1811.10577v1 [cs.DC] 26 Nov 2018

arxXiv

The SNOW Theorem Revisited

Kishori M Konwar, Wyatt Lloyd, Haonan Lu, Nancy Lynch

November 27, 2018

Abstract

In highly-scalable storage systems for Web services, data is sharded into separate objects, also
called shards, across several servers. Transaction isolation, while reading the objects, is at the heart
of consistent data access when concurrent updates are present. In practice, systems experience a
much higher number of READ transactions, consisting only of read operations, compared to WRITE
transactions; consequently, lowering latency of READ transactions boosts service performance.
In [9], the authors proposed four desirable properties in transaction processing systems for
achieving low-latency of READ transactions, with asynchronous and reliable communications, and
referred to them collectively as the SNOW properties: The underlying properties, in the context
of an execution, are (i) strict serializability (S) property where read and WRITE transactions seem
to occur atomically; (i7) non-blocking (N) property implies that for every read operation on any
object, during a READ transaction, the response at the corresponding server is non-blocking; (i)
one version and one round (O) property implies every read operation, during a read transaction,
completes in one-round of client-server communication and the respective server responds with
only one version of the object value; and (iv) concurrent WRITE transactions (W) property states
that READ transactions can have concurrent WRITE transactions. Then they argued that it is
impossible to implement all the four properties, in the same system, even with at least three
clients. They referred to their result as the SNOW theorem, and they posed the two-client
setting as an open question.

Here we revisit the results of the SNOW theorem and present several new results. In our
first result, we resolve the two-client scenario: We prove that even with two clients, without
client-to-client messaging, it is impossible to design an transaction processing system which
satisfies the SNOW properties. Second, we provide a rigorous proof of the SNOW theorem for
systems with at least three clients, i.e., we show that it is impossible to implement a transaction
processing system, consisting of at least three clients, even with client-to-client messaging, that
satisfies the SNOW properties. In our third result, we derive a useful property for executions of
algorithms that implement objects of data types considered in our work that helps us show the
strict serializability property (S property) of algorithms presented in the paper.

In our fourth result, we present an algorithm with multiple writers, single reader (MWSR)
which satisfies the SNOW properties, with client-to-client messaging. In our fifth, we present an
algorithm, for multiple-writer, multiple-reader (MWMR) setting in the absence of client-to-client
messaging, which satisfies the “S”, “N”, “W” properties and a weaker version the O property
“0”, where we use “0” to refer to the one-version requirement of a read operation, but it can take
multiple rounds of communication to complete a read operation. Collectively, we refer to the
“S7) “N”, “o” and “W” properties as the “SNoW” property. In our sixth result, we present an
algorithm in the MWMR setting which satisfies the “S”, “N”, “W” properties and a property
“0”, which refers to the one-round requirement of a read operation, but a server can response
with multiple versions of a shard. We refer to these properties as the “SNoW” property.

1 Introduction

Most highly accessed websites rely on large volumes of data in the back end. Scalability of these
websites is dependent on the ability to serve thousands of web-requests per second. Although it is
desirable to store all of this data at a single server, due to limited resources available on a single
machine it is impossible to do so. Therefore, such data is partitioned and stored across multiple
machines connected through high-speed networks. Subsequently, serving one webpage request may
involve retrieving various data objects of the page from multiple servers. These individual data
objects are often referred to as shards or objects, where each object is managed by a separate server.
For example, a dynamically generated webpage may contain various objects, such as texts, images,
and videos: the text elements may be stored in one server, the images and thumbnails in another,
and, similarly, the video clips may be managed by a separate server. During the webpage synthesis
and loading, the proxy reader reads all of these separate objects via a READ transaction. Some of
these objects may be updated while READ transactions are carried out. A transaction consists of a
set of read or write operations on the underlying objects which are to be executed atomically.

In our work, we consider two types of transactions: WRITE transactions and READ transactions.
A READ transaction consists of a set of read operations, one per each object, and a WRITE transaction
comprises of a set of individual write operations on a subset of the objects. Consistent data access
during a transactional read requires transactional isolation, where reads to different objects must
retrieve either all updates for a given update or none. Similar transactional isolation of WRITE
transactions is also desirable, where the collection of all the write operations to different objects is
carried out atomically. Handling transactional isolation with concurrent read and WRITE transactions
is complex and expensive which may often lead to poor performance and lower throughput, which
in turn leads to substantial revenue loss and poor user experience. In practice, it is observed that
most of the transactions are READ transactions, and therefore, one approach to boost performance
is to improve the performance of the READ transactions [3].

In [9], the authors study the question whether READ transactions can be fast enough even in
the presence of concurrent WRITE transactions. They introduce four desirable properties of a system
to achieve low-latency READ transactions, which they refer to collectively as the SNOW property:
Strict serializability among transactions, Non-blocking operations and One-response from each
shard for the READ transactions, and compatibility with conflicting Write transactions. The “strict
serializability” property requires that the set of read or writer operations of any read and WRITE
transactions is executed atomically as if executed by a single server. “Non-blocking” requires the
read requests corresponding to different objects to be served by the managing servers immediately,
without blocking for any other external input or output messages. The “one-response” property
requires that for any read operation of an object, the server managing the object responds with only
one version, and the operation completes in one round of client to server communication. The final
property “conflicting and concurrent WRITE transactions” allows WRITE transactions to execute
concurrently with READ transactions on the same set of objects.

In distributed systems, the availability of the systems is often stated in terms of liveness properties
of the transactions or operations [5,6,[12]. Such a requirement on responsiveness of a system is
also referred to as availability. One of the strongest, and the most desirable of these properties
is wait-freedom, which requires that as long as the client is taking a sufficient number of steps, it
completes the operations irrespective of the speed of other clients. In [9], the wait-free property
of the read operations, corresponding to a READ transaction in a system that satisfies SNOW
properties, is inherent in the N and O properties; this also implies the wait-freedom property for

READ transactions. However, in [9], no liveness property for WRITE transactions is stated explicitly.
In their work, the authors prove that with at least three clients, in an asynchronous message-passing
environment, even in the absence of any failures, it is impossible to have a protocol that satisfies all
of the four properties of SNOW, which they refer to as the SNOW theorem. In their proof, they
consider a system with two read clients, which issues only READ transactions, and a write client
invoking WRITE transactions. From their proof, it is not clear whether they consider the possibility
of exchanging messages between clients. Additionally, there is no explicitly stated requirement on
the liveness of the WRITE transactions. They pose the case for two clients as an unresolved case,
i.e., it is not known whether all of SNOW properties can be implemented for any two client system.

Our contribution In this work, we revisit the results of the SNOW theorem and present four new
results. First, we show that even with two clients, in the absence of client-to-client messaging, it is
impossible to design a transaction processing system which satisfies the SNOW properties. Second,
we provide a thorough proof of the SNOW theorem for systems with at least three clients, i.e., we
show that it is impossible to implement a transaction processing system, which can implement the
SNOW property, consisting of at least three clients, even with client-to-client messaging. In our
proof, we explicitly make assumptions regarding the liveness of WRITE transactions and client-to-
client messaging. Our proof technique involves assuming an execution of an arbitrary transaction
processing system, assumed to be specified as an I/O automaton, that satisfies the SNOW property,
and then, argue by constructing a sequence of executions of the automata, finally, leading to an
execution which contradicts the S property. The above two results indicate that client-to-client
messaging ability plays a key role in the achievability of the SNOW property. This motivates our
third result, where we present an algorithm with multiple writers, single reader (MWSR) which
satisfies the SNOW properties when client-to-client messaging is allowed. Finally, we present an
algorithm, for multiple-writer, multiple-reader (MWMR) setting in the absence of client-to-client
messaging, which satisfies the “S”, “N”, “W” properties and and a weaker version the O property,
which we denote by “0”, where “0” refers to the one-version property of a read operation, but can
take multiple rounds of communication to complete the read operation. Collectively, we refer to the
“S7) “N”, “0” and “W” properties as the “SNoW” property.

Related work This will be filled in depending what type of conference we send the paper to and
whether we add some experimental results of the two algorithms presented in the paper.

Document Structure The remainder of the document is organized as follows. Section [2| presents
the models and definitions. Section [3] provides the proof for the impossibility result for the two-client
setting when clients do not communicate among each other. In section 3] we present the impossibility
result for the three-client setting. Next, in section [6] we present the algorithm with multi-writer,
single-reader (MWSR) which satisfies the SNOW properties, when client-to-client communication is
allowed. In section [7] we present an algorithm for multi-writer, multi-reader scenario which satisfies
the SNoW properties.

2 System model and architecture

2.1 I/0 Automata

We consider a distributed system consisting of asynchronous processes of three types: a set of
readers and writers, called clients, and a set of servers. Each of these processes is associated with an
unique identifier. Processes can communicate via asynchronous reliable communication links. This
means that any message sent on the link is guaranteed to eventually reach the destination process.
The model assumes that client or server processes never fail. We do not make any assumption
regarding the order of message delivery in the same channel.

We assume that the formal specification of an algorithm in our context is specified using the
I/O Automata. An algorithm is specified from the composition A of a set of automata where each
automaton A; corresponds to a process ¢ in the system. An automaton A; consists of a set of states
states(A;) , including a special subset start(A;) C states(A) called the start states ; a signature,
denoted sig(A;); and a set of transitions trans(A;). The set of states states(A;) are essentially
defined by a set of state variables in A;. The signature sig(A;) consists of three disjoint sets in in(A;),
out(A;) and int(A;), where in(A;) referred to as the input actions, out(A;) the output actions and
int(A;) are the internal actions. The set trans(A;) consists of the set of transitions or steps, where
each step consists of a 3-tuple (o;, a;, 0i4+1), where 0;, 0,11 € states(A;) and a; € trans(A;). The set
in(A;) Uout(A;), often denoted as ext(A;), are called the external signature of automaton A;. Note
that A is a composition of the set of automata A;, i € Z and the following analogous components for
A are defined as states(A) = [],c7 states(4;); sig(A) £ [Tier sig(4i); start(A) = [z start(A;)
and trans(A) 2 {(0,a,0") : if a € trans(A;) for some i € T then 0,0’ € states(A;), else o = o'}.

Informally, the execution of the algorithm corresponds to the concept of the execution of A.
First, an execution fragment o of A is a finite or infinite sequence og, ai, 01, as, o9, ..., where each
o; belong to states(A) and a; belongs to trans(A). An execution of A is an execution fragment
such that oo € start(A). We use the notation trace(a) to denote the sequence of external actions
in a; and by trace(a)|A; to denote the sequence of external actions in trace(a)) that belongs to
automaton A;. If « is a finite execution and 3 is an execution fragment, such that, 5 starts with the
final state of o then we use the symbol a0 8 to denote execution fragment obtained as a result of
concatenation of execution fragments o and . The set of locally controller actions in an automaton
can be partitioned into tasks. Moreover, in the case of an execution, if the execution is infinite and
events from each class occurs infinitely often, and if the execution is finite and if none of the events
from any of the classes is enabled then the execution is called fair. If € and €' are two execution
fragments such that at some automaton A they are the same, i.e., €A = €| A, then we use the

notation € & ¢. When the automaton is clear from the context, for the sake of brevity we drop the
symbol for the automaton over the ~. Below we add some useful theorems are useful related to
executions of a composed I/O Automata [10].

Theorem 2.1. Let {A;}ier be a compatible collection of automata and let A = Tl;er A;. Suppose o
is an execution of A; for every i € I, and suppose [is a sequence of actions in ext(A) such that
B|A; = trace(ay) for every i € I. Then there is an execution o of A such that f = trace(a) and
a; = alA, for everyi € 1.

Theorem 2.2. Let A be any 1/0 automaton.

1. If « is a finite execution of A, then there is a fair execution of A that starts with «.

2. If B is a finite trace of A, then there is a fair trace of A that starts with 5.

3. If «a is a finite execution of A and B is any finite or infinite sequence of input actions of A,
then there is a fair execution ccoa’ of A such that the sequence of input actions in o/ is ezactly

B.

4. If B is a finite trace of A and B’ is any finite or infinite sequence of input actions of A, then
there is a fair execution awo o/ of A such that trace(a) = 8 and such that the sequence of input
actions in o is exactly (3.

The following useful claim is adopted from Chapter 16 of [10].

Claim 1. Suppose we have an automaton A = HleAi where A is composed of the compatible
collection of automata A;, where i € {1,--- k}. Let B8 be a fair trace of A then we define an
irreflexive partial order —g on the actions of B as follows. If m and ¢ are events in (3, with
preceding ¢, then we say ¢ depends on 7, which we denote as m —g ¢, if one of the following holds:

1. w and ¢ are actions at the same automaton;
2. m is some send(-);; at some A; and ¢ is some recv(-);; at A;; and
3. m and ¢ are related by a chain of the relations of items 1. and 2.

Then if y is a sequence obtained by reordering the events in 3 while preserving the — g, then vy is
also a fair trace of A.

Theorem 2.3. Let {A;}icr be a compatible collection of automata and let A = Hf;lAi. Suppose a;
is a fair execution of A; for every i € I, and suppose [3 is a sequence of actions in ext(A) such that
BlA; = trace(a;) for every i € I. Then there is a fair execution o of A such that 5 = trace(a) and
a; = al|A for everyi € 1.

2.2 Data type

In this section, we formally describe the data type, which we denote as Op, for the transaction
processing systems considered in this paper. We assume there is a set of k objects, where k is some
positive integer, and o, denotes the k** object. Object oy stores a value from some non-empty
domain V. and supports two types of operations: read and write operations. A read operation on
object o, denoted by read(oy), on completion returns the value stored in og. A write operation on
o with some value vy, from Vj, denoted as write(og, vg), on completion, updates the value of o.

A WRITE transaction consists of a subset of p distinct write operations for a subset of p
distinct objects, where 1 < p < k. For example, a WRITE transaction with the set of operations
{write(0s,, i,), write(0s,, vy,) - - - write(o,, v;,) }, means value vy, is to be written to object o;,, value
V4, to object 0;,, and so on. We denote such a WRITE transaction as W RITE((0i,,vi,), (0ig, Viy), " - ,
(03, Vi)

A READ transaction consisting of a set of read operations is denoted as READ(0;,, 04y, , 0;,),
where 0;,, 04, ,0;, is a set of distinct objects, ¢ is any positive integer, 1 < ¢ < k, which upon
completion returns the values (v, vi,,- -+ ,v;,), where v;; € V;, is the value returned by read(o;;),
for any i; € {i1,i2, - ig} and 1 < iy <ip < -+ <ig < k.

Formally, we define the value type used in this paper for a k object data-type as follows:

(i) a tuple (vi,vs,--- ,v) € X, V;, where V; is a domain of values, for each i € {1, ,k};
i1) an initial value v?, v¥ € V; for each object o;;
K3 (]

(ii1) invocations: READ(04,,04,,- -+ ,0;,) and WRITE((0i,,vi,), (0iy,0iy),- -, (0i,,vi,)), such
that v;, € Vj, for any i; € {i1,i2,- iy} where 1 < iy <ip <--- <ip <k and p is some integer
with 1< p < k:

(iv) responses: a tuple (vi,va,--- ,vy) € X, V; and ok; and
(v) for any subset of p objects we define f : invocations x V' — responses x V', such that:

(a‘) f(READ(Oi170i27" : 70ip)7 (’1)1,’1)2,"‘ ,’Uk)) = ((vipvizu”' 7Uip)7(v17027” : ,’Uk)); and

(b) f(WRITE((OZl,’U,“), (Oizvuiz)a Ty (in,Uip)), (vl)UQa e ,’Uk)) = (aCk7 (’lUl,U)Q, e 7wk))7
where for any 4, w; = u; if i € {i1,42, - ,ip}, and for all other values of i, w; = v;.

DATACENTER

recv

- "\,
L5 | ~1
———-——-d\ 1/
nd
End user RESP(R ~ se servers
. TN
/--—--\\ [~) 0
(r.) N2
SNo_m_A
H Ll
INV(W) fr“onfeic_f_c_-’\iints , . -
End user () / .

RESP(W)

Figure 1: The architecture of a typical web service with clients and servers inside a datacenter.

2.3 System Model

In our system, we assume there are ¢ writers, for some ¢ > 1; m readers, for some m > 1, and
k servers for some k > 1. We denote the set of writers as VW, which essentially consists of the
writer identifiers wy, ws - - - wy. The set of readers, with ids 71,72 - - - 7, is denoted as R. The set of
servers S consists of the server identifiers s1, so - - - s;. The servers s1, s3 - - - ¢ manage the objects
01,09, -+ , 0k, respectively, in particular, server s; is responsible for storing object o;, for any ¢,
1<i<k.

Communication .
channels M — /7

INV(R), —._inv(op)
End ()
user | T
RESP(R)
-
7 - -.‘\\
[)
\m /
N
()
\V_\" 1/
L
INVW)
End user |'\ w,)
L
RESP(W) —

Figure 2: The architecture of a typical web service with clients, servers, and the communication
channels inside a datacenter is modeled as a collection of I/O automata.

Communications between processes during the executions are point-to-point and are assumed
to be reliable and asynchronous. The communications are modeled with Channel I/O automata
and are carried out via send and recv actions at the source and destination processes. For example,
in Figure |2 the reader r; automaton sends, via the action send(m), some message m, from some
alphabet M, to server s; through the channel automaton Channel,, s,, and s; receives it though
the action recv(m). Similarly, the message m’, m’ € M, is transmitted from s; to r1, through the
channel automaton Channels, ,,, via the actions send(m’) at s, and finally received at r; via the
action recv(m’).

The schematic flow of a typical, but simplified, webpage request from a service hosted in a
datacenter is shown in Figure[l] An end user sends a webpage request to a front-end client 1. Upon
receiving it r; generates a READ transaction R, which consists of a set of read operations and is
invoked via a INV(R) action at the client, which is essentially input to the client from the end user.
The goal of these operations is to read a subset of the data objects by contacting the respective
managing servers. The operations in a transaction are carried out between the invocation and
response actions of the transaction without any particular order of execution among the operations.
Any operation op begins with an invocation action, inv(op), at the relevant client, and ends with a
response action resp(op), also at the client. Once the front-end client completes the read operations,
then 7 synthesizes the webpage with the data retrieved by the read operations, and responds to
the end user request through the response action RESP(R) at the client 7'1E| Similarly, the update
request from the end user can be thought of a WRITE transaction W, consisting of a set of write

Tn a typical production system the depth of the transactions (due to nested transactions) is more than one [1],
however, we assume only transactions of depth one as in |9].

operations for individual objects, to update the set of object values, initiated via an invocation
action INV (W) at the client. Then the writes operations are carried out by the client, and once
they complete, the transaction completes with the response action RESP(W), at the client.

A transaction 7 is incomplete in an execution a when the action INV (7) does not have the
RESP(r) in «; otherwise, we say that 7 is complete in «. In an execution, we say that a transaction
(read or write) 7 precedes another transaction mo (denote as mp — mq), if the response action
RESP(m) precedes the invocation action INV (my). Two transactions are concurrent if neither
precedes the other.

If in any execution of the system every client initiates a new transaction only after the previous
transactions initiated at the same client have completed, then we say the execution is well-formed.

2.4 SNOW Properties

The SNOW properties for a transaction processing system can be described by requiring that any
fair execution of the system satisfies the following four properties: (i) Strict Serializability (S),
which means there is a total ordering of the transactions such that the resulting execution seems
to occur at a single machine atomically; (ii) Non-Blocking Operations (N) property, which means
that the servers respond immediately, without waiting for any input from other processes, to read
requests for the read operations, which belong to the READ transactions; (iii) One Response Per
Read (O) property requires that any read operation consists of one-round trip of communication
with a server, and also, the server responds with a message that contains exactly one version of the
object value; and (iv) WRITE transactions that Conflict (W) implies the existence of concurrent
WRITE transactions that update the data objects while READ transactions are in progress. Below
we describe the individual properties of the SNOW properties in more detail.

Strict serializability By strict serializability [7], we mean each WRITE or READ transaction is
executed atomically, at some point in an execution between the invocation and response events. In
other words, for each transaction, we can associate a serialization point between the invocation
and response actions, such that all the read operations return values that are consistent with the
ordering of the serialization points.

Non-blocking reads Consider a READ transaction initiated by a read client r and a read operation
in it to read the value of an object 0o; managed by some server s;. The read operation involves
r communicating a send value message to s; requesting the stored value of o;. The non-blocking
property means that the server responds to the read request without waiting for any external input
event, such as the arrival of messages, any mutex operations, time, etc. This property ensures that
READ transactions are delayed only due to delay of messages between r and s;. Below we define the
non-blocking nature of any server’s response to a read request from a reader as follows.

Definition 1. If « is a fair execution of some server automaton for a server s and action recv(m”), s
appears in o, where r is a reader automaton and m” is a read value request to server s, and no
other input actions follow recv(m”), s, then eventually, the action send(v;)s, occurs in a.

One-response read operations The one-response property requires that each read operation,
during any READ transaction, completes in one round of client to server communication and receives
exactly one version of the object value from the corresponding server. A round consists of a read

request from the client initiating the read operation to the server, and subsequently, the server
sending only one version of the object value in its response. The one-round property is imposed to
reduce the number of messages between the client and the server during a read operation, and hence
reducing the latency of the READ transaction. The one-version property is added to reduce the
amount of data transmitted during the read operation and hence reduce latency of read operations,
which also means lowering latency for the READ transaction.

Concurrent and conflicting writes The conflicting, or concurrent writes property states that
READ transactions complete even in the presence of concurrent WRITE transactions, where the write
operations might update some objects that are also being read by read operations in READ. This
shows that READ transactions can be invoked at any point, even in the presence of ongoing WRITE
transactions. Note that the liveness of any WRITE transaction is not implied by any of the SNOW
properties; however, for useful practical systems the WRITEs must eventually complete. Therefore,
we assume that every WRITE transaction eventually completes via the RESP event, and think of
this constraint as a part of the W property.

The SNOW Theorem [9] The theorem states that no read-only transaction algorithm provides
all of the SNOW properties.

2.5 One-version property

Motivated by the impossibility result of the SNOW theorem, we propose in Section [7] an algorithm
for transaction processing systems under constraints weaker than the SNOW properties. With
this in mind, we introduce a weaker version of the O property, denote it as “0”, where during a
read operation the server returns exactly one object value but there exists a finite bound on the
number of rounds of communication between the client and the server. We use the acronym SNoW
to denote the S, N, o and W properties. Moreover, it is easy to realize that if an algorithm satisfies
the SNoW properties then READ transactions always complete, and hence, READ’s are always live.
This is because the N and o properties imply that the server must immediately respond to a read
request due to a read operation with exactly one object value without waiting in expectation of
incoming messages, and there a fixed upper bound on the number of such rounds for a READ.

3 Impossibility of SNOW properties with two clients with re-
stricted communication

In this section, we prove that for a two-client transaction processing system with at least two objects
it is impossible to design an algorithm that satisfies the SNOW properties.We prove our result by
showing a contradiction. For the model consider in this section, we assume that between every pair
of client and server, or every pair of servers there are two communication channels, one in each
direction; however, there are no communication channels between any pair of clients Fig
Consider a system consisting of two servers, s; and so, and two clients, a reader r, which initiates
only READ transactions, and a writer w, which initiates only WRITE transactions. Servers s; and
so store values for objects 0; and 09, respectively. The values stored in 07 and oy belong to the
domains V; and Vb, respectively; the initial values of 0; and oy are v and vJ, respectively. We
denote the automata for servers s; and so by 5‘14 and 3‘24, respectively, and the automata for the

clients r and w by r4 and w4, respectively. We denote by S; the subsystem consisting of s1, so and
w, and by Sf‘ the automata composed of 5‘14, 8‘24 and w?, i.e., 3’14 X 8‘24 x wA. Also, we denote by
A, which can also be interpreted as the algorithm, the automaton representing the entire system
consisting of S{ and r4 (i.e., s{ x s5' xw? xr4). We assume that between any client ¢, ¢ € {r, w}
and any server s, s € {s1,s2} there are channel automata Channel.s and Channel, .. Here, we
consider only fair executions of A. For contradiction, we also assume that any fair execution of A
respects the SNOW properties. Also, we assume that in an execution € of A we can identify each
transaction with an unique identifier.

Consider an execution of A with two transactions in it as: a WRITE transaction W =
WRITE((01,v}), (02,v3)) initiated by w, where v{ # v and v} # vJ; and a READ transaction
R = READ(o1,09), initiated by r. Let us denote by op] and op}, the read operations read(o;) and
read(o2), respectively. We assume that the patterns of sequences of invocations of transaction, the
times of these invocations, and delays in local computation and message deliveries, are controlled by
an omniscient entity. which we refer to as the adversary. The assumption of such an adversary is
in accordance with the asynchronous nature of the model. This is also important in real systems,

because such executions are possible to occur and thus important for making the system safe.

Notations and Definitions: We introduce the following notations and definitions in the context
of an execution €, of A, with transactions R and W in it, where j € {1,2}:

1. send(mj),s;: an output action at 74, which sends a message mj from reader r to server sj,
requesting the value for o;

A

J

A

2. recv(m 3

)mj: an input action at 834, that receives the message m', sent from r;

3. send(vj)s, = an output action at 53-4, that sends value vj, for oj, to r.
4. recv(vj)s; »: an input action at 74, to receive a message v; from s; at r.

5. Non-blocking fragments F;(€), i € {1,2}. Suppose there is a fragment of execution in € where
the first action is recv(m]), s, and the last action is send(v;)s, » , both of which occur at sf‘.
Moreover, suppose there is no other input action at 5;4 in this fragment. Then we call this
execution fragment a non-blocking response fragment for op; at sf‘. We use the notation Fj(e)
to denote this fragment of execution of e.

6. We use the notations R(e) and W (e) to denote the transactions R and W, in e. When the
underlying execution is clear from the context we simply use R and W.

7. If the non-blocking fragment F}(€) appears in € such that recv(m}), s,, at s5', does not occur
before F(€) completes and € is of the form og, a1, ,ap,0p0 0 Fi(€) o S(€), where S(e) is any
continuation of the execution, then we denote o, a1, - ,as, o4 by P(e).

8. If € is of the form og,a1,- - ,ar,0¢0 Fi(€) o ko F5(€),ap, 0p, ... OF 00, a1, -+ ,ap,04 0 Fa(€) o
ko Fy(e) o S(e), where £ is a positive integer, x is a segment of €, possibly even of length zero
and S(e) is any suffix part of the execution then we denote og,a,--- ,as, 00 by P(e). Clearly,
we can write € as P(e) o Fi(€) ok o Fy(e) o S(e) or P(e) o Fy(e) o ko Fi(€) o S(e).

10

Now we describe the set of actions corresponding to the READ transactions in a fair execution
e of A. Clearly, in ¢, the actions inv(op]) and resp(op]) appear between the actions INV(R)
and RESP(R). The action inv(op]) is followed by action send(m]),s,, which is for sending the
read object value request to server s;. This request m] is communicated to s;, via the channel
automaton Channel, ;. Automaton sf‘ eventually receives the request via the action recv(m]),,,
and subsequently, responds back to r, with object value v;, through the action send(v;)s, . Next,
value v;, v; € V;, communicated by the automaton Channels,,, is received at r via the action
recv(vi)s, r, and finally, opi completes with response action resp(opl) and returns v; to r.

Here, we give a high-level idea of our proof, which is based on the existence of a sequence of fair
executions of A, eventually leading to a execution of A that contradicts the S property. First, we
show the existence of an execution « of A where R is invoked after W completes, where the send
actions send(m}),s, and send(m}), s, at the 7, occur consecutively, in P(a). Then we show o can
be written in the form P(a) o Fy(«a) (Figure [3 (a), Lemma [3.1). Based on «, we show the existence
of another execution g, of A, which can be written in the form P(3) o F1(5) o F5(3), by extending
o with an execution fragment Fy(3) such that, Fi(8) % Fi(a) (Figure [3| (b); Lemma, . Note
that in any arbitrary extension (as a fair execution) of 3, eventually R returns (vi,vs). Next, from
B, we show the existence of an execution ~, of A, of the form P(v) o Fy(7y) o F5(y), where the send
actions send(m}), s, and send(m}), s, at r, occur before W is invoked (Figure [3| (c); Lemma,
but the fragments Fj(7y) and Fy(7) occur after RESP(W), as in 3. From ~ we show the existence
of a fair execution §, of A, of the form P(n) o F1(n) o Fa(n) o S(n), where R responds with (vi,v3).
Finally, starting with 7 we create a sequence of fair executions §(= n), 60V, --- (), of A, where in
each of them R responds with (vi,vl) (Figure 4| (¢) and (g); Lemma [3.6). Additionally, for any
6@, the fragments Fy(6®)) and F5(6() appear in the execution before 6¢~1). From §/) we show
the existence of a fair execution ¢ (see Figure [4| (h)), of A, where R completes by returning (vi, vi)
even before W begins, which is violation of the property S.

Now, we state and prove the the relevant lemmas. The following lemma states that there is a
finite execution of A where R begins after W completes where the two send actions send(mj),,s,
and send(mb}), s, occur before either of the servers s; and sg receives the messages mj or mj from
r; also, server s responds to r in a non-blocking manner (execution « in Figure (3| (a)).

Lemma 3.1. There ezists a finite execution o of A that contains transactions R(«)
and W («a) where INV(R) appears after RESP(W) and the following conditions hold:

A

(1) The actions send(m?), s, and send(mj), s, appear consecutively in trace(a)|r”; and

(i) « contains the execution fragment Fy(c).

Proof. Consider a finite execution fragment of A with a completed transaction W, where after W
completes the adversary invokes R, i.e., INV(R) occurs. Note that each of the read operations op}
and oph, in R, can be invoked by the adversary at any point in the execution. Following INV (R),
the adversary introduces the invocation action inv(opj); by the O property of the read operations
of A the action send(m?), s, eventually occurs. Next, the adversary introduces inv(oph) and also,
delays the arrival of m] until action send(m}), s, eventually occurs, which must occur in accordance
with the property O of read operations. Let us call this finite execution .

Next, suppose at the end of a” the adversary delivers the message mY, which has been delayed
so far, via the action recv(mj),s,, at 5‘14, but it delays any other input actions at 5’14. Note that by
the N property of read operations 3‘14 eventually responds with send(v1)s, », with one value v; by

11

O property, where v; = v} by the S property, since R begins after W completes. Let us call this
execution . Note that « satisfies conditions (i) and (éi) by the design of the execution. O

The following lemma states that there is an execution 8 of A where R begins after W completes
where the two send events at 7 occurs before Fy(f), which in turn, occurs before Fy(3) (execution

B in Figure (3] (b)).

Lemma 3.2. There exists an execution 5 of A that contains transactions R and W where INV (R)
appears after RESP(W) and the following conditions hold:

A

(1) The actions send(m?), s, and send(my), s, appear consecutively in trace(f)|r*; and

(i) B contains the execution fragment Fy () o F5(pB).

Proof. Consider the execution a of A as constructed in Lemma At the end of the execution
fragment o, the adversary delivers the previously delayed message m4, which is sent via the action
send(mb)y.s,, by introducing the action recv(mb), s,. The adversary then delays any other input
action in A. By the N property, server 5‘24 must respond to r#, with some value vs, and hence the
output action send(vq)s,, must eventually occur at s3'. Let us call this finite execution as 3. Note

that [satisfies the properties (i) and (77) in the statement of the lemma. O

The following result shows that starting with § there is an execution « of A where R is initiated
before W is initiated , also, the send events send(m}), s, and send(mj), s, occur before INV (W)
(execution Figure (¢)) and the messages m/ and m?, from 74 reach the servers s; and sq, respectively,
after the action RESP(W).

Lemma 3.3. There exists a fair execution v of A with transactions R and W where the action
INV(R) appears before INV (W) and RESP(R) appears after RESP(W), and the following
conditions hold for ~:

(1) The actions send(mj), s, and send(my), s, appear before INV (W) and they appear consecu-
tively in trace(y)|r4;

(1) v contains the execution fragment Fi(v) o Fa(7); and
(791) action RESP(W') occurs before Fi(7).

Proof. Consider the execution 8 of A as in Lemma[3.2} Note that 3 is an execution of the composed
automaton A (= Sit x r). In B, the actions send(m}),s, and send(mb),s, occur at r“; and
following that, the actions recv(m}),s,, recv(mb),s,, send(v1)s,, and send(va)s,» occur at Sit.
Consider the executions o, = 8|r# and ag, = B|S;'. Let sz denote trace(3).

In sg, send(my),.s,, send(mby), s, appear after RESP(W), as in trace(f). Let 5’5 be the sequence
of external actions of S3' which we construct from sz by moving send(m?),s,, send(m}), s, before
INV (W), which is also an external action of A, and leaving the rest of the actions in sg as it is.

In 3, INV(R), recv(v1)s, » and recv(vg)s, » are the only input actions at r*, therefore, 8:3|TA =
trace(a,). On the other hand, recv(m?),s,, recv(mb), s, are the only input actions at s , therefore,
5:3|Si4 = trace(as,). Now, by Theorem there exists an execution v of A such that, s = trace(7)
and o, = y|r4 and ag, = y|S{!. Therefore, in vy, send(m}),.s,, send(mb), s, appear before INV (W)
(condition (#)) and since s} = trace(y) condition (ii) holds. Conditions (i) holds trivially. O

12

In the following lemma we show that in any fair execution, of A, that is an extension of either
execution (3 or execution 7, as in the preceding lemmas, R eventually returns (vi,v3).

Lemma 3.4. Let £ be a fair execution of A that is an extension of the either execution B from
Lemma or execution vy from Lemma then R(&) responds with (vi,vl).

Proof. Note that in executions 3 and +, the traces trace(B)|s{ is a prefix of trace(y)|s{, since f8
ends with Fi(5) and v ends with F»(y) Therefore, in both 8 and v, the respective send(v1)s, »
actions have the same value for their v;’s. Now, in any extended fair execution n of A, which starts
with 8 or v, by the properties N and O the transaction R completes; and by the property S, R
returns (vi,vd). Therefore, R(£) returns (v, vd). O

In the following lemma, we show there exists an execution 7 of A of the form P(n) o Fi(n) o
Fy(n) o S(n) where RESP(R) appears in S(n) (Figure 3| (d)) and R(n) returns (vi,v3).

Lemma 3.5. There exists a fair execution n of A that contains transactions R and W where
INV(R) appears before INV(W); RESP(R) appears after RESP(W') and the following conditions
hold for n:

(i) m can be written in the form P(n) o Fi(n) o Fa(n) o S(n), for some P(n) and S(n);

(i7) The actions send(m}),s, and send(mb), s, appear before INV (W) and they appear consecu-
tively in trace(n)|r?;

(791) action RESP(W) occurs before Fi(n); and
(iv) R(n) returns (vi,vi).

Proof. Let « be a fair execution of A, as described in Lemma Let /¥ be the execution fragment
of v up to the action send(vz)s, . Now, by Theorem (1), there exists a fair execution ° o p, of
A, where 1 denotes the extended portion of the execution.

Clearly, by the N and O properties, the actions resp(op]) and resp(op}) must eventually occur
in 7% o . Now, identify n as 4° o u, where P(n) o Fy(n) o Fa(n) is 4%, and u is S(n), thereby, proving
condition ().

Note the condition (i) is satisfied by 1 because RESP(W) appears in P(n), therefore, the fair
execution 7y is equivalent to the execution fragment of P(n) up to the event INV (W), and also, 7
satisfies condition (i) as stated in Lemma

Condition (4i7) is true because Fi(n) begins with action recv(m]),s,, which occurs after
RESP(W). Condition (iv) is satisfied by n because 71 is an extension of v and due to the re-
sult of Lemma [3.4] O

In the following theorem we prove the impossibility result for achieving the SNOW properties for
the two-client system by starting with a fair execution n and creating a sequence of fair executions
of A, where each one is of the form P(-) o Fy(-) o F5(-) o S(-), with progressively shorter P(-) until
one of them contradicts the property S.

Theorem 3.6. The SNOW properties cannot be implemented in a system with two clients and two
servers, where the clients do not communicate with other clients.

13

INVIW) < (vi', v2'), 4 RESP(W) W
I 1

[] L] L] * @ []
s, WV{'R 'p recur’mfjj send(vy)
{rﬁ) x r -——=2 : !
5. == send(m
’ » sr;enci} m})
F 1o
INVIW) <~ (vid, villy o RESIP{ w)
p ' v recvim’
fbrl .fj ® L —— I INV(R) |(%)E'ndr‘"'.tj
L | —]
=" | | 1
send(m"y) recv{m’
aen é’l"m’z} (stendr'vzj
.F] IlJ'I _FEI:.T:I
INV(W) <- (vi!, v') o o RESP(W)
; ! recv(m’
INV(R) ® " @ .8 @ v gé”d(r""'ij
(c) 77—t L : :
sends[;mn :;lf{“m ‘) recv(m"s) sendyv,)
HH
Fi(y) Faly)
INV(W) < {v,%, vi)e « RESP(W))
INV(R) « o . e o o recymr,) sendvi, .P:EISPFRJ-:* (v,
(d) 7 p—H L -
send(m"y) recv(m’ Jsen dv) recw’ Vi)
send(m’s) —> 3 —pecvfV;
00,01,01," " L0100, 00 Fi(n) Fy(n) S(n) !

Figure 3: Schematic representation of executions «, 3, v and 7, of A with transactions R and W. The
executions evolve from left to right. The vertical marks denote external events at the reader and the server
automata. The marks above the horizontal line denote external actions at s{!, and the marks below the
line for external actions at s3', and for actions r4 the mark cuts through the line. The dots stand for other
external actions at the individual automata.

Proof. Consider a fair execution () of A as in Lemma and let P(6®) be the execution
fragment og, a1, ,ayg, oy, where £ is some positive integer, and the o;’s and a;’s denote states and
actions, respectively. By Lemma , RESP(R(6®)) returns (v],vl) and §*) is also of the form
gp,Q1,°" ,Ayp,0p 0 Fl(é(f)) o FQ((S(Z) o) S((S(Z))

Now, inductively we prove the existence of a finite sequence of fair executions of A-by proving
the existence of one from the previous one—as 6, =1 ... 5@ §G=1) ... 5(5) for some positive
integer f, with the following properties: (a) Each of the execution in the sequence can be written
in the form og, a1, --- ,a;, 050 F1(6®) 0 Fy(6®) 0 S(6®) (or P(-) o F1(-) o Fy(-) 0 S(-)); (b) for each
i, f <i < { we have P(5()} is a prefix of P(§0HD); and (¢) R(6()) returns (v?,v9) and for any
i, f <i <€ we have R(6®) returns (v%, v3). Note that there is a final execution of the form (/)
because of the initial values of v{ and vJ, and the WRITE W.

Clearly, there exists an integer k, f < k < £ such that R(6®)) returns (v9,v9) and R(5¢*+1)

14

INVIW) <- (v), v;') o 4RESP(W)

INV(R) oo e recv(m®y) send(vy) * "RESP(R) -> (v, v5!)
N o +—
send(m®y) r div.) recvivy)
send(m";) o rfcwim 2 s:'rl (v2) rg;cﬁfvz
70,01,01," " S Ok, Ay Ofgy Fy (8D (60 F) (I
INV(W) ‘:-I(VIIJ UZI}. .RES!IJ[’WJ
I 1
L] L] L] . @ L]
INV(R) recv(m’y) send(v,) * "RESP(R)-> (v v,
fl € F—+t ——
- | [1
send(m"jj recvim” d rECVr""i)rECV(V
send(m’s) — f (_,2‘} sen{_r'uz} 1> ?
Ej—U'.'I-{I'].';m—].-."" Jk—fa'.ﬂa G—ﬂ: Fl(f} fjk+lJJk+1 FQ(E_} ..q[’f:}
INV(W) <- (v, v/)s sRESP(W)
1 1
vy =" * " fecyimy) send(vy) * RESP(R)-> (v, v;!)
(9) §F) — L | ; —
send(m’y) recv(m®) send(v,) recv(v, recv(v,)
send(m’,) = —
00, 01,071, " Ok—1,k, Ok Fy(6%) Fy(s)) S{:’jm)

Figure 4: Figure shows, starting with execution n of A, the construction of the progressive sequence of
executions §, 4, ..., of A, of the form P(-) o F1(-) o F5(-) 0 S(-), where we finally construct the execution ¢ of
A to contradict the S property.

returns (v}, v3). Now we start with execution 6(**1) and construct an execution §%) as described

in the rest of the proof. The following argument will show that R(5*)) must also return (v}, v3)
thereby contradicting the above.

Consider the fair execution 61 of A which is of the form g, ay, - - - y Qft1, Okt1 O Fl((S(kH)) o
Fy(6%*+1)) 0 §(§*+1)). The action ag; can occur at any of the automata 74, w?, s{' or s4', therefore,

we prove our claim by considering the following four possible cases.

Case (i) apy1 occurs at w?: The execution fragments F; (6*+D) and Fy(6*+1)) do not contain

any input action at 8‘14 and 8‘24, respectively, and also, aiy1 does not occur at 3‘14 or 3‘24. Hence,

the adversary can delay the occurrence of action a1, at w?, to create the finite execution
00, a1,- -, ag, o o Fi(6¢FHD) o Fy(6*+1)) of A. Note by Theorem (1), there exists a fair
execution 8, of A, that is an extension of the above finite execution where, by the liveness property
of a READ transaction, R completes in §). Clearly, §(%) can be written as og, a1, - - - , a, oo F} (5(k))o
F5(6%)) 0 S(6®), where S(6()) is the tail part of the execution resulting from the extension. At si',
Fy(6%+1)) is indistinguishable from F;(6(®)) i.e., F1(§*+D) 2 Fy(§%). | Therefore, in both of the
above fragments, the send(v)s, » action has the same object value v1. But this means R returns vj
as the value for o; and hence, by the property S, R(6®)) must respond with (v}, v3).

2We drop the superscript A, such as sf* to s1, from the symbol above ~ for formatting reasons, when necessary.

15

Case (ii) ax1 occurs at r: Similar to Case (i).

Case (iii) apq occurs at s{': Observe that the execution fragments aj 1041 o F1(6*+D)) and

Fy(6%*+1)) occur at separate automata, i.e., at s{ and s4', respectively. Observe that the execution
fragments ay 10411 0 F1 (61 and Fy(6¢+1), of A, do not contain any input actions at s{' and
sQA, respectively. Therefore, by Claim (1, we can create a fair execution €, of A, which can be
expressed as g, a1, , g, 0 © Fo(€) 0 apy1, ops1 0 Fi(€) o S(e). Clearly, Fi(e) & Fy(6*+1) and
Fy(e) 2 Fp(6*+1). Now, since action send(v;)s, r, in both Fj(e) and F; (8¢ +1), sends the same
object value vi to 7. Therefore, R returns (vi,v3).

Now let us denote the execution fragment o, ay, - , ax, o o Fo(€) by €, which is simply a finite
prefix of e. Now, suppose the adversary appends the recv(mj), s, to €, i.e., delivers the value request
message from r to s, and creates a finite execution €”, of A, as 09, a1, - - , a, oo Fa(€”), recv(m]), s, »
and delays any input action at 35‘. Now, by Theorem (1), there exists a fair execution €” of A,
which extends €”. Clearly, Fy(e”) % Fp(e”) and hence the send(vz)s, actions in €’ and €”, send
the same value v3 for 0o. Then by the N property action send(v1)s, - eventually occurs and by O
property vy is send to 74, therefore, R completes in ¢, this would imply that R(¢’’) must respond
with (v],0d).

Note that the execution fragment of €”, between the actions recv(mj),s, and send(vi)s, r,
has no input actions of s{!, which can be identified as Fy(€”’). Therefore, ¢” can be written as

00,a1," " ,a, 0 © Fo(e") o F1(e") o S(e").
Next, since F;(€”) and Fy(e”) contains actions of two separate automata, therefore, by Claim
we can create an execution prefix €) as og,a1,--- ,ag, o5 0 Fi(e®)) o Fy(e@™), where Fy(el®))

appears before Fy(e(™)). Next by using Theorem [2.2| (1) we create fair execution §(*) as an extension
of €®). Clearly, it can be written as g, a1, - - - , ag, o 0 F1(6%)) o Fy(6()) 0 S(6*)). Then by O and
N properties R completes in 8. Since Fl(e(“’)) 2 Fi(€") this implies action send(vy)s, » sends vj
for object o1 in €(™) and since Fy(6()) & Fy (™)), this implies action send(v;)s, » sends v} in §*),
this would imply that R(6()) returns (v, v3).

Case () apy1 occur at s5: Since ag1; occurs at s5 and Fy (64D oceurs at sf, (i.e., separate
automata), then by applying Claim |l|as in the previous cases we can create a new fair execution e of
A (Figure (f)) as 0o, a1, ,ak, ok 0 Fi(€) o a1, 0410 Fa(€) 0 S(€) such that, Fy(e) 2 Fy(6F+1)

where aj 1,041 occurs after Fy(6*+D) and R(e) returns (v}, vd).
Now, consider the finite execution og, a1, - ,ax, o o Fi(€) for A and suppose the adversary
appends the recv(mj), s, to create a finite execution of A as g, a1, -, ak, of o Fi(€), recv(ms)y. s,.

Now, by Theorem (1), there exists a fair execution € of A, where the adversary delays the input
actions at s5. By N and O properties send(vs)s,,» occurs in €. Clearly, since Fy(€') & F(¢) the
send(v1)s, » actions, in € and €, send the same value for 01. Therefore, R responds with (v%, v2),
where vy € V5.

Now, in €, we identify the fragment which begins with recv(m}), s, and end with the action
send(va)s, r as Fa(€') to write € as 0o, a1, , ay, o0 F1(€') o Fa(€'). Now using Theorem [2.2) (1), we
know there exists a fair execution 6(*) of A, which is an extension of €’. Clearly, () can be written
as g, a1, ,ag, o 0 F1(6#) o Fy(6®)) 0 §(6(*)), where S(6() is the tail part of the extended fair
execution. Clearly, F;(6()) 2 Fy(€); therefore, R(6*)) returns v} for object oy, in §*) and this
implies R(6(*)) must return (v}, v3). O

16

Communication .
channels M — /7

INV(R), —._ inv{op)
End user |)
. < Ay ! S
RESP(R) , —
client-to-
. server-
client
to-server
INVIW)
End user
RESP(W)

Figure 5: The architecture of a typical web service with clients, servers, and the communication channels,
between every pair of processes, inside a datacenter is modeled as a collection of I/O automata. Note that,
unlike the architecture in Fig. 2| in this setup there are communication channels between every pair of clients.

4 Impossibility of SNOW properties with three clients

In this section, we prove that for a three-client transaction processing system, with at least two
objects, it is impossible to design an algorithm that satisfies the SNOW properties. From the proof
of the SNOW Theorem [9], it is not clear whether a WRITE transaction is ever required to complete
in the presence of ongoing READ transactions (Fig. [5). Moreover, the authors in [9] do not state
explicitly whether the result of the SNOW Theorem holds if clients communicate with each other.
In our proof, we state these points explicitly: each WRITE must complete even if there are concurrent
READ transactions, and between every pair of processes, there are two communication channels, one
in each direction (Fig/p)). Furthermore, we assume that if a READ is invoked at a reader, then the
reader can proceed to contact the servers without waiting for any incoming messages.

We prove our result by showing a contradiction. We consider a system consisting of two servers,
s1 and sz, and three clients: two readers r; and ro, which initiate only READ transactions, and a
writer w, which initiates only WRITE transactions. Servers s; and so store values for objects o1
and o9, respectively; the values in 0; and oy belong to the domains V; and V3, respectively; the
initial values of 0; and og are v{ and ©3, respectively. We denote the automata for servers s; and
s2 by 3{‘ and 3‘24, respectively, and the automata for the clients r1, r9 and w by rf‘, 7“5‘ and w?,
respectively. We assume that between any pair of processes p; and po, such that p; # ps, there are
channel automata Channel,, ,, and Channely, ,,. For the purpose of proving by contradiction, we
also assume that any fair execution of B respects the SNOW properties. Also, we assume that in
any execution of B we can identify each transaction with a unique identifier.

17

Consider an execution of B with three transactions: a WRITE transaction W =
WRITE((01,v}), (02,v4)) initiated by w, where v # v and vi # v); and READ transactions
Ry = READ(01,02) and Ry = READ(o01, 09) initiated by r; and rg, respectively. Let us denote by
op’ and op}, the read operations of types read(o1) and read(o2), respectively. As in Section |3, we
assume an omniscient adversary that can control the patterns of sequences of invocations of transac-
tions, the times of these invocations, and delays in local computation and message deliveries. In the
rest of the section, in order to reduce notational clutter, for any execution of B, g, a1, ,ag, 0 - - -,
where ¢’s and a’s are states and actions, we use the notation aq,--- ,ay--- that shows only the
actions while leaving out the states.

Notations and Definitions: We introduce the following notations and definitions in the context
of a fair execution a, of B, with transactions R and W in it, where j € {1,2}:

1. send(mg)wj: an output action at 4, which sends a message m;' from reader r to server sj,
requesting the value for oy;

T

2. recv(m]

)r,s;: an input action at 83»4, that receives the message mj, sent from r;

3. send(vj)s, »: an output action at 334, that sends value vj, for o;, to r.

S5,
4. recv(vj)sj,r: an input action at rA, to receive a message v; from s; at rA.

5. Non-blocking fragments Fj(a)(”j), j € {1,2}. Suppose there is a fragment of execution in «
where the first action is recv(m]), s, and the last action is send(v;)s, » , both of which occur
at sf‘. Moreover, suppose there is no other input action at sf‘ in this fragment. Then we call
this execution fragment a non-blocking response fragment for op] at 8;4. We use the notation
F;(a)®) to denote this fragment of execution of o (Fig. |6). In the context of a READ R;, for
i € {1,2}, we use the notation F; j(a)®) to denote Fj(a)i).

6. Suppose READ R completes in o. Consider the execution fragment in o between the event
INV(R) and whichever of the events send(m}), s, and send(mj), s, that occurs later. If all
the actions in this fragment correspond to 74, then we denote this fragment as I(a) (Fig. @)
In case of a READ Ry, for i € {1,2}, we use the notation I;(«) for I(«).

7. Suppose READs R completes in . Consider the execution fragments in « that occurs between
the later of the events recv(vi)s, » or recv(v2)s,r, i.€., at the point in a when r receives
responses from both the servers, and the event RESP(R). If all the actions in this fragment
occur at 7, then we denote this fragment by F(a)®*2) where R returns the values (v1,v)
(Fig. @) In case of a READ R;, for i € {1,2}, we use the notation FE;(a)1:¥2) for E(a)®1v2),

8. We use the notations R(«) and W («) to denote the transactions R and W, in the context of
«. When the underlying execution is clear from the context we simply use R and W.

9. For any U;- € Vj, the superscript ¢ corresponds to the version identifier, which uniquely identifies
a version from a totally ordered set.

Any READ R initiated at a reader r, via the invocation action INV(R) at r, after which the
actions send(mf),s, and send(mk), s,, at r, send message m} to s; and mj to sa, respectively. Once
s1 receives recv(mj), s, then s; responds to r, in a non-blocking manner, with value v; via action

18

INV(R;) send(mi*)r, s, sr—_f-nri(m%") .
| l

[r.
recv(mi), Ii(a) send(vy) s, .

I ERLN! I

recv(ms'). o, send(v2) e, r,
| |
F (ﬂ_,){?--'-z}
recv(vy), r, recv(v2)s,.r, REiSP(R”

I |

E; (0{) (vi,v2)

Figure 6: The figure depicts for a fair execution « of B the relevant actions in the execution fragments of
Ii(a), Fi1(a)™) F;o(a)®) and E;(a)1¥2) for any READ Ry, i € {1,2}.

send(vy)s, . Similarly, after sy receives mj it responds with v to r in a non-blocking manner via the
action send(v2)s, . After r receives vy and vy via actions recv(vi)s, » and recv(v2)s, r, respectively,
R completes with the response action RESP(R) and returns (v, ve).

From the above discussion we can state the following useful lemma, which states that in any
execution of B, if a server s; responds with a value v; during a READ then the READ returns v; for
object o; and also, the pair of values (v}, v}) are from some version ¢. The result follows from the
reliable channel model, where messages reach at their destinations unaltered; and by the S property

the object values, for objects 01 and o, returned by R are of the same version.

Lemma 4.1. Suppose « is any execution of B such that a READ R is in «. Suppose the execution
fragment I(a) o Fi(a)®) o Fy(a)®3) o E(a)(vil’”gl) in a, corresponds to R, where vt, vt € V; and
v3,v5 € Va, and 5,5 t, 1 are version identifiers then (i) s = s' and t =t' and (ii) s' =t'.

Proof. Suppose R is invoked at reader . Then, via the action send(v!)s, r, in execution fragment
F1(a)®), server s1 sends the value vt to r, which is received at r through the action recv(v!) sp,r D
E (oz)(“il’vgl). By the assumptions of the reliable channel automata in our model, we have v} = v{/,
i.c., t = t'. Similar argument for Fy()2) and E(oz)(”i/’“;/) leads us to conclude s = s’. Next, R
responds with (v’i/, vgl), which implies by the S property for executions of B that vfl and USI must
correspond to the same version, i.e., s’ =t'. O

Note that the above results hold even if there are any other execution fragments, that do not
contain any actions at r, s; or sg, in-between the I, F; and F execution fragments.

Corollary 1. Suppose « is any execution of B such that a READ R is in . Suppose the execution
ragment I(a) o X1 o Fi(a)"1) o Xy 0 Fy(a)(¥2) 0 X5 0 E(a)®1¥3) in «, corresponds to R, where
t1 X1 0 Fi(a)®) o Xy 0 Fy(a)¥) o X3 0 E(a)®i¥5) ds to R, wh

19

’ ! . .
i ol € Vi and v, v5 € Vo, X1, X, X3 are some execution fragments that do not contain any

action at r, s1 or Sa, and s, s, t,t" are version identifiers then (i) s = s and t =1t and (ii) s’ =1'.

The following lemma states that new fair executions of B can be created by swapping execution
fragments that have no input actions, and in which each fragment contains actions that occur only
at one automaton and the automata for the two fragments are different.

Lemma 4.2 (Commuting fragments). Let o be a fair ezecution of B. Suppose G1(a) and Ga(a)
are any execution fragments in o such that all actions in each fragment occur only at one automaton
and also, none of them are input actions. Suppose G1(a) and Ga(a) occur at two distinct automata
and the execution fragment Gi(«) o Ga(a) occurs in «. Then there exists a fair execution o of
B, where the execution fragment Ga(c) o G1(a) appears in o, such that (i) the prefiz in « before
G1(a) o Ga(a) is identical to the prefiz in o' before G1(a') o Ga(d); and (ii) the suffix in « after
G1(a) o Ga(a) is identical to the suffix in o' after the execution fragment Ga(a') o G1(d).

Proof. This is clear because the adversary can move the actions in Go to occur before G at their
respective automata, and these fragments do not contain any input actions, and hence the actions
in one of these fragments cannot affect the actions in the other fragment. O

The following lemma states that if there are two fair executions of B with a READ R in each of
them, and suppose at any server the non-blocking execution fragments of R are identical (in terms
of the sequence of states and actions) then in both executions, R returns the same object value.

Lemma 4.3 (Indistinguishability). Let « and § be executions of B and let R be any READ. Then
(1) if Fi(a) % Fy(B) then both R(a) and R(jB) respond with the same value vy for oi; and (ii) if
Fy(a) R Fy(B) then both R(a) and R(B) respond with the same value vy for oo;

Proof. Suppose R is invoked at some reader r. Let j € {1,2} and suppose the fragments Fj;(a) and
F;(B) appears in « and 3 respectively, where in Fj(c) server s; sends v; € Vj to r. Then R(«) must

return v; for object o; by the O property of B. Then since F}j(«) 2 F;(B) then in Fj(B) the server
sj must also send v; to r, therefore, both R(c) and R(3) must return value v; for o;. O

Below we show that in any finite execution of B where the final action is an invocation of READ
R at a reader r, the adversary can always induce a fair execution of B where the fragments I, F,
F, and E appear consecutively in that order.

Lemma 4.4. If any finite execution of B ends with INV (R), for a READ R then there exists an
extension o which is a fair execution of B and is of the form P(a) o I(a) o Fy(a)®) o Fy(a)?) o
E(a)v1%2) 6 S(a), where P(a) is the prefiz and S(a) denotes the rest of the execution.

Proof. Consider a finite execution of B that end with INV(R), which occurs at some reader
r, then the adversary induces the execution fragment I(a) by delaying all actions, except the
internal and output actions at 7, between the actions INV(R) and the later of the actions
send(mj), s, and send(mb),s,. Next, the adversary delivers mf at s; (via the action recv(mf),.s,)
and delays all actions, other than internal and output actions at 3‘14, until s; responds with v, via
send(vy)s, ; we identify this execution fragment as Fy(a)®). Subsequently, in a similar manner,
the adversary delivers the message m; and delays appropriate actions to induce the execution
fragment Fy(a)(®2). Finally, the adversary delivers the values v; and vy to 7 (via the events

20

EJ“}
) ai - . -Qg, R i S

X1 ay- - Qg+1, R(1 "z)ﬁ

N 5 i
02 a1...0p41 j_rl FiiFyo Elh’zjz FBIFQJEELM IS
O3 @ LT T, Py P BTV Ry SIS

(¥4 @y--- Iy 41, Iy Fy 1 Fl o Foo mﬂ‘z 1 "z:i()r

/ f.-___-'\\ -| .._.!,-. .‘ : 1 ;
(.}:.‘_:_'l (i, - 12 ”_.;1_]1l E] '!. : !". : F !. E 1 l_i }FZ]_ I(T J_-T)
] F II" 1‘] :l .‘é :
(}Ei n el —m i;]';’ iI ! i l"!,‘g ,j":[12 j (Ll!T-'E}FL]EQ{Ll:t :IL?

b

W ‘/,__1“\‘1\ .'L..‘-1 ¥
(85 ag . ar, I Il Fl.l FQQE FI.ZE]T.l,?.z]_Eétl_Tz)

xg ¢ ., Io Fszg1f1g E[11L eu)E(u v, C)f
{'}59 [5 (]_k? I'.Z F‘Z.Z Fzm Fl zE{dl 1| E;l s 3,)
10 Ay < g, IQFQQFEIEne“}IIFIIFle(2: N .o

R P G eSOy et

Figure 7: The sequence of fair executions of B w1th three clients with the operatlon W, Ry and R5 eventually
leading to the execution a0 that contradicts the S property. The directed arcs depicts the transposition of
execution fragments from the previous execution in the sequence.

recv(v1)s, » and recv(va)s,), and delays all actions at other automata until R completes with
action RESP(R) by returning (vi,v2). As a result, we arrive at a fair execution of B of the form
I(a) o Fi(a)®) o Fy(a)®) o E(a)®1¥2) o S(a). O

The high-level view of our proof strategy is to create a fair execution « of B that contradicts
the S property. We begin with a fair execution of B that contains READs R; and Ry, and WRITE
W, where R; begins after W completes, and Ro begins after Ry completes. Clearly, by the S
property both Ry and Ry return (vi,vi). Then we successively create a sequence of fair executions
of B (Fig. [7] , where we interchange the fragments until we finally reach an execution of where Ry
completes before R begins, but Ry returns (vi,v3) and R; returns (v,v9) which contradicts the S
property.

The following lemma show that in an execution of B with a WRITE W and a READ R, there
exists a point in the execution such that if R; is invoked before that point then R; returns (v?, Ug)
and if invoked after that point then Ry returns (v}, v]).

Lemma 4.5 (Existence of ag and «y). There exist fair executions oy and oy of B that contain
transactions W and Ry with the following properties:

21

(i) ao can be written as a1, ,aj o Ri(c)®2) o S(ag) ;
(ii) o1 can be written as ai,--- ,api1 o Ri(a1)®1¥2) o S(ay); and
(i41) apy1 in oy occurs at ri,
where k is some positive integer and ay,--- ,ax s a prefiv of ay, -+, Qpy1-

Proof. Now we describe the construction of a sequence {;}72, of finite executions of B such that
each i contains W and R;. Let us consider a fair execution « of B that contains W. Suppose k is
any positive integer and suppose R; is invoked at rf‘ after the execution fragment ag,--- ,ax4+1, a
prefix of a. After the action INV(R), the adversary schedules only internal and external actions
at r{! until both the events send(m/"),, s, and send(mj'),, s, occur, thereby creating an execution
fragment of the form ay,--- ,axyr1 o I1(«). Let us denote aq,- -+ ,ags1 by Pry1.

Following this, the adversary delivers the messages m}' at s1, and delays all actions at other
automata and also any input action at s1, until s; sends vy to 71, therefore, inducing the execution
fragment Pjyq 0 I1 1(a) o F1 1(c) of B. Next, the adversary delivers mi' at so and delays all actions
at other automata and input actions at sy, until so sends ve to ;. Then the adversary delivers
v and vy at r; but it delays actions at other automata and any other input action at r;, until
RESP(R;) occurs. Up to this point this is an execution fragment of B, which can be written
as Pyr1oli(a)o FLl(a)(”l) o Fl’g(a)(”ﬁ o El(a)(““), where R; responds with (v1,v2) such that
(v1,v2) € {(¥9,09), (vi,v3)}. We denote this finite execution prefix as ;. Therefore, there exists
the sequence of such finite executions {vx}72,.

In 79, Ry precedes W and therefore, by the S property, in 7o, R; must respond with (v9,v9).
On the other hand, if k is large enough such that a; occurs in a after the completion of W then by

the S property, in 411, R must return (vi,vs). Therefore, there exists a minimum k where in

READ Ry returns (v?,09) and in qg41, Ry returns (vi,vl). We identify v, as ag and y441 as aj as
in claims () and (i7), respectively.

Now, we show (7i7) by eliminating the possibility of ajy; occurring at 5‘14, SQA, w? or 7‘51 by
showing contradictions. Our proof is based on the following argument. The S property implies that
Ry must respond with values for o; and oy corresponding to the same version, which implies that s;
and s must send values of the same version. Observe that Rj, in oy and a7, returns values for
versions 0 (i.e., (v,09)) and 1 (i.e., (vi,vd)), respectively, but the prefixes Py and Py differ from
one another only by action agy1. But just one action at any of s1, s2, 72 or w is not enough for s;
and sy to coordinate to return values of the same version. Therefore, ax,1 must occur in r1, which
can possibly synchronize by sending some information in m; and mo to s; and ss, respectively.

Case ag11 occurs at 3’14 : Consider the prefix of execution ag up to the action ag. Suppose the
adversary invokes R; immediately after action ag, i.e., via INV(Ry). By Lemma there exists fair
execution o of B that contains an execution fragment of the form Pyoly(a/)oFy 1(a/)"oF 5(a’)(¥2)o
E(a/)("1¥2). Note that in both o/ and a1 we can have I1(a1) ~ I1(a’) and Fja(a1) 2 Fy2(a’), this
is because in both executions the actions of I; occur entirely at r; and those of F7 o entirely at
s2. As a result, Fy 2(a’) must send the same value vj for og to 71 as in Fj 2(a1). Then in o/, by
Lemma R1(a/) returns vd for object 02, and by the S property, Ri(a’) returns (vi,vi). But
this contradicts the definition of k, as the minimum value of k such that R; responds with (v{,v9).

Case ay11 occurs at s4': A contradiction can be shown by following a line of reasoning similar
to the preceding case.

22

Case ap4q1 occurs at w?: This can be argued in a similar manner as the previous case and a bit

easier because we have F 1(o) 2 Fy1(a/), and also, Fj 2(aq) 2 Fyo(a).

Case apy1 occurs at rQA: A contradiction can be derived using a line of reasoning as in the
previous case.

From the above, we conclude that in ay, action a1 must occur at 7"14.]

Additional notation: In the remainder of the section, for the execution fragments I;(«),
Fi1()®)) F;o(a)¥2)) Ei(a)®1%2) and S(a), for i € {1,2} we use the notations I;, Fl(iljl), Fi(ZZ),

Ei(mm) and S, respectively, suppressing the explicit reference to the execution. With regard to any
READ R; if it has an execution fragment of the form I;(a) o Fj1(a)®) o F;5(a)®2) o E;(a)"1¥2) we
denote it as REUI’”). Also, wherever the returned values in the fragments are not known, clear from
the context or irrelevant we omit them. In the rest of the section, we fix ag and «q, and the value
of k; we denote the execution fragments aq,--- ,ar and ay,--- ,ax11 as P and Py, 1, respectively,
which are the same irrespective of the execution they appear in.

The following lemma states the existence of an execution of B where, following a WRITE, there

are two consecutive READs and both return the object values updated by the WRITE.

Lemma 4.6 (Existence of ag). There exists fair execution ae of B that contains transactions W,
1,1 1,1

Ry and Rg and can be written in the form Pyyq o Rgﬂl’%) o Rgﬂl’%) oS, where both R1 and Ry return

(v1,v3)-

Proof. We can construct a fair execution as of B as follows. Consider the prefix aj, -, a1 0

Rl(al)(”%”’%) of the execution «q, from Lemma At the end of this prefix, the adversary
invokes Ry. Now, by Lemma due to INV(Rz) there is an extension of the prefix of the form

a1, aps1 0 Ri(01)@1v2) o I(a) o Fy () o Fy(e)*2) o E(a)®%2). By the S property, we have
1.1 1.1
v1 = v} and ve = vi. Therefore, ay (Fig.) can be written in the form Py o Rgvl v2) 6 Révl v2) 6 S,

where S is the rest of the execution. O

Based on the previous execution, the following lemma states that there is a fair execution of B3
where the Iy occurs earlier than the action ag41 and invocation of Rj.
Lemma 4.7 (Existence of ag). There exists fair execution ag of B that contains transactions W,

1,1
Ry and Ry, and can be written in the form Py o Iy o agqq 0 Rgvl v2) o0 Fy10Fp90FEy0S, where both
Ry and Ry return (vi,vl).
. . . . (v}) (vd) (vivd)
Proof. Consider the execution as as in Lemmal4.6, In the execution fragment Iy of "ok 7 oE)
in a9, none of the actions occur at o and by Lemma ap+1 occurs at Tf‘, also the actions in I
occur only at 9. Starting with ase, and by repeatedly using Lemma [4.2] we create a sequence of four
1.,,1 1 1
fair executions of B by repeatedly swapping Io with the execution fragments E§U1 ’vz), Fl(’vf), Fl(’vf)
1 1 1,1
and Iy, which appears in I; o F1(7”11) o 1%” o Egvl’%) o I5, where the following sequence of execution
1 1 1,1 1,1 1 1 1.1
fragments I oFl(,vf) o 1(%) oIgoEﬁvl’vQ) (by commuting I» and E%UI’UQ)); I oFl(’Uf) ol oFl(gz) oEfvl’UQ)
1 1 1 1,1 1
(by commuting 2 and Fl(j}f)); Liolho Fl(jjll) o Fl(??) o EEUl v2) (by commuting 2 and Fl(}]f)) appear.
1,1 1 1 1,1

Finally, we have an execution ' of the form Py oI5 0 Rgvl’%) o Féﬁl) o Fz(?]f) o Eévl’%) oS (by
commuting Is and I1) Next, from o/, by using Lemma and swapping ap41 with I we show the
existence of a fair execution ag as stated in the lemma.]

23

In the following lemma, we show that we can create a fair execution ay, of B, where F» 2 occurs

immediately before EYJ%W%), while Ry and Ry both return (vi,v3).

Lemma 4.8 (Existence of ay). There exists fair execution oy of B that contains transactions W,
R and Ry and can be written in the form Py oIy o agp10li 0 Fi 10 Figa0 Fyoo EjoFy10FEy08,
where both Ry and R return (vi,vl).

Proof. We start with an execution «ag, as in Lemma 4.7 and apply Lemma [1.2] twice.

First, by Lemma we know there exists a fair execution o’ of B where F5; (identify as G1)
and F5 o (identify as Go) are interchanged since actions of Fy 1 occurs solely at s; and those of F3 o
at s9, and Fy 1 and Fb o return U% and v%, respectively, to ro.

Next, by Lemma there is fair execution of B, say oy where the fragments F; (identify as G)
and Fy o (identify as Gg) are interchanged, with respect to o/, because the actions in E; occur at

1
r1 and those of F5 o at so. Furthermore, ay can be written in the form Py o I3 o agyj0l; o F1(,U11) o

F o B o B o gl o g0 o . -

Next, we create a new fair execution as of B where F5 o occurs before F . However, because
the actions in both of these execution fragments occur at the same automaton care has to be taken
to swap these fragments compared to ay.

Lemma 4.9 (Existence of as). There exists fair execution oy of B that contains transactions W,
Ry and Ry and can be written in the form Py o Iy o api10ly 0 Fi10FygoFigo EjoFy10FEy08,
where both Ry and Ry return (vi,vd).

Proof. In a4, all actions in F} 2 and F 9 occur at sp. Consider the prefix of ay that ends with
Fy 1. We extend this prefix as follows. In this prefix, the actions send(m4?),, s, and send(ms'),, s,
do not have their corresponding recv actions. Suppose the adversary delivers ms? at sy (via the
action recv(ms?)r, s,) and delays all actions, other than internal and output actions at s4', until sy
responds with vy, via action send(v2)s, r,. This extended execution fragment is of the form F; .
Similarly, the adversary further extends the execution by placing the action recv(ms'),, s, at s2 and
create the execution fragment of form F ». Note that, so far, the actions due to the above extensions
are entirely at so. Suppose the adversary makes the execution fragments Fj next, by delivering
values sent during Fj; and F o via the actions recv(vi)s, », and recv(va)s, r,, respectively, at rq.
Then F5 1 appear next, such that this fragment contains exactly the same sequence of actions as in
the corresponding execution fragment in «y. This is possible because they are not influenced by any
output action in F5 o or Fi 2. Suppose the adversary places the execution fragment Fo next. Let us
denote the fair execution that is a extension of this finite execution so far as as, which is of the
form Py olyoagyioli o Fij0Fy0F) 90 EjoFy;0FEyo0S. Now we need to argue about the values
returned by the reads.

Note that the execution fragment Fi j(cu) in both a4 and a5 is the same, therefore, Fy 1(ay) ~
Fi1(as). Hence as in ay, s returns v in the execution fragment Fy ; in as. Next by Lemma for

Ry, sy returns v3 in Fy 5 and hence by the S property, R;(as) returns (v}, v3), i.e., that ry returns

1 1
the new version of object values. Therefore, F 1(ou4), F12 and E; are of the form Fl(’vf), Fl(j};) and
1,1
Eivl v2) , respectively.

Note that by construction of a5 above, the execution fragment F5; in both a4 and a5 is the

S . . .
same, therefore, F271(044) ~ F271(a5). Hence as in a4, s1 returns v% in the execution fragment

24

F51(as) in as, i.e., of the form F271(Oé5)(v%). Since s returns vi in F>1 in as, by Lemma and

1,1
the S property, Rs returns (v{,v3) and hence Es is of the form Eévl’%).

1 1 1
From the above argument we know that as is of the form Py olyoagq10l50 Fl(jjll) o FQ(?);) o Fl(gz) o
EUTo " o B o g, O

In the next lemma, we show the existence of a fair execution of B where Ry returns (v{,v9) and
I5 occurs immediately after a; and Ry responds with (v, vs). In fact, this is the most important of
the sequence of fair executions of B (Fig. @ because later with this we prove in Theorem [4.15) “ 5| the
existence of a fair execution of B where a READ returns object-values of an earlier version compared
to a previous READ that is not concurrent with it.

Lemma 4.10 (Existence of ag). There exists fair execution ag of B that contains transactions W,
R and Ry and can be written in the form PyolyolioFijo0Fy90Fi90E;0Fy10FEyo0lS, where

Ry returns (v9,v9) and Ry returns (vi,vd).

Proof. The crucial part of this proof is to carefully use the result of Lemma so that Ry returns
(v9,09), instead of (vi,vi). Note that by the construction of s, as in Lemma the same prefix
P, appears in the fair executions a5, and the executions ag and a4 as in Lemma 4.5 where k is
defined as in Lemma (4.5

Note that by Lemma H action ag41 occurs at ?"1 In as, in the execution fragment agi10lp o

Fl(1) FQ(UQQ)7 the actions in execution fragment aj,i0l; occur at r{'; actions in F1() occur at si;

and actions in F2(72 2) occur at 52 . Now consider the prefix of execution a4 ending with Is and suppose
the adversary invokes R; immediately after I (instead of after ag,1) and extends by the execution
fragment I; o F7 1 o I 2 to create a new finite execution €, which is of the form Pyolpoli0Fy10Fy .
Note that as a result, ay4+1 may not be in € because we are introducing changes before ax41 can
oceur.

Note that if in the prefix Py oIz(e)ol1(€)o F 1(€) o Faa(e€) of € we ignore the actions in I(e) then
the remaining execution is the same as the prefix P o I1 () o F11(ap) o Fa2(ap) of ap in Lemma
Here we explicitly use the notations € and ag to avoid confusion. Since the actions in I3(e) have
no influence in the actions on I;(€) o Fy1(€) o F22(€), therefore, we have FLl(e) 2 Fi1(ap), and
hence by Lemma Fi 1(€) returns v? as in Fri(a), ie., in Fy 1, s1 returns vY. Now by Lemma
we conclude that for any extension of €, say v, READ Ry (y) returns v{ for obJect 01 and by the S
property Ri(7) returns (v{,v9). Also, since Fya(as) < Faa(e) R Faa(y) by Lemma and the S

property, Ro(7y) must return (v}, v2) Therefore, v has an extension to a fair execution g (Fig. |7))

which is of the form Pyolsol;o Fl(j)f) o 2(72 2) g 1(72 2) oEivl’%) F(vl) Eévl’%) o S as in the statement
of the lemma. O

In the following lemma, starting from ag in Lemma we create a fair execution a7y for B
where I 1 appears before F 5 o Fy, where R; returns (v(l), 112) and Ry returns (vl,v2) At high level,
we will be working on moving the execution fragments of Ry forward, a little at a time, until finally
we have R finishing before R; starts. This simply uses commutativity since the actions in the
swapped execution fragments occurs at different automata.

Lemma 4.11 (Existence of ay). There exists fair execution oy of B that contains transactions W,
Ry and Rz, and can be written in the form Py olyoli o Fyj0Fyg0Fy 0F; 90K 0FEy0S where

Ry returns (v9,v9) and Ry returns (vi,v3).

25

Proof. This result is proved by applying the result of Lemma [£.2] to the fair execution created in
Lemma Suppose, ag (Fig. [7) is a fair execution as in Lemma where in the execution

(v9,09) . . (v?,09) (v9) .
fragment E, '"?" o Fy 1 we identify E; '"?" as G and F1,22 as Go. The actions of G; and G5 occur
at two distinct automata, therefore, we can use the result of Lemma [4.2] to argue that there exists
a fair execution o of B that contains the execution fragment Fypo0 Eiv?’vg), and ag and o are
identical in the prefixes and suffixes corresponding to G; and Go.
Now, o contains Fj 9 o F5 1, where the actions in F} 5 (identified as G1) and Fb; (identify as

G2) occur at distinct automata. Hence, by Lemma there exists an execution ay of the form

P.olyolio Fl(’vl?) o F2(1}2%) o FQ(,Ul%) o Fl(gg) o EF?’Ug) o Eévl v3) oS.]

In the following lemma by using simple commuting arguments of Lemma [4.2] we show the
existence of a fair execution ay of B where F5 > appears before I o Fy 1, where R returns (v?, vg)

and Rp returns (vi,vi).

Lemma 4.12 (Existence of ag). There exists fair execution ag of B that contains transactions W,
Ry and Ry and can be written in the form Py o Iy o Fy 90l 0 Fy 10 Fyj0F 20 EjoFEyoS, where Ry
returns (v),v9) and Ry returns (vi,vd).

Proof. Consider the fair execution ay of B as in Lemma In the context of of Lemma [4.2] in
ay (Fig.) the actions in Fi ; (identify as G) occur at 5{‘ and those in F o (identify as G3) at 8‘24.
Then by Lemma there exists a fair execution o of B, of the form PyoIyolj o Fyg0 Fjjo0Fyjo
Fi90FE10FEy0S, where Fy 2 and Fy; are interchanged.

Since actions in Fh o (identify as G1) occur at s{' and those in I; (identify as G1) occur at s{!
then by Lemma there is a fair execution of B, ag where F5 5 appear before Iy, i.e., of the form
PyolyoFs30li0F10Fy10Fp0F0Eyo0S, where I and Iy are interchanged.

By (ii) of Lemma we have Fy (o) A F51(ag) hence Fy ;1 sends v% and Fy 1 and F} o sends
v9 and 09, respectively. So considering these returned values we have ag (Fig. [7)) in the form as
stated in the lemma. O

The following lemma shows the existence of a fair execution of B, ag, where we move F5 ;
forward past Fi ;.

Lemma 4.13 (Existence of ag). There exists fair execution ag of B that contains transactions W,
. - (v3) (1) () H(09) (0909) | o(vfivg)

Ry and Ry and can be written in the form PkOIQOF2722 olq oF2711 OFl,ll oFLQ2 oE; V¥ oFE, %08
where Ry returns (v9,v9) and R returns (vi,vd).

Proof. In ag from Lemma all the actions in I; occur at rq; those in Fj 1 occur at si; and
the actions in F»; occur only at s;. Note that actions of both execution fragments F»; and Fj 1
occur at 1. Consider the prefix of ag that ends with I; then suppose the adversary extends this
prefix by adding an execution fragment of the form F5; o F7 1 as follows. First note that the actions
send(mi?)r,.s, and send(mi')y, s, appears in the prefix but do not have corresponding recv actions.
The adversary places action recv(m}?),, s,, and allows an execution fragment of the form Fy; to
appear. Now, immediately after this the adversary further extends it with an execution fragment of
the form Fy; by placing action recv(m?)rl’sr Next the fragment F} o is added and is the same as
Fi 2(ag). This last step can be argued by the fact that none of the actions in F; > can be affected
by any of the output actions at F5 1 and Fj ;. Note that the actions in Fj 2 are taking place at so,
which is not affected by the above fragments, and therefore, at the end of this fragment so returns

26

v, as in ag. But by S property F 1,1 has to return v as well. Note that a careful argument can be

done by using Theorem to conclude the same. Following this the adversary allows the rest of the
execution by adding an execution fragment of the form Ey o F5 o S. The resulting fair execution is
of the form P, oI5o0 F2(UQ%)OI 10Fy 0 FLloFl(UQg) o F10FEs0S, where we retained the values wherever
it is known, and we denote this fair execution by ag.

Now, we argue about the return values in ag. Applying Lemma to Ry and Fy o implies that

Ry returns (vi,vl). Similarly, applying Lemma to Ry and Fj s implies that R; must return
(v9,09) in ag. O

Now we show the existence of a fair execution of B where the execution fragments corresponding

to Ry appears before Ry, where Ry returns (U?, vg) and Ry completes by returning (v%, v%)

Lemma 4.14 (Existence of o). There exists fair execution ayg of B that contains transactions

- . (v1,03) (v],09) 0,0
W, R1 and Ry and can be written in the form Ppo Ry "2 o R V72" 0 S. where Ry returns (v],v5)
and Ra returns (vi,vl).

Proof. Now, by using Lemma@ to ag, we can interchange Fb 1 and I to create a fair execution o

1 1 0,0 1,1
(Fig. |7) of B, which is of the form Py o I3 o Fz(,v22) o Fz(’vf) o Rivl’%) o Eévl’%) o S, where the returned
values are determined by Lemma [4.1

0
Note that in the execution fragment none of the actions in the execution fragment I o Fl(:ull) o

(v9) _ p(f09) A o pvhvd) - A ;
F 3 oE) occur at 73" and in K, each of the action occur at rj. Therefore, by applying
Lemma we can consecutively swap Ey with Ey, Fj 9, I; and F}; we create a sequence of four

. . . : - - (vivg) p(vf9)
fair executions of B to arrive at fair execution oy (Fig.[7)) of the form Py o R, oRy oS. O

The following statement proves the statement of the SNOW Theorem by showing the existence
of fair execution ayg, of B, where Ro completes before R is invoked and Ro completes by returning
(vi,v3) whereas Ry returns (v{,v9), which violates the S property in asp.

Theorem 4.15. The SNOW properties cannot be implemented in a system with two readers and
one writer, for two servers even in the presence of client-to-client commumnication.

Proof. Note that in ajg, Ry completes by returning (vi,vi) and R;, although invoked after Ry
returns (v{, Ug), is initiated and as a result ayg violates the S property.]

5 Condition for proving strict serializability

In this section, we derive a useful property for executions of algorithms that implement objects
of data type Op that will later help us show the strict serializability property (S property) of
algorithms presented in later sections.

Although the strict serializability property in transaction-processing systems is a well-studied
topic, the specific setting considered in this paper is much simpler. Therefore, this allows us to derive
simpler conditions to prove the safety of these algorithms. A wide range of transaction types and
transaction processing systems are considered in the literature. For example, in [13], Papadimitriou
defined the strict serializability conditions as a part of developing a theory for analyzing transaction
processing systems. In this work, each transaction 71" consists of a set of write operations W, at
individual objects, and a set of read operations R from individual objects, where the operations

27

in W must complete before the operations in R execute. Other types of transaction processing
systems allow nested transactions [4,8,/11], where the transactions may contain sub-transactions [2]
which may further contain a mix of read or write operations, or even child-transactions. In most
transaction processing systems considered in the literature, transactions can be aborted so as to
handle failed transactions. As a result, the serializability theories are developed while considering
the presence of aborts. However, in our system, we do not consider any abort, nor any client or
server failures. A transaction in our system is either a set of independent writes or a set of reads
(see Section with all the reads or writes in a transaction operating on different objects. Such
simplifications allow us to formulate an equivalent condition for the execution of an algorithm to
prove the S property of such algorithms while implementing an object of data type Or.

We note that an execution of a variable of type Or is a finite sequence vg, INVy, RESP;,
vi,INVy, RESPy, vy, ,v, or an infinite sequence vo, INV], RESP;,v1,INVo, RESP,, v, ...,
where INV’s and RESP’s are invocations and responses, respectively. The v;s are tuples of the
the form (v1,v2,- -+ ,vx) € IIL_, Vi, that corresponds to the latest values stored across the objects
01,02 - -+ 0, and the values in vg are the initial values of the objects. Any adjacent quadruple
such as v;, INV;11, RESP; {1, vi41 is consistent with the f function for an object of type Or (see
Section [5) . Now, the safety property of such an object is a trace that describes the correct response
to a sequence of INV's when all the transactions are executed sequentially. The strict serializability
of Or says that each trace produced by an execution of Or with concurrent transactions appears as
some trace of Or. We describe this below in more detail.

Definition 2 (Strict-serializability). Let us consider an execution 8 of an object of type Op, such
that the invocations of any transaction at any client respects the well-formedness property. Let 11
denote the set of complete transactions in B then we say B satisfies the strict-serializability property
for Op if the following are possible:

(i) For every complete READ or WRITE transaction m we insert a point (serialization point) m,
between the actions INV () and RESP(r).

(13) We select a set @ of incomplete transactions in 8 such that for each m € ® we select a response
RESP(r).

(791) For each m € ® we insert m, somewhere after INV () in 3, and remove the INV for the rest
of the incomplete transactions in (.

(v) If we assume for each m € IIU ® both INV (mw) and RESP(w) to occur consecutively at .,
with the interval of the transaction shrunk to mw,, then the sequence of transactions in this new
trace is a trace of an object of data type Or.

Now, we consider any automaton B that implements an object of type Or, and prove a result
that serves us an equivalent condition for proving the strict serializability property of B. Any
trace property P of an automaton is a safety property if the set of executions in P is non-empty;
prefiz-closed, meaning any prefix of an execution in P is also in P; and limit-closed, i.e., if (1,
B2, - -+ is any infinite sequence of executions in P is such that (; is prefix of §;41 for any 4, then
the limit 3 of the sequence of executions {f;};2, is also in P. From Theorem 13.1 in [10], we
know that the trace property, which we denote by Psc, of any well-formed execution of B that
satisfies the strict-serializability property is a safety property. Moreover, from Lemma 13.10 in [10]
we can deduce that if every execution of B that is well-formed and failure-free, and also contains

28

no incomplete transactions, satisfies Pgc, then any well-formed execution of B that can possibly
have incomplete transactions is also in Pgc. Therefore, in the following lemma, which gives us
an equivalent condition for the strict serializability property of an execution 3, we consider only
executions without any incomplete transactions. The lemma is proved in a manner similar to Lemma
13.16 in |10], for atomicity guarantee of a single multi-reader multi-writer object.

Lemma 5.1. Let 8 be an execution (finite or infinite) of an automaton B that implements an object
of type O, which consists of a set of k sub-objects. Suppose all clients in B behave in an well-formed
manner. Suppose 3 contains no incomplete transactions and let 11 be the set of transactions in (3.
Suppose there exists an irreflexive partial ordering (<) among the transactions in I, such that,

P1 For any transaction w € 11 there are only a finite number of transactions ¢ € Il such that
¢ <m;

P2 If the response event for m precedes the invocation event for ¢ in (8, then it cannot be that
o<

P3 If m is a WRITE transaction in w and ¢ is any transaction in I, then either m < ¢ or ¢ < 7,
and

P4 A tuple v =(viy, viy, - -+ ,v4,) returned by a READ(0;,,0i,,- -+ ,0;,), where q is any positive
integer, 1 < q < k, is such that v;; j € {1,--- ,q} is written in B by the last preceding (w.r.t.
<) WRITE transaction that contains a write(o;,,*), or the initial value v?j if no such WRITE
exists in [3.

Then execution (B is strictly serializable.

Proof. We discuss how to insert a serialization point *, in 8 for every transaction 7 € II. First, we
add *, immediately after the latest of the invocations of m or ¢ € II such that ¢ < 7. Note that
according to condition P1 for 7w there are only finite number of such invocations in 5, therefore, 7,
is well-defined. Now, since the order of the invocation events of the transactions in II are already
defined the order of the corresponding set of serialization points are well-defined except for the case
when more than one serialization points are placed immediately after an invocation. In the case
such multiple serialization points corresponding to an invocation we order order these serialization
points in accordance with the < relation of the underlying transactions.

Next, we show that for any pair of transactions ¢, m € Il if ¢ < 7 then *4 precedes *,. Suppose
¢ < w. By construction, each of 7, and ¢, appear immediately after some invocation of some
transaction in II. If both m, and ¢, appear immediately after the same invocation, then since ¢ < ,
by construction of m,, m, is ordered after ¢,. Also, if the invocations after which 7, and ¢, appear
are distinct, then by construction of m,, m. appear after ¢, since ¢ < .

Next we argue that each *, serialization point for any 7 € II is placed between the invocation
INV () and responses RESP(m). By construction, . is after INV (7). To show that . is before
RESP(r) for the sake of contradiction assume that %, appears after RESP (7). By construction,
«, must be after INV (¢) for some ¢ € II and ¢ # m, they by the condition of construction of m, we
have ¢ < 7. But from above INV(¢) occurs after RESP(w), i.e., m completes before ¢ in invoked
which means, by property P2, we cannot have ¢ < 7, a contradiction.

Next, we show that if we were to shrink the transactions intervals to their corresponding
serialization points, the resulting trace would be a trace of the underlying data type Or. In other

29

words, we show any READ READ(0;,,04,," -+ ,0;,) returns the values (v;;, vy, -+ ,v;,), such that
each value v;,, j € [g], was written by the immediately preceding (w.r.t. the serialization points)
WRITE that contained write(o;;,v;;) or the initial values if no such previous WRITE exists. Let us
denote the set of WRITEs that precedes (w.r.t. <) @ by II;JT, i.e., ¢ € II;i ¢ is a write and ¢ < 7.
By property P3, all transactions in H?V” are totally-ordered. By property P4, v;; must be the
value updated by the most recent WRITE in II};7. Since the total order of serialization points are
consistent with < and hence the v;; corresponds to the write operation of a WRITE transaction with
the most recent serialization point and contains a operation of type write(o;;, *). 0

6 SNOW on MWSR with client-to-client messages

In this section, we present algorithm A for transaction processing in the multiple-writers single-
reader (MWSR) setting, and prove that any fair and well-formed execution of A satisfies the SNOW
properties. In practice, a system with a single reader may not be very useful but this algorithm serves
as counter example algorithm to exhibit the point that if client-to-client communication is allowed
it is still possible to implement the SNOW properties. Algorithm A shows that if client-to-client
messaging is allowed, it is possible to have algorithms for transaction processing with two clients
that satisfies the SNOW properties. We consider a system where there are £ > 1 writers with
ids wy,ws - - wy (we denoted this set by W), one reader with id r, and &k > 1 servers with ids
$1,892 - S (denote as §) that maintains the objects o1, - , 0k, respectively. We assume writers
can send messages to the reader, and the reader can respond back to the writers, i.e., we allow
client-to-client messages. Note that for a two-client system, when both clients are of the same type,
i.e., two writers or two reads, the SNOW properties are trivially satisfied.

The steps of algorithm A are presented in Figldl We assume that each of the processes are run in
a single-threaded manner, and therefore, each of the servers or the clients executes the algorithmic
steps sequentially. For uniquely identifying a WRITE transaction we use keys in algorithm A. A key
k is defined as a pair (z,w), where z € N and w € W the id of a writer. We use K to denote the set
of all possible keys. Also, with each transaction we associate a tag t € N, which will help us define
an order among the transactions.

State Variables: The state variables in writer, reader and server processes are as follows. (i) Any
writer w has a counter z to keep track of the number of WRITE transactions it has invoked so far,
initially 0. (i4) The reader r has an ordered list List of elements as (k, (b1,--- , b)), where K € K
and (b, ---by) € {0,1}*. Initially, List = [(x°, (1, ---1)], where x° = (0, wp), where wy is any place
holder identifier string for writer id. The List can be though of as an array, with 0 as the starting
index. (7i7) Each server s; € S there is a set variable Vals with elements that are key-value pairs
(k,v;) € K x V;. Initially, Vals = {(x°,09)}.

Writer steps: The procedure W RITE((0i,, Vi,), (0iy, Viy), - -+, (0i,,v4,)), for a WRITE transac-
tion, can be invoked at any writer w, where I = {41,149, -- ,ip,} is any subset of p indices of [k]. We
define the set S; = {s4,, Siy," - s, +- This procedure consists of two consecutive phases: write-value
and inform-reader. In the write-value phase, w creates a key k as k = (z+ 1, w); and also increments
the local counter z by one. Then it sends (WRITE-VALUE, (k, v;)) to each server s; in S7, and awaits
ACKNOWLEDGESs from each server in S7. After receiving ACKNOWLEDGES from each server in Sy, w
initiates the inform-reader phase during which it sends (INFORM-READER, (k, (b1, ---bg)) to r, where
for any ¢ € [k], b; is a boolean variable, such that b; = 1 if s; € S, otherwise b; = 0. Essentially,
such a (k 4 1)-tuple identifies the set of objects that are updated during that WRITE transaction,

30

i.e., if b; = 1 then object 0; was updated during the execution of the WRITE transaction, otherwise
b; = 0. After w receives ACKNOWLEDGE from r it completes the WRITE.

Reader steps: Note that we use the same notations for I and Sy as above for the set of indices and
corresponding servers, possibly different across transactions. The procedure READ(0;,, 05y, , 04,),
for any READ transaction, is initiated at reader r, where o;,,0;,, -+ ,0;, denotes the subset of
objects r intends to read. This procedure consists of only one phase, read-value, of communication
between the reader and the servers in S;. Here r sends the message (READ-VALUE, k;) to each
server s; € Sy, where the r; is the key in the tuple (k;, (b1, -+ ,bx)) in List located at index j* such
that b; = 1 such that ¢ € I. After receiving the values v;,, vi,, -+ v;, from all servers in Sz, where

Sr 2 {siy, Siy, -+ ,8i,}, the transaction completes by returning (vj,, - v;,).
Next, if reader r receives a message (INFORM-READER, (k, (b1, -+, b)) from any writer w, then
r appends (k, (b1, -+ ,bg) to its List, and responds to w with ACKNOWLEDGE and t,, = |List|, i.e.,

number of elements in list List. The order of the elements in List corresponds to the order the
WRITE transactions, the order of the incoming INFORM-READER updates, as seen by the reader.

Server steps: The server protocol consists of two procedures corresponding to the messages
containing the tags WRITE-VALUE and READ-VALUE. The first procedure is used if a server s;
receives a message (WRITE-VALUE, (k,v;)) from a writer w, it adds (k,v;) to its set variable Vals
and sends ACKNOWLEDGE back to w. The second procedure is used if s; receives a message such as
(READ-VALUE, k;) from 7 then it responds back with v; such that the pair (k;,v;) is in its variable
Vals.

The following result states that algorithm A respects SNOW properties. Note that the liveness
property of READ and WRITE transactions are a part of the SNOW properties. Consider any failure-
free execution of algorithm A. In the steps for the reader assume the quantity ¢, = Maxi <j<|List|1J :
List[j].b; = 1 Ai € I}, which is presented as a comment in the pseudo-code for A. We associate
with any transaction ¢ a tag tag(¢) such that if ¢ is a WRITE tag(¢) = ty, i.e., the value of t,,
before the completion of the operation, and tag(¢) = t, when ¢ is a READ.

Theorem 6.1. Any well-formed and fair execution of algorithm A is an wait-free implementation
of transaction processing in the MWSR setting with for objects of type Or, consisting of objects
01, 02, - - - 0, maintained by the servers sy, sa,- -+ , S, respectively; and it respects the SNOW properties
and WRITES transactions are live.

Proof. Below we show that A satisfies the SNOW properties.

S property: Let § be any fair execution of A and suppose all clients in 8 behave in an well-formed
manner. Suppose [contains no incomplete transactions and let II be the set of transactions in
B. We define an irreflexive partial ordering (<) among the transactions in II as follows: if ¢ and
7 are any two distinct transactions in II then we say ¢ < w if either (i) tag(¢) < tag(w) or (ii)
tag(¢) = tag(m) and ¢ is a WRITE and 7 is a READ. We will prove the S (strict-serializability)
property of A by proving that the properties P1, P2, P3 and P4 of Lemma hold for .

P1: If 7 is a READ then since all READs are invoked by a single reader r and in a well-formed
manner, therefore, there cannot be an infinite number of READs such that they all precede 7 (w.r.t
<). Now, suppose 7 is a WRITE. Clearly, from an inspection of the algorithm, tag(7) € N. From
inspection of the algorithm, each WRITE increases the size of List, and the value of the tags are
defined by the size of List. Therefore, there can be at most a finite number of WRITEs such that
can precede 7 (w.r.t. <) in S.

P2: Suppose ¢ and 7 are any two transactions in II, such that, = begins after ¢ completes.

31

Fig. 4 The protocol for a writer w, reader r and server s; for algorithm A.

16:

18:

20:

22:

24:
32:

34:

At writer w Await ACKNOWLEDGE from s; for every i € I.
State Variables at w:
z € N, initially 0 8: inform-reader:
for i € [k] do
WRITE((0i;, viy), (0, iy), -+ (00, Vi,) 10: if i € I then
write-value: b; +— 1
k+ (z4+1Lw);z+2+1 12: else
IE {iy,ig, - ip} bi + 0
forie I do 14: Send (INFORM-READER, (%, (b1, ,bx))) tor
Send WRITE-VALUE, (K, vs;) to s; Receive (ACKNOWLEDGE, ty,) from 7
At reader r Await responses v; from s, for each i €
State Variables at r: /¥t & maxy <j<|nist|{] : List[jl.bs =1Ni €I} */
List, a list of elements in K x {0, 1}*, 26: Return (viy, viy, -+, i)
initially [(s°,1,---1)]
READ(0i,,0iy, - ,0i,) Response routines
read-value: 28: On recv (INFORM-READER, (K, (b1,---bg))) from w:
T2 {i1,i2,- ,ip}
for i € I do List «+ List@ (k, (b1,---bx)) //ED for append
J* 4 maxi<j<irise{J ¢ List[j].b; = 1} 30: tag + |List| // |- | size of the list
ki = List[j"].x Send (ACKNOWLEDGE, tag) to w
Send (READ-VALUE, K;) to s;
At server s; for any i € [k] Vals + Vals U {(k,v)}
State Variables: Send ACKNOWLEDGE to writer w.

Vals C K x V;, initially {(t2.,,v7)}
36: On recv (READ-VALUE, k) from reader r :
Send v s.t. (k,v) € Vals to reader r

On recv (WRITE-VALUE, (k,v)) from writer w:

Then we show that we cannot have m < ¢. Now, we consider four cases, depending on whether ¢
and 7 are READS or WRITES.

(a) ¢ and 7™ are WRITEs invoked by writers wg and wy, respectively. Since the size of List, in r,

grows monotonically with each WRITE hence w, receives the tag at least as high as tag(¢), so

T L ¢.

b is a WRITE, 7 is a READ transactions invoked by writer wy and r, respectively. Since the
Yy @ Yy

size of List, in r, grows monotonically, and because w, invokes 7 after ¢ completes hence
tag(m) is at least as high as tag(¢), so ™ 4 ¢.

(¢) ¢ and 7 are READs invoked by reader r. Since the size of List, in r, grows monotonically,

hence w;, invoked 7 after ¢ completes hence tag(w) is at least as high as tag(¢), so m 4 ¢.

(d) ¢ is a READ, 7 is a WRITE invoked by reader r and w;, respectively. This case is simple

because new values are added to List only by writers, and tag(7) is at least as large as the
tag of ¢ and hence 7 X ¢.

32

P3: This is clear by the fact that any WRITE transaction always creates a unique tag and all
tags are totally ordered since they all belong to N

P4: Consider a READ p as READ(0;,,04,,- -+ ,0;,), in 3. Let the returned value from p be
Vv =(Vi,, Vig, - - ,viq) such that 1 < i1 < ip < --- < iq < k, where value i corresponds to 0i; -
Suppose tag(p) € N was created during some WRITE transaction, say ¢, i.e., ¢ is the WRITE that
added the elements in index (tag(p) — 1) of List. Note that element in index 0 contains the initial
value. Now we consider two cases:

Case tag(p) = 1. We know that it corresponds the initial default value v) at each sub-object o;,
and this equates to p returning the default initial value for each sub-object.

Case tag(p) > 1. Then we argue that there exists no WRITE transaction, say 7, that updated
object o;;, in 3, such that, m # ¢ and p returns values written by 7 and ¢ < 7 < p. Suppose we
assume the contrary, which means tag(¢) < tag(m) < tag(p). The latter implies tag(¢) = tag(m)
which is not possible because this contradicts the fact that for any two distinct WRITESs tag(¢) #
tag(m) in any execution of A.

N property: By inspection of algorithm A for the response steps of the servers to the reader.

O property: By inspection of the read-value phase: it consists of one round of communication between
the reader and the servers, where the servers send only one version of the value of the object it
maintains.

W property: By inspection of the WRITE transaction steps, and and that writers always get to
complete the transactions they invoke. O

Note that the above theorem holds in the presence of any writer crashes.

7 SNoW for MWMR setting

In this section, we present algorithm B for transaction processing in the multiple-writers multi-reader
(MWMR) setting and show that its execution satisfies SNoW properties, where “0” means a READ
may consist of more than one round trip of communications between the reader and the servers.
We denote the type of object that satisfies the SNoW properties by Or. The steps of the algorithm
for the writers, readers and the servers are presented in Fig[5] We assume there is a set of writers
W, a set of readers R and a set of k > 1 servers, S, with ids s1, so - - - s; that stores the objects
01,02, -+ , 0k, respectively. We define key « is defined as a pair (z,w), where z € N and w € W the
id of a writer. We use K to denote the set of all possible keys. Like in algorithm A from Section [6]
also in B, the keys are used to uniquely identify each transaction. Also, with each transaction we
associate a tag t € N.

In algorithm B, we designate one of the servers as the coordinator, we denote as s*, for the
transactions. Essentially, the coordinator s* is used to maintain the order of the WRITEs and the
objects that are updated during the WRITE in the variable List. Note that in a system, where
there are many objects different objects may be use different servers as coordinators based on some
load-balancing rule.

State Variables: Each of the writers and servers maintain a set of state variables as follows: (i)
At any writer w, there is a counter z to keep track of the number of WRITE transaction the writer
has invoked, initially 0. (ii) At any server, s;, for i € [k], there is a set variable Vals with elements
that are key-value pairs (k,v;) € K x V;. Initially, Vals = {(k° v))}. A server also contains an
ordered list variable List of elements as (k, (by,--- ,bg)), where k € K and (by,---bg) € {0,1}F.

33

Fig. 5 The protocol for any writer w, reader r or server s; for algorithm B.

At writer w
State Variables:

z € N; initially 0 8: wupdate-coord:
WRITE((i1,vi,), (i2,viy), -+ , (ip, v3,)) for i € [k] do
2: Ié{il7i27"',ip} 10: if i € I then
write-value: bi 1
40 ke (z+lLw)ze2+1 12: else
for i € I do bi <0
6: Send WRITE-VALUE, (k,vs;) to server s; 14: Send (UPDATE-COORD, (k, (b1, - ,bx))) to s
Await ACKNOWLEDGE from servers in ;. Receive (ACKNOWLEDGE, t,,) from coordinator s*
16:
At reader r
READ(0;,,045," -, in) read-value:
T2 {iy,io, - ip} 22: forieldo
18: get-tag-array: Send (READ-VALUE, K;) to s;
Send (GET-TAG-ARRAY) to server s* 24: Wait responses as v; for each s; € S
20: Receive response (tr, (k1, k2, - ,kg)) from s* Return (viy, iy, -+ , Vi)
26:
At server s; for any i € [k] 34: Send (ACKNOWLEDGE, tag) to w
State Variables:
Vals C K x Vi, initially {(x°)} On recv (READ-VALUE, k) from 7 :

List, alist of K x {0,1}*, initially [(x°, (1,---1))] 36: ~Send v; 8.t. (K,v) € Vals tor

28: On recv (WRITE-VALUE, (k,v)) from w: /* used only by s* */
Vals < Vals U{(s,v)} On recv GET-TAG-ARRAY from r :
30: Send ACKNOWLEDGE to writer w. 38: for i€ [k] do
j* « max{j : List[j].b; = 1}
On recv (UPDATE-COORD, (K, (b1,---by))) from w: 40: ki = List[j*].k
32: List < List@ (k, (b1, --bx)) //ED for append

tr £ maxi<j<|pist{J 1 List[jl.bi =1 Ai €I}

tag < |List| // | - | size of the list 42 Send (b, (K1, Ko, - ki) to T

Initially, List = [(k°, (1,---1)], where x° = (0,wq), where wy is any place holder identifier string
for writer id. The elements in List can be identified with an index, e.g., List[0] = (k°, (1,--- ,1)).
Essentially, a (k+1)-tuple (k, (b1,--- ,bx)) in List corresponds to a WRITE transaction and identifies
the set of objects that are updated during the WRITE transaction, i.e., if b; = 1 then object o; was
updated during the execution of the WRITE transaction, otherwise b; = 0.

Writer steps: A WRITE transaction that is meant to update a list of p objects

Oiy; 0y, - 05, With values vj,vj,, - -v;,, respectively, is invoked at w via the procedure
WRITE((04y,v4,), (0iy, Viy), -+, (0i,,vi,)). We use the notations: I £ {iy,i9, -+ ,ip} and Sy 2
{8i1, 8iy, "+, 54, }. This procedure consists of two phases: write-value and update-coord. During the

write-value phase, w creates a new key k as k = (z + 1,w), where w is the identity of the writer;
and also increments the local counter z by one. Then w sends (WRITE-VALUE, (k, v;)) to each server
in Sy, and awaits ACKNOWLEDGE from all servers in Sy. After receiving ACKNOWLEDGE from all
servers in Sy, w initiates the update-coord phase where it sends (UPDATE-COORD, (k, (b1, ---bg)) to
s*, where for any i € [k], b; = 1 if s; € Sy, otherwise b; = 0, and completes the procedure after
it receive a ACKNOWLEDGE message from s*. After receiving message as (ACKNOWLEDGE, t,,), w
completes the WRITE.

34

Reader steps: Note that we use the same notations for I and S; as above by the set of indices
are not necessarily similar across different transactions. The procedure READ(0;,, 0y, ,04,)
can be initiated by some reader r, as a READ transaction, intending to read the values of subset
0i10iy, "+, 04, of the objects. The procedure consists of two consecutively executed phases of
communication rounds between the r and the servers, viz., get-tag-array and read-value. During
the phase get-tag-array, r sends s* the message GET-TAG-ARRAY requesting the list of the latest
added keys for each object. Once r receives a list of tags, such as, (¢, (K1, k2, - ,Kg)) from s* the
phase completes. In the subsequence phase, read-value, requests each server s; in S7 by sending
the message (READ-VALUE, k;). After receiving the values v;,, v;,, - - -vj, from the servers in Sz, r
completes the transaction by returning the tuple of values (v;,,---v;,).

Server steps: When a server s; receives a message of type (WRITE-VALUE, (k,v;)) from a writer
w then it adds (k,v;) to its set variable Vals and sends ACKNOWLEDGE back to w.

If the coordinator s*, receives (UPDATE-COORD, (k, (b1, - ,bg)) from writer w, then it appends
(K, (b1, -+ ,bg)) to its List, and responds with ACKNOWLEDGE and t,, (set to be the number of
elements in the local list List) to w. The order of the elements in List corresponds to the order the
WRITE transactions, the order of the incoming UPDATE-COORD updates, as seen by s*.

Again, when s* receives the message GET-TAG-ARRAY from r it responds with a message
(K1, ,KE) such that for each i € [k], k; is the key part of the (k + 1)-tuple that was modified
last, i.e., k; = List[j*].k such that j* = max{j : List[j].b; = 1}, and t,, t, = maxi <<|List|1J :
List[jl.b; =1 Ni € I}.

If any server s; receives a message (READ-VALUE, k) from a reader r then it responds to r with
the value v; corresponding to key with value « in Vals.

Note the the following result states that algorithm B respects SNoW property. Consider any
failure-free and fair execution of algorithm B. For the purpose of proving the S property, for every
transaction transaction ¢ in an execution of B we associate a tag tag(¢) as described below. If ¢ is
a WRITE (READ) then tag(¢) is the value of the variable t,, (¢,) immediately before the operation
completes.

Theorem 7.1. Any well-formed and fair execution of algorithm B is an implementation of an
object of type Ot in the MWMR setting, with no client-to-client communication, comprising of
objects 01,09, - - 0} stored in servers si,Sa,- -+ , S, respectively; and it satisfies the SNoW properties.

Proof. Below we show that algorithm B satisfies the SNoW properties.

S property: Let 8 be any fair execution of B and suppose all clients in 5 behave in an well-formed
manner. Suppose 3 contains no incomplete transactions and let IT be the set of transactions in
B. We define an irreflexive partial ordering (<) in II as follows: if ¢ and 7 are any two distinct
transactions in II then we say ¢ < 7 if either (i) tag(¢) < tag(w) or (ii) tag(¢) = tag(mw) and ¢ is a
WRITE and 7 is a READ. Below we prove the S property of B by showing that properties P1, P2,
P3 and P4 of Lemma hold for 3.

P1: Clearly, from an inspection of the algorithm, tag(w) € N. From inspection of the algorithm,
each WRITE increases the size of List, and the value of the tags are defined by the size of List.
Therefore, there can be at most a finite number of WRITEs such that can precede 7 (w.r.t. <) in j.
On the other hand, if 7 is a READ then since all READs are invoked by readers in a well-formed
manner, and there are only finite number of readers therefore, there cannot be an infinite number of
READs such that they all precede 7 (w.r.t <).

P2: Suppose ¢ and 7 are any two transactions in II, such that, m begins after ¢ completes.

35

Then we show that we cannot have m < ¢. Now, we consider four cases, depending on whether ¢
and 7 are READS or WRITES.

(a) 7 and ¢ are WRITEs invoked by writers wg and wr, respectively. Since the size of List, in s*
grows monotonically due to each WRITE hence w, receives the tag from s* at least as high as

tag(p), so ™ £ ¢.

(b) mis a READ, ¢ is a WRITE invoked by reader r, and writer wg, respectively. Since the size of
List, in s*, grows monotonically, because 7, invokes 7 after ¢ completes hence tag(w) is at
least as high as tag(¢), so ™ & ¢.

(¢) m and ¢ are both READs invoked by readers 7, and ry, respectively. Since the size of List, in
s*, grows monotonically, because w, invokes 7 after ¢ completes hence tag(m) is at least as

high as tag(¢), so ™ £ ¢.

(d) 7 is a WRITE, ¢ is a READ invoked by writer w, and reader rgy, respectively. This case is
simple because new values are added to List, in s*, only by writers, and tag(w) is at least as
large as the tag of ¢ and hence m 4 ¢.

P3: This is from the fact that any WRITE transaction always creates a unique tag and all tags
are totally ordered since they all belong to N

P4: Consider a READ p as READ(0;,,04,, - ,0;,), in B. Let the returned value from p be
Vv =(Vj,, Vig, -+ ,’Uiq) such that 1 < i1 < 49 < --- < iy < k, where value Vi corresponds to 0i;-
Suppose tag(p) € N was created during some WRITE transaction, say ¢, i.e., ¢ is the WRITE that
added the elements in index (tag(p) — 1) of List at the coordinator s*. Note that element in index
0 contains the initial value. Now we consider two cases:

Case tag(p) = 1. We know that it corresponds the initial default value U? at each sub-object o;,
and this equates to p returning the default initial value for each sub-object.

Case tag(p) > 1. Then we argue that there exists no WRITE transaction, say 7, that updated
object o;;, in 3, such that, m # ¢ and p returns values written by 7 and ¢ < 7 < p. Suppose we
assume the contrary, which means tag(¢) < tag(w) < tag(p). The latter implies tag(¢) = tag(m)
which is not possible because this contradicts the fact that for any two distinct WRITEs tag(¢) #
tag(m) in any execution of B.

N, o and W properties: Evident from an inspection of the algorithm.]

8 SNoW for MWMR setting

In this section, we present algorithm C' for transaction processing in the multiple-writers multi-reader
(MWMR) setting and show that its execution satisfies SNoW properties, where “6” means a READ
consists of only one round trip of communications between the reader and the servers but the servers
may respond with multiple versions of the data. We denote the type of object that satisfies the
SNoW properties by O7. The steps of the algorithm for the writers, readers and the servers are
presented in Figl6] We assume there is a set of writers W, a set of readers R and a set of k > 1
servers, §, with ids s1, s2 - - - s that stores the objects o1, 09, - - - , 0, respectively. We define key
k is defined as a pair (z,w), where z € N and w € W the id of a writer. We use K to denote the
set of all possible keys. As in the algorithms presented in Section [l and [7] the keys are used to

uniquely identify each transaction. Also, with each transaction we associate a tag t € N.

36

Fig. 6 The protocol for any writer w, reader r or server s; for algorithm B.

At writer w
State Variables:

z € N; initially 0 8: wupdate-coord:
WRITE((ilvvil)v (7:27 vi2)7 T (ipz Uip)) forie [k} do
2: Ié{il7i27"',ip} 10: if i € I then
write-value: bi 1
40 ke (z+lLw)ze2+1 12: else
for i € I do bi <0
6: Send WRITE-VALUE, (k,vs,) to server s; 14: Send (UPDATE-COORD, (k, (b1, ,bx))) to s
Await ACKNOWLEDGE from servers in ;. Receive (ACKNOWLEDGE, t,,) from coordinator s
16:
At reader r 20: foriel do
READ(0i,,0iy," - ,0i,) Send (READ-VALUES) to s;
I2 {irig, - ,ip} 22: Receive response (tr, (K1, k2, - ,kk)) from s*
18: read-values-and-tags: Wait responses as Vals; from each s; € Sy
Send (GET-TAG-ARRAY) to server s” 24: Return (vi,,viy, - ,vi,) s.t. (kj,v;) € Vals;, j € 1
At server s; for any i € [k] Send (ACKNOWLEDGE, tag) to w
26: State Variables:
Vals C K x V;, initially {(”Ovv?)} 34: On recv (READ-VALUES) from 7 :
List, a list of K x {0,1}*, initially [(x°, (1,---1))] Send Vals to r
On recv (WRITE-VALUE, (x,v)) from w: /* used only by s* */
28: Vals + ValsU{(k,v)} 36: On recv GET-TAG-ARRAY from r :
Send ACKNOWLEDGE to writer w. for i € [k] do
38: j* < max{j : List[j].b; = 1}
30: On recv (UPDATE-COORD, (k, (b1,---by))) from w: ki = List[j*].k
List < List@ (, (br,---br)) //@ for append 40: ¢, £ max,<j<|pise{j : List[jl.bi =1 Ai € I}
32: tag < |List| // | -| size of the list Send (¢, (K1, K2, k) to T

In algorithm C', we designate one of the servers as the coordinator, we denote as s*, for the
transactions. In addition to managing some object, the server s* is used to maintain the order of
the WRITEs and the objects that are updated during the WRITE in the variable List. In any system,
where there are many objects different objects may be use different servers as coordinators based on
some load-balancing rule.

State Variables: The state variables in algorithm C' is similar to those of algorithm B, therefore,
we omit here. Writer steps: The steps of a WRITE transaction is similarly to algorithm B, therefore,
we omit here.

Reader steps: The procedure READ(0;,,0i,, -+ ,0;,) can be initiated by some reader r, as a
READ transaction, intending to read the values of subset o0;,,0i,," - ,0;, of the objects. We use the
notations: I £ {iy, 42, ,ip} and Sy = {s;,, 84, - , i, }. The procedure consists of only one phase
of communication round between the r and the servers, called read-values-and-tags. During the
phase read-values-and-tags, v sends s* the message GET-TAG-ARRAY requesting the list of the latest
added keys for each object, and also sends requests (READ-VALUES) each server s; in S7. Note that if
s* is also one of the servers in S7 then the GET-TAG-ARRAY and READ-VALUES messages to s* can be
combined to create one message; however, we keep them separate for clarity of presentation. Once r
receives a list of tags, such as, (t,, (K1, k2, - ,Kk)) from s* and the set of Vals; from each s; € Sy

37

then r returns the values v;,, vi,, - - v;, such that (k;,v;) € Valsj, j € {1,---p}, and completes the
READ.

Server steps: When a server s; receives a message of type (WRITE-VALUE, (k, v;)) from a writer
w; or if the coordinator s*, receives (UPDATE-COORD, (k, (b1,--- ,by)) from writer w or receives
a message as GET-TAG-ARRAY from r the steps are similar to their counterparts in algorithm B.
Therefore, we omit them. On the other hand, if any server s; receives a message (READ-VALUES)
from a reader r then it responds to r with the entire set of values, i.e., Vals.

Note the the following result states that algorithm C' respects SNoW property. Consider any
failure-free and fair execution of algorithm C. For the purpose of proving the S property, for every
transaction transaction ¢ in an execution of C' we associate a tag tag(¢) as described below. If ¢ is
a WRITE (READ) then tag(¢) is the value of the variable t,, (¢,) immediately before the operation
completes.

Theorem 8.1. Any well-formed and fair execution of algorithm C is an implementation of an
object of type Or in the MWMR setting, with no client-to-client communication, comprising of
objects 01,09, - - 0} stored in servers s1,Sa,- - , Sg, respectively; and it satisfies the SNoW properties.

Proof. Below we show that algorithm C' satisfies the SNoW properties.

S property: Let B be any fair execution of B and suppose all clients in 8 behave in an well-formed
manner. Suppose [contains no incomplete transactions and let II be the set of transactions in
B. We define an irreflexive partial ordering (<) in II as follows: if ¢ and 7 are any two distinct
transactions in II then we say ¢ < 7 if either (i) tag(¢) < tag(w) or (ii) tag(p) = tag(w) and ¢ is a
WRITE and 7 is a READ. Below we prove the S property of B by showing that properties P1, P2,
P3 and P4 of Lemma hold for 8. The properties P1-P4 can be proved to hold in a manner very
similar to algorithm B (Section . Therefore, we avoid repeating them.

N, 0 and W properties: Evident from an inspection of the algorithm. O

References

[1] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik Veeraraghavan. Challenges
to adopting stronger consistency at scale. In 15th Workshop on Hot Topics in Operating Systems (HotOS
XV), Kartause Ittingen, Switzerland, 2015. USENIX Association.

[2] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[3] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun
Song, and Venkat Venkataramani. TAO: Facebook’s distributed data store for the social graph. In
Presented as part of the 2018 USENIX Annual Technical Conference (USENIX ATC 13), pages 49-60.
USENIX, 2013.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San
Mateo, CA, 1993.

[5] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124-149, 1991.

[6] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd International Conference on Distributed Computing

Systems, ICDCS ’03, pages 522—, Washington, DC, USA, 2003.

38

[7]

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463-492, 1990.

B. Liskov. Distributed Programming in Argus. Communications for the ACM, 31(3):300-312, 1988.

Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd. The SNOW theorem and
latency-optimal read-only transactions. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 135-150, Savannah, GA, 2016.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

N. A. Lynch, M. Merritt, W. William, and A. Fekete. Atomic Transactions. Morgan Kaufmann
Publishers, 1994.

Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel. SIGOPS Oper. Syst. Rev., 26(2):8—,
April 1992.

Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of ACM,
26(4):631-653, 1979.

39

	1 Introduction
	2 System model and architecture
	2.1 I/O Automata
	2.2 Data type
	2.3 System Model
	2.4 SNOW Properties
	2.5 One-version property

	3 Impossibility of SNOW properties with two clients with restricted communication
	4 Impossibility of SNOW properties with three clients
	5 Condition for proving strict serializability
	6 SNOW on MWSR with client-to-client messages
	7 SNoW for MWMR setting
	8 SNW for MWMR setting

