
Towards a Topological Characterization ofAsynchronous Complexity(Extended Abstract)Gunnar HoestM.I.T.andNir ShavitM.I.T. and Tel-Aviv UniversityThis paper introduces the use of topological models and methods, formerly used to analyze com-putability, as tools for the quanti�cation and classi�cation of asynchronous complexity.We present the �rst asynchronous complexity theorem, applied to decision tasks in the iteratedimmediate snapshot (IIS) model of Borowsky and Gafni. We do so by introducing a novel formof span called the non-uniform chromatic subdivision. Building on the framework of Herlihyand Shavit's topological computability model, our theorem states that the time complexity of anyasynchronous algorithm is directly proportional to the level of non-uniformchromatic subdivisionsnecessary to allow a simplicial map from a task's input complex to its output complex.To show the power of our theorem, we use it to derive two new results. The �rst includes tightupper and lower bounds on the time to acheive n process approximate agreement. Our boundof jlogd input�range� k where d = 3 for two processes and d = 2 for 3 or more shows that theintriguing gap between the known lower and upper bounds implied by the work of Aspnes andHerlihy is not a technical coincidence. The second is a simple and purely geometric proof that thetime complexity of solving the k process renaming problem of Attiya et al. when the number ofnames is k(k + 1)=2 or more is O(1).More than the new bounds themselves, the importanceof our asynchronous complexity theoremis that the algorithms and lower bounds it allows us to derive are intuitive and simple, withtopological proofs that require no mention of concurrency at all.1. INTRODUCTIONIn the last few years, techniques of modeling and analysis based on classical alge-braic topology [5; 9; 12; 15; 19; 18; 20; 21; 22; 23; 27] in conjunction with distributedsimulation methods [9; 8; 7; 25] have brought about signi�cant progress in our un-derstanding of computability problems in an asynchronous distributed setting. Wefeel the time is ripe to extend these techniques to address asynchronous complexity.This paper studies the class of problems called decision tasks, input/output prob-lems in which N asynchronous processes start with input values, communicate viashared memory and halt with private output values. We focus on the iterated im-mediate snapshot memory model introduced by Borowsky and Gafni [9] as part ofContact author: Nir Shavit, shanir@theory.lcs.mit.edu.This submission is for the long presentation track.It is eligable for a student award as Gunnar Hoest is a full time student.



2 G. Hoest and N. Shavittheir new simpli�ed proof of the asynchronous computability theorem [23] 1. Themodel is a restriction of atomic snapshot memory that guarantees that processes'scan operations return views that contain non-decreasing sets of the participatingprocesses' inputs. We believe it is a good �rst candidate for topological modelingsince it has a particularly nice geometric representation, and hence easily lendsitself to topological analysis.Keeping in style with Herlihy and Shavit's topological computability framework[23], our theorem states that the worst case time complexity for solving a decisiontask in the IIS model is equivalent to the minimal number of non-uniform chromaticsubdivisions of the input complex necessary to allow a simplicialmap from the inputcomplex to the output complex. The theorem also immediately provides a matchingupper bound given the subdivision and mapping.The non-uniform chromatic subdivisions we introduce (See Figure 1 for examples)are a looser and more general form of standard chromatic subdivisions [23]. Unlikethe iterated standard chromatic subdivions used in the computability work of [23;9], they allow individual simplices in a complex to be subdivided a di�erent numberof times, while assuring that the subdivision of the complex as a whole remainsconsistent. Non-uniformity is a necessary property when analyzing complexity sincethe number of steps and hence the level of subdivision of an input simplex may di�erfrom one set of inputs to the next, as for example in the approximate agreementproblem. Taking just the complexity of the execution on the worst case inputswould make the complexity theorem useless since for example, for the approximateagreement problem Aspnes and Herlihy [1] show that for any k one can �nd a setof inputs that will require time k in the worst case.The power of our theorem lies in its ability to allow one to reason about thecomplexity of problems in a purely geometric setting. As we show, the subdivisionsof a complex are a clean and higher level way of thinking about the multitudeof di�erent length executions of a concurrent protocol. We found this geometricrepresentation helpful and are sure that it will prove to be an invaluable tool fordesigning and analyzing concurrent algorithms.We provide two example applications of our theorem. In Section 5 we show tightupper and lower bounds on the time to acheive n process approximate agreement.Our bound of �logd input�range� � where d = 3 for two processes and d = 2 for 3 ormore shows that the intriguing gap between the known lower and upper boundsimplied by the work of Aspnes and Herlihy [1] is not a technical coincidence. Then,in Section 6, we show a simple proof that the time complexity of solving the kprocess renaming problem of Attiya et al. [3] when the number of names is k(k+1)=2or more is O(1). This falls short of the O(k) bound of Moir and Garay [16] inthe read/write register model since known implementations of IIS from read/writeregisters take �(k2) time. However, we believe the simplicity and intuitive appealof our purely geometric proof o�ers some advantages.Since there is quite a bit of mathematical machinery needed in order to under-stand the foundations on which we build our main theorem, we try in the nextsection to start out by presenting it on an intuitive level.1This model was implicitely used by Herlihy and Shavit in their upper bound proof [22; 23].
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if view=(my_id,   ) 
 return 1
 else if my_id < his_id
       return 2
       else return 3Fig. 1. Two Process Renaming1.1 A bit of intuitionIt is perhaps best to explain our theorem by way of example. Let us begin with asimple one. Consider any comparison based protocol solving the two process versionof the Attiya et al. renaming problem with 3 names. The left hand side of Figure 1describes the input and output complexes. Recall that the name space of processesis very large, that is, the input complex contains many vertices corresponding tomany possible process names. However, since this is a comparison based protocolthey can be represented by two vertices p and q and two edges (1-simplices) betweenthem representing the case where p > q and the case where p < q. The outputcomplex is a cycle of 1-simplices the describes all the possible combinations of legaloutput values in two process executions of renaming with three output names.Now, our complexity theorem says that the complexity of any protocol solvingthe renaming problem in IIS is exactly the number of chromatic subdivisions nec-essary to allow a simplicial map 2 from the subdivided input complex to the outputcomplex. And indeed a single subdivision will allow such a map as depicted on theright hand side. Hence this problem is solvable in the IS model in exactly one step.As will be shown in great detail later, the idea is that the added nodes of thesubdivision actually capture the possible di�erent executions that may result fromprocesses accessing an IS object. This can be seen in the labeling of the vertexesthat correspond to whether they saw the other process in the view returned fromthe IS object. The implied symmetric protocol appears in the middle of Figure 1.Now, what happens when we go to three processes? Well, a single subdivision of a2-simplex looks like the left hand side of Figure 2. Notice that with 6 possible outputnames we can color this complex so that all 2-simplices have di�erent colors. Ingeneral, as we show in Section 6, one can color a subdivided n-simplex correspondingto the N = n+ 1 process executions of a protocol with N (N + 1)=2 names, whichimplies that one can solve renaming in this case with a single IS object. This o�ers apartial explanation for Garay and Moir's ability to beat all known renaming upperbounds for the case where there are N (N + 1)=2 names [16].However, if we only have 5 names, the reader can convince herself that one needs2Meeting the problem restrictions { i.e. the map must be symmetric for all cases where processors
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R,2Fig. 2. Three Process Renaming with Five and Six Namesto subdivide once more in order to subdivide the 2-simplex so that all subsimplicescan be colored in di�erent names. The right hand side of Figure 2 shows howthis can be done, and is an example of a non-uniform subdivision { some simplicesare subdivided more than others. This �gure implies that with 5 names the timecomplexity of solving 3 process renaming is two.Finally, consider the approximate agreement problem, which we discuss in detailin Section 5. We are able to explain and close the upper/lower bound gap impliedby Aspnes and Herlihy's approximate agreement work[1]. Figure 5, which showsthe subdivisions induced by a three process approximate agreement protocol onsome given input set. Aspnes and Herlihy derive their lower bound for any Nprocess algorithm from a \bad" execution in which only the two processes withinputs farthest apart participate. Such an execution in the �gure corresponds toa sequence of subdivisions of the triangle edge between P and Q. Since eachsubdivision introduces two new vertexes and splits the edge in three, one can onlyget a log3 bound. However, note that if one considers three processes, a 2-simplexand not just a path must be subdivided and and as we show, no matter how onesubdivides it, there is always a path between P and Q that includes vertexes of R(marked by a darker color in the �gure) that will be cut by at most a half in eachsubdivision, implying a tight log2 lower bound.2. THE ITERATED IMMEDIATE SNAPSHOT MODELThis section presents our non-uniform version of the Iterated Immediate Snapshotmodel of computation.Borowsky and Gafni's immediate snapshot object (IS) [7] is by now a standardtool for arguing about asynchronous shared memory computation. It is essentiallya restriction of standard atomic snapshot memory, in which a set of processorswrite concurrently and then immediately return a snapshot of memory. The objecthave the same relative id order.



The Iterated Immediate Snapshot Model 5consists of a shared array of n cells, and supports a single external operation,called writeread i, which writes a value to the i-th shared memory array cell, andsubsequently returns a snapshot of the entire array. It guarantees that processes'scan operations return views that contain non-decreasing sets of the participatingprocesses' inputs. A formal I/O automata based speci�cation can be found in theAppendix.The iterated IS model (IIS) was recently formulated as a computation model byBorowsky and Gafni [9]. The model assumes an in�nite sequence IS0,IS1,IS2 : : : ofIS objects. In any given execution, all processes pass through exactly k IS objectsin sequence, where the input to one object is the output to the next. At the endthey apply a mapping function � that returns the output value corresponding to aprocess' collected view.We generalize the IIS model by introducing the concept of a non-uniform protocolin the IIS model. Unlike in the standard IIS model, each participating processor iaccesses a possibly di�erent number of IS objects, and then halts. Any such protocolcan presented in normal form as in Figure 2 by properly picking the is final statepredicate for each process.Non-uniformity is necessary when building a complexity model since the numberof steps taken by processes my di�er based on the inputs, as in the approximateagreement problem. Assuming a uniform IIS model wouldmean that the complexityof the algorithm on any input is the complexity of the execution on the worst caseinputs. This makes a complexity theorem useless since for example, for approximateagreement, Aspnes and Herlihy [1] show that for any k one can �nd a set of inputsthat will require time k.local_view := input_value; k := 0forever doif is_final_state(local_view) return �(local_view)else with ISk dolocal_view := writeread(local_view)k := k+1od Fig. 3. A Non-Uniform IIS Protocol in Normal FormWe can now de�ne our complexity measure.3 Let P be a protocol in the non-uniform IIS model, and let � be any execution of P. Let ki be the number of ISobjects accessed by process i in �.Definition 2.1. The time complexity of � is maxi ki, the maximal number ofIS objects accessed by any process.Since the IIS model is equivalent to a restriction of regular atomic snapshotmemory, in which all processes run in phases, in which writes by a group of processesare followed immediately by snapshots by the same group of processes, it followsthat:3Note that our model also lends itself naturally to analysis of \work."



6 G. Hoest and N. ShavitLemma 2.2. Any time complexity lower bound in the non-uniform IIS model isalso a lower bound in the atomic snapshot model.It should be noted that the lower bounds obtained in this way may be crude, asthey do not take into account executions that do not correspond to executions inthe highly regular IIS model.3. THE NON-UNIFORM CHROMATIC SUBDIVISIONThe standard chromatic subdivision was introduced by Herlihy and Shavit [21; 22],and has since been used by a number of researchers. It is essentially a chromaticgeneralization of the standard barycentric subdivision from classical topology. Forthe sake of simplicity in this abstract we present here an informal de�nition. Aformal de�nition and proof that the standard chromatic subdivision is a subdivisionappear in the Appendix.Let Kn be a pure chromatic complex, and let Sn = (~s0; : : : ; ~sn) be a sim-plex in Kn, where id(~si) = i, the id of process i. In the standard chromaticsubdivision of Sn, denoted �(Sn), each m-simplex, where m � n, has the form(h0; S0i ; : : : ; hm;Smi), where Si is a face of Sn, such that (1) i 2 ids(Si), (2) forall Si and Sj , one is a face of the other, and (3) if j 2 ids(Si), then Sj � Si. Thestandard chromatic subdivision of Kn is just the union of all the X (Sn), as Snranges over all the n-simplices in Kn.Applying the standard chromatic subdivision k times, where k > 1, yields a sub-division X k(Kn) = X (X k�1(Kn)), which we call the kth iterated standard chro-matic subdivision. Since the chromatic subdivision relation is transitive, X k(Kn) isa chromatic subdivision of Kn. The number k is called the level of the subdivision.The 2-simplex with vertexes in fa; d; eg in the lefthand side of Figure 4 is standardchromatically subdivided. So is its 1-simplex edge fa; eg. (Ignore the fact that thecomplex as a whole isn't).
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Fig. 4. Valid and Invalid Non-uniform SubdivisionsWe introduce the concept of a non-uniform chromatic subdivision, a general-ization of the standard chromatic subdivision in which the di�erent simplices ofa complex are not necessarily subdivided the same number of times. Informally,the non-uniform chromatic subdivision of a complex Kn, eX (Kn), is constructed by



The Non-Uniform Chromatic Subdivision 7choosing, for each n-simplex in Kn, a single face of the simplex (a face can be of anydimension and could also be the whole simplex) to which we apply the standardchromatic subdivision. We then induce the subdivision onto the rest of the sim-plex. This is best seen in Figure 4. Its right hand side shows a valid non-uniformchromatic subdivision of a complex where the simplex fb; c; dg's subdivision is theresult of subdividing its 1-face fc; dg once and then inducing this subdivision ontothe rest of the simplex. The left hand side is not a legal subdivision since the2-simplex fa; b; dg has two subdivided faces. The k-th level non-uniform iteratedchromatic subdivision is generated by repeating this process k times, where onlysimplices in faces that were subdivided in round k � 1 can be again subdivided inphase k. The complex on the right hand side of Figure 4 is an example of a validnon-uniform iterated chromatic subdivision.Later, we will show that these structures correspond in a natural way to the setof protocol complexes in the non-uniform IIS model of computation. In fact, itturns out that each non-uniform standard chromatic subdivision is equal to someprotocol complex of non-uniform IIS (up to isomorphism).Definition 3.1. Let Kn be a pure chromatic complex, where the colors are thenumbers in Zn+1. Label each vertex ~v in Kn with hi;~vi, where i is the color of ~v.For each maximal simplex Tn in Kn, decompose its complex of faces T n into twoarbitrarily chosen subcomplexes C and S, such that T n = C � S. 4 The vertices inC are refered to as continuing, and those in S as stopped. We require that thesesubcomplexes be chosen such that for all maximal simplices Tni , Tnj in Kn, we havethat|Ci \ Tj � Cj|Ci \ Sj = ;We also require that there is at least one simplex Tn in Kn for which the set ofcontinuing vertices is nonempty. The the non-uniform chromatic subdivision of Knof level 1, eX 1(Kn) is de�ned aseX 1(Kn) = [T2Kn S � X (C)A non-uniform chromatic subdivision of Kn of level k, which we typically denoteeX k(Kn), can be obtained by applying the procedure described above iteratively ktimes, in such a way that, at each step, none of the continuing vertices are part ofthe set of stopped vertices from the previous step.Informally speaking, a non-uniform chromatic subdivision of level k is one inwhich there is some simplex in Kn which is subdivided k times, but no simplexthat is subdivided more than k times. Note that if we always choose C equal to T ,we get the iterated standard chromatic subdivision of Kn, X k(Kn). Hence therefor all k � 0 there exists some non-uniform iterated chromatic subdivision of levelk. The Appendix includes a proof of the following lemma.4The \�" operator stands for a join [26; 23]



8 G. Hoest and N. ShavitLemma 3.2. Any non-uniform chromatic subdivision eX k(Kn) is a chromaticsubdivision of Kn.The level of subdivision necessary for the existence of a simplicial map from theinput to the ouput complex of a decision task that agrees with the task speci�-cation can be interpreted as a topological measure of the task's time complexity.The following de�nition introduces some useful constructs for reasoning about thisrelationship.Definition 3.3. Given a decision task hIn;On;�i and a non-negative integerk, we say that eX k(In) is a mapable subdivision of the input complex, and k isa mapable level of subdivision if there exists some color and carrier preservingsimplicial map � from eX k(In) to On such that for all Tm in eX k(In), �(Tm) 2�(Tm).This de�nition extends naturally to individual simplices as the map induces dif-ferent levels of subdivision on the individual simplices in accordance with the ideathat, in order to solve a decision task, some processes may have to do more com-putational work than others, and some inputs may require more computation thanothers.4. AN ASYNCHRONOUS COMPLEXITY THEOREMWe can now state our main theorem.Theorem (Time Complexity). A decision task hIn;On;�i has a wait-freeprotocol in the non-uniform IIS model with worst case time complexity kSm oninput Sm i� there is a mapable non-uniform iterated chromatic subdivision eX k(In)with level kSm on Sm.Keeping in style with Herlihy and Shavit [23], the theorem simply states thatsolvability of a decision task hIn;On;�i in the IIS model is equivalent to the ex-istence of a color and carrier preserving simplicial map � from some non-uniformiterated chromatic subdivision eX k(In) to On that agrees with the task speci�cation�, that is, for all Tm in eX k(In), �(Tm) 2 �(Tm). The level kSm is a lower boundon the worst case time complexity of solving this task with inputs in Sm in the IISmodel.The theorem also immediately provides a matching upper bound given the sub-division and mapping. Simply run the normal form protocol of Figure 2. Sinceeach process can locally store the subdivision and mapping, is final state justneeds to test if a local view is equal to some node v in the subdivison and if soreturn �(v).5. APPROXIMATE AGREEMENTAs an application of our complexity theorem, we will analyze the well-known ap-proximate agreement task, in which each process i is given a real-valued inputxi, and is required to decide on some output yi such that, for some predeter-mined � > 0, maxyi � minyi < �, and for all i, yi 2 [minxi;maxxi]. Aspnes andHerlihy [1] proved 5 a lower bound that implies a worst case time complexity of5Though their proofs are for the read/write register model, they carry onto ours.



Approximate Agreement 9�log3 max xi�min xi� � and an upper bound of �log2 max xi�min xi� �. This leaves a smallbut intriguing gap. We now show that this gap is not simply a technical 
uke.Theorem 5.1. Given � > 0, let fx0; : : : ; xng be a set of inputs to the approxi-mate agreement problem for n+1 processes, where n > 0. The complexity of solvingapproximate agreement on this input set is exactly jlogd max yi�min yi� k where d = 3for two processes and d = 2 for three or more.Our theorem provides the matching upper bound algorithm and our lower boundby Lemma 2.2 applies to atomic snapshots as well. We hope to convince the readerthat this is an excellant example of how topological modelling exposes subtle pointswhich would otherwise be di�cult to grasp.
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PFig. 5. Simplex Subdivided by an Approximate Agreement ProtocolThe key intuition behind our ability to close the upper/lower gap is depictedin Figure5, which shows the subdivisions induced by a three process execution onsome given input. Aspnes and Herlihy [1] derive their lower bound for any n + 1process algorithm from a \bad" execution in which only the two processes withinputs farthest apart participate. Such an execution in our model corresponds toa sequence of subdivisions of the edge between p and q. In the end each simplexon the subdivided path will have to map its p and q vertexes to output valuesthat are � apart. Since each subdivision introduces two new vertexes and splitsthe edge in three, in log3 such steps one can cut the distance among vertexes to �.However, note that if one considers three process executions we run into a problem.No matter how we subdivide the 2-simplex, there is always a path between p and qthat includes r's middle vertex (marked by a darker color), and will only be addeda single vertex per subsimplex in each subdivision phase. Thus, the distance amongoutputs on this path can be cut by at most a half in each iteration, hence our tightlog2 lower bound.



10 G. Hoest and N. ShavitOf course, the upper and lower bound proofs need not mention the actual execu-tions and all we need to do is argue about the geometry of the inputs and outputsand then apply our main complexity theorem.Proof. We �rst establish the lower bound. Let P be a protocol that solvesapproximate agreement with worst case complexity kS on S, where S is any inputsimplex of dimension n > 0. Then the asynchronous time complexity theoremstates that there is some mapable non-uniform chromatic subdivision eX k(I), withlevel kS on S. We will show that kS > jlogd jSj� k. The proof uses the followinglemma.Lemma 5.2. Let l � k. Label the vertices of eX l(S) with real numbers in a waythat agrees with the intial value labeling of S, and let lS be the level of eX l(S). Thenj eX l(S)j � jSjdlSProof. Suppose for simplicity of argument that l = lS . We �rst give the prooffor the case of two processes where d = 3. By de�nition of jSj, there is a 1-simplexU = ( ~u0; ~u1) in S such that jU j = jSj. 6 The complex eX l(U ) contains at most 3l 1-simplices, denoted U1; : : : ; UM , where M � 3k. These form a continuous path from~u0 to ~u1, the endpoints of which are labeled with val(~u0) and val(~u1), respectively.So the best we can do is cut jU j in 3l pieces. The triangle inequality tells us thatjU j � PMi=1 jUij � M maxi jUij � 3kmaxi jUij. Hence maxi jUij � jU j=3l = jSj=3l.The lemma follows, since maxi jUij � j eX l(S)j.We now prove the case where d = 2. We argue by induction on l. The case l = 0is trivial. Now suppose the claim is true for l� 1. By de�nition of j eX l�1(S)j, thereis a 1-simplex U = ( ~u0; ~u1) in S such that jU j = j eX l�1(S)j. U is a face of some2-simplex U 0 = ( ~u0; ~u1; ~u2). Suppose that the next levels of non-uniform chromaticsubdivision does not subdivide U completely. Then there is some 1-simplex T in thenon-uniform subdivision of U 0 with jT j � jU 0j=2. Since jU 0j = j eX l�1(S)j and T j �j eX l(S)j, the lemma follows by induction. Suppose the next level of subdivision doessubdivide U 0 completely. Then this subdivision has an internal vertex ~m2, coloredwith id(~u2), and two neighboring 1-simplices T0 = (~u0; ~m2) and T1 = (~m2; ~u1).Then the triangle inequality tells us that jU j � jT0j + jT1j � 2maxi jTij It followsthat j eX l(S)j � j eX l�1(S)j=2. The lemma follows by induction.Suppose now that there exists a simplicial map � : eX k(I) ! O such that, forall simplices T in eX k(I), �(T ) 2 �(carrier(T )). We can associate this map witha labeling of the vertices in eX k(I) as follows. Label each vertex ~v in eX k(I) withval(�(~v)). This labeling agrees with the input value labeling of I, since for anyvertex ~v, the task speci�cation requires that for any simplex S0 that contains ~v, itmust be the case that �(~v) 2 jS0j, where jS0j is the range of the value labels on S0.Choose two neighboring simplices S0 and S1 containing ~v such that jS0j \ jS1j =val(~v). It follows that �(~v) = val(~v). Now let T be any simplex in eX k(I). Byde�nition of �, �(T ) is a simplex in O, and hence j�(T )j < �. It follows that jT j =6Note that we use script notation such as Sto denote the complex of faces of a simplex.



Renaming 11j�(T )j < �, and hence that j eX k(I)j < �, where j eX k(I)j is equal to maxT2 eXk(I)jT j.Clearly, for any input simplex S, it follows that the labels on the restriction ofeX k(I) to S, eX k(S), have range less than �. The previous lemma then states that� > j eX k(S)j � jSjdkS . We conclude thatkS > �logd jSj� �To prove the upper bound we now construct a mapable non-uniform chromaticsubdivision eX k(I) of the input complex with level kS = jlogd jSj� k on each inputsimplex S. As argued above, the requirement that the subdivision be mapable isequivalent to saying that there is a vertex labeling of eX k(I) that agrees with the ini-tial value labeling of I with the additional property that j eX k(I)j < �. For each levelof subdivision k, for each maximal simplex T in the current non-uniform subdivisioneX k(I), choose the maximal face S of T such that jSj < � as stopped vertices, the restare continuing. If the dimension of C is 1, label the new vertices in eX k+1(C) = X (C)with (2minval(C) +maxval(C))=3 and (minval(C) + 2maxval(C))=3. Otherwise,label the new vertices with (minval(C) + maxval(C))=2. It is clear from this con-struction that, at each step, for all simplices S in I we have that, if j eX k(S)j > �,then either j eX k+1(S)j = j eX k(S)j=d), or j eX k+1(S)j < �. It follows that the level kSof eX k(I) on S is jlogd jSj� k. We conclude from the asynchronous time complexitytheorem that there is a wait-free protocol that solves approximate agreement withworst case time complexity jlogd jSj� k on input S where d = 3 for two processesand d = 2 for three or more.6. RENAMINGIn this section we use the asynchronous complexity theorem to analyze the com-plexity of the renaming task of Attiya et al. [3], in which at most n+1 processes aregiven unique input names taken from a large name space, and must choose uniqueoutput names taken from a smaller name space.A protocol is comparison-based if the only operations a process can perform onprocess ids is to test for equality and order; that is, given two process ids P and Q,a process can test for P = Q, P � Q, and P � Q, but cannot examine the structureof the identi�ers in any more detail (e.g., it cannot test whether P is prime). Wewill only consider comparison-based protocols in this section.Let A and B be complexes where each vertex is labeled with a process id,andpossibly with a value. B is a recoloring of A if there exists a bijective simplicialmap (not color-preserving) � : A ! Bthat is (1) order-preserving on process ids: if id(~u) < id(~v) then id(�(~u)) < id(�(~v)),and (2) value-preserving: if val(~v) is de�ned then val(~v) = val(�(~v)).Theorem (Time Complexity for Comparison-Based Protocols). A de-cision task hIn;On;�i has a wait-free protocol in the IIS model with worst case timecomplexity kSm on input Sm i� there is a mapable non-uniform iterated chromaticsubdivision eX k(In) with level kSm on Sm such that any recoloring � : eX k(Sm0 ) !



12 REFERENCESeX k(Sm1 ) induces a recoloring �0 : �( eX k(Sm0 )) ! �( eX k(Sm1 )) such that for everyface T of Sm0 , �0(�( eX k(T ))) = �( eX k(�(T )))The additional condition captures the notion that the behavior of comparison-based protocols does not change if processes are renamed in an order-preserving way.The proof of this theorem is almost identical to the proof of Theorem 4.1, exceptthat it is necessary to check at each step that the equivalence-under-recoloringproperty continues to hold.Theorem 6.2. The complexity of solving (n+1)(n+2)=2-renaming in the comparison-based non-uniform IISS model is 1.The following corollary follows immediately since we can implement ISS objectsin time �(n) in the atomic snapshot model and time �(n2) in the read-write model.Corollary 6.3. Let fx0; : : : ; xng be a set of inputs to the (n + 1)(n + 2)=2-renaming problem. The complexity of solving (n+ 1)(n+ 2)=2renaming is at mostO(n) in the atomic snapshot model and at most O(n2) in the read-write model.Proof. (Of Theorem 6.2) That 1 is a lower bound on the complexity of solvingrenaming follows from the fact that the symmetry requirement of renaming preventseach processor from simply deciding on its own value, which forces each process totake at least one step before deciding. We now construct a simplicial map fromthe standard chromatic subdivision X (I) to the output complex O of renamingthat agrees with the task speci�cation. Let S = (~s0; : : : ; ~sn) be any simplex inI. We now specify the map �. First, for all ~si in X (skel0(S)) (skelm(C) for anysimplex or complex C is the complex of its faces of dimension at most m), welet �(~si) = hid(~si); 1i. Now suppose � has been speci�ed for all vertices that lieon X (skelm�1(S)) such that val(�(X (skelm�1(S)))) = f1; : : : ;m(m + 1)=2g. Wenow show how to de�ne � for the extra vertices in X (skelm(S)). Let Sm be anym-face of S. X (Sm) contains m + 1 vertices not in X (skelm(S)) that lie on anm-simplex Tm = (~t0; : : : ;~tm). Let � be a permutation of f0; : : : ;mg such that ~t�(i)has the ith largest process id. We de�ne �(~ti) = 
id(~ti); �(i) +m(m + 1)=2 + 1�.It is clear that the map de�ned in this way is simplicial from X (S) to O, and thatfor all simplices T in X (S), we have that �(T ) 2 �(carrier(T )), as required. Let� : eX k(S) ! eX k(S0) be and recoloring of S. Then since � is simplicial and preservesthe order of process ids , it maps the subdivided m-faces of S to the subdivided m-faces of S0. For any m, the image of � on the vertices in the subdivided m-skeletonthat are not in the subdivided m�1-skeleton is disjoint from its image on the m�1-skeleton. Moreover, the map is de�ned solely in terms of the ordering of the ids ofthese vertices. It follows that � induces a recoloring �0 : �( eX k(S)) ! �( eX k(S0))that satis�es the conditions of Theorem 6.1. It follows that there is a renamingprotocol of complexity 1.REFERENCES[1] J. Aspnes, M. P. Herlihy, Wait-Free Data Structures in the Asynchronous PRAM Model.Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing,pages 377{408, July 1991. Also appeared as technical report.[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems.In Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Com-puting, pages 377{408, August 1990.
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Appendix 157. APPENDIXThis section presents the missing proofs in the article body. We begin with a formalspeci�cation of Browsky and Gafni's Immediate Snapshot object.7.1 Immediate SnapshotsFormally, we can specify IS objects as I/O automata [24]. Let D be any data type(set of values). Let ? be some value not in D. De�ne #(D) to be the data type(D [ f?g)n+1, the set of all n+ 1-arrays whose entries are either an element of Dor ?. We index #(D) using the numbers in Zn+1. The IS automaton for n + 1processes and data type D, referred to as ISn+1D , is then de�ned as follows.Signature:Input:inv writeread(v)i, v 2 DOutput:ret writeread (S)i, S 2 #(D)Internal:updateU , U � Zn+1States:memory 2 #(D) for some i, initially (?; ::;?)inv value 2 #(D) for some i, initially (?; ::;?)ret value 2 #2(D) for some i, initially (?; ::;?)interface 2 finv; ret;?gn+1, initially (?; ::;?)Transitions:inv writeread(v)iE�ect:inv value(i) := vinterface(i) := invupdateUPrecondition:8i 2 U : interface(i) = invE�ect:8i 2 U : memory(i) := v8i 2 U : ret value(i) := memory8i 2 U : interface(i) := ret ret writeread(S)iPrecondition:interface(i) = retmemory(i) = SE�ect:interface(i) := ?memory(i) := ?Fig. 6. The Immediate Snapshot Speci�cation7.2 De�nition and proof of the standard chromatic subdivisionOur de�nition of the standard chromatic subdivision taken from [23] is rather adhoc. In this section, we will �ll in this gap by providing a complete de�nition ofthe standard chromatic subdivision, along with the missing proof that it is in facta subdivision.Let Kn be a pure n-dimensional chromatic complex, where the colors are thenumbers in Zn+1. Label each vertex ~v in Kn with hi;~vi, where i is the color of ~v.



16 REFERENCESIn order to de�ne the standard chromatic subdivision of Kn, we inductively de�nea sequence of subdivisions Lp of the skeletons of Kn, where 0 � p � n as follows.Let L0 = skel0(Kn). Now suppose that Lp�1 is a chromatic subdivision of thep � 1-skeleton of Kn, and that each vertex ~v in Lp�1 is labeled hi; Sqi i, where Sqiis some simplex in skelp�1(Kn) such that T r = (~t0; : : : ; ~tr) is a simplex in Lp�1 i�ids(T r) � ids(carrier(T r ), and for all 1 � i; j � r, id(ti) 6= id(tj), and the follwingconditions hold:|id(~ti) 2 ids(val(~ti))|val(~ti) is a face of val(~tj) or vice versa|id(~tj) 2 ids(val(~ti))) val(~tj) is a face of val(~ti)Let Sp = (~s0; : : : ; ~sp) be a p-simplex in Kn. The set Bd(Sp) is the polytopeof a subcomplex of the p � 1-skeleton of K, and hence of a subcomplex of Lp�1,which we denote LBd(Sp). Let ~b be the barycenter of Sp, and let � be some positivereal number such that 0 < � < 1. For each 1 � i � p, de�ne ~mi to be the point(1 + �)~b� �~si. These points are called the midpoints of Sp. Label ~mi with hi; Spi.Let MSp be the set of midpoints of Sp. We de�ne LSp to be the union of LBd(Sp)and all the faces of all chromatic p-simplices T p = (~t0; : : : ; ~tp), such that for all1 � i; j � p : ~ti 2 skel0(LBd(Sp)) [MSp , and the following conditions hold:|id(~ti) 2 ids(val(~ti))|val(~ti) is a face of val(~tj) or vice versa|id(~tj) 2 ids(val(~ti))) val(~tj) is a face of val(~ti)We now de�ne Lp to be the complex consisting of the union of the complexesLSp , as Sp ranges over all the p-simplices of Kn. The Appendix includes a proofof the following lemma that states that this structure make sense mathematically,that is, that it is in fact a subdivision of the p-skeleton of Kn.Lemma 7.1. For all 0 � p � n, Lp is a chromatic subdivision of skelp(Kn).Proof. We argue by induction. The case p = 0 is trivial. So suppose p > 0, andsuppose the claim holds for L0; : : : ;Lp�1. We will �rst prove that Lp is a chromaticsimplicial complex. To that end, we prove the following auxiliary lemma.Lemma 7.2. For all p-simplices Sp in Kn, LSp is a chromatic simplicial complex.Proof. We must show that LSp is closed under containment and intersection.Let U q be a simplex in LSp , and let V r be a face of T q, where 0 � r � q � p. If U qis in LBd(Sp), then so is V r, since LBd(Sp) is a complex (since Lp is a subdivisionand hence a complex by assumption). Hence V r is in LSp . Suppose U q is notcontained in LBd(Sp). Then U q must be the face of a p-simplex T p as describedabove. By de�nition of LSp , all the faces of T p, and hence all faces of U q, must bein LSp . It follows that LSp is closed under containment.Let U q11 , U q22 be simplices in LSp , and suppose their intersection, denoted V r ,is nonempty. If U q11 , U q22 are both in LBd(Sp), it follows immediately that V r isin LBd(Sp) and hence in LSp . Similarly, if U q11 is in LBd(Sp) but U q22 is not, thenV r = U q11 \ U q22 = U q11 \ (U q22 \ jLBd(Sp)j). Note that U q22 \ jLBd(Sp)j is a simplex



Appendix 17in LBd(Sp), since all the criteria given above are satis�ed. Hence it follows that V ris in LBd(Sp), and hence in LSp . If neither U q11 nor U q22 is in LBd(Sp), then since allfaces of U q11 and U q22 are in LSp , then so is V r. It follows that LSp is closed underintersection, and hence is a simplicial complex. That LSp is chromatic follows fromthe fact that we only include chromatic simplices in LSp in our construction. Notethat Lp�1 and hence LBd(Sp) are chromatic by assumption.Notice that for all distinct p-simplices Sp; T p we have that jLSp j\jLTpj = Sp\T p,which is a simplex in skelp�1(Kn), and hence is the polytope of a subcomplex ofLp�1, and hence of both LSp and LTp . It follows that Lp is a simplicial complex[26]. It remains to show that Lp is a chromatic subdivision. To this end, we must�rst show that every simplex in Lp is contained in some simplex in skelp(Kn), andthat every simplex in skelp(Kn) is the union of �nitely many simplices in Lp. Now,it is clear from our construction that any simplex Tq in Lp is contained in somesimplex Sp in skelp(Kn). Also, since for all simplices Sp in skelp(Kn), the setof midpoints is �nite, and Lp�1 is a subdivision of skelp�1(Kn) by assumption,it follows that Sp is the union of �nitely many simplices in Lp. Hence Lp is asubdivision. This subdivision is chromatic, since Lp�1 is chromatic by assumption,and since the colors used to color the midpoints of any simplex Sp are exactly thecolors used to color Sp.We are now ready to give our de�nition of the standard chromatic subdivision ofa complex Kn.Definition 7.3. The standard chromatic subdivision of Kn, denoted X (Kn), isthe complex Ln.7.3 Proof of the non-uniform chromatic subdivisionProof. (Of Lemma 3.2) We will prove that, for any complex Kn, any non-uniform chromatic subdivision eX 1(Kn) of level 1 as de�ned above is a chromaticsubdivision of Kn. Since the chromatic subdivision relation is transitive, it followsthat eX k(Kn) is a chromatic subdivision of Kn for any k � 0.We �rst show that eX 1(Kn) is a chromatic simplicial complex. Let Tn be anymaximal simplex in Kn. Let D = (S�X (C). Then, since X (C) is a subdivision of C bythe previous lemma, we have that D is a chromatic complex, since ids(C)\ids(S) =;, and starring two chromatic complexes that share no colors give rise to a chromaticsimplicial complex [26]. Now, for any pair of intersecting maximal simplices Tni ,Tnj ,we have that jDij \ jDjj is the polytope of a subcomplex of both Di and Dj , sincewe made sure that Ci \ Tj � Cj and cCi \ Sj = ;. Hence eX 1(Kn) is a chromaticsimplicial complex.It is clear from our construction that any simplex in eX 1(Kn) is contained insome simplex Tn in Kn. It remains to be shown that any simplex Um in Kn isthe union of �nitely many simplices in eX 1(Kn). Um is a face of some maximalTn in Kn. By construction, eX 1(Tn) contains �nitely many simplices, and hence sodoes the subcomplex eX 1(Um). The union of the simplices in eX 1(Um) equals Um,and hence Um is the union of �nitely many simplices. It follows that eX 1(Kn) isa subdivision. We have already shown that eX 1(Kn) is a chromatic complex. In



18 REFERENCESorder to establish that it is a chromatic subdivision, we must show that for all sim-plices Sm in eX 1(Kn), ids(Sm) � ids(carrier(Sm)). Now, Sm is contained in therestriction of eX 1(Kn) to carrier(Sm), and so ids(Sm) � ids( eX 1(carrier(Sm))).We claim that ids( eX 1(carrier(Sm))) � ids(carrier(Sm)). Let C be the com-plex de�ned by the continuing vertices in carrier(Sm), and S be the complexde�ned by the stopped vertices. Then the complex of faces of carrier(Sm) isequal to C � S. It is clear that ids( eX 1(S)) = ids(S) � ids(S), and it followsfrom lemma 4.1 that ids( eX 1(C)) = ids(X (C)) � ids(S). The claim follows, sinceids( eX 1(carrier(Sm))) = ids( eX 1(C)) [ ids( eX 1(S)). We conclude that eX 1(Kn) is achromatic subdivision of Kn.7.4 The proof of our main theoremWe now give a proof of our main asynchronous time complexity theorem. We will�rst de�ne the concept of a protocol complex in the non-uniform IIS model, andshow that the set of such complexes is equal to the set of non-uniform chromaticsubdivisions of the associated input complex.Given a decision task hIn;On;�i and a solution protocol P of worst case timecomplexity k, we de�ne the corresponding uninterpreted protocol complex of then+1-process IIS model, denoted Pk, as follows: Each vertex ~v 2 Pk is labeled witha process ID and a local state such that there is some execution � of the protocolin which process id(~v) halts with local state val(~v). A simplex Tm = (~t0; : : : ; ~tm)is in Pk if there is an execution � of the protocol in which each process id(~ti) haltswith local state val(~ti) for all 0 � i � m. The subcomplex of Pk generated by theexecutions that start from Jm is denoted Pk(Jm).Lemma 7.4. The protocol complex P1 of any non-uniform IS protocol of timecomplexity 1 with input complex I is equal to some non-uniform chromatic subdi-vision eX 1(In).Proof. We will establish a one-to-one correspondence between the set of pro-tocol complexes on I of worst case time complexity 1 and the set of non-uniformchromatic subdivisions of I. We have already described the process of generat-ing a non-uniform chromatic subdivision in de�nition 3.1. Here we show how togenerate the protocol complex P1 of any protocol P of worst case time complexity 1.Consider any maximal input simplex T in I. Some of the processors will (pro-vided that they participate), decide on their input values, while others will accessthe IS object. These disjoint sets of vertices span two disjoint subcomplexes S andC of the complex T of faces of T such that C � S = T . Since any one process must,upon seeing a given input, either access the IS object or not, we have that, for allmaximal simplices Ti, Tj in I|Ci \ Tj � Cj|Ci \ Sj = ;Since P has worst case time complexity 1, there must be at least one simplex Tin I for which the set of continuing processes is nonempty. We refer to the verticesin S as stopped, and those in C as continuing. The protocol complex P1(S) is



Appendix 19clearly equal to S, since any subset of the processes in S may participate. Since theprocesses in C are completely oblivious of those in S and vice versa, the protocolcomplex on T is equal to all combinations of simplices in P1(S) with those inP1(C), that is, P1(T ) = P1(S) � P1(C). It remains to determine P1(C). We use thefollowing lemma.Lemma 7.5. Let C be an input complex in the uniform 1-shot IS model. Thecorresponding protocol complex equals X (C).Proof. Consider any input simplex S in C, not necessarily maximal, in whichprocess i starts with input vi 2 V0. Let � be an execution in the 1-shot ISS modelwith these inputs. Suppose all the processes in ids(S) participate. Let D be theset of processes that decide in �. We assume D is nonempty. Each process i 2 Ddecides on a value S1i 2 V1, since the ret writeread(v)i action returns a snapshotcontaining a subset of the inputs entered before the updateU action in which vi is�rst written into memory. This value is an encoding of a subsimplex of S. Wemust show that T =fhi; S1i i j i 2 D g is a jDj � 1-simplex in X (S), and hence inX (C).We say that vi is written to memory in action updateU if memory[i] was equal to? before updateU , but is equal to vi after this action. Note that no cell in memoryis ever reset, so once i's input value is written to memory, memory[i] will not bereset during the rest of the execution. In the 1-shot ISS model here, any process'input value vi is written to memory at most once. It follows that for any twodi�erent actions updateU , updateU 0, the index sets U ;U 0 are disjoint.Since vi must be written to memory before memory is copied to ret value[i](both these events occur, in the given order, in an updateU action), it followsthat i 2 ids(S1i ) for all i. Now suppose vi is written to memory by the actionupdateUi , and vj is written to memory by the action updateUj . Suppose updateUioccurs after updateUj . Since no memory cells are ever reset, it follows that thememory version that is written to ret value[j] during updateUj is a pre�x of theversion that is written to ret value[i] during updateUi, that is, if a cell equals ? inthe memory version written to ret value[i], then the same is true for the versionwritten to ret value[j]. Hence S1j � S1i . The case where updateUj occurs afterupdateUi is similar, and in this case we have S1i � S1j . Finally, if vi and vj arewritten to memory by the same action updateUi = updateUj , then it follows that,since in updateUi the values of all processes whose index is in Ui = Uj are writtento memory before any writes to ret value are made, S1i = S1j . Finally, supposej 2 ids(S1i ). This implies that vj = S0j was written to memory during updateUi ,or in an earlier action updateUj . In either case, S1j � S1i . Thus the criteria in thede�nition of the standard chromatic subdivision are satis�ed, and we conclude thatT is a jDj � 1-simplex in X (Sn).Let Sm be a simplex in X (I). Let Sm0 = carrier(Sm ; I). We can write Smas fhi; Sii j i 2 Mg for some M � f0; : : : ;m0g, where 8i; j 2 M : Si � Sm0 ,i 2 ids(Si), Si � Sj or Sj � Si, and j 2 ids(Si) ) Sj � Si. We must construct acorresponding execution � of the 1-shot ISS model, that is, an execution in whichprocess i halts with decision value Si for all i 2M . We proceed as follows. Partitionthe set M into a collection of nonempty concurrency classes of process indices, U1,. . . , Uk for some k such that any two process indices i; j are in the same concurrency



20 REFERENCESclass i� Si = Sj . We can de�ne a total order � on the set of concurrency classesas follows. Let Ux;Uy be distinct concurrency classes. Then Ux \ Uy ;. Since bothclasses are nonempty, we can pick an element from each, say Si 2 Ux and Sj 2 Uy.By assumption, Si 6= Sj . Then either Si � Sj or Sj � Si. In the �rst case, letUx � Uy, and in the second case, let Uy � Ux.Now use this ordered partition to de�ne a partition U 01, . . . , U 0k of the set M 0as follows. We partition the elements of M \M 0 as before. For each concurrencyclass U of M , de�ne a concurrency class U 0 of M 0 as follows. U 0 is the union ofU and all i 2 M 0 � M such that U is the least concurrency class (as determinedby �) such that 8j 2 U , i 2 Sj . Note that this is a partition of all of M 0 sinceSm0 = carrier(Sm ; I). This partition gives us a new collection of concurrencyclasses U 01, . . . , U 0k.We are now ready to construct �. First position the updateU 0i actions in increas-ing order according to the � ordering. For each concurrency class U 0x, positionthe inv writeread(vi)i actions of all i such that i 2 U 0x immediately before theupdateU 0x action (their internal ordering does not matter). Similarly, position theret writeread(Si)i actions of all i such that i 2 U 0x and i 2 M immediately afterthe updateU 0x action, but before the inv writeread(vj)j actions associated with thenext concurrency class. Processes i whose index is not in M 0 take no steps in �.Processes i whose index is not in M do not execute any ret writeread actions. Byconstruction, each deciding process i decides Si in �, as required.We immediately conclude that the protocol complex on T is equal to S � X (C).The entire protocol complex, then, is simply the unionP1 = [T2I S � X (C)It is clear that the generation procedure described is equivalent to the one givenin de�nition 3.1, and hence that the set of protocol complexes of worst case timecomplexity 1 is equal to the set of non-uniform chromatic subdivisions of level 1.the lemma follows.Lemma 7.6. The protocol complex Pk on I of any protocol in the non-uniformIIS with worst case time complexity k is equal to some non-uniform iterated chro-matic subdivision eX k(I).Proof. By the previous lemma, we know that the claim is true for k = 1. Theprotocol complex Pk of a protocol complex of a non-uniform protocol with worstcase time complexity k can be constructed by applying the procedure described inthe previous lemma iteratively k times, in such a way that, at each step, none ofthe continuing vertices are part of the set of stopped vertices from the previousstep. This requirement is necessary, since a process can stop and decide only once.It follows from the previous lemma that the proecdure for generating the set ofprotocol complexes corresponding to non-unifrom protocols with worst case timecomplexity k is equal to that for generating the set of non-uniform iterated chro-matic subdivisions of level k. Hence these sets are equal, and the lemma follows.We now give the proof of Theorem 4.1.



Appendix 21Proof. (Of Theorem 4.1) Given a decision task hIn;On;�i. It follows imme-diately from the previous lemma that any non-uniform protocol complex Pk withworst case complexity kSm on input Sm and decision map � : Pk !On that agreeswith � corresponds to a non-uniform iterated chromatic subdivision eX k(In) withlevel kSm on Sm together with a simplicial map � : eX k(In)!On that agrees with�, and vice versa. The theorem follows.


