL.1992.242681
doi:10.1109/REAL.1992.242681.

[100] Nancy A. Lynch and Eugene W. Stark. A proof of the kahn
principle for input/output automata. Inf. Comput., 82(1):81–92,
1989. https://doi.org/10.1016/0890-5401(89)90066-7 doi:10.1016/0890-
5401(89)90066-7.

[101] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs
for distributed algorithms. In Fred B. Schneider, editor, Proceed-
ings of the Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing, Vancouver, British Columbia, Canada, August 10-12,
1987, pages 137–151. ACM, 1987. https://doi.org/10.1145/41840.41852
doi:10.1145/41840.41852.

[102] Nancy A. Lynch and Mark R. Tuttle. An introduction to Input/Output
Automata. CWI-Quarterly, 2(3):219–246, September 1989. Centrum voor
Wiskunde en Informatica, Amsterdam, The Netherlands. Technical Memo
MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts In-
stitute of Technology, Cambridge, MA 02139, November 1988.

[103] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward
simulations: I. untimed systems. Inf. Comput., 121(2):214–233, 1995.
https://doi.org/10.1006/inco.1995.1134 doi:10.1006/inco.1995.1134.

[104] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward sim-
ulations, II: timing-based systems. Inf. Comput., 128(1):1–25, 1996.
https://doi.org/10.1006/inco.1996.0060 doi:10.1006/inco.1996.0060.

[105] Nancy Ann Lynch, Albert R. Meyer, and Michael J. Fischer. Relativiza-
tion of the theory of computational complexity. Transactions of the Amer-
ican Mathematical Society, 220:243–287, 1976.

[106] Pratyusa K. Manadhata and Jeannette M. Wing. An attack surface met-
ric. IEEE Transactions on Software Engineering, 37(3):371–386, 2011.
https://doi.org/10.1109/TSE.2010.60 doi:10.1109/TSE.2010.60.

[107] Keith Marzullo and Susan S. Owicki. Maintaining the time in a distributed
system. In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro,
editors, Proceedings of the Second Annual ACM Symposium on Princi-
ples of Distributed Computing, Montreal, Quebec, Canada, August 17-19,
1983, pages 295–305. ACM, 1983. https://doi.org/10.1145/800221.806730
doi:10.1145/800221.806730.

[108] Sayan Mitra, Yong Wang, Nancy Lynch, and Eric Feron. Safety verifica-
tion of model helicopter controller using hybrid input/output automata.

54



In Oded Maler and Amir Pnueli, editors, Hybrid Systems: Computation
and Control, pages 343–358, Berlin, Heidelberg, 2003. Springer Berlin Hei-
delberg.

[109] Cameron Musco, Hsin-Hao Su, and Nancy A. Lynch. Ant-inspired
density estimation via random walks. Proc. Natl. Acad. Sci. USA,
114(40):10534–10541, 2017. https://doi.org/10.1073/pnas.1706439114
doi:10.1073/pnas.1706439114.

[110] Cameron Musco, Hsin-Hao Su, and Nancy A. Lynch. Ant-inspired den-
sity estimation via random walks. CoRR, abs/1603.02981v2, 2019. URL:
http://arxiv.org/abs/1603.02981v2, http://arxiv.org/abs/1603.02981v2
arXiv:1603.02981v2.

[111] Tina Nolte. Virtual Stationary Timed Automata for Mobile Networks.
PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, February 2009.

[112] Tina Nolte and Nancy Lynch. Self-stabilization and virtual node layer em-
ulations. In Toshimitsu Masuzawa and Sebastien Tixeuil, editors, Stabi-
lization, Safety, and Security of Distributed Systems: Proceedings of Ninth
International Symposium (SSS 2007), Paris, France, November 2007, vol-
ume 4838 of Lecture Notes in Computer Science, pages 394–408. Springer,
2007.

[113] Tina Nolte and Nancy Lynch. A virtual node-based tracking algorithm for
mobile networks. In International Conference on Distributed Computing
Systems (ICDCS 2007), Toronto, Canada, June 2007.

[114] Susan S. Owicki and David Gries. An axiomatic proof tech-
nique for parallel programs I. Acta Informatica, 6:319–340, 1976.
https://doi.org/10.1007/BF00268134 doi:10.1007/BF00268134.

[115] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reach-
ing agreement in the presence of faults. J. ACM, 27(2):228–234, 1980.
https://doi.org/10.1145/322186.322188 doi:10.1145/322186.322188.

[116] Gary L. Peterson and Michael J. Fischer. Economical solutions for the
critical section problem in a distributed system (extended abstract). In
John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison, editors,
Proceedings of the 9th Annual ACM Symposium on Theory of Comput-
ing, May 4-6, 1977, Boulder, Colorado, USA, pages 91–97. ACM, 1977.
https://doi.org/10.1145/800105.803398 doi:10.1145/800105.803398.

[117] F.P. Preparata. Advances in Computing Research. Number v.
4 in Advances in Computing Research. JAI Press, 1987. URL:
https://books.google.com/books?id=OMEnAQAAMAAJ.

55



[118] Tsvetomira Radeva, Anna R. Dornhaus, Nancy A. Lynch, Rad-
hika Nagpal, and Hsin-Hao Su. Costs of task allocation with
local feedback: Effects of colony size and extra workers in
social insects and other multi-agent systems. PLoS Comput.
Biol., 13(12), 2017. https://doi.org/10.1371/journal.pcbi.1005904
doi:10.1371/journal.pcbi.1005904.

[119] Roberto Segala. Modeling and Verification of Randomized Distributed
Real-Time Systems. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, May 1995.
Also, MIT/LCS/TR-676.

[120] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for
probabilistic processes. In Bengt Jonsson and Joachim Parrow, ed-
itors, CONCUR ’94, Concurrency Theory, 5th International Con-
ference, Uppsala, Sweden, August 22-25, 1994, Proceedings, volume
836 of Lecture Notes in Computer Science, pages 481–496. Springer,
1994. https://doi.org/10.1007/978-3-540-48654-1 35 doi:10.1007/978-3-
540-48654-1 35.

[121] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for prob-
abilistic processes. Nord. J. Comput., 2(2):250–273, 1995.

[122] Mike Spindel. Simulation and evaluation of the reactive virtual node
layer. Master of Engineering Thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, May, 2008.

[123] Hsin-Hao Su, Lili Su, Anna R. Dornhaus, and Nancy A. Lynch.
Ant-inspired dynamic task allocation via gossiping. In Paul G. Spi-
rakis and Philippas Tsigas, editors, Stabilization, Safety, and Se-
curity of Distributed Systems - 19th International Symposium, SSS
2017, Boston, MA, USA, November 5-8, 2017, Proceedings, volume
10616 of Lecture Notes in Computer Science, pages 157–171. Springer,
2017. https://doi.org/10.1007/978-3-319-69084-1 11 doi:10.1007/978-3-
319-69084-1 11.

[124] Jennifer L. Welch, Leslie Lamport, and Nancy A. Lynch. A lattice-
structured proof of a minimum spanning. In Danny Dolev, edi-
tor, Proceedings of the Seventh Annual ACM Symposium on Princi-
ples of Distributed Computing, Toronto, Ontario, Canada, August 15-
17, 1988, pages 28–43. ACM, 1988. https://doi.org/10.1145/62546.62552
doi:10.1145/62546.62552.

[125] Jennifer L. Welch and Nancy A. Lynch. A new fault-tolerance
algorithm for clock synchronization. Inf. Comput., 77(1):1–36,
1988. https://doi.org/10.1016/0890-5401(88)90043-0 doi:10.1016/0890-
5401(88)90043-0.

56



[126] Jiajia Zhao, Nancy A. Lynch, and Stephen C. Pratt. The power
of population effect in Temnothorax ant house-hunting: A compu-
tational modeling approach. J. Comput. Biol., 29(4):382–408, 2022.
https://doi.org/10.1089/cmb.2021.0369 doi:10.1089/cmb.2021.0369.

57


