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Abstract

This paper presents a formal technique for incremental construction of system specifications, algo-
rithm descriptions, and simulation proofs showing that algorithms meet their specifications.

The technique for building specifications and algorithms incrementally allows a child specifica-
tion or algorithm to inherit from its parent by two forms of incremental modification: (a) signature
extension, where new actions are added to the parent, and (b) specialization (subtyping), where
the child’s behavior is a specialization (restriction) of the parent’s behavior. The combination of
signature extension and specialization provides a powerful and expressive incremental modification
mechanism for introducing new types of behavior without overriding behavior of the parent; this
mechanism corresponds to the subclassing for extension form of inheritance.

In the case when incremental modifications are applied to both a parent specification S and a
parent algorithm A, the technique allows a simulation proof showing that the child algorithm A’
implements the child specification S’ to be constructed incrementally by extending a simulation
proof that algorithm A implements specification S. The new proof involves reasoning about the
modifications only, without repeating the reasoning done in the original simulation proof.

The paper presents the technique mathematically, in terms of automata. The technique has
been used to model and verify a complex middleware system; the methodology and results of that
experiment are summarized in this paper.

General term: Verification. Categories and subject descriptors: F.3.1 Specifying and Veri-
fying and Reasoning about Programs; D.2.1 Requirements/Specifications: Methodologies - object-
oriented. Additional keywords and phrases: inheritance by specialization and subclassing for
extension, simulation proofs, refinements, incremental proof techniques, proof reuse.
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1 Introduction

Formal modeling and validation of software systems is a major challenge, because of their
size and complexity. Among the factors that could increase widespread usage of formal
methods is improved cost-effectiveness and scalability (see [17, 19]). Current software engi-
neering practice addresses difficulties of building complex systems by the use of incremental
development techniques based on an object-oriented approach. We believe that successful
efforts in system modeling and validation will also require incremental techniques, which will
enable reuse of models and proofs.

In this paper we provide a framework for reuse of proofs analogous and complementary
to the reuse provided by object-oriented software engineering methodologies. Specifically,
we present a formal technique for incrementally constructing safety specifications (require-
ments), abstract algorithm descriptions, and simulation proofs that algorithms meet their
specifications. Simulation proofs are one of the most important techniques for proving prop-
erties of complex systems; such proofs exhibit a simulation relation (also known as abstrac-
tion or refinement) between a formal description of a system (algorithm) and its specifica-
tion [2, 33, 23, 31]. These two formal descriptions are stated using the same notation. The
distinction between the “specification” and the “algorithm” for a system is based only on the
intention of using the former as the high-level model and the latter as the low-level model
of the system. In general, our technique applies to modeling and verification at any level of
abstraction.

The formalism presented in this paper has evolved with our experience in the context of
a large-scale modeling and validation project: we have successfully used this technique for
modeling and validating a complex group communication system [25] that is implemented
in C++, and that interacts with two other services developed by different teams. We have
modeled both the specification and the algorithm of this system incrementally, at each step
strengthening the model with additional constraints. Reuse of models and proofs was essen-
tial in order to make this task feasible. For example, it has allowed us to avoid repeating
the five-page long correctness proof of the algorithm that provides the basic semantics when
proving the correctness of the algorithm that extends the first algorithm with more sophisti-
cated semantics. The correctness proof of the most sophisticated algorithm, by comparison,
was only two and a half pages long. We describe our experience with that project as well as
the methodology that evolved from it in Section 6.

Our approach to the reuse of specifications and algorithms through inheritance uses
incremental modification to derive a new component (specification or algorithm), called
child, from an existing component called parent. Specifically, we present two constructions
for modifying existing components:

1. We allow the child to specialize the parent by reusing its state in a read-only fashion, by
adding new state components (which are allowed to be modified), and by constraining
the set of behaviors of the parent. This corresponds to the subtyping view of inheri-
tance [7]. We will show that any observable behavior of the child is subsumed (see [1])
by the possible behaviors of the parent, making our specialization analogous to substi-
tution inheritance [7]. In particular, the child can be used anywhere the parent can be
used.



2. A child can also be derived from a parent by means of signature extension. In this case
the state of the parent is unchanged, but the child may include new actions not found
in the parent and new parameters to actions that exist at the parent. When such new
actions and parameters are hidden, then any behavior of the child is exactly as some
behavior of the parent.

The combination of signature extension and specialization provides a powerful mechanism
for incrementally constructing specifications and algorithms; this combination corresponds
to the subclassing for extension form of inheritance [7].

Consider the following example. The parent defines an unordered point-to-point messag-
ing service with the send(msg) and recv(msg) interface. Specialization can be used to extend
the parent to preserve fifo ordering, by restricting recv(msg) actions to deliver messages only
according to the sending order. Subclassing for extension can be used to augment the mes-
saging service with an acknowledgment mechanism: The parent’s signature can be extended
with ack(msg) actions, and then the parent can be specialized to handle acknowledgments by
allowing an ack(msg) action to occur only after the corresponding message was received by
the recipient. The specialization and subclassing for extension constructs can be applied at
both the specification level and the algorithm level in a way that preserves the relationship
between the specification and the algorithm.

The main technical challenge addressed in this paper is the provision of a formal frame-
work for the reuse of simulation proofs, especially for the specialization construct. Consider
the example in Figure 1: Let S be a specification, and A an abstract algorithm description.
Assume that we have proven that A implements S using a simulation relation R,. Assume
further that we specialize the specification S, yielding a new child specification S’. At the
same time, we specialize the algorithm A to construct an algorithm A’ which supports the
additional semantics required by S’.

si mul ati on

Figure 1: Algorithm A simulates specification S with R,. Can R, be reused for building a
simulation R, from a child A’ of A to a child S’ of S?

When proving that A’ implements S’, we would like to rely on the fact that we have
already proven that A implements S, and to avoid the need to repeat the same reasoning.
We would like to reason only about the new features introduced by S’ and A’. The proof reuse
theorem provides the means for incrementally building simulation proofs in this manner.

Simulation proofs lend themselves naturally to be supported by interactive theorem
provers. Such proofs typically break down into many simple cases based on different ac-



tions. These can be checked by hand or with the help of interactive theorem provers. Our
incremental simulation proofs break down in a similar fashion.

The formalism described in this paper is presented in the context of the I/O automa-
ton model [31, 32], but it is more general than that particular model. We believe that the
essence of our approach is applicable to any state-transition formal model, such as TLA [28],
UNITY [34], and Process Algebra [22, 33]. I/O automata have been widely used to model
complex systems and reason about them [18,12, 8, 5, 21]. An important feature of the I/O au-
tomaton model is its strong support of composition, which allows an automaton representing
a complex system to be constructed by composing automata representing individual system
components. For example, Hickey et al. [21] used the compositional approach for modeling
and verification of certain modules in Ensemble [16], a large-scale, modularly structured,
group communication system. Composition and inheritance are two complementary means
for modular system design.

Inheritance, as a means for modular system design, has been a subject of extensive re-
search for decades. Many researchers employed formal methods to define various inheritance
constructs and study their properties [1, 5, 10, 11, 20, 24, 29, 30, 35, 39, 37, 38, 4, 34, 15].
Our distinguishing contribution is a provision of a formal framework that allows simulation
proofs to be constructed incrementally when inheritance is applied at two levels: specifi-
cation and algorithm. Thus, we extend the applicability of inheritance from the realm of
incremental system design to the realm of incremental system verification.

Roadmap

The rest of the paper is organized as follows: Section 2 reviews and exemplifies the I/O
automaton model and the simulation proof technique; the examples of subsequent sections
are built upon the ones presented in Section 2. In Section 3, we formally define the spe-
cialization construct and investigate its properties. Then, in Section 4, we present a general
theorem that enables incremental verification of systems that are modeled and specified in-
crementally using the specialization construct. This theorem provides the foundation for
incremental construction of simulation proofs, and is the key contribution of this paper.
In Section 5, we extend the theory of incremental modeling and proof construction to the
subclassing for extension form of inheritance: we give a formal definition of the signature
extension construct and show how it can be used in conjunction with the specialization con-
struct to achieve subclassing for extension; we then extend the proof-reuse theory presented
in Section 4 to this situation.

The paper employs a simple running example to illustrate the use of the presented for-
malism. Section 6 illustrates the utility of this formalism by describing its use in a large-scale
modeling and verification project. In Section 7 we discuss the modeling methodology that
we have used with our formalism in the context of the same project.

Section 8 compares our results with related work. Section 9 concludes the paper.



2 Background: I/O Automata and Simulation Proofs

This section presents background on the I/O automaton model, based on [31], Ch. 8. In
this model, a system component is described as a state-machine, called an I/0 automaton.
The transitions of the automaton are associated with named actions, classified as input,
output and internal. Input and output actions model the component’s interaction with
other components, while internal actions are externally unobservable. Note that an action
can be either an input or an output, but not both; a function call that returns a value can
be modeled using two actions — an input and an output.

Formally, an I/O automaton A consists of: a signature sig(A), consisting of input, output,
and internal actions; a set of states states(A); a set of start states start(A); and a state-
transition relation trans(A) — a subset of states(A) x sig(A) x states(A). An action is
external if it is not internal; the part of an automaton’s signature consisting of its external
actions is called the automaton’s external signature. Complex automata can be constructed
by composing smaller automata that interact via their input and output actions.

An action 7 is said to be enabled in a state s if the automaton has a transition of the form
(s, m, 8'); input actions are enabled in every state. An ezecution fragment of an automaton
A is an alternating sequence of states and actions such that every successive triple of this
sequence is an allowable transition; an empty step (s, €, s) is also an execution fragment. An
execution is an execution fragment that begins with a start state. The trace of an execution
a of A, denoted by trace(«), is a subsequence of « consisting of all the external actions in a.
We denote the set of executions of A by execs(A), and the set of traces of A by traces(4).
When reasoning about an automaton, we are only interested in its externally-observable
behavior as reflected in its traces.

I/O automata are conveniently presented using the precondition-effect style. In this style,
typed state variables with initial values specify the set of states and the start states. Tran-
sitions are grouped by action name, and are specified using a pre: block with preconditions
(guards) on the states in which the action is enabled and an eff: block which specifies how
the pre-state is modified. The effect is executed atomically to yield the post-state.

Example 2.1 Figure 2 presents an I/O automaton, UpSeq, that prints nondecreasing se-
quences of integers. The automaton is expressed in the precondition-effect notation. The
signature of UpSeq consists of output actions of the type print(x), where x is an integer.
The state of UpSeq consists of a single integer variable, last, initialized to an arbitrary
value. The transitions of UpSeq specify that action print(x), with a given x, is enabled in
every state in which x > last, as enforced by the pre: statement; once print(x) occurs, the
automaton moves into a state in which last = x, as specified by the eff: statement.

The following is a sample infinite execution of UpSeq, where square brackets represent
states of UpSeq, that is, values of last:

[3], print(5), [5], print(11), [11], print(11), [11], print(14), [14],...

The trace of this execution is ‘print(5),print(11), print(11), print(14),....” In general,
the set of traces of UpSeq is the set of all possible sequences printing nondecreasing integers,
both finite and infinite.



AUTOMATON UpSeq
Signature: Output print(x), x € Integer
State: last € Integer, initially arbitrary

Transitions: OUTPUT print(x)
pre: x > last
eff: last « x

Figure 2: Automaton UpSeq printing a nondecreasing sequence of integers.

A common way to specify which traces a system is allowed to exhibit is to define an
abstract, high-level I/O automaton that generates the allowed set of traces. If every trace
of the automaton modeling the system is also a trace of the specification automaton, then
the system always does what is allowed by its specification. In this case, we say that the
system automaton satisfies, or implements, the specification automaton. By way of an
example, regard automaton UpSeq of Example 2.1 to be a specification for the sequences
of nondecreasing integers. In order for some automaton to satisfy this specification, any
possible trace of this automaton has to be a trace of UpSeq. In the following example we
present such an automaton.

Example 2.2 Figure 3 contains an automaton, FibSeq, that prints, as its sole infinite trace,
the suffix of the Fibonacci sequence that begins with “1,2,...”. The Fibonacci sequence is an
infinite sequence that begins with 0 and 1, and in which every further element is equal to the

sum of the two preceding elements.

AUTOMATON FibSeq
Signature: Output print(x), x € Integer

State: n € Integer, initially O
m € Integer, initially 1

Transitions: OUTPUT print(x)
pre: x =n + m

eff: n < m

m 4 X

Figure 3: Automaton FibSeq printing the Fibonacci sequence.

The signature of the FibSeq automaton is the same as that of UpSeq. The state of FibSeq
consists of two integer variables, n and m, initialized to 0 and 1, respectively. The transitions
of FibSeq specify that action print(x) is enabled in every state in which x is equal to the
sum of n and m, and that, once print(x) occurs, the automaton moves into a state in which
n has the value that m has in the pre-state, and m has the value of x. Thus, FibSeq uses n



and m to store the last two elements printed and to compute from them the next element to
be printed. The traces generated by FibSeq are the infinite sequence of Fibonacci numbers,
“print(1), print(2), print(3), print(5), print(8), print(13),... ” and all of its prefizes.

Every trace of FibSeq is clearly a trace of UpSeq. Therefore, automaton FibSeq satisfies,
or implements, automaton UpSeq. But how can we prove this formally?

A common technique for establishing that the set of traces of one automaton is included
in the set of traces of another is to exhibit a so-called simulation relation (also known as
an abstraction relation) that relates the states of the two automata and to prove that this
relation satisfies certain conditions [2, 33, 23, 31], as defined below:

Definition 2.1 Let A and S be two automata with the same external signature. A relation
R C states(A) X states(S) is a simulation from A to S if it satisfies the following two
conditions:

1. If t is any initial state of A, then there is an initial state s of S such that s € R(t),
where we use notation R(t) as an abbreviation for {s : (t,s) € R}.

2. Ift and s € R(t) are reachable states of A and S respectively, and if (t,m,t") is a step
of A, then there ezists an execution fragment of S from s to some s’ € R(t'), having the
same trace as step (t,m,t'). The latter condition means that the only external action
in the erecution fragment is 7.

The two conditions above guarantee that whatever steps A executes, there is always a
way for S to produce the same trace. The following theorem (from [31], Ch. 8) expresses this
property formally:

Theorem 2.1 If A and S are two automata with the same external signature and if R is a
simulation from A to S then traces(A) C traces(S).

Any finite trace inclusion can be shown by using simulation relations, possibly after
adding a special kind of variables, called “prophecy variables” [2, 36].

In some cases, a simulation relation is actually a function from states of the implemen-
tation automaton to the states of the specification automaton. In this case it is called a
simulation mapping (also known as abstraction function or refinement). If R is a simula-
tion function and t is a state of the implementation automaton, we use R(t) to denote the
corresponding state of the specification automaton.

Example 2.3 We illustrate the simulation technique by presenting a simulation function R
from FibSeq to UpSeq. R maps a state t of FibSeq to the state s of UpSeq with s.last =
t.m, where s.1last denotes an instance of variable last in state s, and t.m denotes m in state
t. We now argue that R satisfies Definition 2.1:

1. In the initial state to of FibSeq, to.m = 1; therefore R(ty).last = 1, which is a valid
wnitial state of UpSeq.



2. Consider a step (t,print(x),t’) of FibSeq. We claim that (R(t), print(x),R(t")) is a
legal step of UpSeq.

(a) We show that, in state R(t) of UpSeq, print(x) is enabled, that is, that its pre-
condition, x > R(t).last, is satisfied. The fact that (t,print(x),t’) is a step
of FibSeq implies that the precondition, x = t.n + t.m, holds in state t. Since
R(t).last is equal to t.m by definition of R, x = t.n + R(t).last. Therefore, x >
R(t).last, since t.n > 0, as stated in the following invariant:

Invariant 2.1 In every reachable state t of FibSeq, t.n > 0 and t.m > 0.

Proof: The proposition is true in the initial state to, since to.n = 0 and ty.m
= 1. The proposition is true in state t', after a step (t,print(x),t’) of FibSeq,
assuming it is true in state t, sincet’'n =tm>0andt'm=tn +tm>0. =

(b) After print(x) occurs in state R(t), the value of last in the resulting post-state
s’ is x (see Figure 2). In state t', the value of m is also x (see Figure 8). Hence,
by definition of R, 8’ = R(t').

Therefore, R is a simulation mapping from FibSeq to UpSeq, and, as implied by Theorem 2.1,
FibSeq satisfies UpSeq.

3 Specialization

We now present the specialization construct for creating a child automaton by specializing
the parent automaton. This construct captures the notion of subtyping [7]. In the next
section, we present the main technical contribution of this paper: a theorem that allows
one to construct a simulation proof from a specialization of an algorithm to a specialization
of its specification by extending the original simulation proof from the algorithm to its
specification.

The specialization construct defined below operates on a parent automaton, and accepts
three additional parameters: a state extension — the new state components, an initial state
ertension — the initial values of the new state components, and a transition restriction spec-
ifying how the child specializes the parent’s transitions.

Definition 3.1 (Specialization) Let A be an automaton; N be any set of states, called
a state extension; Ny be a non-empty subset of N, called an initial state extension; and
TR C (states(A) X N) x sig(A) X N be a relation, called a transition restriction.

Then specialize(A)(N,No, TR) defines the following automaton A':

o sig(A’) = sig(A);
e states(A’) = states(A) x N;
e start(A’) = start(4) x No;

e trans(A’) = {((tp, ta), T, (t,,tp)) : (tp, 7, t,) € trans(A) A ({tp,ta), 7, t,) € TR},

where (tp,ty) denotes a state in states(d’).



Notation 3.2 If A’ = specialize(A)(N,No, TR) we use the following notation: Given t €
states(A’), we write t|, to denote its parent component and t|, to denote its new component.
If a is an execution fragment of &', then o, and |, denote sequences obtained by replacing
each state t in o with t|, and tly, respectively.

In the precondition-effect notation, a transition restriction (TR) can be specified for each
action 7 by (a) additional preconditions that a child places on 7, and (b) additional effects
that specify how the new state components are modified as a result of a child taking a step
involving 7. Note that these additional effects can rely on but cannot modify the parent’s
state components. The additional preconditions work in conjunction with the preconditions
placed on 7 by the parent automaton, and the additional effects are executed before the
parent’s effects; thus, when the additional effects read parent state components, they observe
their pre-state values. The transition restriction expressed in this style is the union of the
following two sets:

e All triples of the form (t, 7, t|,) for which 7 is not mentioned in the code for A’, that
is, for which A’ does not restrict transitions involving 7. Note that the post-state t|,
is the same as the new state component of the pre-state t.

e All triples (t,m,t!) for which state t satisfies the new preconditions on 7 placed by A’,
and state t! is the result of applying 7’s new effects to t.

Example 3.1 Figure 4 below illustrates the use of the specialization construct. It presents
precondition-effect code for automaton AccSeq, which specializes automaton UpSeq of Fig-
ure 2 on page 6 to print only accelerating sequences, that is, sequences in which the dif-
ferences between consecutive elements are nondecreasing (in addition to the sequence itself
being nondecreasing).

AUTOMATON AccSeq SPECIALIZES UpSeq
State Extension: diff € Integer, initially arbitrary

Transitions Restriction:
OUTPUT print(x)
new pre: x — last > diff
new eff: diff < x - last

Figure 4: Automaton AccSeq printing accelerating sequences of integers.

AccSeq extends the state of UpSeq with a new integer variable diff having an arbitrary
initial value. This variable is used for storing the difference between the last pair of elements
printed. The new precondition placed on print(x) states that x — last has to be greater
than or equal to diff; it works in conjunction with the precondition, x > last, of print(x)
in UpSeq. The new effect updates diff to be the current difference, x — last; it occurs
before the effect that updates last in UpSeq.



As a result of the new precondition and effect, transitions of UpSeq are restricted to only
those in which diff is non-decreasing. Thus, the sample trace of UpSeq given in Example 2.1
is not a trace of AccSeq because (11 — 11) # (11 — 5), while that in Example 2.2 is.

Our specialization construct is defined so that any behavior of a child is allowed by its
parent. Theorem 3.1 below states this property formally: it says that (1) every execution «
of a specialization A’ of an automaton A is also an execution of A when the state extension
of A" is projected out from «; and (2) every trace of A’ is a trace of A.

Theorem 3.1 If A’ is a specialization of automaton A, then:

1. o € execs(A') = al, € execs(A).
2. B € traces(A’) = [ € traces(A).

Proof 3.1:

1. Let a be an execution of A’, which, by definition of execution, means that a begins
in some initial state t, and that every step (t;,7,t;;1) in « is a transition of A’. By
Definition 3.1, to|, is an initial state of A and, for every step (ts, 7, ti41) in «, the triple
(tilp, 7, tit1]p) is a transition of A. From this it follows that the sequence obtained by
replacing each state t in o with t|, is an execution of A. Since this sequence is «/p, we
conclude that o, is an execution of A.

2. Follows from Part 1 and the fact that sig(A’) = sig(A). n

As a consequence of part 2 of Theorem 3.1, we have the following corollary:

Corollary 3.2 If automaton A satisfies automaton S in terms of trace inclusion, then a
specialization A" of automaton A also satisfies S in terms of trace inclusion.

Moreover, given a simulation relation R, from A to S, the same relation is a simulation
from A’ to S, except for the obvious projection of the states of A" onto the states of A.

Corollary 3.3 If relation Ry is a simulation from A to S, and A’ is a specialization of A, then
relation R, = {(t,s) : t € states(A’) A (t|p,s) €Rp} is a simulation from A’ to S.

Many similar inheritance constructs, such as, for example, [29, 30, 11, 4] and superposition
of [34], were defined and proven to satisfy properties similar to those of Theorem 3.1 and
Corollary 3.2. However, these properties are not enough to address the situation illustrated in
Figure 1, where we are interested in reusing and extending a proof that automaton A satisfies
automaton S in order to prove that a specialization A’ of A satisfies a specialization S’ of S.
Indeed, from Theorem 3.1 and Corollary 3.2, we know only that traces(S’) C traces(S)
and that traces(A’) C traces(A) C traces(S); the solid arrows in Figure 1 correspond to
these trace inclusions. But, we do not know whether traces(A’) C traces(S'); this is what
we would like to be able to show without having to repeat the reasoning used in showing that
traces(A) C traces(S). In the next section, we address this question by developing a general
theorem that facilitates reuse of simulation proofs at the parent level for the construction
of simulation proofs at the child level. The theorem pinpoints exactly which parts of the
child-level proof follow from the parent-level proof (these are the parts reused), and which
do not, and therefore still need to be done in order to complete the proof.
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4 Incremental Proofs

We now present the main technical contribution of this paper — a general theorem that
lays the foundation for incremental proof construction. Consider the situation illustrated
in Figure 1, where A" and S’ are specializations of automata A and S respectively. Given
a simulation relation R, from A to S, Theorem 4.1 below states conditions for reusing and
extending R, to a simulation relation R; from A’ to S'. Relation R has to relate every initial
state of A’ to some initial state extension of S’, and it has to satisfy a step condition similar
to the one in Definition 2.1, but only involving the transition restriction relation of S'.

Theorem 4.1 Let automaton A’ be a specialization of automaton A. Let automaton S’ be a
specialization of automaton S, such that S' = specialize(S)(N,No,TR). Assume that A and
S have the same external signatures and that A implements S via a simulation relation Ry.

A relation R, C states(A’) x states(S'), defined in terms of relation R, and a new
relation R, C states(A’) x N as {(t,s) : (t|p,slp) € Ry A (t,8]n) € Ru}, is a simulation
from A to S' if R, satisfies the following two conditions:

1. For every t € start(A'), there exists a state s|, € Ry(t) such that s|, € No.

2. If t is a reachable state of A', s is a reachable state of S' such that s|, € Ry(t|p) and sy
€ Ru(t), and (t,m,t') is a step of A', then there exists a finite sequence a of alternating
states and actions of S', beginning from s and ending at some state s', and satisfying
the following conditions:!

(a) oy is an execution fragment of S.

(b) For every step (si,0,8i41) in @, (8i,0,8i11|n) € TR.
(c) s'lp € By(t']p)-

(d) s'|n € Ra(t').

(e) « has the same trace as (t,m,t').

The theorem follows from Corollary 3.3 and Lemma 4.2 below. Recall that Corollary 3.3
defines a simulation relation Rj, from A’ to S in terms of the simulation relation R, from A
to S (see Figure 5). The lemma considers how to construct a simulation relation R, from A’
to S’ from the simulation relation R;. This is a special case of Theorem 4.1, when A’ is the
same as A. The statement of this lemma is almost identical to that of Theorem 4.1; the only
difference is that, in Theorem 4.1, state t of states(A’) is projected onto its parent’s state
in order to be used in the simulation relation R,. The lemma is stated in terms of A" and R;
in order to match the notation in Theorem 4.1.

Lemma 4.2 Let S and A’ be automata with the same external signatures, and let relation R;
be a simulation from A’ to S. Let S' = specialize(S)(N, Ny, TR). A relation R, C states(A’)
x states(S'), defined in terms of relation R, and a new relation R, C states(A’) x N as
{(t,s) : (t,s]p) €RGA(t,8]a) € Ra}, is a simulation from A" to S’ if R. satisfies the following
two conditions:

! Note that we do not require a to be an execution fragment of S'.

11
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Figure 5: Intermediate step: Reusing R; for building R..

1. For every t € start(A'), there exists a state s|, € Ry(t) such that s|, € Ny.

2. If t is a reachable state of X', s is a reachable state of S such that s|, € R/ (t) and s|,
€ Ru(t), and (t, 7, t") is a step of A', then there exists a finite sequence « of alternating
states and actions of S', beginning from s and ending at some state s', and satisfying
the following conditions:

(a) | is an execution fragment of S.

(b) For every step (s;,0,8i11) in o, (8i,0,8;511|n) € TR.
(c) s'lp € Ry(t').

(d) s'|n € Ra(t').

(e) « has the same trace as (t,m,t').

Proof 4.2: We show that R, satisfies the two conditions of Definition 2.1:

1. Consider an initial state t of A". By the fact that R} is a simulation, there must exist
a state s|, € Ry(t) such that s|, € start(S). By condition 1 of the lemma, there must
exist a state s|, € Ry(t) such that s|, € No. Consider state s = (sl,, s|s). State s is
in R.(t) by definition. Also, by Definition 3.1, start(S’) = start(S) x No; therefore,
s = (slp, sln) € start(S) x Ny = start(s’).

2. First, notice that the definitions of state s and relation R, imply that s € R.(t); also,
notice that conditions 2c¢ and 2d imply that s’ € R¢(t').

Next, we show that « is an execution fragment of S’ with the right trace. Indeed,
every step of « is consistent with trans(S) (by 2a) and is consistent with TR (by 2b).
Therefore, by definition of trans(S’) (Definition 3.1), every step of « is consistent with
trans(S’). In other words, « is an execution fragment of S’ that starts with state in
Re(t), ends with state in R.(t’), and has the same trace as (t, 7, t’) (by 2e).

We are now ready to prove Theorem 4.1:

Proof 4.1: Theorem 4.1 follows immediately from Lemma 4.2 applied to automata A’, S, and
S', with a simulation relation R} from A’ to S being {(t,s) : t € states(A’) A (t[;,s) € Ry},
as proved in Corollary 3.3. Each of the conditions in this theorem implies the corresponding
condition in the lemma. ]
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In practice, Theorem 4.1 (or Lemma 4.2) would be exploited as follows: The simulation
proof between the parent automata already provides a corresponding execution fragment of
the parent specification for every step of the parent algorithm. It is typically the case that
the same execution fragment, padded with new state variables, corresponds to the same step
at the child algorithm. Thus, conditions 2a, 2c, and 2e of Lemma 4.2 hold for this fragment.
The only conditions that have to be verified are 2b, and 2d, that is, that every step of this
execution fragment is consistent with the transition restriction TR placed on S by S’ and that
the values of the new state variables of S’ in the final state of this execution are related to
the post-state of the child algorithm. The verification of these two conditions may depend
on some of the invariant assertions that were uncovered during the parent proof.

To exemplify how Theorem 4.1 and Lemma 4.2 would be exploited in practice, we use
Lemma 4.2 to prove that FibSeq satisfies AccSeq, a specialization of UpSeq. Automata
UpSeq, FibSeq, and AccSeq are simple enough to keep the example tractable, but they are
arguably too simple to demonstrate the full utility of incremental proof construction. In
Section 6 we describe how this framework was exploited in the design of a complex group
communication service.

Example 4.1 Recall that in Example 2.3 we presented a simulation mapping R from the
states of FibSeq to the states of UpSeq. To construct a simulation mapping R’ from FibSeq
to AccSeq, we extend R with the following mapping Ry that maps each state t of FibSeq to
the state extension s of AccSeq such that

e Jtm—tn iftnF#0
s.diff = { 0 otherwise

In order to prove that R' is a simulation mapping we have to prove that it satisfies each
of the conditions of Lemma 4.2.

Condition 1 is satisfied because, if t is the initial state of FibSeq, Ry(t).diff = 0 is a
valid initial value for the state extension of AccSeq.

For Condition 2, the action correspondence is the same as in the simulation of UpSeq
by FibSeq: a step of AccSeq involving print(x) is simulated whenever FibSeq takes a step
involving print(x). Conditions 2a, 2¢, and 2e are implied by the fact that R is a simulation
relation from FibSeq to UpSeq; these were proven in Example 2.3. Thus, we only need to
prove conditions 2b and 2d. Condition 2b requires the new precondition, x — last > diff,
to be satisfied in state R'(t), provided the parent’s precondition, x = n + m, holds in state t.
Condition 2d requires the Ry, mapping to be preserved in the post-transition states of FibSeq
and AccSeq; namely, the value of the new state variable diff in the post-transition state
of AccSeq has to be the same as that of Ry(t').diff. Proving that these two conditions are
satisfied involves reasoning only about how AccSeq specializes UpSeq.

We now prove that conditions 2b and 2d hold. Consider a step (t,print(x),t’) of FibSeq;
it implies that x = t.n + t.m, and that t'.n = t.m and t'.m = t.n + t.m.

e Condition 2b: We have to show that the corresponding print(x) step of AccSeq is en-
abled in state R'(t), that is, that x — R'(t).last > R'(t).diff. By using the simulation
mapping, we derive: x — R'(t).last = x — R(t).last = x — t.m = t.n + t.m — t.m
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= t.n. Ift.n =0 (as in the initial state of FibSeq), then, by definition of R and Ry,
R'(t).diff = R,(t).diff = 0, and we are done. Otherwise, if t.n # 0, then R'(t).diff
= Ry(t).diff = t.m — t.n, and it remains to show that t.n > t.m — t.n. Invariant 4.2
below establishes this fact by relying on the following auziliary invariant:

Invariant 4.1 In every reachable state t of FibSeq, t.m > t.n.

Proof: The proposition is true in the initial state to, since to.n = 0 and to.m = 1.
The proposition is true in state t', after a step (t,print(x),t’) of FibSeq, since t.n
> 0 (Invariant 2.1), and hence t'm = t.n + tm > t.m = t'.n. u

Imvariant 4.2 In every reachable state t of FibSeq, t.n > t.m — t.n, if t.n # 0.

Proof: The proposition is vacuously true in the initial state to, since to.n = 0. The
proposition is true in state t', after a step (t,print(x),t’) of FibSeq, since t.m > t.n
(Invariant 4.1), and therefore t'n = tm > tn = t'm — tm = t'.m — t'.n. [ |

e Condition 2d: According to the code, the post-transition value of diff isx — R'(t).last
=tn=t'm—tm=t'm— t'n Ift'n#0, then t'.m — t'.n = Ry(t').diff, and we
are done. Otherwise, if t'.n = 0, Ry(t').diff = 0 by definition, and the post-transition
value of Aiff is also 0, since 0 = t'.n = t.m > t.n > 0 (Invariants 2.1 and 4.1).

Notice that, in verifying conditions 2b and 2d in Example 4.1, we relied on Invariant 2.1,
which was stated and proven during the simulation proof from FibSeq to UpSeq. In general,
knowing the invariant assertions that have been uncovered during the parent’s proof can be
helpful in extending that proof to the children.

5 Subclassing for Extension

In this section, we extend the theory of incremental modeling and proof construction to
a new modification construct, called specialized extension; the construct is formulated in
Definition 5.2 and the extended proof-reuse theorem appears as Theorem 5.4. This construct
corresponds to the subclassing for extension form of inheritance [7], which is similar to
specialization in that a child cannot override its parent’s behavior, but it is more powerful
than specialization in that a child can introduce new types of behavior through new actions,
nonexistent in the parent.

We define a specialized extension of an automaton by first extending the parent automa-
ton with new actions using a new construct, called signature extension, and then applying
specialization of Section 3. The new actions introduced by signature extension are enabled
in every state and do not modify the state; the subsequent specialization operation gives
meaning to these new actions by restricting transitions involving the new actions, and, pos-
sibly, those involving parent’s actions as well. The resulting automaton can interact with
its environment through both the parent’s actions and the new ones. Because new actions
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(even after being specialized) do not affect the parent’s state, any trace of the child is in-
distinguishable from a trace of the parent when new actions are projected out from the
trace.?

The signature extension construct, formulated in Definition 5.1, creates a new automaton
by adding new actions to an existing automaton. The new automaton has an extended
signature, but the same states and start states as the original automaton; the new state-
transition relation is the same as the one in the original automaton, except that it includes
additional transitions that relate every state to itself via new actions (i.e., new actions are
enabled in every state, but do not modify the state); such transitions are called “stuttering”
steps by Lamport [28].

In addition, the signature extension construct allows the new automaton to rename some
or all of the original automaton’s actions. The renaming is specified by a signature-mapping
function that maps actions in the new signature to their counterparts in the parent signature.
The function is allowed to be many-to-one, which means that the same action of the parent
may be renamed into several actions of the child; this is useful because it allows a child
to add new parameters to its parent’s actions, and because instances of the same parent’s
action can be specialized differently under different names. The signature-mapping is onto,
that is, every parent action has at least one corresponding action at the child. The function
is defined only for actions inherited from the parent (renamed or not); it is undefined for
new actions introduced by the signature extension. If 7 is such a new action and f is a
signature-mapping, we write £f(7) = L to denote the fact that 7 is not in the domain of
definition of £; 1 is a assumed to be different from any action name.

Definition 5.1 (Signature Extension) Let A be an automaton, and X be some signature.
Let £ be a partial function, called o signature-mapping, from X to sig(A) such that £
15 onto and preserves the classification of actions as “input”, “output”, and “internal”; the
latter means that, if £(m) is defined, it is of the same classification as 7.3
Then, extend(A)(X, £) is defined to be the following automaton A':

o sig(A') = X,
e states(A’) = states(A),
e start(A’) = start(A), and
e trans(A’) = {(t,7,t') € states(4’) x sig(A’) x states(A’)
((f(m) = L)A(t=1")) V((f(7) € sig(B)) A ((t,£f(7),t’) € trans(4)))}.

We say that A is the signature extension of A with signature-mapping f if A’ is such that
A" = extend(A)(sig(4’), ) for some signature-mapping f from sig(A’) to sig(A).

Having defined the signature extension construct, we now combine it with specialization
to yield specialized extensions of automata.

2Notice that this is stronger than behavioral subtyping of Liskov and Wing [30, 29], in which a trace of
a child is required to be indistinguishable from a trace of its parent only when the trace does not contain
actions introduced by the child (see Section 8).

3Signature-mapping is similar to strong correspondence of [41].

15



Definition 5.2 (Specialized Extension) Automaton A’ is called o specialized extension
of an automaton A if A" is a specialization of a signature extension of A.

In precondition-effect notation, we express a specialized extension A’ of an automaton A by
writing “A’ MODIFIES A” and then specifying the signature extension and the specialization
parts of A’. The signature extension part contains the new actions labeled with a keyword
new, and the renamed actions labeled with their original names in sig(A), according to the
signature-mapping; for example, if the signature mapping maps m of A’ to o of A, we write
“m modifies 0”. We omit specifying the actions of sig(A’) that are inherited from A without
renaming. The specialization part contains the state extension and the transition restriction
specifications, as described in Section 3 on page 9.

We now exemplify how the signature extension construct can be used in conjunction with
the specialization construct to create specialized extensions.

Example 5.1 Figure 6 presents automaton FibSeq+ that modifies automaton FibSeq to
print each element of the Fibonacct sequence together with its sequence number. The signature-
mapping specified by the Signature Extension clause maps actions print(i,x) where i €
Integer to actions print(x) of FibSeq. Thus, for example, actions print(8,43) and
print(23,43) of FibSeq+ are among those actions mapped to the print(43) action of
FibSeq. Then, the specialization construct adds a new state variable, last_i, that keeps
track of the sequence number of the last Fibonacci element printed; it also adds a new pre-
condition and a new effect to the print(i,x) action to maintain i and last_i properly.

AUTOMATON FibSeq+ MODIFIES FibSeq
Signature Extension: Output print(i, x), i € Integer modifies FibSeq.print(x)
New State: last_i € Integer, initially O

Transition Restriction:
OUTPUT print(i, x)
new pre: i = last.i + 1
new eff: lasti « 1

Figure 6: Automaton FibSeq+ specifying enumerated Fibonacci sequences.

Notice that any execution « of FibSeq+ is an execution of FibSeq when the newly added
state variable, last_i, is projected out from every state in o and when every action in « is
renamed according to the specified signature-mapping. Theorem 5.2 below formalizes this
property in general. It follows from Theorem 3.1, which is a similar execution-inclusion
property of specialization. This is because, modulo the signature-mapping, a signature
extension of an automaton and the automaton itself have exactly the same executions and
traces; we prove this result in Lemma 5.1 below.

Notation 5.3 Let A’ be a signature extension of A with a signature-mapping £.
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If « is a sequence of alternating states and actions of A', then £(a) denotes the sequence
obtained by replacing each action 7 in o with £(7), and then collapsing every triple of the
form (t, L,t) tot. Triples of the form (t, L,t") where t' # t are not collapsed; such triples
are possible because o is not necessarily an execution sequence of A'.

Likewise, if (8 is a sequence of external actions of A, then £(3) denotes a sequence obtained
by replacing each action 7 in 8 with £(7), and then removing all the occurrences of L.

Lemma 5.1 Let automaton A" be a signature extension of A with a signature-mapping £.
Let o be a sequence of alternating states and actions of A" and let B be a sequence of
external actions of A'. Then:

1. a € execs(A') & f(a) € execs(A).
2. p € traces(d’) & £(f) € traces(A).

Proof 5.1: The proof follows from Definition 5.1 and Notation 5.3.

1. =: Let a be an execution of A’. By definition of execution, o begins in some initial state
to, and every step (ti, 7, t;+4) in « is a transition of A’. From this and Definition 5.1,
to is an initial state of A, and, for every step (t;,m,tiyq) in «, either (ti, £(7), t;44) is
a step of A when f(7) € sig(A), or t; = t;;4 when f(7) = L.

Therefore, by definition of execution, the sequence obtained by replacing every step
(ti,T,ti41) in o with either (t;, £f(7),t;41) when £f(7) € sig(A), or t; when f(7) = L
is an execution of A. Since this sequence is f(«), we conclude that f(«) € execs(A).
<: Let a be a sequence of alternating states and actions of A’ such that f£(«) € execs(A).
This means that o begins with some initial state to of A, and that, for every triple
(ti, 7, tiy1) of elements in «, either (ti, £(7),t;4) is a step of A when f£(7) € sig(A),
or t; = t;;4 when f(r) = L. From this assumption and Definition 5.1, it follows
that t, is an initial state of A’ and that every triple (t;, 7, t;.1) of elements in « is a
transition of A’. Thus, o € execs(d’).

2. Follows from part 1 and the fact that £ preserves the classification of actions as “input”,
“output”, and “internal”. [ ]

Theorem 5.2 If A’ is a specialized extension of A with a signature-mapping £, then
1. o € execs(A') = f(afp) € execs(A).
2. p € traces(d’) = £(f) € traces(A).

Proof 5.2: Follows immediately from Theorem 3.1 and Lemma 5.1 ]

Since signature extension does not modify the original automata beyond simple renaming
of actions, we would expect it to have minimal effect on the proof-reuse theorems (Theo-
rem 4.1 and Lemma 4.2) of Section 4 when those theorems are used in verifying specialized
extensions of automata. We prove this intuition correct in Theorem 5.4 below; this theorem
is an adaptation of Theorem 4.1 for the case when child automata are specialized extensions
of their parents. The theorem follows from Theorem 4.1 and the following lemma, which es-
tablishes that a simulation relation between two automata is preserved when these automata
are signature-extended:
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Lemma 5.3 Let A’ be the signature extension of A with a signature-mapping £. Let S’ be the
signature extension of S with a signature-mapping g. Assume that A has the same external
signature as S and that there is a simulation relation R from A to S. Assume further that A’
has the same external signature as S', and that, for every external action = € sig(A"), g(n)
= f(m). Then, R is a simulation relation from A’ to S'.

Proof 5.3: Follows straightforwardly from Definitions 2.1 and 5.1. ]

The only difference between the statements of Theorem 5.4 below and Theorem 4.1 is
that here, whenever child’s actions are used in the context of the parent automaton (as in
Condition 2a), they are translated via the signature-mapping to the corresponding actions
of the parent.

Theorem 5.4 Let automaton A’ be a specialized extension of A with a signature-mapping
f. Let automaton S' be a specialized extension of S with a signature-mapping g, such that
S' = specialize(extend(S)(G,g))(N,No, TR). Assume that A and S have the same external
signatures and that A implements S via a simulation relation Ry. Assume further that A" and
S' have the same external signatures, and that, for every external action m € &', g(n) = £(r).

A relation R, C states(A’) x states(S'), defined in terms of relation R, and a new
relation R, C states(A’) x N as {(t,s) : (t|p,slp) € Ry A (t,8]n) € Ru}, is a simulation
from A to S' if R, satisfies the following two conditions:

1. For every t € start(A'), there exists a state s|, € Ry(t) such that s|, € No.

2. If t is a reachable state of A', s is a reachable state of S' such that s|, € Ry(t|p) and s|a
€ Ru(t), and (t,m,t") is a step of A', then there exists a finite sequence « of alternating
states and actions of 8, beginning from s and ending at some state s', and satisfying
the following conditions:

(a) glalp) is an execution fragment of S.

(b) For every step (si,0,8i41) in @, (Si,0,8i11|a) € TR.
(c) 8'lp € Bp(t']p).

(d) s'|a € Ra(t').

(e) « has the same trace as (t,m,t').

Proof 5.4: Follows straightforwardly as a corollary from Theorem 4.1 and Lemma 5.3. =

Theorem 5.4 can be used in practice in the same way as Theorem 4.1 and Lemma 4.2
(see the discussion after the proof of Theorem 4.1 on page 12): Transitions involving new
actions introduced by signature extension are defined entirely by the specialization code and,
therefore, involve reasoning about this code alone. Transitions involving parent’s actions,
which are possibly renamed by the child, depend on the code of both the parent and the
child. Even when actions are renamed, the task of proving that the simulation relation
holds for such transitions typically allows one to rely on the simulation proof of the parent
automata to deduce conditions 2a, 2c¢, and 2e, and requires verification of conditions 1, 2b,
and 2d only.
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6 Practical Experience With Incremental Modeling

The technique presented in this paper has evolved as part of our experience designing and
modeling a complex group communication service [25]. In this section we describe our
experience in that project, and how the framework presented in this paper was exploited. We
use the example to illustrate circumstances under which the inheritance-based technique of
this paper can be useful. In the next section we describe an interesting modeling methodology
that has evolved with our experience in that project.

6.1 Group communication: background

Group communication services [6, 9] are powerful middleware systems that facilitate the de-
velopment of fault-tolerant distributed applications. These services provide a notion of group
abstraction, which allows application processes to easily organize themselves into multicast
groups. Application processes can communicate with the members of a group by addressing
messages to the group.

Group communication systems typically provide reliable multicast and group member-
ship services. The task of the membership service is to maintain a listing of the currently
active and connected processes and to deliver this information to the application whenever
it changes. The output of the membership service is called a view. The reliable multicast
services deliver messages to the current view members.

Group communication systems are complex software systems, and their behavior descrip-
tions are correspondingly intricate. Such intricate behavior is often described as a collection
of properties that the service guarantees (for a survey of such properties, see [9]).

6.2 Incremental modeling of group communication

In [25] we presented a formal design for a novel group communication service targeted for
wide-area networks. The project included a specification of the service semantics, a model
of the implementation, and an assertional correctness proof showing that the model satisfies
the specification. The implementation used two auxiliary services: group membership and
reliable multicast. We gave high-level abstract models of the behavior of these two services
as [/O automata. We gave a low-level I/O automaton modeling the algorithm executed by
the end-points of the service in different locations. The model of the implementation was
then a composition of a collection of end-point automata (one for each end-point running the
service) with the two high-level auxiliary service automata. The proof exhibited a simulation
relation from the implementation model to the specification, which was also given as an I/O
automaton.

The new algorithm run by the end-points of the service has been implemented in C++,
using roughly 9,000 lines of code [40], including code for thread and socket maintenance,
auxiliary classes for data structures maintenance, header files, in-program documentation,
etc. The auxiliary membership service [27] was developed by another development team
using roughly 20,000 lines of C++4 code, and the reliable multicast service was implemented
by a third team [3] using roughly 4,000 lines of C++ code. The I/O automaton model of
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the end-point algorithm required a total of approximately 120 lines of I/O automaton code,
modeling fifteen different actions and using approximately ten data structures®.

Modeling and validating a system of this scale and intricacy was a major challenge.
Although formal approaches were previously used to specify group communication systems
and to verify their applications, (see [8, 12, 21]), algorithms implementing the actual systems
were not previously formally modeled or assertionally verified.

In order to manage the complexity of the project, we found a need to employ an object-
oriented approach that would allow for reuse of models and proofs. Therefore, in [25], we used
the I/O automaton formalism enriched with the inheritance-based incremental modification
constructs presented in this paper to specify the safety properties of our service and to model
the algorithm. We then exploited the proof reuse theorem when verifying the algorithm.

We specified, modeled, and verified our service in four steps; each step dealt with a
certain group communication property. These four properties are typically defined using
four separate logic formulas, for example, in [9]. Therefore, by specifying the properties
incrementally, we have made it easier to relate our abstract specification automaton to
existing group communication specifications. It was also important to model the algorithms
implementing each of these properties one step at a time to reduce the complexity of the
design and verification and to make it clear which algorithm implements which property.

We started with a simple service, FIFO, that provides reliable FIFO multicast within
group membership views. The specification of the FIFO service took about 15 lines of I/O
automaton code and consisted of three parameterized actions and three state variables, some
of which were two-dimensional arrays. We modeled the end-point algorithm using roughly
50 lines of I/O automaton code; the code included eleven parameterized actions and seven
state variables, some of which were arrays. The verification part presented a simulation
proof showing that the composition of all the FIFO end-point automata and the high-level
automata specifying the auxiliary services implements the FIFO specification. The proof
took about five pages, included seven major invariants, and used the technique of history
variables [2].

As a second step, we used specialized extension to modify the FIFO specification and
algorithm to include an additional property, called vs. This property synchronizes view
delivery and message delivery events in an execution. It requires that end-points that move
together from one view to another (i.e., remain connected) deliver the same set of messages
in the former view.

The extension of the FIFO specification introduced a new internal action and a new array
variable to specify the appropriate synchronizations of view delivery and message delivery
events. The extension then constrained the view delivery actions to occur exactly at the
times when the specified synchronizations held; the constraint was expressed in terms of
both parent and new variables. The extension of the specification took about ten lines of
code; it relied on and reused the parent specification of how messages, views, and common
data structures are handled.

41/0 automaton code is rather compact and therefore an I/O automaton model of a system is generally
much shorter than the actual C++ code of the system. This is due to the fact that I/O code is at a higher
level of abstraction, it does not include code for scheduling of actions, maintenance of threads, sockets, or
data structures, garbage collection, header files, etc.
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The extension of the FIFO end-point algorithm introduced a distributed synchronization
protocol enforcing the vs property. The protocol involved four new actions and four new
variables, some of which were arrays. It relied on the parent algorithm handling common
events and data structures, such as message buffers and indices. In addition, the extension
of the end-point algorithm modified four of the parent’s actions. In particular, it constrained
the view delivery and message delivery actions to respect the computed synchronizations.
The constraints were expressed in terms of both parent and new variables. The verification
exploited Theorem 5.4. The simulation proof focused solely on the vs property and took
about two pages; no arguments from the five page parent-level proof needed to be repeated.

As a third step, we enriched our service with an additional property, called TS, which
augments each view delivery with special information called a transitional set [9]. We spec-
ified this property using a stand-alone automaton, (i.e., without using inheritance), using
about fifteen lines of code, two parameterized actions, and two array variables. The vs
end-point algorithm was already computing the transitional set information as a by-product
of implementing the vS property. We used the signature extension construct to modify the
signature of the view delivery action to include the transitional set as an additional parame-
ter. We then exhibited a simulation proof, showing that the modified algorithm satisfies the
Ts specification. This proof focused solely on the TS property, it took two and a half pages,
included three major invariants, and used the technique of prophecy variables [2].

Finally, we used specialized extension to modify the vs specification and algorithm to
include the fourth property, called SELF. This property requires that application processes
receive their own messages before moving to the next view. SELF is another example of a
synchronization property, which restricts possible action interleaving. The extension of the
specification added a single constraint to the parent’s view delivery action; the constraint
was in terms of the parent’s variables. The extension of the end-point algorithm was about
fifteen lines of code and involved a synchronization with the end-point’s client. Again, we
exploited Theorem 5.4 in verifying that the final algorithm satisfies the final specification.
The final step of the simulation proof focused solely on the SELF property; it took two and
a half pages and included three major invariants.

Group communication systems are particularly amenable to incremental modeling and
verification using our formalism because such systems involve a number of separate prop-
erties, each constraining or synchronizing the deliveries of messages and views. Given an
algorithm (a specification) for one such property, an algorithm (a specification) that adds
a second property enforces additional synchronization constraints. The child can reuse the
handling of common events and data structures by the parent and introduce only the ma-
chinery required to provide the new property; the machinery can rely on both new and
parent data structures. In order to provide the property, the child can establish the required
synchronization, for example, using new actions, and then enforce it by adding new precon-
ditions to the common actions. For example in [25], the algorithm that implemented the vs
property established the synchronization by introducing a new protocol and then enforced
the synchronization by requiring the protocol to complete before the view and message de-
livery events could execute. In summary, we believe that our inheritance-based formalism
is particularly useful for modeling and verifying systems whose specifications consist of a
number of different properties that constrain the same actions.
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6.3 The benefits of incremental modeling and verification

Using the inheritance-based technique, we were able to present a complex algorithm step by
step. This way, it was easy to see which part of the algorithm corresponds to which property
of the specification. Correspondingly, the proof was broken up into pieces of manageable
size. Moreover, each piece of the proof was focused on proving a specific property. This
piece only needed to consider the part of the code that implements that property; discussing
other pieces of the code would have distracted attention from what is being proven.

Previous projects that modeled large-scale complex systems using I/O automata relied on
composition; complex algorithms were expressed by multiple manageable parts that jointly
compose the algorithm (see, for example, [21]). In the context of our project, however, com-
position could not have been used in lieu of inheritance, for two reasons: Firstly, composition
does not allow different components to share the same data structures. In contrast, all the
parts of our algorithm share common data structures such as message buffers. Using com-
position, we would have had to duplicate these data structures as well as the book-keeping
logic associated with them. This would make the algorithm models more cumbersome.

The second and more important reason is that composition does not allow for proof
reuse, since it does not guarantee that one component does not violate the guarantees of
the other. Consider our project, for example. Had we composed a FIFO multicast service
that meets the FIFO specification with a Vs service that synchronizes messages with views,
we would have had no guarantee that the combined service preserves the FIFO order. In
order to prove that the composition indeed satisfies the FIFO specification, we would have
to prove (1) that the FIFO service orders messages in this order; and (2) that the Vs service
does not change message order in a way that would violate the property. When introducing
a third component, (for example, SELF), we would, once again, have to prove that the new
component does not violate the FIFO order. This repetition of reasoning is precisely what
our inheritance-based technique allows us to avoid.

7 Discussion of Modeling Methodology

Our notion of inheritance allows a child to see the parent’s internal variables, but not to write
to them. In this respect, the parent’s internal variables and actions can be seen as protected
variables, but with additional restrictions. Specifically, specialization does not allow children
to change state variables of their parents.

In some situations, however, one may see a need for a child to modify a parent’s vari-
able. We have encountered such situations when we modeled the algorithms in [25], as
described in the previous section. We dealt with this case by introducing a certain level
of non-determinism at the parent, thereby allowing the child to resolve (specialize) this
nondeterminism later.

For example, the algorithm that implemented the second specification described above
sometimes needed to forward messages to other processes, although such forwarding was not
needed at the parent. The forwarded messages would have to be stored at the same buffers as
other messages. However, these message buffers were variables of the parent, so the child was
not allowed to modify them. We solved this difficulty by changing the parent automaton to
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have a forwarding action which forwards arbitrary messages to other processes. The parent
stores incoming forwarded messages in the appropriate message buffers, in a manner that
preserves the coherence of its data structures. The child then sets the policy for restricting
the arbitrary message forwarding according to its algorithm. Using this methodology allowed
us to benefit from proof reuse, without complicating the proofs.

We liken this methodology to the use of abstract methods or pure virtual methods in
object-oriented methodology, since the non-determinism is left at the parent as a “hook”
for prospective children to specify any forwarding policy they might need. Thus, the parent
specifies the policy and the integrity constraints for modifying its variables. The actual
mechanism is implemented by the child while abiding to the parent’s constraints; the child
of course can also refine the policy and the integrity constraints.

8 Related work

The works that most closely relate to ours are those of Soundarajan and Fridella [37, 38]
and Stata and Guttag [39]. Unlike our formalisms, both of these works are restricted to the
context of sequential programming and do not encompass reactive components.

Like us, Soundarajan and Fridella [37, 38| have recognized that incremental reasoning
is important in exploiting the full potential of inheritance. They present a specification
notation and a verification procedure geared towards such incremental reasoning. However,
they consider a more general type of inheritance — one that allows a child to override
behavior of the parent. As a result, the proof-reuse result they obtain is much weaker and
less structured than ours. In particular, reasoning reuse applies only when the simulation
function (abstraction function, in their case) between child automata is identical to that
between parent automata, and only to those actions that are inherited from the parent
without any modification. In contrast, our framework applies to all types of actions, including
those which are modified by the child.

Stata and Guttag [39] have also recognized the need for proof-reuse in a manner similar to
that suggested in this paper. They suggest a framework for defining programming guidelines
and supplement this framework with informal rules that may be used to facilitate reasoning
about correctness of a subclass given the correctness of the superclass is known. However,
they only addressed informal reasoning and did not provide the mathematical foundation
for formal proofs.

Numerous other research projects, for example [1, 5, 10, 11, 20, 24, 29, 30, 35, 4, 34, 15],
have dealt formally with inheritance and its semantics. In particular, many projects, such
as [29, 30, 11, 4, 34], focus on defining inheritance constructs in ways that either automatically
imply or simplify the task of proving that a child behaves indistinguishably from its parent,
in other words, that the child satisfies its parent’s specification. However, no other work
that we are aware of allows for reuse of a parent-level simulation proof when showing that a
child satisfies (simulates) its own specification.

To be fair, we note that it is not immediately obvious how to adapt our incremental
verification ideas to the notions of inheritance in object-oriented programming languages.
The denotational semantics of inheritance in these languages is more complex than what we
consider in this paper; for example, it includes recursion. However, we also feel that the
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essence of our approach is general enough to be applicable to other state-transition formal
models, such as TLA [28], UNITY [34], and Process Algebra [22, 33].

We note also that, while our definition of subclassing for extension is similar to behavioral
subtyping of Liskov and Wing [29, 30], it is not identical: Behavioral subtyping requires only
that a child behave indistinguishably from its parent when the child is used in the context of
the parent, that is, when the execution of the child contains only the parent’s actions, and
none of the actions introduced by the child. Subclassing for extension enforces a stronger
property: any trace (execution) of the child, even one that has actions introduced by the
child, is indistinguishable from a parent’s trace when all such new actions (and new state
variables) are projected out.

9 Conclusions

In this paper, we have presented an inheritance-based formalism for modeling and verifying
systems incrementally.

The formalism defines two inheritance constructs that can be used to model a modified
version of an abstract model of a system by specifying how the modification is different from
the original. Using these constructs, one can model (specify) a complex system incrementally,
by starting from a basic model (specification) and then, at each step, adding support for
new properties of the system.

For simplicity, the paper has described the formalism in terms of two levels of abstraction:
“specification” and “algorithm”; but in general, the formalism is complementary to the
technique of using successive refinement. It can be applied for modeling systems at any
relevant level of abstraction, from the lowest level corresponding to software code, to the
highest one corresponding to the most abstract system specification.

A distinguishing feature of our formalism is its support for incremental verification, which
compliments incremental modeling. The formalism provides fundamental theorems (4.1
and 5.4) that state formally how a simulation proof of one abstract model of a system
satisfying another can be reused and extended to a simulation proof for the modified ver-
sions of these models. This allows one, not only to model and specify a complex system
incrementally, but also to verify incrementally that the model satisfies its specification.

The formalism, and in particular its incremental verification component, was motivated
by and refined during a project designing and modeling a complex middleware system [25].
The ability to model and verify the system incrementally was critical in making the project
tractable and in making it clear which part of the algorithm implemented which property.
As Section 6.3 explains, standard compositional techniques would have not been sufficient.

As explained in Section 6 on page 21, the inheritance-based formalism was particularly
useful in the context of that project because the modeled middleware system involved a
number of separate properties, each constraining or synchronizing common events. We
believe that the formalism would be useful for modeling and verifying other systems that
include different properties constraining the same actions.

The formalism described in this paper has been presented using the I/O automaton
model — the same model that we used to model the complex middleware system. The
I/O automaton model has been used extensively for modeling and reasoning about complex
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distributed systems and has been developed into a programming and modeling language,
called IOA [13, 14]. As one of our future projects, we plan to facilitate the incorporation
of our inheritance-based approach into the IOA tool-set, thereby enriching its modeling and
reasoning facilities.

The I/O automaton model has been a convenient model in which to express our for-
malism. The essence of the approach, however, is general enough to be applicable to other
state-transition formal models, such as TLA [28], UNITY [34], and Process Algebra [22, 33],
or, in other words, to any formal model that supports simulation proofs. One interesting
direction for future research is to enrich the standard formal modeling languages with a
version of our formalism.

The formalism presented in this paper allows modeling of systems using two standard
and important types of inheritance: specialization and subclassing for extension. In our
future work, we are planning to expand the formalism, including its incremental verification
aspect, to support other types of inheritance.

Of particular importance is a construct that would allow modifications that override a
system’s behavior. In general, one would expect little, if any, proof reuse possible for such
a construct, since modifications done to a system may invalidate whatever reasoning has
been done about it. Nevertheless, useful approaches to circumventing this impasse could
rely on limiting the types of the modifications allowed by the construct and on requiring the
modifications to preserve certain invariants.

The formalism presented here is an important step toward scalable and cost-effective
formal methods and toward practical software design methodologies that, in addition to fa-
cilitating reuse of code, also facilitate reuse of reasoning. In general, any extensions to the
formalism that we make in the future will be motivated and guided by our work on designing
and modeling complex distributed systems. This approach will ensure that, like the formal-
ism presented in this paper, these extensions will have important, practical implications.
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