
The SNOW Theorem Revisited

Kishori M Konwar, Wyatt Lloyd, Haonan Lu, Nancy Lynch

November 27, 2018

Abstract

In highly-scalable storage systems for Web services, data is sharded into separate objects, also
called shards, across several servers. Transaction isolation, while reading the objects, is at the heart
of consistent data access when concurrent updates are present. In practice, systems experience a
much higher number of read transactions, consisting only of read operations, compared to write
transactions; consequently, lowering latency of read transactions boosts service performance.
In [9], the authors proposed four desirable properties in transaction processing systems for
achieving low-latency of read transactions, with asynchronous and reliable communications, and
referred to them collectively as the SNOW properties: The underlying properties, in the context
of an execution, are (i) strict serializability (S) property where read and write transactions seem
to occur atomically; (ii) non-blocking (N) property implies that for every read operation on any
object, during a read transaction, the response at the corresponding server is non-blocking; (iii)
one version and one round (O) property implies every read operation, during a read transaction,
completes in one-round of client-server communication and the respective server responds with
only one version of the object value; and (iv) concurrent write transactions (W) property states
that read transactions can have concurrent write transactions. Then they argued that it is
impossible to implement all the four properties, in the same system, even with at least three
clients. They referred to their result as the SNOW theorem, and they posed the two-client
setting as an open question.

Here we revisit the results of the SNOW theorem and present several new results. In our
first result, we resolve the two-client scenario: We prove that even with two clients, without
client-to-client messaging, it is impossible to design an transaction processing system which
satisfies the SNOW properties. Second, we provide a rigorous proof of the SNOW theorem for
systems with at least three clients, i.e., we show that it is impossible to implement a transaction
processing system, consisting of at least three clients, even with client-to-client messaging, that
satisfies the SNOW properties. In our third result, we derive a useful property for executions of
algorithms that implement objects of data types considered in our work that helps us show the
strict serializability property (S property) of algorithms presented in the paper.

In our fourth result, we present an algorithm with multiple writers, single reader (MWSR)
which satisfies the SNOW properties, with client-to-client messaging. In our fifth, we present an
algorithm, for multiple-writer, multiple-reader (MWMR) setting in the absence of client-to-client
messaging, which satisfies the “S”, “N”, “W” properties and a weaker version the O property
“o”, where we use “o” to refer to the one-version requirement of a read operation, but it can take
multiple rounds of communication to complete a read operation. Collectively, we refer to the
“S”, “N”, “o” and “W” properties as the “SNoW” property. In our sixth result, we present an
algorithm in the MWMR setting which satisfies the “S”, “N”, “W” properties and a property
“õ”, which refers to the one-round requirement of a read operation, but a server can response
with multiple versions of a shard. We refer to these properties as the “SNõW” property.

1

ar
X

iv
:1

81
1.

10
57

7v
1

 [
cs

.D
C

]
 2

6
N

ov
 2

01
8

1 Introduction

Most highly accessed websites rely on large volumes of data in the back end. Scalability of these
websites is dependent on the ability to serve thousands of web-requests per second. Although it is
desirable to store all of this data at a single server, due to limited resources available on a single
machine it is impossible to do so. Therefore, such data is partitioned and stored across multiple
machines connected through high-speed networks. Subsequently, serving one webpage request may
involve retrieving various data objects of the page from multiple servers. These individual data
objects are often referred to as shards or objects, where each object is managed by a separate server.
For example, a dynamically generated webpage may contain various objects, such as texts, images,
and videos: the text elements may be stored in one server, the images and thumbnails in another,
and, similarly, the video clips may be managed by a separate server. During the webpage synthesis
and loading, the proxy reader reads all of these separate objects via a read transaction. Some of
these objects may be updated while read transactions are carried out. A transaction consists of a
set of read or write operations on the underlying objects which are to be executed atomically.

In our work, we consider two types of transactions: write transactions and read transactions.
A read transaction consists of a set of read operations, one per each object, and a write transaction
comprises of a set of individual write operations on a subset of the objects. Consistent data access
during a transactional read requires transactional isolation, where reads to different objects must
retrieve either all updates for a given update or none. Similar transactional isolation of write
transactions is also desirable, where the collection of all the write operations to different objects is
carried out atomically. Handling transactional isolation with concurrent read and write transactions
is complex and expensive which may often lead to poor performance and lower throughput, which
in turn leads to substantial revenue loss and poor user experience. In practice, it is observed that
most of the transactions are read transactions, and therefore, one approach to boost performance
is to improve the performance of the read transactions [3].

In [9], the authors study the question whether read transactions can be fast enough even in
the presence of concurrent write transactions. They introduce four desirable properties of a system
to achieve low-latency read transactions, which they refer to collectively as the SNOW property :
Strict serializability among transactions, Non-blocking operations and One-response from each
shard for the read transactions, and compatibility with conflicting Write transactions. The “strict
serializability” property requires that the set of read or writer operations of any read and write
transactions is executed atomically as if executed by a single server. “Non-blocking” requires the
read requests corresponding to different objects to be served by the managing servers immediately,
without blocking for any other external input or output messages. The “one-response” property
requires that for any read operation of an object, the server managing the object responds with only
one version, and the operation completes in one round of client to server communication. The final
property “conflicting and concurrent write transactions” allows write transactions to execute
concurrently with read transactions on the same set of objects.

In distributed systems, the availability of the systems is often stated in terms of liveness properties
of the transactions or operations [5, 6, 12]. Such a requirement on responsiveness of a system is
also referred to as availability. One of the strongest, and the most desirable of these properties
is wait-freedom, which requires that as long as the client is taking a sufficient number of steps, it
completes the operations irrespective of the speed of other clients. In [9], the wait-free property
of the read operations, corresponding to a read transaction in a system that satisfies SNOW
properties, is inherent in the N and O properties; this also implies the wait-freedom property for

2

read transactions. However, in [9], no liveness property for write transactions is stated explicitly.
In their work, the authors prove that with at least three clients, in an asynchronous message-passing
environment, even in the absence of any failures, it is impossible to have a protocol that satisfies all
of the four properties of SNOW, which they refer to as the SNOW theorem. In their proof, they
consider a system with two read clients, which issues only read transactions, and a write client
invoking write transactions. From their proof, it is not clear whether they consider the possibility
of exchanging messages between clients. Additionally, there is no explicitly stated requirement on
the liveness of the write transactions. They pose the case for two clients as an unresolved case,
i.e., it is not known whether all of SNOW properties can be implemented for any two client system.

Our contribution In this work, we revisit the results of the SNOW theorem and present four new
results. First, we show that even with two clients, in the absence of client-to-client messaging, it is
impossible to design a transaction processing system which satisfies the SNOW properties. Second,
we provide a thorough proof of the SNOW theorem for systems with at least three clients, i.e., we
show that it is impossible to implement a transaction processing system, which can implement the
SNOW property, consisting of at least three clients, even with client-to-client messaging. In our
proof, we explicitly make assumptions regarding the liveness of write transactions and client-to-
client messaging. Our proof technique involves assuming an execution of an arbitrary transaction
processing system, assumed to be specified as an I/O automaton, that satisfies the SNOW property,
and then, argue by constructing a sequence of executions of the automata, finally, leading to an
execution which contradicts the S property. The above two results indicate that client-to-client
messaging ability plays a key role in the achievability of the SNOW property. This motivates our
third result, where we present an algorithm with multiple writers, single reader (MWSR) which
satisfies the SNOW properties when client-to-client messaging is allowed. Finally, we present an
algorithm, for multiple-writer, multiple-reader (MWMR) setting in the absence of client-to-client
messaging, which satisfies the “S”, “N”, “W” properties and and a weaker version the O property,
which we denote by “o”, where “o” refers to the one-version property of a read operation, but can
take multiple rounds of communication to complete the read operation. Collectively, we refer to the
“S”, “N”, “o” and “W” properties as the “SNoW” property.

Related work This will be filled in depending what type of conference we send the paper to and
whether we add some experimental results of the two algorithms presented in the paper.

Document Structure The remainder of the document is organized as follows. Section 2 presents
the models and definitions. Section 3, provides the proof for the impossibility result for the two-client
setting when clients do not communicate among each other. In section 3, we present the impossibility
result for the three-client setting. Next, in section 6 we present the algorithm with multi-writer,
single-reader (MWSR) which satisfies the SNOW properties, when client-to-client communication is
allowed. In section 7, we present an algorithm for multi-writer, multi-reader scenario which satisfies
the SNoW properties.

3

2 System model and architecture

2.1 I/O Automata

We consider a distributed system consisting of asynchronous processes of three types: a set of
readers and writers, called clients, and a set of servers. Each of these processes is associated with an
unique identifier. Processes can communicate via asynchronous reliable communication links. This
means that any message sent on the link is guaranteed to eventually reach the destination process.
The model assumes that client or server processes never fail. We do not make any assumption
regarding the order of message delivery in the same channel.

We assume that the formal specification of an algorithm in our context is specified using the
I/O Automata. An algorithm is specified from the composition A of a set of automata where each
automaton Ai corresponds to a process i in the system. An automaton Ai consists of a set of states
states(Ai) , including a special subset start(Ai) ⊆ states(A) called the start states ; a signature,
denoted sig(Ai); and a set of transitions trans(Ai). The set of states states(Ai) are essentially
defined by a set of state variables in Ai. The signature sig(Ai) consists of three disjoint sets in in(Ai),
out(Ai) and int(Ai), where in(Ai) referred to as the input actions, out(Ai) the output actions and
int(Ai) are the internal actions. The set trans(Ai) consists of the set of transitions or steps, where
each step consists of a 3-tuple (σi, ai, σi+1), where σi, σi+1 ∈ states(Ai) and ai ∈ trans(Ai). The set
in(Ai) ∪ out(Ai), often denoted as ext(Ai), are called the external signature of automaton Ai. Note
that A is a composition of the set of automata Ai, i ∈ I and the following analogous components for
A are defined as states(A) ,

∏
i∈I states(Ai); sig(A) ,

∏
i∈I sig(Ai); start(A) ,

∏
i∈I start(Ai)

and trans(A) , {(σ, a, σ′) : if a ∈ trans(Ai) for some i ∈ I then σ, σ′ ∈ states(Ai), else σ = σ′}.
Informally, the execution of the algorithm corresponds to the concept of the execution of A.

First, an execution fragment α of A is a finite or infinite sequence σ0, a1, σ1, a2, σ2, . . ., where each
σi belong to states(A) and ai belongs to trans(A). An execution of A is an execution fragment
such that σ0 ∈ start(A). We use the notation trace(α) to denote the sequence of external actions
in α; and by trace(α)|Ai to denote the sequence of external actions in trace(α) that belongs to
automaton Ai. If α is a finite execution and β is an execution fragment, such that, β starts with the
final state of α then we use the symbol α ◦ β to denote execution fragment obtained as a result of
concatenation of execution fragments α and β. The set of locally controller actions in an automaton
can be partitioned into tasks. Moreover, in the case of an execution, if the execution is infinite and
events from each class occurs infinitely often, and if the execution is finite and if none of the events
from any of the classes is enabled then the execution is called fair. If ε and ε′ are two execution
fragments such that at some automaton A they are the same, i.e., ε|A = ε′|A, then we use the

notation ε
A∼ ε′. When the automaton is clear from the context, for the sake of brevity we drop the

symbol for the automaton over the ∼. Below we add some useful theorems are useful related to
executions of a composed I/O Automata [10].

Theorem 2.1. Let {Ai}i∈I be a compatible collection of automata and let A = Πi∈IAi. Suppose αi
is an execution of Ai for every i ∈ I, and suppose β is a sequence of actions in ext(A) such that
β|Ai = trace(αi) for every i ∈ I. Then there is an execution α of A such that β = trace(α) and
αi = α|A, for every i ∈ I.

Theorem 2.2. Let A be any I/O automaton.

1. If α is a finite execution of A, then there is a fair execution of A that starts with α.

4

2. If β is a finite trace of A, then there is a fair trace of A that starts with β.

3. If α is a finite execution of A and β is any finite or infinite sequence of input actions of A,
then there is a fair execution α ◦α′ of A such that the sequence of input actions in α′ is exactly
β.

4. If β is a finite trace of A and β′ is any finite or infinite sequence of input actions of A, then
there is a fair execution α ◦α′ of A such that trace(α) = β and such that the sequence of input
actions in α′ is exactly β′.

The following useful claim is adopted from Chapter 16 of [10].

Claim 1. Suppose we have an automaton A = Πk
i=1Ai where A is composed of the compatible

collection of automata Ai, where i ∈ {1, · · · , k}. Let β be a fair trace of A then we define an
irreflexive partial order →β on the actions of β as follows. If π and φ are events in β, with π
preceding φ, then we say φ depends on π, which we denote as π →β φ, if one of the following holds:

1. π and φ are actions at the same automaton;

2. π is some send(·)j,i at some Aj and φ is some recv(·)j,i at Ai; and

3. π and φ are related by a chain of the relations of items 1. and 2.

Then if γ is a sequence obtained by reordering the events in β while preserving the →β, then γ is
also a fair trace of A.

Theorem 2.3. Let {Ai}i∈I be a compatible collection of automata and let A = Πk
i=1Ai. Suppose αi

is a fair execution of Ai for every i ∈ I, and suppose β is a sequence of actions in ext(A) such that
β|Ai = trace(αi) for every i ∈ I. Then there is a fair execution α of A such that β = trace(α) and
αi = α|A for every i ∈ I.

2.2 Data type

In this section, we formally describe the data type, which we denote as OT , for the transaction
processing systems considered in this paper. We assume there is a set of k objects, where k is some
positive integer, and ok denotes the kth object. Object ok stores a value from some non-empty
domain Vk and supports two types of operations: read and write operations. A read operation on
object ok, denoted by read(ok), on completion returns the value stored in ok. A write operation on
ok with some value vk from Vk, denoted as write(ok, vk), on completion, updates the value of ok.

A write transaction consists of a subset of p distinct write operations for a subset of p
distinct objects, where 1 ≤ p ≤ k. For example, a write transaction with the set of operations
{write(oi1 , vi1), write(oi2 , vi2) · · ·write(oip , vip)}, means value vi1 is to be written to object oi1 , value
vi2 to object oi2 , and so on. We denote such a write transaction as WRITE((oi1 , vi1), (oi2 , vi2), · · · ,
(oip , vip)).

A read transaction consisting of a set of read operations is denoted as READ(oi1 , oi2 , · · · , oiq),
where oi1 , oi2 , · · · , oiq is a set of distinct objects, q is any positive integer, 1 ≤ q ≤ k, which upon
completion returns the values (vi1 , vi2 , · · · , viq), where vij ∈ Vij is the value returned by read(oij),
for any ij ∈ {i1, i2, · · · iq} and 1 ≤ i1 < i2 < · · · < iq ≤ k.

Formally, we define the value type used in this paper for a k object data-type as follows:

5

(i) a tuple (v1, v2, · · · , vk) ∈ Πk
i=1Vi, where Vi is a domain of values, for each i ∈ {1, · · · , k};

(ii) an initial value v0i , v
0
i ∈ Vi for each object oi;

(iii) invocations: READ(oi1 , oi2 , · · · , oip) and WRITE((oi1 , vi1), (oi2 , vi2), · · · , (oip , vip)), such
that vij ∈ Vij for any ij ∈ {i1, i2, · · · ip} where 1 ≤ i1 < i2 < · · · < ip ≤ k and p is some integer
with 1 ≤ p ≤ k;

(iv) responses: a tuple (v1, v2, · · · , vk) ∈ Πk
i=1Vi and ok; and

(v) for any subset of p objects we define f : invocations× V → responses× V , such that:

(a) f(READ(oi1 , oi2 , · · · , oip), (v1, v2, · · · , vk)) = ((vi1 , vi2 , · · · , vip), (v1, v2, · · · , vk)); and

(b) f(WRITE((oi1 , ui1), (oi2 , ui2), · · · , (oip , uip)), (v1, v2, · · · , vk)) = (ack, (w1, w2, · · · , wk)),
where for any i, wi = ui if i ∈ {i1, i2, · · · , ip}, and for all other values of i, wi = vi.

Figure 1: The architecture of a typical web service with clients and servers inside a datacenter.

2.3 System Model

In our system, we assume there are ` writers, for some ` ≥ 1; m readers, for some m ≥ 1, and
k servers for some k ≥ 1. We denote the set of writers as W, which essentially consists of the
writer identifiers w1, w2 · · ·w`. The set of readers, with ids r1, r2 · · · rm, is denoted as R. The set of
servers S consists of the server identifiers s1, s2 · · · sk. The servers s1, s2 · · · sk manage the objects
o1, o2, · · · , ok, respectively, in particular, server si is responsible for storing object oi, for any i,
1 ≤ i ≤ k.

6

Figure 2: The architecture of a typical web service with clients, servers, and the communication
channels inside a datacenter is modeled as a collection of I/O automata.

Communications between processes during the executions are point-to-point and are assumed
to be reliable and asynchronous. The communications are modeled with Channel I/O automata
and are carried out via send and recv actions at the source and destination processes. For example,
in Figure 2, the reader r1 automaton sends, via the action send(m), some message m, from some
alphabet M, to server s1 through the channel automaton Channelr1,s1 , and s1 receives it though
the action recv(m). Similarly, the message m′, m′ ∈M, is transmitted from s1 to r1, through the
channel automaton Channels1,r1 , via the actions send(m′) at s1, and finally received at r1 via the
action recv(m′).

The schematic flow of a typical, but simplified, webpage request from a service hosted in a
datacenter is shown in Figure 1. An end user sends a webpage request to a front-end client r1. Upon
receiving it r1 generates a read transaction R, which consists of a set of read operations and is
invoked via a INV (R) action at the client, which is essentially input to the client from the end user.
The goal of these operations is to read a subset of the data objects by contacting the respective
managing servers. The operations in a transaction are carried out between the invocation and
response actions of the transaction without any particular order of execution among the operations.
Any operation op begins with an invocation action, inv(op), at the relevant client, and ends with a
response action resp(op), also at the client. Once the front-end client completes the read operations,
then r1 synthesizes the webpage with the data retrieved by the read operations, and responds to
the end user request through the response action RESP (R) at the client r1.1 Similarly, the update
request from the end user can be thought of a write transaction W , consisting of a set of write

1In a typical production system the depth of the transactions (due to nested transactions) is more than one [1],
however, we assume only transactions of depth one as in [9].

7

operations for individual objects, to update the set of object values, initiated via an invocation
action INV (W) at the client. Then the writes operations are carried out by the client, and once
they complete, the transaction completes with the response action RESP (W), at the client.

A transaction π is incomplete in an execution α when the action INV (π) does not have the
RESP (π) in α; otherwise, we say that π is complete in α. In an execution, we say that a transaction
(read or write) π1 precedes another transaction π2 (denote as π1 → π2), if the response action
RESP (π1) precedes the invocation action INV (π2). Two transactions are concurrent if neither
precedes the other.

If in any execution of the system every client initiates a new transaction only after the previous
transactions initiated at the same client have completed, then we say the execution is well-formed.

2.4 SNOW Properties

The SNOW properties for a transaction processing system can be described by requiring that any
fair execution of the system satisfies the following four properties: (i) Strict Serializability (S),
which means there is a total ordering of the transactions such that the resulting execution seems
to occur at a single machine atomically; (ii) Non-Blocking Operations (N) property, which means
that the servers respond immediately, without waiting for any input from other processes, to read
requests for the read operations, which belong to the read transactions; (iii) One Response Per
Read (O) property requires that any read operation consists of one-round trip of communication
with a server, and also, the server responds with a message that contains exactly one version of the
object value; and (iv) write transactions that Conflict (W) implies the existence of concurrent
write transactions that update the data objects while read transactions are in progress. Below
we describe the individual properties of the SNOW properties in more detail.

Strict serializability By strict serializability [7], we mean each write or read transaction is
executed atomically, at some point in an execution between the invocation and response events. In
other words, for each transaction, we can associate a serialization point between the invocation
and response actions, such that all the read operations return values that are consistent with the
ordering of the serialization points.

Non-blocking reads Consider a read transaction initiated by a read client r and a read operation
in it to read the value of an object oi managed by some server si. The read operation involves
r communicating a send value message to si requesting the stored value of oi. The non-blocking
property means that the server responds to the read request without waiting for any external input
event, such as the arrival of messages, any mutex operations, time, etc. This property ensures that
read transactions are delayed only due to delay of messages between r and si. Below we define the
non-blocking nature of any server’s response to a read request from a reader as follows.

Definition 1. If α is a fair execution of some server automaton for a server s and action recv(mr)r,s
appears in α, where r is a reader automaton and mr is a read value request to server s, and no
other input actions follow recv(mr)r,s, then eventually, the action send(vi)s,r occurs in α.

One-response read operations The one-response property requires that each read operation,
during any read transaction, completes in one round of client to server communication and receives
exactly one version of the object value from the corresponding server. A round consists of a read

8

request from the client initiating the read operation to the server, and subsequently, the server
sending only one version of the object value in its response. The one-round property is imposed to
reduce the number of messages between the client and the server during a read operation, and hence
reducing the latency of the read transaction. The one-version property is added to reduce the
amount of data transmitted during the read operation and hence reduce latency of read operations,
which also means lowering latency for the read transaction.

Concurrent and conflicting writes The conflicting, or concurrent writes property states that
read transactions complete even in the presence of concurrent write transactions, where the write
operations might update some objects that are also being read by read operations in read. This
shows that read transactions can be invoked at any point, even in the presence of ongoing write
transactions. Note that the liveness of any write transaction is not implied by any of the SNOW
properties; however, for useful practical systems the writes must eventually complete. Therefore,
we assume that every write transaction eventually completes via the RESP event, and think of
this constraint as a part of the W property.

The SNOW Theorem [9] The theorem states that no read-only transaction algorithm provides
all of the SNOW properties.

2.5 One-version property

Motivated by the impossibility result of the SNOW theorem, we propose in Section 7, an algorithm
for transaction processing systems under constraints weaker than the SNOW properties. With
this in mind, we introduce a weaker version of the O property, denote it as “o”, where during a
read operation the server returns exactly one object value but there exists a finite bound on the
number of rounds of communication between the client and the server. We use the acronym SNoW
to denote the S, N, o and W properties. Moreover, it is easy to realize that if an algorithm satisfies
the SNoW properties then read transactions always complete, and hence, read’s are always live.
This is because the N and o properties imply that the server must immediately respond to a read
request due to a read operation with exactly one object value without waiting in expectation of
incoming messages, and there a fixed upper bound on the number of such rounds for a read.

3 Impossibility of SNOW properties with two clients with re-
stricted communication

In this section, we prove that for a two-client transaction processing system with at least two objects
it is impossible to design an algorithm that satisfies the SNOW properties.We prove our result by
showing a contradiction. For the model consider in this section, we assume that between every pair
of client and server, or every pair of servers there are two communication channels, one in each
direction; however, there are no communication channels between any pair of clients Fig 2.

Consider a system consisting of two servers, s1 and s2, and two clients, a reader r, which initiates
only read transactions, and a writer w, which initiates only write transactions. Servers s1 and
s2 store values for objects o1 and o2, respectively. The values stored in o1 and o2 belong to the
domains V1 and V2, respectively; the initial values of o1 and o2 are v01 and v02, respectively. We
denote the automata for servers s1 and s2 by sA1 and sA2 , respectively, and the automata for the

9

clients r and w by rA and wA, respectively. We denote by S1 the subsystem consisting of s1, s2 and
w, and by SA1 the automata composed of sA1 , sA2 and wA, i.e., sA1 × sA2 × wA. Also, we denote by
A, which can also be interpreted as the algorithm, the automaton representing the entire system
consisting of SA1 and rA (i.e., sA1 × sA2 ×wA ×rA). We assume that between any client c, c ∈ {r, w}
and any server s, s ∈ {s1, s2} there are channel automata Channelc,s and Channels,c. Here, we
consider only fair executions of A. For contradiction, we also assume that any fair execution of A
respects the SNOW properties. Also, we assume that in an execution ε of A we can identify each
transaction with an unique identifier.

Consider an execution of A with two transactions in it as: a write transaction W ≡
WRITE((o1, v

1
1), (o2, v

1
2)) initiated by w, where v11 6= v01 and v12 6= v02; and a read transaction

R ≡ READ(o1, o2), initiated by r. Let us denote by opr1 and opr2 the read operations read(o1) and
read(o2), respectively. We assume that the patterns of sequences of invocations of transaction, the
times of these invocations, and delays in local computation and message deliveries, are controlled by
an omniscient entity. which we refer to as the adversary. The assumption of such an adversary is
in accordance with the asynchronous nature of the model. This is also important in real systems,
because such executions are possible to occur and thus important for making the system safe.

Notations and Definitions: We introduce the following notations and definitions in the context
of an execution ε, of A, with transactions R and W in it, where j ∈ {1, 2}:

1. send(mr
j)r,sj : an output action at rA, which sends a message mr

j from reader r to server sj ,
requesting the value for oj ;

2. recv(mr
j)r,sj : an input action at sAj , that receives the message mr

j , sent from r;

3. send(vj)sj ,r: an output action at sAj , that sends value vj , for oj , to r.

4. recv(vj)sj ,r: an input action at rA, to receive a message vj from sj at rA.

5. Non-blocking fragments Fi(ε), i ∈ {1, 2}. Suppose there is a fragment of execution in ε where
the first action is recv(mr

i)r,si and the last action is send(vi)si,r , both of which occur at sAi .
Moreover, suppose there is no other input action at sAi in this fragment. Then we call this
execution fragment a non-blocking response fragment for opri at sAi . We use the notation Fi(ε)
to denote this fragment of execution of ε.

6. We use the notations R(ε) and W (ε) to denote the transactions R and W , in ε. When the
underlying execution is clear from the context we simply use R and W .

7. If the non-blocking fragment F1(ε) appears in ε such that recv(mr
2)r,s2 , at sA2 , does not occur

before F1(ε) completes and ε is of the form σ0, a1, · · · , a`, σ` ◦ F1(ε) ◦ S(ε), where S(ε) is any
continuation of the execution, then we denote σ0, a1, · · · , a`, σ` by P (ε).

8. If ε is of the form σ0, a1, · · · , a`, σ` ◦ F1(ε) ◦ κ ◦ F2(ε), ap, σp, . . . or σ0, a1, · · · , a`, σ` ◦ F2(ε) ◦
κ ◦ F1(ε) ◦ S(ε), where ` is a positive integer, κ is a segment of ε, possibly even of length zero
and S(ε) is any suffix part of the execution then we denote σ0, a1, · · · , a`, σ` by P (ε). Clearly,
we can write ε as P (ε) ◦ F1(ε) ◦ κ ◦ F2(ε) ◦ S(ε) or P (ε) ◦ F2(ε) ◦ κ ◦ F1(ε) ◦ S(ε).

10

Now we describe the set of actions corresponding to the read transactions in a fair execution
ε of A. Clearly, in ε, the actions inv(opri) and resp(opri) appear between the actions INV (R)
and RESP (R). The action inv(opri) is followed by action send(mr

i)r,si , which is for sending the
read object value request to server si. This request mr

i is communicated to si, via the channel
automaton Channelr,si . Automaton sAi eventually receives the request via the action recv(mr

i)r,si ,
and subsequently, responds back to r, with object value vi, through the action send(vi)si,r. Next,
value vi, vi ∈ Vi, communicated by the automaton Channelsi,r, is received at r via the action
recv(vi)si,r, and finally, opri completes with response action resp(opri) and returns vi to rA.

Here, we give a high-level idea of our proof, which is based on the existence of a sequence of fair
executions of A, eventually leading to a execution of A that contradicts the S property. First, we
show the existence of an execution α of A where R is invoked after W completes, where the send
actions send(mr

1)r,s1 and send(mr
2)r,s2 at the rA, occur consecutively, in P (α). Then we show α can

be written in the form P (α) ◦ F1(α) (Figure 3 (a), Lemma 3.1). Based on α, we show the existence
of another execution β, of A, which can be written in the form P (β) ◦ F1(β) ◦ F2(β), by extending

α with an execution fragment F2(β) such that, F1(β)
s1∼ F1(α) (Figure 3 (b); Lemma 3.2). Note

that in any arbitrary extension (as a fair execution) of β, eventually R returns (v11, v
1
2). Next, from

β, we show the existence of an execution γ, of A, of the form P (γ) ◦ F1(γ) ◦ F2(γ), where the send
actions send(mr

1)r,s1 and send(mr
2)r,s2 at rA, occur before W is invoked (Figure 3 (c); Lemma 3.3),

but the fragments F1(γ) and F2(γ) occur after RESP (W), as in β. From γ we show the existence
of a fair execution δ, of A, of the form P (η) ◦ F1(η) ◦ F2(η) ◦ S(η), where R responds with (v11, v

1
2).

Finally, starting with η we create a sequence of fair executions δ(≡ η), δ(1), · · · δ(f), of A, where in
each of them R responds with (v11, v

1
2) (Figure 4 (e) and (g); Lemma 3.6). Additionally, for any

δ(i), the fragments F1(δ
(i)) and F2(δ

(i)) appear in the execution before δ(i−1). From δ(f) we show
the existence of a fair execution φ (see Figure 4 (h)), of A, where R completes by returning (v11, v

1
2)

even before W begins, which is violation of the property S.
Now, we state and prove the the relevant lemmas. The following lemma states that there is a

finite execution of A where R begins after W completes where the two send actions send(mr
1)r,s1

and send(mr
2)r,s2 occur before either of the servers s1 and s2 receives the messages mr

1 or mr
2 from

r; also, server s1 responds to r in a non-blocking manner (execution α in Figure 3 (a)).

Lemma 3.1. There exists a finite execution α of A that contains transactions R(α)
and W (α) where INV (R) appears after RESP (W) and the following conditions hold:

(i) The actions send(mr
1)r,s1 and send(mr

2)r,s2 appear consecutively in trace(α)|rA; and

(ii) α contains the execution fragment F1(α).

Proof. Consider a finite execution fragment of A with a completed transaction W , where after W
completes the adversary invokes R, i.e., INV (R) occurs. Note that each of the read operations opr1
and opr2, in R, can be invoked by the adversary at any point in the execution. Following INV (R),
the adversary introduces the invocation action inv(opr1); by the O property of the read operations
of A the action send(mr

1)r,s1 eventually occurs. Next, the adversary introduces inv(opr2) and also,
delays the arrival of mr

1 until action send(mr
2)r,s2 eventually occurs, which must occur in accordance

with the property O of read operations. Let us call this finite execution α0.
Next, suppose at the end of α0 the adversary delivers the message mr

1, which has been delayed
so far, via the action recv(mr

1)r,s1 , at sA1 , but it delays any other input actions at sA1 . Note that by
the N property of read operations sA1 eventually responds with send(v1)s1,r, with one value v1 by

11

O property, where v1 = v11 by the S property, since R begins after W completes. Let us call this
execution α. Note that α satisfies conditions (i) and (ii) by the design of the execution.

The following lemma states that there is an execution β of A where R begins after W completes
where the two send events at rA occurs before F1(β), which in turn, occurs before F2(β) (execution
β in Figure 3 (b)).

Lemma 3.2. There exists an execution β of A that contains transactions R and W where INV (R)
appears after RESP (W) and the following conditions hold:

(i) The actions send(mr
1)r,s1 and send(mr

2)r,s2 appear consecutively in trace(β)|rA; and

(ii) β contains the execution fragment F1(β) ◦ F2(β).

Proof. Consider the execution α of A as constructed in Lemma 3.1. At the end of the execution
fragment α, the adversary delivers the previously delayed message mr

2, which is sent via the action
send(mr

2)r,s2 , by introducing the action recv(mr
2)r,s2 . The adversary then delays any other input

action in A. By the N property, server sA2 must respond to rA, with some value v2, and hence the
output action send(v2)s2,r must eventually occur at sA2 . Let us call this finite execution as β. Note
that β satisfies the properties (i) and (ii) in the statement of the lemma.

The following result shows that starting with β there is an execution γ of A where R is initiated
before W is initiated , also, the send events send(mr

1)r,s1 and send(mr
2)r,s2 occur before INV (W)

(execution Figure 3 (c)) and the messages mr
1 and mr

2 from rA reach the servers s1 and s2, respectively,
after the action RESP (W).

Lemma 3.3. There exists a fair execution γ of A with transactions R and W where the action
INV (R) appears before INV (W) and RESP (R) appears after RESP (W), and the following
conditions hold for γ:

(i) The actions send(mr
1)r,s1 and send(mr

2)r,s2 appear before INV (W) and they appear consecu-
tively in trace(γ)|rA;

(ii) γ contains the execution fragment F1(γ) ◦ F2(γ); and

(iii) action RESP (W) occurs before F1(γ).

Proof. Consider the execution β of A as in Lemma 3.2. Note that β is an execution of the composed
automaton A (≡ SA1 × rA). In β, the actions send(mr

1)r,s1 and send(mr
2)r,s2 occur at rA; and

following that, the actions recv(mr
1)r,s1 , recv(mr

2)r,s2 , send(v1)s1,r and send(v2)s2,r occur at SA1 .
Consider the executions αr ≡ β|rA and αS1 ≡ β|SA1 . Let sβ denote trace(β).

In sβ , send(mr
1)r,s1 , send(mr

2)r,s2 appear after RESP (W), as in trace(β). Let s′β be the sequence

of external actions of SA2 which we construct from sβ by moving send(mr
1)r,s1 , send(mr

2)r,s2 before
INV (W), which is also an external action of A, and leaving the rest of the actions in sβ as it is.

In β, INV (R), recv(v1)s1,r and recv(v2)s2,r are the only input actions at rA, therefore, s′β|rA =

trace(αr). On the other hand, recv(mr
1)r,s1 , recv(mr

2)r,s2 are the only input actions at sA1 , therefore,
s′β|SA1 = trace(αS1). Now, by Theorem 2.1, there exists an execution γ of A such that, s′β = trace(γ)

and αr = γ|rA and αS1 = γ|SA1 . Therefore, in γ, send(mr
1)r,s1 , send(mr

2)r,s2 appear before INV (W)
(condition (i)) and since s′β = trace(γ) condition (ii) holds. Conditions (iii) holds trivially.

12

In the following lemma we show that in any fair execution, of A, that is an extension of either
execution β or execution γ, as in the preceding lemmas, R eventually returns (v11, v

1
2).

Lemma 3.4. Let ξ be a fair execution of A that is an extension of the either execution β from
Lemma 3.2 or execution γ from Lemma 3.3, then R(ξ) responds with (v11, v

1
2).

Proof. Note that in executions β and γ, the traces trace(β)|sA1 is a prefix of trace(γ)|sA1 , since β
ends with F1(β) and γ ends with F2(γ) Therefore, in both β and γ, the respective send(v1)s1,r
actions have the same value for their v1’s. Now, in any extended fair execution η of A, which starts
with β or γ, by the properties N and O the transaction R completes; and by the property S, R
returns (v11, v

1
2). Therefore, R(ξ) returns (v11, v

1
2).

In the following lemma, we show there exists an execution η of A of the form P (η) ◦ F1(η) ◦
F2(η) ◦ S(η) where RESP (R) appears in S(η) (Figure 3 (d)) and R(η) returns (v11, v

1
2).

Lemma 3.5. There exists a fair execution η of A that contains transactions R and W where
INV (R) appears before INV (W); RESP (R) appears after RESP (W) and the following conditions
hold for η:

(i) η can be written in the form P (η) ◦ F1(η) ◦ F2(η) ◦ S(η), for some P (η) and S(η);

(ii) The actions send(mr
1)r,s1 and send(mr

2)r,s2 appear before INV (W) and they appear consecu-
tively in trace(η)|rA;

(iii) action RESP (W) occurs before F1(η); and

(iv) R(η) returns (v11, v
1
2).

Proof. Let γ be a fair execution of A, as described in Lemma 3.3. Let γ0 be the execution fragment
of γ up to the action send(v2)s2,r. Now, by Theorem 2.2 (1), there exists a fair execution γ0 ◦ µ, of
A, where µ denotes the extended portion of the execution.

Clearly, by the N and O properties, the actions resp(opr1) and resp(opr2) must eventually occur
in γ0 ◦µ. Now, identify η as γ0 ◦µ, where P (η) ◦F1(η) ◦F2(η) is γ0, and µ is S(η), thereby, proving
condition (i).

Note the condition (ii) is satisfied by η because RESP (W) appears in P (η), therefore, the fair
execution γ is equivalent to the execution fragment of P (η) up to the event INV (W), and also, γ
satisfies condition (ii) as stated in Lemma 3.3.

Condition (iii) is true because F1(η) begins with action recv(mr
1)r,s1 , which occurs after

RESP (W). Condition (iv) is satisfied by η because η is an extension of γ and due to the re-
sult of Lemma 3.4.

In the following theorem we prove the impossibility result for achieving the SNOW properties for
the two-client system by starting with a fair execution η and creating a sequence of fair executions
of A, where each one is of the form P (·) ◦ F1(·) ◦ F2(·) ◦ S(·), with progressively shorter P (·) until
one of them contradicts the property S.

Theorem 3.6. The SNOW properties cannot be implemented in a system with two clients and two
servers, where the clients do not communicate with other clients.

13

Figure 3: Schematic representation of executions α, β, γ and η, of A with transactions R and W . The
executions evolve from left to right. The vertical marks denote external events at the reader and the server
automata. The marks above the horizontal line denote external actions at sA1 , and the marks below the
line for external actions at sA2 , and for actions rA the mark cuts through the line. The dots stand for other
external actions at the individual automata.

Proof. Consider a fair execution δ(`) of A as in Lemma 3.5, and let P (δ(`)) be the execution
fragment σ0, a1, · · · , a`, σ`, where ` is some positive integer, and the σi’s and ai’s denote states and
actions, respectively. By Lemma 3.5, RESP (R(δ(`))) returns (v11, v

1
2) and δ(`) is also of the form

σ0, a1, · · · , a`, σ` ◦ F1(δ
(`)) ◦ F2(δ

(`)) ◦ S(δ(`)).
Now, inductively we prove the existence of a finite sequence of fair executions of A–by proving

the existence of one from the previous one–as δ(`), δ(`−1), · · · δ(i), δ(i−1), · · · δ(f), for some positive
integer f , with the following properties: (a) Each of the execution in the sequence can be written
in the form σ0, a1, · · · , ai, σi ◦ F1(δ

(i)) ◦ F2(δ
(i)) ◦ S(δ(i)) (or P (·) ◦ F1(·) ◦ F2(·) ◦ S(·)); (b) for each

i, f ≤ i < ` we have P (δ(i)) is a prefix of P (δ(i+1)); and (c) R(δ(f)) returns (v01, v
0
2) and for any

i, f < i ≤ ` we have R(δ(i)) returns (v11, v
1
2). Note that there is a final execution of the form δ(f)

because of the initial values of v01 and v02, and the write W .
Clearly, there exists an integer k, f ≤ k < ` such that R(δ(k)) returns (v01, v

0
2) and R(δ(k+1))

14

Figure 4: Figure shows, starting with execution η of A, the construction of the progressive sequence of
executions δ, δ′, . . ., of A, of the form P (·) ◦ F1(·) ◦ F2(·) ◦ S(·), where we finally construct the execution φ of
A to contradict the S property.

returns (v11, v
1
2). Now we start with execution δ(k+1) and construct an execution δ(k) as described

in the rest of the proof. The following argument will show that R(δ(k)) must also return (v11, v
1
2)

thereby contradicting the above.
Consider the fair execution δ(k+1) of A which is of the form σ0, a1, · · · , ak+1, σk+1 ◦ F1(δ

(k+1)) ◦
F2(δ

(k+1))◦S(δ(k+1)). The action ak+1 can occur at any of the automata rA, wA, sA1 or sA2 , therefore,
we prove our claim by considering the following four possible cases.

Case (i) ak+1 occurs at wA: The execution fragments F1(δ
(k+1)) and F2(δ

(k+1)) do not contain

any input action at sA1 and sA2 , respectively, and also, ak+1 does not occur at sA1 or sA2 . Hence,
the adversary can delay the occurrence of action ak+1, at wA, to create the finite execution
σ0, a1, · · · , ak, σk ◦ F1(δ

(k+1)) ◦ F2(δ
(k+1)), of A. Note by Theorem 2.2 (1), there exists a fair

execution δ(k), of A, that is an extension of the above finite execution where, by the liveness property
of a read transaction, R completes in δ(k). Clearly, δ(k) can be written as σ0, a1, · · · , ak, σk◦F1(δ

(k))◦
F2(δ

(k)) ◦S(δ(k)), where S(δ(k)) is the tail part of the execution resulting from the extension. At sA1 ,

F1(δ
(k+1)) is indistinguishable from F1(δ

(k)) i.e., F1(δ
(k+1))

s1∼ F1(δ
(k)). 2 Therefore, in both of the

above fragments, the send(v1)s1,r action has the same object value v1. But this means R returns v11
as the value for o1 and hence, by the property S, R(δ(k)) must respond with (v11, v

1
2).

2We drop the superscript A, such as sA1 to s1, from the symbol above ∼ for formatting reasons, when necessary.

15

Case (ii) ak+1 occurs at rA: Similar to Case (i).

Case (iii) ak+1 occurs at sA1 : Observe that the execution fragments ak+1σk+1 ◦ F1(δ
(k+1)) and

F2(δ
(k+1)) occur at separate automata, i.e., at sA1 and sA2 , respectively. Observe that the execution

fragments ak+1σk+1 ◦ F1(δ
(k+1)) and F2(δ

(k+1)), of A, do not contain any input actions at sA1 and
sA2 , respectively. Therefore, by Claim 1, we can create a fair execution ε, of A, which can be

expressed as σ0, a1, · · · , ak, σk ◦ F2(ε) ◦ ak+1, σk+1 ◦ F1(ε) ◦ S(ε). Clearly, F1(ε)
s1∼ F1(δ

(k+1)) and

F2(ε)
s2∼ F2(δ

(k+1)). Now, since action send(v1)s1,r, in both F1(ε) and F1(δ
(k+1)), sends the same

object value v11 to r. Therefore, R returns (v11, v
1
2).

Now let us denote the execution fragment σ0, a1, · · · , ak, σk ◦F2(ε) by ε′, which is simply a finite
prefix of ε. Now, suppose the adversary appends the recv(mr

1)r,s1 to ε′, i.e., delivers the value request
message from r to s1, and creates a finite execution ε′′, ofA, as σ0, a1, · · · , ak, σk◦F2(ε

′′), recv(mr
1)r,s1 ,

and delays any input action at sA2 . Now, by Theorem 2.2 (1), there exists a fair execution ε′′′ of A,

which extends ε′′. Clearly, F2(ε
′′′)

s2∼ F2(ε
′′) and hence the send(v2)s2,r actions in ε′′ and ε′′′, send

the same value v12 for o2. Then by the N property action send(v1)s1,r eventually occurs and by O
property v1 is send to rA, therefore, R completes in ε′′′, this would imply that R(ε′′′) must respond
with (v11, v

1
2).

Note that the execution fragment of ε′′′, between the actions recv(mr
1)r,s1 and send(v1)s1,r,

has no input actions of sA1 , which can be identified as F1(ε
′′′). Therefore, ε′′′ can be written as

σ0, a1, · · · , ak, σk ◦ F2(ε
′′′) ◦ F1(ε

′′′) ◦ S(ε′′′).
Next, since F1(ε

′′′) and F2(ε
′′′) contains actions of two separate automata, therefore, by Claim 1,

we can create an execution prefix ε(iv) as σ0, a1, · · · , ak, σk ◦ F1(ε
(iv)) ◦ F2(ε

(iv)), where F1(ε
(iv))

appears before F2(ε
(iv)). Next by using Theorem 2.2 (1) we create fair execution δ(k) as an extension

of ε(iv). Clearly, it can be written as σ0, a1, · · · , ak, σk ◦ F1(δ
(k)) ◦ F2(δ

(k)) ◦ S(δ(k)). Then by O and

N properties R completes in δ(k). Since F1(ε
(iv))

s1∼ F1(ε
′′′) this implies action send(v1)s1,r sends v11

for object o1 in ε(iv) and since F1(δ
(k))

s1∼ F1(ε
(iv)), this implies action send(v1)s1,r sends v11 in δ(k),

this would imply that R(δ(k)) returns (v11, v
1
2).

Case (iv) ak+1 occur at sA2 : Since ak+1 occurs at sA2 and F1(δ
(k+1)) occurs at sA1 , (i.e., separate

automata), then by applying Claim 1 as in the previous cases we can create a new fair execution ε of

A (Figure 4 (f)) as σ0, a1, · · · , ak, σk ◦F1(ε) ◦ ak+1, σk+1 ◦F2(ε) ◦S(ε) such that, F1(ε)
s1∼ F1(δ

(k+1))
where ak+1, σk+1 occurs after F1(δ

(k+1)) and R(ε) returns (v11, v
1
2).

Now, consider the finite execution σ0, a1, · · · , ak, σk ◦ F1(ε) for A and suppose the adversary
appends the recv(mr

2)r,s2 to create a finite execution of A as σ0, a1, · · · , ak, σk ◦ F1(ε), recv(mr
2)r,s2 .

Now, by Theorem 2.2 (1), there exists a fair execution ε′ of A, where the adversary delays the input

actions at sA2 . By N and O properties send(v2)s2,r occurs in ε′. Clearly, since F1(ε
′)
s1∼ F1(ε) the

send(v1)s1,r actions, in ε and ε′, send the same value for o1. Therefore, R responds with (v11, v2),
where v2 ∈ V2.

Now, in ε′, we identify the fragment which begins with recv(mr
2)r,s2 and end with the action

send(v2)s2,r as F2(ε
′) to write ε′ as σ0, a1, · · · , ak, σk ◦F1(ε

′)◦F2(ε
′). Now using Theorem 2.2 (1), we

know there exists a fair execution δ(k) of A, which is an extension of ε′. Clearly, δ(k) can be written
as σ0, a1, · · · , ak, σk ◦ F1(δ

(k)) ◦ F2(δ
(k)) ◦ S(δ(k)), where S(δ(k)) is the tail part of the extended fair

execution. Clearly, F1(δ
(k))

s1∼ F1(ε
′); therefore, R(δ(k)) returns v11 for object o1, in δ(k) and this

implies R(δ(k)) must return (v11, v
1
2).

16

Figure 5: The architecture of a typical web service with clients, servers, and the communication channels,
between every pair of processes, inside a datacenter is modeled as a collection of I/O automata. Note that,
unlike the architecture in Fig. 2, in this setup there are communication channels between every pair of clients.

4 Impossibility of SNOW properties with three clients

In this section, we prove that for a three-client transaction processing system, with at least two
objects, it is impossible to design an algorithm that satisfies the SNOW properties. From the proof
of the SNOW Theorem [9], it is not clear whether a write transaction is ever required to complete
in the presence of ongoing read transactions (Fig. 5). Moreover, the authors in [9] do not state
explicitly whether the result of the SNOW Theorem holds if clients communicate with each other.
In our proof, we state these points explicitly: each write must complete even if there are concurrent
read transactions, and between every pair of processes, there are two communication channels, one
in each direction (Fig 5). Furthermore, we assume that if a read is invoked at a reader, then the
reader can proceed to contact the servers without waiting for any incoming messages.

We prove our result by showing a contradiction. We consider a system consisting of two servers,
s1 and s2, and three clients: two readers r1 and r2, which initiate only read transactions, and a
writer w, which initiates only write transactions. Servers s1 and s2 store values for objects o1
and o2, respectively; the values in o1 and o2 belong to the domains V1 and V2, respectively; the
initial values of o1 and o2 are v01 and v02, respectively. We denote the automata for servers s1 and
s2 by sA1 and sA2 , respectively, and the automata for the clients r1, r2 and w by rA1 , rA2 and wA,
respectively. We assume that between any pair of processes p1 and p2, such that p1 6= p2, there are
channel automata Channelp1,p2 and Channelp2,p1 . For the purpose of proving by contradiction, we
also assume that any fair execution of B respects the SNOW properties. Also, we assume that in
any execution of B we can identify each transaction with a unique identifier.

17

Consider an execution of B with three transactions: a write transaction W ≡
WRITE((o1, v

1
1), (o2, v

1
2)) initiated by w, where v11 6= v01 and v12 6= v02; and read transactions

R1 ≡ READ(o1, o2) and R2 ≡ READ(o1, o2) initiated by r1 and r2, respectively. Let us denote by
opr1 and opr2 the read operations of types read(o1) and read(o2), respectively. As in Section 3, we
assume an omniscient adversary that can control the patterns of sequences of invocations of transac-
tions, the times of these invocations, and delays in local computation and message deliveries. In the
rest of the section, in order to reduce notational clutter, for any execution of B, σ0, a1, · · · , ak, σk · · · ,
where σ’s and a’s are states and actions, we use the notation a1, · · · , ak · · · that shows only the
actions while leaving out the states.

Notations and Definitions: We introduce the following notations and definitions in the context
of a fair execution α, of B, with transactions R and W in it, where j ∈ {1, 2}:

1. send(mr
j)r,sj : an output action at rA, which sends a message mr

j from reader r to server sj ,
requesting the value for oj ;

2. recv(mr
j)r,sj : an input action at sAj , that receives the message mr

j , sent from r;

3. send(vj)sj ,r: an output action at sAj , that sends value vj , for oj , to r.

4. recv(vj)sj ,r: an input action at rA, to receive a message vj from sj at rA.

5. Non-blocking fragments Fj(α)(vj), j ∈ {1, 2}. Suppose there is a fragment of execution in α
where the first action is recv(mr

i)r,si and the last action is send(vi)si,r , both of which occur
at sAi . Moreover, suppose there is no other input action at sAi in this fragment. Then we call
this execution fragment a non-blocking response fragment for opri at sAi . We use the notation
Fi(α)(vj) to denote this fragment of execution of α (Fig. 6). In the context of a read Ri, for
i ∈ {1, 2}, we use the notation Fi,j(α)(vj) to denote Fj(α)(vj).

6. Suppose read R completes in α. Consider the execution fragment in α between the event
INV (R) and whichever of the events send(mr

2)r,s2 and send(mr
1)r,s1 that occurs later. If all

the actions in this fragment correspond to rA, then we denote this fragment as I(α) (Fig. 6).
In case of a read Ri, for i ∈ {1, 2}, we use the notation Ii(α) for I(α).

7. Suppose reads R completes in α. Consider the execution fragments in α that occurs between
the later of the events recv(v1)s1,r or recv(v2)s2,r, i.e., at the point in α when r receives
responses from both the servers, and the event RESP (R). If all the actions in this fragment
occur at rA, then we denote this fragment by E(α)(v1,v2), where R returns the values (v1, v2)
(Fig. 6). In case of a read Ri, for i ∈ {1, 2}, we use the notation Ei(α)(v1,v2) for E(α)(v1,v2).

8. We use the notations R(α) and W (α) to denote the transactions R and W , in the context of
α. When the underlying execution is clear from the context we simply use R and W .

9. For any vij ∈ Vj , the superscript i corresponds to the version identifier, which uniquely identifies
a version from a totally ordered set.

Any read R initiated at a reader r, via the invocation action INV (R) at r, after which the
actions send(mr

1)r,s1 and send(mr
2)r,s2 , at r, send message mr

1 to s1 and mr
2 to s2, respectively. Once

s1 receives recv(mr
1)r,s1 then s1 responds to r, in a non-blocking manner, with value v1 via action

18

Figure 6: The figure depicts for a fair execution α of B the relevant actions in the execution fragments of
Ii(α), Fi,1(α)(v1), Fi,2(α)(v2) and Ei(α)(v1,v2) for any read Ri, i ∈ {1, 2}.

send(v1)s1,r. Similarly, after s2 receives mr
2 it responds with v2 to r in a non-blocking manner via the

action send(v2)s2,r. After r receives v1 and v2 via actions recv(v1)s1,r and recv(v2)s2,r, respectively,
R completes with the response action RESP (R) and returns (v1, v2).

From the above discussion we can state the following useful lemma, which states that in any
execution of B, if a server si responds with a value vi during a read then the read returns vi for
object oi and also, the pair of values (vt1, v

t
2) are from some version t. The result follows from the

reliable channel model, where messages reach at their destinations unaltered; and by the S property
the object values, for objects o1 and o2, returned by R are of the same version.

Lemma 4.1. Suppose α is any execution of B such that a read R is in α. Suppose the execution

fragment I(α) ◦ F1(α)(v
t
1) ◦ F2(α)(v

s
2) ◦ E(α)(v

t′
1 ,v

s′
2) in α, corresponds to R, where vt1, v

t′
1 ∈ V1 and

vs2, v
s′
2 ∈ V2, and s, s′, t, t′ are version identifiers then (i) s = s′ and t = t′ and (ii) s′ = t′.

Proof. Suppose R is invoked at reader r. Then, via the action send(vt1)s1,r, in execution fragment

F1(α)(v
t
1), server s1 sends the value vt1 to r, which is received at r through the action recv(vt

′
1)s1,r in

E(α)(v
t′
1 ,v

s′
2). By the assumptions of the reliable channel automata in our model, we have vt1 = vt

′
1 ,

i.e., t = t′. Similar argument for F2(α)(v
s
2) and E(α)(v

t′
1 ,v

s′
2) leads us to conclude s = s′. Next, R

responds with (vt
′
1 , v

s′
2), which implies by the S property for executions of B that vt

′
1 and vs

′
2 must

correspond to the same version, i.e., s′ = t′.

Note that the above results hold even if there are any other execution fragments, that do not
contain any actions at r, s1 or s2, in-between the I, Fi and E execution fragments.

Corollary 1. Suppose α is any execution of B such that a read R is in α. Suppose the execution

fragment I(α) ◦ X1 ◦ F1(α)(v
t
1) ◦ X2 ◦ F2(α)(v

s
2) ◦ X3 ◦ E(α)(v

t′
1 ,v

s′
2) in α, corresponds to R, where

19

vt1, v
t′
1 ∈ V1 and vs2, v

s′
2 ∈ V2, X1, X2, X3 are some execution fragments that do not contain any

action at r, s1 or s2, and s, s′, t, t′ are version identifiers then (i) s = s′ and t = t′ and (ii) s′ = t′.

The following lemma states that new fair executions of B can be created by swapping execution
fragments that have no input actions, and in which each fragment contains actions that occur only
at one automaton and the automata for the two fragments are different.

Lemma 4.2 (Commuting fragments). Let α be a fair execution of B. Suppose G1(α) and G2(α)
are any execution fragments in α such that all actions in each fragment occur only at one automaton
and also, none of them are input actions. Suppose G1(α) and G2(α) occur at two distinct automata
and the execution fragment G1(α) ◦ G2(α) occurs in α. Then there exists a fair execution α′ of
B, where the execution fragment G2(α) ◦G1(α) appears in α′, such that (i) the prefix in α before
G1(α) ◦G2(α) is identical to the prefix in α′ before G1(α

′) ◦G2(α
′); and (ii) the suffix in α after

G1(α) ◦G2(α) is identical to the suffix in α′ after the execution fragment G2(α
′) ◦G1(α

′).

Proof. This is clear because the adversary can move the actions in G2 to occur before G1 at their
respective automata, and these fragments do not contain any input actions, and hence the actions
in one of these fragments cannot affect the actions in the other fragment.

The following lemma states that if there are two fair executions of B with a read R in each of
them, and suppose at any server the non-blocking execution fragments of R are identical (in terms
of the sequence of states and actions) then in both executions, R returns the same object value.

Lemma 4.3 (Indistinguishability). Let α and β be executions of B and let R be any read. Then

(i) if F1(α)
s1∼ F1(β) then both R(α) and R(β) respond with the same value v1 for o1; and (ii) if

F2(α)
s2∼ F2(β) then both R(α) and R(β) respond with the same value v2 for o2;

Proof. Suppose R is invoked at some reader r. Let j ∈ {1, 2} and suppose the fragments Fj(α) and
Fj(β) appears in α and β respectively, where in Fj(α) server sj sends vj ∈ Vj to r. Then R(α) must

return vj for object oj by the O property of B. Then since Fj(α)
sj∼ Fj(β) then in Fj(β) the server

sj must also send vj to r, therefore, both R(α) and R(β) must return value vj for oj .

Below we show that in any finite execution of B where the final action is an invocation of read
R at a reader r, the adversary can always induce a fair execution of B where the fragments I, F1,
F2 and E appear consecutively in that order.

Lemma 4.4. If any finite execution of B ends with INV (R), for a read R then there exists an
extension α which is a fair execution of B and is of the form P (α) ◦ I(α) ◦ F1(α)(v1) ◦ F2(α)(v2) ◦
E(α)(v1,v2) ◦ S(α), where P (α) is the prefix and S(α) denotes the rest of the execution.

Proof. Consider a finite execution of B that end with INV (R), which occurs at some reader
r, then the adversary induces the execution fragment I(α) by delaying all actions, except the
internal and output actions at rA, between the actions INV (R) and the later of the actions
send(mr

1)r,s1 and send(mr
2)r,s2 . Next, the adversary delivers mr

1 at s1 (via the action recv(mr
1)r,s1)

and delays all actions, other than internal and output actions at sA1 , until s1 responds with v1, via
send(v1)s1,r; we identify this execution fragment as F1(α)(v1). Subsequently, in a similar manner,
the adversary delivers the message mr

2 and delays appropriate actions to induce the execution
fragment F2(α)(v2). Finally, the adversary delivers the values v1 and v2 to r (via the events

20

Figure 7: The sequence of fair executions of B with three clients with the operation W , R1 and R2 eventually
leading to the execution α10 that contradicts the S property. The directed arcs depicts the transposition of
execution fragments from the previous execution in the sequence.

recv(v1)s1,r and recv(v2)s2,r), and delays all actions at other automata until R completes with
action RESP (R) by returning (v1, v2). As a result, we arrive at a fair execution of B of the form
I(α) ◦ F1(α)(v1) ◦ F2(α)(v2) ◦ E(α)(v1,v2) ◦ S(α).

The high-level view of our proof strategy is to create a fair execution α of B that contradicts
the S property. We begin with a fair execution of B that contains reads R1 and R2, and write
W , where R1 begins after W completes, and R2 begins after R1 completes. Clearly, by the S
property both R1 and R2 return (v11, v

1
2). Then we successively create a sequence of fair executions

of B (Fig. 7), where we interchange the fragments until we finally reach an execution of where R2

completes before R1 begins, but R2 returns (v11, v
1
2) and R1 returns (v01, v

0
2) which contradicts the S

property.
The following lemma show that in an execution of B with a write W and a read R1, there

exists a point in the execution such that if R1 is invoked before that point then R1 returns (v01, v
0
2)

and if invoked after that point then R1 returns (v11, v
1
2).

Lemma 4.5 (Existence of α0 and α1). There exist fair executions α0 and α1 of B that contain
transactions W and R1 with the following properties:

21

(i) α0 can be written as a1, · · · , ak ◦R1(α0)
(v01 ,v

0
2) ◦ S(α0) ;

(ii) α1 can be written as a1, · · · , ak+1 ◦R1(α1)
(v11 ,v

1
2) ◦ S(α1); and

(iii) ak+1 in α1 occurs at rA1 ,

where k is some positive integer and a1, · · · , ak is a prefix of a1, · · · , ak+1.

Proof. Now we describe the construction of a sequence {γk}∞k=0 of finite executions of B such that
each γk contains W and R1. Let us consider a fair execution α of B that contains W . Suppose k is
any positive integer and suppose R1 is invoked at rA1 after the execution fragment a1, · · · , ak+1, a
prefix of α. After the action INV (R), the adversary schedules only internal and external actions
at rA1 until both the events send(mr1

1)r1,s1 and send(mr1
2)r1,s2 occur, thereby creating an execution

fragment of the form a1, · · · , ak+1 ◦ I1(α). Let us denote a1, · · · , ak+1 by Pk+1.
Following this, the adversary delivers the messages mr1

1 at s1, and delays all actions at other
automata and also any input action at s1, until s1 sends v1 to r1, therefore, inducing the execution
fragment Pk+1 ◦ I1,1(α) ◦ F1,1(α) of B. Next, the adversary delivers mr1

2 at s2 and delays all actions
at other automata and input actions at s2, until s2 sends v2 to r1. Then the adversary delivers
v1 and v2 at r1 but it delays actions at other automata and any other input action at r1, until
RESP (R1) occurs. Up to this point this is an execution fragment of B, which can be written
as Pk+1 ◦ I1(α) ◦ F1,1(α)(v1) ◦ F1,2(α)(v2) ◦ E1(α)(v1,v2), where R1 responds with (v1, v2) such that
(v1, v2) ∈ {(v01, v02), (v11, v

1
2)}. We denote this finite execution prefix as γk. Therefore, there exists

the sequence of such finite executions {γk}∞k=0.
In γ0, R1 precedes W and therefore, by the S property, in γ0, R1 must respond with (v01, v

0
2).

On the other hand, if k is large enough such that ak occurs in α after the completion of W then by
the S property, in γk+1, R1 must return (v11, v

1
2). Therefore, there exists a minimum k where in γk

read R1 returns (v01, v
0
2) and in γk+1, R1 returns (v11, v

1
2). We identify γk as α0 and γk+1 as α1 as

in claims (i) and (ii), respectively.
Now, we show (iii) by eliminating the possibility of ak+1 occurring at sA1 , sA2 , wA or rA2 by

showing contradictions. Our proof is based on the following argument. The S property implies that
R1 must respond with values for o1 and o2 corresponding to the same version, which implies that s1
and s2 must send values of the same version. Observe that R1, in α0 and α1, returns values for
versions 0 (i.e., (v01, v

0
2)) and 1 (i.e., (v11, v

1
2)), respectively, but the prefixes Pk and Pk+1 differ from

one another only by action ak+1. But just one action at any of s1, s2, r2 or w is not enough for s1
and s2 to coordinate to return values of the same version. Therefore, ak+1 must occur in r1, which
can possibly synchronize by sending some information in m1 and m2 to s1 and s2, respectively.

Case ak+1 occurs at sA1 : Consider the prefix of execution α0 up to the action ak. Suppose the
adversary invokes R1 immediately after action ak, i.e., via INV (R1). By Lemma 4.4 there exists fair
execution α′ of B that contains an execution fragment of the form Pk◦I1(α′)◦F1,1(α

′)(v1)◦F1,2(α
′)(v2)◦

E(α′)(v1,v2). Note that in both α′ and α1 we can have I1(α1)
r1∼ I1(α′) and F1,2(α1)

s2∼ F1,2(α
′), this

is because in both executions the actions of I1 occur entirely at r1 and those of F1,2 entirely at
s2. As a result, F1,2(α

′) must send the same value v12 for o2 to r1 as in F1,2(α1). Then in α′, by
Lemma 4.3, R1(α

′) returns v12 for object o2, and by the S property, R1(α
′) returns (v11, v

1
2). But

this contradicts the definition of k, as the minimum value of k such that R1 responds with (v01, v
0
2).

Case ak+1 occurs at sA2 : A contradiction can be shown by following a line of reasoning similar
to the preceding case.

22

Case ak+1 occurs at wA: This can be argued in a similar manner as the previous case and a bit

easier because we have F1,1(α1)
s1∼ F1,1(α

′), and also, F1,2(α1)
s2∼ F1,2(α

′).
Case ak+1 occurs at rA2 : A contradiction can be derived using a line of reasoning as in the

previous case.
From the above, we conclude that in α1, action ak+1 must occur at rA1 .

Additional notation: In the remainder of the section, for the execution fragments Ii(α),

Fi,1(α)(v1), Fi,2(α)(v2), Ei(α)(v1,v2) and S(α), for i ∈ {1, 2} we use the notations Ii, F
(v1)
i,1 , F

(v2)
i,2 ,

E
(v1,v2)
i and S, respectively, suppressing the explicit reference to the execution. With regard to any

read Ri if it has an execution fragment of the form Ii(α) ◦ Fi,1(α)(v1) ◦ Fi,2(α)(v2) ◦ Ei(α)(v1,v2) we

denote it as R
(v1,v2)
i . Also, wherever the returned values in the fragments are not known, clear from

the context or irrelevant we omit them. In the rest of the section, we fix α0 and α1, and the value
of k; we denote the execution fragments a1, · · · , ak and a1, · · · , ak+1 as Pk and Pk+1, respectively,
which are the same irrespective of the execution they appear in.

The following lemma states the existence of an execution of B where, following a write, there
are two consecutive reads and both return the object values updated by the write.

Lemma 4.6 (Existence of α2). There exists fair execution α2 of B that contains transactions W ,

R1 and R2 and can be written in the form Pk+1 ◦R
(v11 ,v

1
2)

1 ◦R(v11 ,v
1
2)

2 ◦S, where both R1 and R2 return
(v11, v

1
2).

Proof. We can construct a fair execution α2 of B as follows. Consider the prefix a1, · · · , ak+1 ◦
R1(α1)

(v11 ,v
1
2) of the execution α1, from Lemma 4.5. At the end of this prefix, the adversary

invokes R2. Now, by Lemma 4.4, due to INV (R2) there is an extension of the prefix of the form
a1, · · · , ak+1 ◦ R1(α1)

(v11 ,v
1
2) ◦ I(α) ◦ F1(α)(v1) ◦ F2(α)(v2) ◦ E(α)(v1,v2). By the S property, we have

v1 = v11 and v2 = v12. Therefore, α2 (Fig. 7) can be written in the form Pk+1 ◦R
(v11 ,v

1
2)

1 ◦R(v11 ,v
1
2)

2 ◦ S,
where S is the rest of the execution.

Based on the previous execution, the following lemma states that there is a fair execution of B
where the I2 occurs earlier than the action ak+1 and invocation of R1.

Lemma 4.7 (Existence of α3). There exists fair execution α3 of B that contains transactions W ,

R1 and R2, and can be written in the form Pk ◦ I2 ◦ ak+1 ◦R
(v11 ,v

1
2)

1 ◦ F2,1 ◦ F2,2 ◦E2 ◦ S, where both
R1 and R2 return (v11, v

1
2).

Proof. Consider the execution α2 as in Lemma 4.6. In the execution fragment I1◦F
(v11)
1,1 ◦F

(v12)
1,2 ◦E

(v11 ,v
1
2)

1

in α2, none of the actions occur at r2 and by Lemma 4.5, ak+1 occurs at rA1 , also the actions in I2
occur only at r2. Starting with α2, and by repeatedly using Lemma 4.2, we create a sequence of four

fair executions of B by repeatedly swapping I2 with the execution fragments E
(v11 ,v

1
2)

1 , F
(v12)
1,2 , F

(v11)
1,1

and I1, which appears in I1 ◦ F
(v11)
1,1 ◦ F

(v12)
1,2 ◦ E

(v11 ,v
1
2)

1 ◦ I2, where the following sequence of execution

fragments I1◦F
(v11)
1,1 ◦F

(v12)
1,2 ◦I2◦E

(v11 ,v
1
2)

1 (by commuting I2 and E
(v11 ,v

1
2)

1); I1◦F
(v11)
1,1 ◦I2◦F

(v12)
1,2 ◦E

(v11 ,v
1
2)

1

(by commuting I2 and F
(v12)
1,2); I1 ◦ I2 ◦ F

(v11)
1,1 ◦ F

(v12)
1,2 ◦E

(v11 ,v
1
2)

1 (by commuting I2 and F
(v11)
1,1) appear.

Finally, we have an execution α′ of the form Pk+1 ◦ I2 ◦ R
(v11 ,v

1
2)

1 ◦ F (v11)
2,1 ◦ F

(v12)
2,2 ◦ E

(v11 ,v
1
2)

2 ◦ S (by
commuting I2 and I1) Next, from α′, by using Lemma 4.2 and swapping ak+1 with I2 we show the
existence of a fair execution α3 as stated in the lemma.

23

In the following lemma, we show that we can create a fair execution α4, of B, where F2,2 occurs

immediately before E
(v11 ,v

1
2)

1 , while R1 and R2 both return (v11, v
1
2).

Lemma 4.8 (Existence of α4). There exists fair execution α4 of B that contains transactions W ,
R1 and R2 and can be written in the form Pk ◦ I2 ◦ ak+1◦I1 ◦ F1,1 ◦ F1,2 ◦ F2,2 ◦ E1◦F2,1 ◦ E2 ◦ S,
where both R1 and R2 return (v11, v

1
2).

Proof. We start with an execution α3, as in Lemma 4.7, and apply Lemma 4.2 twice.
First, by Lemma 4.2, we know there exists a fair execution α′ of B where F2,1 (identify as G1)

and F2,2 (identify as G2) are interchanged since actions of F2,1 occurs solely at s1 and those of F2,2

at s2, and F2,1 and F2,2 return v11 and v12, respectively, to r2.
Next, by Lemma 4.2 there is fair execution of B, say α4 where the fragments E1 (identify as G1)

and F2,2 (identify as G2) are interchanged, with respect to α′, because the actions in E1 occur at

r1 and those of F2,2 at s2. Furthermore, α4 can be written in the form Pk ◦ I2 ◦ ak+1◦I1 ◦ F
(v11)
1,1 ◦

F
(v12)
1,2 ◦ F

(v12)
2,2 ◦ E

(v11 ,v
1
2)

1 ◦ F (v11)
2,1 ◦ E

(v11 ,v
1
2)

2 ◦ S.

Next, we create a new fair execution α5 of B where F2,2 occurs before F1,2. However, because
the actions in both of these execution fragments occur at the same automaton care has to be taken
to swap these fragments compared to α4.

Lemma 4.9 (Existence of α5). There exists fair execution α4 of B that contains transactions W ,
R1 and R2 and can be written in the form Pk ◦ I2 ◦ ak+1◦I1 ◦ F1,1 ◦ F2,2 ◦ F1,2 ◦ E1◦F2,1 ◦ E2 ◦ S,
where both R1 and R2 return (v11, v

1
2).

Proof. In α4, all actions in F1,2 and F2,2 occur at s2. Consider the prefix of α4 that ends with
F1,1. We extend this prefix as follows. In this prefix, the actions send(mr2

2)r2,s2 and send(mr1
2)r1,s2

do not have their corresponding recv actions. Suppose the adversary delivers mr2
2 at s2 (via the

action recv(mr2
2)r2,s2) and delays all actions, other than internal and output actions at sA2 , until s2

responds with v2, via action send(v2)s2,r2 . This extended execution fragment is of the form F2,2.
Similarly, the adversary further extends the execution by placing the action recv(mr1

2)r1,s2 at s2 and
create the execution fragment of form F1,2. Note that, so far, the actions due to the above extensions
are entirely at s2. Suppose the adversary makes the execution fragments E1 next, by delivering
values sent during F1,1 and F1,2 via the actions recv(v1)s1,r1 and recv(v2)s2,r1 , respectively, at r1.
Then F2,1 appear next, such that this fragment contains exactly the same sequence of actions as in
the corresponding execution fragment in α4. This is possible because they are not influenced by any
output action in F2,2 or F1,2. Suppose the adversary places the execution fragment E2 next. Let us
denote the fair execution that is a extension of this finite execution so far as α5, which is of the
form Pk ◦ I2 ◦ ak+1◦I1 ◦ F1,1 ◦ F2,2 ◦ F1,2 ◦E1◦F2,1 ◦E2 ◦ S. Now we need to argue about the values
returned by the reads.

Note that the execution fragment F1,1(α4) in both α4 and α5 is the same, therefore, F1,1(α4)
s1∼

F1,1(α5). Hence as in α4, s1 returns v11 in the execution fragment F1,1 in α5. Next by Lemma 4.3 for
R1, s2 returns v12 in F1,2 and hence by the S property, R1(α5) returns (v11, v

1
2), i.e., that r1 returns

the new version of object values. Therefore, F1,1(α4), F1,2 and E1 are of the form F
(v11)
1,1 , F

(v12)
1,2 and

E
(v11 ,v

1
2)

1 , respectively.
Note that by construction of α5 above, the execution fragment F2,1 in both α4 and α5 is the

same, therefore, F2,1(α4)
s1∼ F2,1(α5). Hence as in α4, s1 returns v11 in the execution fragment

24

F2,1(α5) in α5, i.e., of the form F2,1(α5)
(v11). Since s1 returns v11 in F2,1 in α5, by Lemma 4.3 and

the S property, R2 returns (v11, v
1
2) and hence E2 is of the form E

(v11 ,v
1
2)

2 .

From the above argument we know that α5 is of the form Pk ◦ I2 ◦ak+1◦I1 ◦F
(v11)
1,1 ◦F

(v12)
2,2 ◦F

(v12)
1,2 ◦

E
(v11 ,v

1
2)

1 ◦F (v11)
2,1 ◦ E

(v11 ,v
1
2)

2 ◦ S.

In the next lemma, we show the existence of a fair execution of B where R1 returns (v01, v
0
2) and

I2 occurs immediately after ak and R2 responds with (v11, v
1
2). In fact, this is the most important of

the sequence of fair executions of B (Fig. 7) because later with this we prove in Theorem 4.15 the
existence of a fair execution of B where a read returns object-values of an earlier version compared
to a previous read that is not concurrent with it.

Lemma 4.10 (Existence of α6). There exists fair execution α6 of B that contains transactions W ,
R1 and R2 and can be written in the form Pk ◦ I2 ◦ I1 ◦ F1,1 ◦ F2,2 ◦ F1,2 ◦ E1 ◦ F2,1 ◦ E2 ◦ S, where
R1 returns (v01, v

0
2) and R2 returns (v11, v

1
2).

Proof. The crucial part of this proof is to carefully use the result of Lemma 4.5 so that R1 returns
(v01, v

0
2), instead of (v11, v

1
2). Note that by the construction of α5, as in Lemma 4.9, the same prefix

Pk appears in the fair executions α5, and the executions α0 and α1 as in Lemma 4.5, where k is
defined as in Lemma 4.5.

Note that by Lemma 4.5, action ak+1 occurs at rA1 . In α5, in the execution fragment ak+1◦I1 ◦
F

(v11)
1,1 ◦ F

(v12)
2,2 , the actions in execution fragment ak+1◦I1 occur at rA1 ; actions in F

(v11)
1,1 occur at sA1 ;

and actions in F
(v12)
2,2 occur at sA2 . Now consider the prefix of execution α4 ending with I2 and suppose

the adversary invokes R1 immediately after I2 (instead of after ak+1) and extends by the execution
fragment I1 ◦F1,1 ◦F2,2 to create a new finite execution ε, which is of the form Pk ◦ I2 ◦ I1 ◦F1,1 ◦F2,2.
Note that as a result, ak+1 may not be in ε because we are introducing changes before ak+1 can
occur.

Note that if in the prefix Pk ◦I2(ε)◦I1(ε)◦F1,1(ε)◦F2,2(ε) of ε we ignore the actions in I2(ε) then
the remaining execution is the same as the prefix Pk ◦ I1(α0)◦F1,1(α0)◦F2,2(α0) of α0 in Lemma 4.5.
Here we explicitly use the notations ε and α0 to avoid confusion. Since the actions in I2(ε) have

no influence in the actions on I1(ε) ◦ F1,1(ε) ◦ F2,2(ε), therefore, we have F1,1(ε)
s1∼ F1,1(α0), and

hence by Lemma 4.1 F1,1(ε) returns v01 as in F1,1(α), i.e., in F1,1, s1 returns v01. Now by Lemma 4.3
we conclude that for any extension of ε, say γ, read R1(γ) returns v01 for object o1 and by the S

property R1(γ) returns (v01, v
0
2). Also, since F2,2(α5)

s2∼ F2,2(ε)
s2∼ F2,2(γ) by Lemma 4.3 and the S

property, R2(γ) must return (v11, v
1
2). Therefore, γ has an extension to a fair execution α6 (Fig. 7)

which is of the form Pk ◦ I2 ◦ I1 ◦F
(v01)
1,1 ◦F

(v12)
2,2 ◦F

(v02)
1,2 ◦E

(v01 ,v
0
2)

1 ◦F (v11)
2,1 ◦E

(v11 ,v
1
2)

2 ◦S as in the statement
of the lemma.

In the following lemma, starting from α6 in Lemma 4.10 we create a fair execution α7 for B
where F2,1 appears before F1,2 ◦E1, where R1 returns (v01, v

0
2) and R2 returns (v11, v

1
2). At high level,

we will be working on moving the execution fragments of R2 forward, a little at a time, until finally
we have R2 finishing before R1 starts. This simply uses commutativity since the actions in the
swapped execution fragments occurs at different automata.

Lemma 4.11 (Existence of α7). There exists fair execution α7 of B that contains transactions W ,
R1 and R2, and can be written in the form Pk ◦ I2 ◦ I1 ◦ F1,1 ◦ F2,2 ◦ F2,1 ◦ F1,2 ◦ E1 ◦ E2 ◦ S where
R1 returns (v01, v

0
2) and R2 returns (v11, v

1
2).

25

Proof. This result is proved by applying the result of Lemma 4.2 to the fair execution created in
Lemma 4.10. Suppose, α6 (Fig. 7) is a fair execution as in Lemma 4.10, where in the execution

fragment E
(v01 ,v

0
2)

1 ◦ F2,1 we identify E
(v01 ,v

0
2)

1 as G1 and F
(v02)
1,2 as G2. The actions of G1 and G2 occur

at two distinct automata, therefore, we can use the result of Lemma 4.2, to argue that there exists

a fair execution α′ of B that contains the execution fragment F2,1 ◦ E
(v01 ,v

0
2)

1 , and α6 and α′ are
identical in the prefixes and suffixes corresponding to G1 and G2.

Now, α′ contains F1,2 ◦ F2,1, where the actions in F1,2 (identified as G1) and F2,1 (identify as
G2) occur at distinct automata. Hence, by Lemma 4.2 there exists an execution α7 of the form

Pk ◦ I2 ◦ I1 ◦ F
(v01)
1,1 ◦ F

(v12)
2,2 ◦ F

(v11)
2,1 ◦ F

(v02)
1,2 ◦ E

(v01 ,v
0
2)

1 ◦ E(v11 ,v
1
2)

2 ◦ S.

In the following lemma by using simple commuting arguments of Lemma 4.2, we show the
existence of a fair execution α7 of B where F2,2 appears before I1 ◦ F1,1, where R1 returns (v01, v

0
2)

and R2 returns (v11, v
1
2).

Lemma 4.12 (Existence of α8). There exists fair execution α8 of B that contains transactions W ,
R1 and R2 and can be written in the form Pk ◦ I2 ◦ F2,2◦I1 ◦ F1,1 ◦ F2,1◦F1,2 ◦E1 ◦E2 ◦ S, where R1

returns (v01, v
0
2) and R2 returns (v11, v

1
2).

Proof. Consider the fair execution α7 of B as in Lemma 4.11. In the context of of Lemma 4.2, in
α7 (Fig. 7) the actions in F1,1 (identify as G1) occur at sA1 and those in F2,2 (identify as G2) at sA2 .
Then by Lemma 4.2 there exists a fair execution α′ of B, of the form Pk ◦ I2 ◦ I1 ◦ F2,2 ◦ F1,1 ◦ F2,1 ◦
F1,2 ◦ E1 ◦ E2 ◦ S, where F2,2 and F1,1 are interchanged.

Since actions in F2,2 (identify as G1) occur at sA1 and those in I1 (identify as G1) occur at sA1
then by Lemma 4.2 there is a fair execution of B, α8 where F2,2 appear before I1, i.e., of the form
Pk ◦ I2 ◦ F2,2 ◦ I1 ◦ F1,1 ◦ F2,1 ◦ F1,2 ◦ E1 ◦ E2 ◦ S, where F2,2 and I1 are interchanged.

By (ii) of Lemma 4.2 we have F2,1(α
′)
s1∼ F2,1(α8) hence F2,1 sends v11 and F1,1 and F1,2 sends

v01 and v02, respectively. So considering these returned values we have α8 (Fig. 7) in the form as
stated in the lemma.

The following lemma shows the existence of a fair execution of B, α9, where we move F2,1

forward past F1,1.

Lemma 4.13 (Existence of α9). There exists fair execution α9 of B that contains transactions W ,

R1 and R2 and can be written in the form Pk ◦I2 ◦F
(v12)
2,2 ◦I1 ◦F

(v11)
2,1 ◦F

(v01)
1,1 ◦F

(v02)
1,2 ◦E

(v01 ,v
0
2)

1 ◦E(v11 ,v
1
2)

2 ◦S
where R1 returns (v01, v

0
2) and R2 returns (v11, v

1
2).

Proof. In α8 from Lemma 4.12, all the actions in I1 occur at r1; those in F1,1 occur at s1; and
the actions in F2,1 occur only at s1. Note that actions of both execution fragments F2,1 and F1,1

occur at r1. Consider the prefix of α8 that ends with I1 then suppose the adversary extends this
prefix by adding an execution fragment of the form F2,1 ◦F1,1 as follows. First note that the actions
send(mr2

1)r2,s1 and send(mr1
1)r1,s1 appears in the prefix but do not have corresponding recv actions.

The adversary places action recv(mr2
1)r2,s1 , and allows an execution fragment of the form F2,1 to

appear. Now, immediately after this the adversary further extends it with an execution fragment of
the form F1,1 by placing action recv(mr1

1)r1,s1 . Next the fragment F1,2 is added and is the same as
F1,2(α8). This last step can be argued by the fact that none of the actions in F1,2 can be affected
by any of the output actions at F2,1 and F1,1. Note that the actions in F1,2 are taking place at s2,
which is not affected by the above fragments, and therefore, at the end of this fragment s2 returns

26

v01, as in α8. But by S property F1,1 has to return v01 as well. Note that a careful argument can be
done by using Theorem 2.3 to conclude the same. Following this the adversary allows the rest of the
execution by adding an execution fragment of the form E1 ◦ E2 ◦ S. The resulting fair execution is

of the form Pk ◦ I2 ◦F
(v12)
2,2 ◦I1 ◦F2,1 ◦F1,1◦F

(v02)
1,2 ◦E1 ◦E2 ◦ S, where we retained the values wherever

it is known, and we denote this fair execution by α9.
Now, we argue about the return values in α9. Applying Lemma 4.3 to R2 and F2,2 implies that

R2 returns (v11, v
1
2). Similarly, applying Lemma 4.3 to R1 and F1,2 implies that R1 must return

(v01, v
0
2) in α9.

Now we show the existence of a fair execution of B where the execution fragments corresponding
to R1 appears before R2, where R1 returns (v01, v

0
2) and R2 completes by returning (v11, v

1
2).

Lemma 4.14 (Existence of α10). There exists fair execution α10 of B that contains transactions

W , R1 and R2 and can be written in the form Pk ◦R
(v11 ,v

1
2)

2 ◦R(v01 ,v
0
2)

1 ◦ S. where R1 returns (v01, v
0
2)

and R2 returns (v11, v
1
2).

Proof. Now, by using Lemma 4.2 to α9, we can interchange F2,1 and I1 to create a fair execution α10

(Fig. 7) of B, which is of the form Pk ◦ I2 ◦ F
(v12)
2,2 ◦ F

(v11)
2,1 ◦R

(v01 ,v
0
2)

1 ◦ E(v11 ,v
1
2)

2 ◦ S, where the returned
values are determined by Lemma 4.1.

Note that in the execution fragment none of the actions in the execution fragment I1 ◦ F
(v01)
1,1 ◦

F
(v02)
1,2 ◦ E

(v01 ,v
0
2)

1 occur at rA2 and in E
(v11 ,v

1
2)

2 each of the action occur at rA2 . Therefore, by applying
Lemma 4.2, we can consecutively swap E2 with E1, F1,2, I1 and F1,1 we create a sequence of four

fair executions of B to arrive at fair execution α10 (Fig. 7) of the form Pk ◦R
(v11 ,v

1
2)

2 ◦R(v01 ,v
0
2)

1 ◦S.

The following statement proves the statement of the SNOW Theorem by showing the existence
of fair execution α10, of B, where R2 completes before R1 is invoked and R2 completes by returning
(v11, v

1
2) whereas R1 returns (v01, v

0
2), which violates the S property in α10.

Theorem 4.15. The SNOW properties cannot be implemented in a system with two readers and
one writer, for two servers even in the presence of client-to-client communication.

Proof. Note that in α10, R2 completes by returning (v11, v
1
2) and R1, although invoked after R2

returns (v01, v
0
2), is initiated and as a result α10 violates the S property.

5 Condition for proving strict serializability

In this section, we derive a useful property for executions of algorithms that implement objects
of data type OT that will later help us show the strict serializability property (S property) of
algorithms presented in later sections.

Although the strict serializability property in transaction-processing systems is a well-studied
topic, the specific setting considered in this paper is much simpler. Therefore, this allows us to derive
simpler conditions to prove the safety of these algorithms. A wide range of transaction types and
transaction processing systems are considered in the literature. For example, in [13], Papadimitriou
defined the strict serializability conditions as a part of developing a theory for analyzing transaction
processing systems. In this work, each transaction T consists of a set of write operations W , at
individual objects, and a set of read operations R from individual objects, where the operations

27

in W must complete before the operations in R execute. Other types of transaction processing
systems allow nested transactions [4, 8, 11], where the transactions may contain sub-transactions [2]
which may further contain a mix of read or write operations, or even child-transactions. In most
transaction processing systems considered in the literature, transactions can be aborted so as to
handle failed transactions. As a result, the serializability theories are developed while considering
the presence of aborts. However, in our system, we do not consider any abort, nor any client or
server failures. A transaction in our system is either a set of independent writes or a set of reads
(see Section 2.2) with all the reads or writes in a transaction operating on different objects. Such
simplifications allow us to formulate an equivalent condition for the execution of an algorithm to
prove the S property of such algorithms while implementing an object of data type OT .

We note that an execution of a variable of type OT is a finite sequence v0, INV1, RESP1,
v1, INV2, RESP2,v2, · · · ,vr or an infinite sequence v0, INV1, RESP1,v1, INV2, RESP2,v2, . . .,
where INV ’s and RESP ’s are invocations and responses, respectively. The vis are tuples of the
the form (v1, v2, · · · , vk) ∈ Πq

i=1Vi, that corresponds to the latest values stored across the objects
o1, o2 · · · ok, and the values in v0 are the initial values of the objects. Any adjacent quadruple
such as vi, INVi+1, RESPi+1, vi+1 is consistent with the f function for an object of type OT (see
Section 5) . Now, the safety property of such an object is a trace that describes the correct response
to a sequence of INV s when all the transactions are executed sequentially. The strict serializability
of OT says that each trace produced by an execution of OT with concurrent transactions appears as
some trace of OT . We describe this below in more detail.

Definition 2 (Strict-serializability). Let us consider an execution β of an object of type OT , such
that the invocations of any transaction at any client respects the well-formedness property. Let Π
denote the set of complete transactions in β then we say β satisfies the strict-serializability property
for OT if the following are possible:

(i) For every complete read or write transaction π we insert a point (serialization point) π∗
between the actions INV (π) and RESP (π).

(ii) We select a set Φ of incomplete transactions in β such that for each π ∈ Φ we select a response
RESP (π).

(iii) For each π ∈ Φ we insert π∗ somewhere after INV (π) in β, and remove the INV for the rest
of the incomplete transactions in β.

(iv) If we assume for each π ∈ Π ∪ Φ both INV (π) and RESP (π) to occur consecutively at π∗,
with the interval of the transaction shrunk to π∗, then the sequence of transactions in this new
trace is a trace of an object of data type OT .

Now, we consider any automaton B that implements an object of type OT , and prove a result
that serves us an equivalent condition for proving the strict serializability property of B. Any
trace property P of an automaton is a safety property if the set of executions in P is non-empty;
prefix-closed, meaning any prefix of an execution in P is also in P ; and limit-closed, i.e., if β1,
β2, · · · is any infinite sequence of executions in P is such that βi is prefix of βi+1 for any i, then
the limit β of the sequence of executions {βi}∞i=0 is also in P . From Theorem 13.1 in [10], we
know that the trace property, which we denote by PSC , of any well-formed execution of B that
satisfies the strict-serializability property is a safety property. Moreover, from Lemma 13.10 in [10]
we can deduce that if every execution of B that is well-formed and failure-free, and also contains

28

no incomplete transactions, satisfies PSC , then any well-formed execution of B that can possibly
have incomplete transactions is also in PSC . Therefore, in the following lemma, which gives us
an equivalent condition for the strict serializability property of an execution β, we consider only
executions without any incomplete transactions. The lemma is proved in a manner similar to Lemma
13.16 in [10], for atomicity guarantee of a single multi-reader multi-writer object.

Lemma 5.1. Let β be an execution (finite or infinite) of an automaton B that implements an object
of type OT , which consists of a set of k sub-objects. Suppose all clients in β behave in an well-formed
manner. Suppose β contains no incomplete transactions and let Π be the set of transactions in β.
Suppose there exists an irreflexive partial ordering (≺) among the transactions in Π, such that,

P1 For any transaction π ∈ Π there are only a finite number of transactions φ ∈ Π such that
φ ≺ π;

P2 If the response event for π precedes the invocation event for φ in β, then it cannot be that
φ ≺ π;

P3 If π is a write transaction in π and φ is any transaction in Π, then either π ≺ φ or φ ≺ π;
and

P4 A tuple v ≡(vi1 , vi2 , · · · , viq) returned by a READ(oi1 , oi2 , · · · , oiq), where q is any positive
integer, 1 ≤ q ≤ k, is such that vij j ∈ {1, · · · , q} is written in β by the last preceding (w.r.t.
≺) write transaction that contains a write(oij , ∗), or the initial value v0ij if no such write
exists in β.

Then execution β is strictly serializable.

Proof. We discuss how to insert a serialization point ∗π in β for every transaction π ∈ Π. First, we
add ∗π immediately after the latest of the invocations of π or φ ∈ Π such that φ ≺ π. Note that
according to condition P1 for π there are only finite number of such invocations in β, therefore, π∗
is well-defined. Now, since the order of the invocation events of the transactions in Π are already
defined the order of the corresponding set of serialization points are well-defined except for the case
when more than one serialization points are placed immediately after an invocation. In the case
such multiple serialization points corresponding to an invocation we order order these serialization
points in accordance with the ≺ relation of the underlying transactions.

Next, we show that for any pair of transactions φ, π ∈ Π if φ ≺ π then ∗φ precedes ∗π. Suppose
φ ≺ π. By construction, each of π∗ and φ∗ appear immediately after some invocation of some
transaction in Π. If both π∗ and φ∗ appear immediately after the same invocation, then since φ ≺ π,
by construction of π∗, π∗ is ordered after φ∗. Also, if the invocations after which π∗ and φ∗ appear
are distinct, then by construction of π∗, π∗ appear after φ∗ since φ ≺ π.

Next we argue that each ∗π serialization point for any π ∈ Π is placed between the invocation
INV (π) and responses RESP (π). By construction, ∗π is after INV (π). To show that ∗π is before
RESP (π) for the sake of contradiction assume that ∗π appears after RESP (π). By construction,
∗π must be after INV (φ) for some φ ∈ Π and φ 6= π, they by the condition of construction of π∗ we
have φ ≺ π. But from above INV (φ) occurs after RESP (π), i.e., π completes before φ in invoked
which means, by property P2, we cannot have φ ≺ π, a contradiction.

Next, we show that if we were to shrink the transactions intervals to their corresponding
serialization points, the resulting trace would be a trace of the underlying data type OT . In other

29

words, we show any read READ(oi1 , oi2 , · · · , oiq) returns the values (vi1 , vi2 , · · · , viq), such that
each value vij , j ∈ [q], was written by the immediately preceding (w.r.t. the serialization points)
write that contained write(oij , vij) or the initial values if no such previous write exists. Let us
denote the set of writes that precedes (w.r.t. ≺) π by Π≺πW , i.e., φ ∈ Π≺πW φ is a write and φ ≺ π.
By property P3, all transactions in Π≺πW are totally-ordered. By property P4, vij must be the
value updated by the most recent write in Π≺πW . Since the total order of serialization points are
consistent with ≺ and hence the vij corresponds to the write operation of a write transaction with
the most recent serialization point and contains a operation of type write(oij , ∗).

6 SNOW on MWSR with client-to-client messages

In this section, we present algorithm A for transaction processing in the multiple-writers single-
reader (MWSR) setting, and prove that any fair and well-formed execution of A satisfies the SNOW
properties. In practice, a system with a single reader may not be very useful but this algorithm serves
as counter example algorithm to exhibit the point that if client-to-client communication is allowed
it is still possible to implement the SNOW properties. Algorithm A shows that if client-to-client
messaging is allowed, it is possible to have algorithms for transaction processing with two clients
that satisfies the SNOW properties. We consider a system where there are ` ≥ 1 writers with
ids w1, w2 · · ·w` (we denoted this set by W), one reader with id r, and k ≥ 1 servers with ids
s1, s2 · · · sk (denote as S) that maintains the objects o1, · · · , ok, respectively. We assume writers
can send messages to the reader, and the reader can respond back to the writers, i.e., we allow
client-to-client messages. Note that for a two-client system, when both clients are of the same type,
i.e., two writers or two reads, the SNOW properties are trivially satisfied.

The steps of algorithm A are presented in Fig.4. We assume that each of the processes are run in
a single-threaded manner, and therefore, each of the servers or the clients executes the algorithmic
steps sequentially. For uniquely identifying a write transaction we use keys in algorithm A. A key
κ is defined as a pair (z, w), where z ∈ N and w ∈ W the id of a writer. We use K to denote the set
of all possible keys. Also, with each transaction we associate a tag t ∈ N, which will help us define
an order among the transactions.

State Variables: The state variables in writer, reader and server processes are as follows. (i) Any
writer w has a counter z to keep track of the number of write transactions it has invoked so far,
initially 0. (ii) The reader r has an ordered list List of elements as (κ, (b1, · · · , bk)), where κ ∈ K
and (b1, · · · bk) ∈ {0, 1}k. Initially, List = [(κ0, (1, · · · 1)], where κ0 ≡ (0, w0), where w0 is any place
holder identifier string for writer id. The List can be though of as an array, with 0 as the starting
index. (iii) Each server si ∈ S there is a set variable V als with elements that are key-value pairs
(κ, vi) ∈ K × Vi. Initially, V als = {(κ0, v0i)}.

Writer steps: The procedure WRITE((oi1 , vi1), (oi2 , vi2), · · · , (oip , vip)), for a write transac-
tion, can be invoked at any writer w, where I = {i1, i2, · · · , ip} is any subset of p indices of [k]. We
define the set SI , {si1 , si2 , · · · , sip}. This procedure consists of two consecutive phases: write-value
and inform-reader. In the write-value phase, w creates a key κ as κ ≡ (z+ 1, w); and also increments
the local counter z by one. Then it sends (write-value, (κ, vi)) to each server si in SI , and awaits
acknowledges from each server in SI . After receiving acknowledges from each server in SI , w
initiates the inform-reader phase during which it sends (inform-reader, (κ, (b1, · · · bk)) to r, where
for any i ∈ [k], bi is a boolean variable, such that bi = 1 if si ∈ SI , otherwise bi = 0. Essentially,
such a (k + 1)-tuple identifies the set of objects that are updated during that write transaction,

30

i.e., if bi = 1 then object oi was updated during the execution of the write transaction, otherwise
bi = 0. After w receives acknowledge from r it completes the write.

Reader steps: Note that we use the same notations for I and SI as above for the set of indices and
corresponding servers, possibly different across transactions. The procedure READ(oi1 , oi2 , · · · , oip),
for any read transaction, is initiated at reader r, where oi1 , oi2 , · · · , oip denotes the subset of
objects r intends to read. This procedure consists of only one phase, read-value, of communication
between the reader and the servers in SI . Here r sends the message (read-value, κi) to each
server si ∈ SI , where the κi is the key in the tuple (κi, (b1, · · · , bk)) in List located at index j∗ such
that bi = 1 such that i ∈ I. After receiving the values vi1 , vi2 , · · · vip from all servers in SI , where

SI , {si1 , si2 , · · · , sip}, the transaction completes by returning (vi1 , · · · vip).
Next, if reader r receives a message (inform-reader, (κ, (b1, · · · , bk)) from any writer w, then

r appends (κ, (b1, · · · , bk) to its List, and responds to w with acknowledge and tw = |List|, i.e.,
number of elements in list List. The order of the elements in List corresponds to the order the
write transactions, the order of the incoming inform-reader updates, as seen by the reader.

Server steps: The server protocol consists of two procedures corresponding to the messages
containing the tags write-value and read-value. The first procedure is used if a server si
receives a message (write-value, (κ, vi)) from a writer w, it adds (κ, vi) to its set variable V als
and sends acknowledge back to w. The second procedure is used if si receives a message such as
(read-value, κi) from r then it responds back with vi such that the pair (κi, vi) is in its variable
V als.

The following result states that algorithm A respects SNOW properties. Note that the liveness
property of read and write transactions are a part of the SNOW properties. Consider any failure-
free execution of algorithm A. In the steps for the reader assume the quantity tr , max1≤j≤|List|{j :
List[j].bi = 1 ∧ i ∈ I}, which is presented as a comment in the pseudo-code for A. We associate
with any transaction φ a tag tag(φ) such that if φ is a write tag(φ) = tw, i.e., the value of tw
before the completion of the operation, and tag(φ) = tr when φ is a read.

Theorem 6.1. Any well-formed and fair execution of algorithm A is an wait-free implementation
of transaction processing in the MWSR setting with for objects of type OT , consisting of objects
o1, o2, · · · ok maintained by the servers s1, s2, · · · , sk, respectively; and it respects the SNOW properties
and writes transactions are live.

Proof. Below we show that A satisfies the SNOW properties.
S property: Let β be any fair execution of A and suppose all clients in β behave in an well-formed
manner. Suppose β contains no incomplete transactions and let Π be the set of transactions in
β. We define an irreflexive partial ordering (≺) among the transactions in Π as follows: if φ and
π are any two distinct transactions in Π then we say φ ≺ π if either (i) tag(φ) < tag(π) or (ii)
tag(φ) = tag(π) and φ is a write and π is a read. We will prove the S (strict-serializability)
property of A by proving that the properties P1, P2, P3 and P4 of Lemma 5.1 hold for β.

P1: If π is a read then since all reads are invoked by a single reader r and in a well-formed
manner, therefore, there cannot be an infinite number of reads such that they all precede π (w.r.t
≺). Now, suppose π is a write. Clearly, from an inspection of the algorithm, tag(π) ∈ N. From
inspection of the algorithm, each write increases the size of List, and the value of the tags are
defined by the size of List. Therefore, there can be at most a finite number of writes such that
can precede π (w.r.t. ≺) in β.

P2: Suppose φ and π are any two transactions in Π, such that, π begins after φ completes.

31

Fig. 4 The protocol for a writer w, reader r and server si for algorithm A.

At writer w
State Variables at w:

z ∈ N, initially 0

WRITE((oi1 , vi1), (oi2 , vi2), · · · , (oop , vip))
2: write-value:

κ← (z + 1, w); z ← z + 1
4: I , {i1, i2, · · · , ip}

for i ∈ I do
6: Send write-value, (κ, vsi) to si

Await acknowledge from si for every i ∈ I.

8: inform-reader:

for i ∈ [k] do
10: if i ∈ I then

bi ← 1
12: else

bi ← 0

14: Send (inform-reader, (κ, (b1, · · · , bk))) to r
Receive (acknowledge, tw) from r

16:

At reader r
State Variables at r:

List, a list of elements in K × {0, 1}k,
18: initially [(κ0, 1, · · · 1)]

READ(oi1 , oi2 , · · · , oip)
read-value:

20: I , {i1, i2, · · · , ip}
for i ∈ I do

22: j∗ ← max1≤j≤|List|{j : List[j].bi = 1}
κi = List[j∗].κ

24: Send (read-value, κi) to si

Await responses vi from si for each i ∈ I
/* tr , max1≤j≤|List|{j : List[j].bi = 1 ∧ i ∈ I} */

26: Return (vi1 , vi2 , · · · , vip)

Response routines
28: On recv (inform-reader, (κ, (b1, · · · bk))) from w:

List← List
⊕

(κ, (b1, · · · bk)) //
⊕

for append
30: tag ← |List| // | · | size of the list

Send (acknowledge, tag) to w

32:

At server si for any i ∈ [k]
State Variables:

V als ⊂ K × Vi, initially {(t0key, v0i)}

34: On recv (write-value, (κ, v)) from writer w:

V als← V als ∪ {(κ, v)}
Send acknowledge to writer w.

36: On recv (read-value, κ) from reader r :

Send v s.t. (κ, v) ∈ V als to reader r

Then we show that we cannot have π ≺ φ. Now, we consider four cases, depending on whether φ
and π are reads or writes.

(a) φ and π are writes invoked by writers wφ and wπ, respectively. Since the size of List, in r,
grows monotonically with each write hence wπ receives the tag at least as high as tag(φ), so
π 6≺ φ.

(b) φ is a write, π is a read transactions invoked by writer wφ and r, respectively. Since the
size of List, in r, grows monotonically, and because wπ invokes π after φ completes hence
tag(π) is at least as high as tag(φ), so π 6≺ φ.

(c) φ and π are reads invoked by reader r. Since the size of List, in r, grows monotonically,
hence wπ invoked π after φ completes hence tag(π) is at least as high as tag(φ), so π 6≺ φ.

(d) φ is a read, π is a write invoked by reader r and wπ, respectively. This case is simple
because new values are added to List only by writers, and tag(π) is at least as large as the
tag of φ and hence π 6≺ φ.

32

P3: This is clear by the fact that any write transaction always creates a unique tag and all
tags are totally ordered since they all belong to N

P4: Consider a read ρ as READ(oi1 , oi2 , · · · , oiq), in β. Let the returned value from ρ be
v ≡(vi1 , vi2 , · · · , viq) such that 1 ≤ i1 < i2 < · · · < iq ≤ k, where value vij corresponds to oij .
Suppose tag(ρ) ∈ N was created during some write transaction, say φ, i.e., φ is the write that
added the elements in index (tag(ρ)− 1) of List. Note that element in index 0 contains the initial
value. Now we consider two cases:

Case tag(ρ) = 1. We know that it corresponds the initial default value v0i at each sub-object oi,
and this equates to ρ returning the default initial value for each sub-object.

Case tag(ρ) > 1. Then we argue that there exists no write transaction, say π, that updated
object oij , in β, such that, π 6= φ and ρ returns values written by π and φ ≺ π ≺ ρ. Suppose we
assume the contrary, which means tag(φ) < tag(π) < tag(ρ). The latter implies tag(φ) = tag(π)
which is not possible because this contradicts the fact that for any two distinct writes tag(φ) 6=
tag(π) in any execution of A.
N property: By inspection of algorithm A for the response steps of the servers to the reader.
O property: By inspection of the read-value phase: it consists of one round of communication between
the reader and the servers, where the servers send only one version of the value of the object it
maintains.
W property: By inspection of the write transaction steps, and and that writers always get to
complete the transactions they invoke.

Note that the above theorem holds in the presence of any writer crashes.

7 SNoW for MWMR setting

In this section, we present algorithm B for transaction processing in the multiple-writers multi-reader
(MWMR) setting and show that its execution satisfies SNoW properties, where “o” means a read
may consist of more than one round trip of communications between the reader and the servers.
We denote the type of object that satisfies the SNoW properties by ÕT . The steps of the algorithm
for the writers, readers and the servers are presented in Fig.5. We assume there is a set of writers
W, a set of readers R and a set of k ≥ 1 servers, S, with ids s1, s2 · · · sk that stores the objects
o1, o2, · · · , ok, respectively. We define key κ is defined as a pair (z, w), where z ∈ N and w ∈ W the
id of a writer. We use K to denote the set of all possible keys. Like in algorithm A from Section 6,
also in B, the keys are used to uniquely identify each transaction. Also, with each transaction we
associate a tag t ∈ N.

In algorithm B, we designate one of the servers as the coordinator, we denote as s∗, for the
transactions. Essentially, the coordinator s∗ is used to maintain the order of the writes and the
objects that are updated during the write in the variable List. Note that in a system, where
there are many objects different objects may be use different servers as coordinators based on some
load-balancing rule.

State Variables: Each of the writers and servers maintain a set of state variables as follows: (i)
At any writer w, there is a counter z to keep track of the number of write transaction the writer
has invoked, initially 0. (ii) At any server, si, for i ∈ [k], there is a set variable V als with elements
that are key-value pairs (κ, vi) ∈ K × Vi. Initially, V als = {(κ0, v0i)}. A server also contains an
ordered list variable List of elements as (κ, (b1, · · · , bk)), where κ ∈ K and (b1, · · · bk) ∈ {0, 1}k.

33

Fig. 5 The protocol for any writer w, reader r or server si for algorithm B.

At writer w
State Variables:

z ∈ N, initially 0

WRITE((i1, vi1), (i2, vi2), · · · , (ip, vip))
2: I , {i1, i2, · · · , ip}

write-value:

4: κ← (z + 1, w); z ← z + 1
for i ∈ I do

6: Send write-value, (κ, vsi) to server si

Await acknowledge from servers in SI .

8: update-coord:

for i ∈ [k] do
10: if i ∈ I then

bi ← 1
12: else

bi ← 0

14: Send (update-coord, (κ, (b1, · · · , bk))) to s∗
Receive (acknowledge, tw) from coordinator s∗

16:
At reader r
READ(oi1 , oi2 , · · · , oip)
I , {i1, i2, · · · , ip}

18: get-tag-array:

Send (get-tag-array) to server s∗

20: Receive response (tr, (κ1, κ2, · · · , κk)) from s∗

read-value:

22: for i ∈ I do
Send (read-value, κi) to si

24: Wait responses as vi for each si ∈ S
Return (vi1 , vi2 , · · · , vip)

26:
At server si for any i ∈ [k]
State Variables:

V als ⊂ K × Vi, initially {(κ0, v0i)}
List, a list of K × {0, 1}k, initially [(κ0, (1, · · · 1))]

28: On recv (write-value, (κ, v)) from w:

V als← V als ∪ {(κ, v)}
30: Send acknowledge to writer w.

On recv (update-coord, (κ, (b1, · · · bk))) from w:

32: List← List
⊕

(κ, (b1, · · · bk)) //
⊕

for append
tag ← |List| // | · | size of the list

34: Send (acknowledge, tag) to w

On recv (read-value, κ) from r :

36: Send vi s.t. (κ, v) ∈ V als to r

/* used only by s∗ */
On recv get-tag-array from r :

38: for i ∈ [k] do
j∗ ← max{j : List[j].bi = 1}

40: κi = List[j∗].κ

tr , max1≤j≤|List|{j : List[j].bi = 1 ∧ i ∈ I}
42: Send (tr, (κ1, κ2, · · · , κk)) to r

Initially, List = [(κ0, (1, · · · 1)], where κ0 ≡ (0, w0), where w0 is any place holder identifier string
for writer id. The elements in List can be identified with an index, e.g., List[0] = (κ0, (1, · · · , 1)).
Essentially, a (k+ 1)-tuple (κ, (b1, · · · , bk)) in List corresponds to a write transaction and identifies
the set of objects that are updated during the write transaction, i.e., if bi = 1 then object oi was
updated during the execution of the write transaction, otherwise bi = 0.

Writer steps: A write transaction that is meant to update a list of p objects
oi1 , oi2 , · · · oip with values vi1 , vi2 , · · · vip , respectively, is invoked at w via the procedure

WRITE((oi1 , vi1), (oi2 , vi2), · · · , (oip , vip)). We use the notations: I , {i1, i2, · · · , ip} and SI ,
{si1 , si2 , · · · , sip}. This procedure consists of two phases: write-value and update-coord. During the
write-value phase, w creates a new key κ as κ ≡ (z + 1, w), where w is the identity of the writer;
and also increments the local counter z by one. Then w sends (write-value, (κ, vi)) to each server
in SI , and awaits acknowledge from all servers in SI . After receiving acknowledge from all
servers in SI , w initiates the update-coord phase where it sends (update-coord, (κ, (b1, · · · bk)) to
s∗, where for any i ∈ [k], bi = 1 if si ∈ SI , otherwise bi = 0, and completes the procedure after
it receive a acknowledge message from s∗. After receiving message as (acknowledge, tw), w
completes the write.

34

Reader steps: Note that we use the same notations for I and SI as above by the set of indices
are not necessarily similar across different transactions. The procedure READ(oi1 , oi2 , · · · , oip)
can be initiated by some reader r, as a read transaction, intending to read the values of subset
oi1 , oi2 , · · · , oip of the objects. The procedure consists of two consecutively executed phases of
communication rounds between the r and the servers, viz., get-tag-array and read-value. During
the phase get-tag-array, r sends s∗ the message get-tag-array requesting the list of the latest
added keys for each object. Once r receives a list of tags, such as, (tr, (κ1, κ2, · · · , κk)) from s∗ the
phase completes. In the subsequence phase, read-value, r requests each server si in SI by sending
the message (read-value, κi). After receiving the values vi1 , vi2 , · · · vip from the servers in SI , r
completes the transaction by returning the tuple of values (vi1 , · · · vip).

Server steps: When a server si receives a message of type (write-value, (κ, vi)) from a writer
w then it adds (κ, vi) to its set variable V als and sends acknowledge back to w.

If the coordinator s∗, receives (update-coord, (κ, (b1, · · · , bk)) from writer w, then it appends
(κ, (b1, · · · , bk)) to its List, and responds with acknowledge and tw (set to be the number of
elements in the local list List) to w. The order of the elements in List corresponds to the order the
write transactions, the order of the incoming update-coord updates, as seen by s∗.

Again, when s∗ receives the message get-tag-array from r it responds with a message
(κ1, · · · , κk) such that for each i ∈ [k], κi is the key part of the (k + 1)-tuple that was modified
last, i.e., κi = List[j∗].κ such that j∗ , max{j : List[j].bi = 1}, and tr, tr , max1≤j≤|List|{j :
List[j].bi = 1 ∧ i ∈ I}.

If any server si receives a message (read-value, κ) from a reader r then it responds to r with
the value vi corresponding to key with value κ in V als.

Note the the following result states that algorithm B respects SNoW property. Consider any
failure-free and fair execution of algorithm B. For the purpose of proving the S property, for every
transaction transaction φ in an execution of B we associate a tag tag(φ) as described below. If φ is
a write (read) then tag(φ) is the value of the variable tw (tr) immediately before the operation
completes.

Theorem 7.1. Any well-formed and fair execution of algorithm B is an implementation of an
object of type ÕT in the MWMR setting, with no client-to-client communication, comprising of
objects o1, o2, · · · ok stored in servers s1, s2, · · · , sk, respectively; and it satisfies the SNoW properties.

Proof. Below we show that algorithm B satisfies the SNoW properties.
S property: Let β be any fair execution of B and suppose all clients in β behave in an well-formed
manner. Suppose β contains no incomplete transactions and let Π be the set of transactions in
β. We define an irreflexive partial ordering (≺) in Π as follows: if φ and π are any two distinct
transactions in Π then we say φ ≺ π if either (i) tag(φ) < tag(π) or (ii) tag(φ) = tag(π) and φ is a
write and π is a read. Below we prove the S property of B by showing that properties P1, P2,
P3 and P4 of Lemma 5.1 hold for β.

P1: Clearly, from an inspection of the algorithm, tag(π) ∈ N. From inspection of the algorithm,
each write increases the size of List, and the value of the tags are defined by the size of List.
Therefore, there can be at most a finite number of writes such that can precede π (w.r.t. ≺) in β.
On the other hand, if π is a read then since all reads are invoked by readers in a well-formed
manner, and there are only finite number of readers therefore, there cannot be an infinite number of
reads such that they all precede π (w.r.t ≺).

P2: Suppose φ and π are any two transactions in Π, such that, π begins after φ completes.

35

Then we show that we cannot have π ≺ φ. Now, we consider four cases, depending on whether φ
and π are reads or writes.

(a) π and φ are writes invoked by writers wφ and wπ, respectively. Since the size of List, in s∗

grows monotonically due to each write hence wπ receives the tag from s∗ at least as high as
tag(φ), so π 6≺ φ.

(b) π is a read, φ is a write invoked by reader rπ and writer wφ, respectively. Since the size of
List, in s∗, grows monotonically, because rπ invokes π after φ completes hence tag(π) is at
least as high as tag(φ), so π 6≺ φ.

(c) π and φ are both reads invoked by readers rπ and rφ, respectively. Since the size of List, in
s∗, grows monotonically, because wπ invokes π after φ completes hence tag(π) is at least as
high as tag(φ), so π 6≺ φ.

(d) π is a write, φ is a read invoked by writer wπ and reader rφ, respectively. This case is
simple because new values are added to List, in s∗, only by writers, and tag(π) is at least as
large as the tag of φ and hence π 6≺ φ.

P3: This is from the fact that any write transaction always creates a unique tag and all tags
are totally ordered since they all belong to N

P4: Consider a read ρ as READ(oi1 , oi2 , · · · , oiq), in β. Let the returned value from ρ be
v ≡(vi1 , vi2 , · · · , viq) such that 1 ≤ i1 < i2 < · · · < iq ≤ k, where value vij corresponds to oij .
Suppose tag(ρ) ∈ N was created during some write transaction, say φ, i.e., φ is the write that
added the elements in index (tag(ρ)− 1) of List at the coordinator s∗. Note that element in index
0 contains the initial value. Now we consider two cases:

Case tag(ρ) = 1. We know that it corresponds the initial default value v0i at each sub-object oi,
and this equates to ρ returning the default initial value for each sub-object.

Case tag(ρ) > 1. Then we argue that there exists no write transaction, say π, that updated
object oij , in β, such that, π 6= φ and ρ returns values written by π and φ ≺ π ≺ ρ. Suppose we
assume the contrary, which means tag(φ) < tag(π) < tag(ρ). The latter implies tag(φ) = tag(π)
which is not possible because this contradicts the fact that for any two distinct writes tag(φ) 6=
tag(π) in any execution of B.
N, o and W properties: Evident from an inspection of the algorithm.

8 SNōW for MWMR setting

In this section, we present algorithm C for transaction processing in the multiple-writers multi-reader
(MWMR) setting and show that its execution satisfies SNōW properties, where “ō” means a read
consists of only one round trip of communications between the reader and the servers but the servers
may respond with multiple versions of the data. We denote the type of object that satisfies the
SNōW properties by ŌT . The steps of the algorithm for the writers, readers and the servers are
presented in Fig.6. We assume there is a set of writers W, a set of readers R and a set of k ≥ 1
servers, S, with ids s1, s2 · · · sk that stores the objects o1, o2, · · · , ok, respectively. We define key
κ is defined as a pair (z, w), where z ∈ N and w ∈ W the id of a writer. We use K to denote the
set of all possible keys. As in the algorithms presented in Section 6 and 7, the keys are used to
uniquely identify each transaction. Also, with each transaction we associate a tag t ∈ N.

36

Fig. 6 The protocol for any writer w, reader r or server si for algorithm B.

At writer w
State Variables:

z ∈ N, initially 0

WRITE((i1, vi1), (i2, vi2), · · · , (ip, vip))
2: I , {i1, i2, · · · , ip}

write-value:

4: κ← (z + 1, w); z ← z + 1
for i ∈ I do

6: Send write-value, (κ, vsi) to server si

Await acknowledge from servers in SI .

8: update-coord:

for i ∈ [k] do
10: if i ∈ I then

bi ← 1
12: else

bi ← 0

14: Send (update-coord, (κ, (b1, · · · , bk))) to s∗
Receive (acknowledge, tw) from coordinator s∗

16:
At reader r
READ(oi1 , oi2 , · · · , oip)
I , {i1, i2, · · · , ip}

18: read-values-and-tags:

Send (get-tag-array) to server s∗

20: for i ∈ I do
Send (read-values) to si

22: Receive response (tr, (κ1, κ2, · · · , κk)) from s∗

Wait responses as V alsi from each si ∈ SI

24: Return (vi1 , vi2 , · · · , vip) s.t. (κj , vj) ∈ V alsj , j ∈ I

At server si for any i ∈ [k]
26: State Variables:

V als ⊂ K × Vi, initially {(κ0, v0i)}
List, a list of K × {0, 1}k, initially [(κ0, (1, · · · 1))]

On recv (write-value, (κ, v)) from w:

28: V als← V als ∪ {(κ, v)}
Send acknowledge to writer w.

30: On recv (update-coord, (κ, (b1, · · · bk))) from w:

List← List
⊕

(κ, (b1, · · · bk)) //
⊕

for append
32: tag ← |List| // | · | size of the list

Send (acknowledge, tag) to w

34: On recv (read-values) from r :

Send V als to r

/* used only by s∗ */
36: On recv get-tag-array from r :

for i ∈ [k] do
38: j∗ ← max{j : List[j].bi = 1}

κi = List[j∗].κ

40: tr , max1≤j≤|List|{j : List[j].bi = 1 ∧ i ∈ I}
Send (tr, (κ1, κ2, · · · , κk)) to r

In algorithm C, we designate one of the servers as the coordinator, we denote as s∗, for the
transactions. In addition to managing some object, the server s∗ is used to maintain the order of
the writes and the objects that are updated during the write in the variable List. In any system,
where there are many objects different objects may be use different servers as coordinators based on
some load-balancing rule.

State Variables: The state variables in algorithm C is similar to those of algorithm B, therefore,
we omit here. Writer steps: The steps of a write transaction is similarly to algorithm B, therefore,
we omit here.

Reader steps: The procedure READ(oi1 , oi2 , · · · , oip) can be initiated by some reader r, as a
read transaction, intending to read the values of subset oi1 , oi2 , · · · , oip of the objects. We use the

notations: I , {i1, i2, · · · , ip} and SI , {si1 , si2 , · · · , sip}. The procedure consists of only one phase
of communication round between the r and the servers, called read-values-and-tags. During the
phase read-values-and-tags, r sends s∗ the message get-tag-array requesting the list of the latest
added keys for each object, and also sends requests (read-values) each server si in SI . Note that if
s∗ is also one of the servers in SI then the get-tag-array and read-values messages to s∗ can be
combined to create one message; however, we keep them separate for clarity of presentation. Once r
receives a list of tags, such as, (tr, (κ1, κ2, · · · , κk)) from s∗ and the set of V alsi from each si ∈ SI

37

then r returns the values vi1 , vi2 , · · · vip such that (κj , vj) ∈ V alsj , j ∈ {1, · · · p}, and completes the
read.

Server steps: When a server si receives a message of type (write-value, (κ, vi)) from a writer
w; or if the coordinator s∗, receives (update-coord, (κ, (b1, · · · , bk)) from writer w or receives
a message as get-tag-array from r the steps are similar to their counterparts in algorithm B.
Therefore, we omit them. On the other hand, if any server si receives a message (read-values)
from a reader r then it responds to r with the entire set of values, i.e., V als.

Note the the following result states that algorithm C respects SNōW property. Consider any
failure-free and fair execution of algorithm C. For the purpose of proving the S property, for every
transaction transaction φ in an execution of C we associate a tag tag(φ) as described below. If φ is
a write (read) then tag(φ) is the value of the variable tw (tr) immediately before the operation
completes.

Theorem 8.1. Any well-formed and fair execution of algorithm C is an implementation of an
object of type ŌT in the MWMR setting, with no client-to-client communication, comprising of
objects o1, o2, · · · ok stored in servers s1, s2, · · · , sk, respectively; and it satisfies the SNōW properties.

Proof. Below we show that algorithm C satisfies the SNōW properties.
S property: Let β be any fair execution of B and suppose all clients in β behave in an well-formed
manner. Suppose β contains no incomplete transactions and let Π be the set of transactions in
β. We define an irreflexive partial ordering (≺) in Π as follows: if φ and π are any two distinct
transactions in Π then we say φ ≺ π if either (i) tag(φ) < tag(π) or (ii) tag(φ) = tag(π) and φ is a
write and π is a read. Below we prove the S property of B by showing that properties P1, P2,
P3 and P4 of Lemma 5.1 hold for β. The properties P1-P4 can be proved to hold in a manner very
similar to algorithm B (Section 7). Therefore, we avoid repeating them.
N, ō and W properties: Evident from an inspection of the algorithm.

References

[1] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik Veeraraghavan. Challenges
to adopting stronger consistency at scale. In 15th Workshop on Hot Topics in Operating Systems (HotOS
XV), Kartause Ittingen, Switzerland, 2015. USENIX Association.

[2] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[3] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun
Song, and Venkat Venkataramani. TAO: Facebook’s distributed data store for the social graph. In
Presented as part of the 2013 USENIX Annual Technical Conference (USENIX ATC 13), pages 49–60.
USENIX, 2013.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San
Mateo, CA, 1993.

[5] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149, 1991.

[6] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd International Conference on Distributed Computing
Systems, ICDCS ’03, pages 522–, Washington, DC, USA, 2003.

38

[7] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–492, 1990.

[8] B. Liskov. Distributed Programming in Argus. Communications for the ACM, 31(3):300–312, 1988.

[9] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd. The SNOW theorem and
latency-optimal read-only transactions. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 135–150, Savannah, GA, 2016.

[10] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[11] N. A. Lynch, M. Merritt, W. William, and A. Fekete. Atomic Transactions. Morgan Kaufmann
Publishers, 1994.

[12] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel. SIGOPS Oper. Syst. Rev., 26(2):8–,
April 1992.

[13] Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of ACM,
26(4):631–653, 1979.

39

	1 Introduction
	2 System model and architecture
	2.1 I/O Automata
	2.2 Data type
	2.3 System Model
	2.4 SNOW Properties
	2.5 One-version property

	3 Impossibility of SNOW properties with two clients with restricted communication
	4 Impossibility of SNOW properties with three clients
	5 Condition for proving strict serializability
	6 SNOW on MWSR with client-to-client messages
	7 SNoW for MWMR setting
	8 SNW for MWMR setting

