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This paper introduces the use of topological models and methods, formerly used to analyze com-
putability, as tools for the quantification and classification of asynchronous complexity.

We present the first asynchronous complexity theorem, applied to decision tasks in the iterated
immediate snapshot (IIS) model of Borowsky and Gafni. We do so by introducing a novel form
of span called the non-uniform chromatic subdivision. Building on the framework of Herlihy
and Shavit’s topological computability model, our theorem states that the time complexity of any
asynchronous algorithm is directly proportional to the level of non-uniform chromatic subdivisions
necessary to allow a simplicial map from a task’s input complex to its output complex.

To show the power of our theorem, we use it to derive two new results. The first includes tight

upper and lower bounds on the time to acheive n process approximate agreement. Our bound
input—range

= J where d = 3 for two processes and d = 2 for 3 or more shows that the

of {logd
intriguing gap between the known lower and upper bounds implied by the work of Aspnes and
Herlihy is not a technical coincidence. The second is a simple and purely geometric proof that the
time complexity of solving the & process renaming problem of Attiya et al. when the number of
names is k(k + 1)/2 or more is O(1).

More than the new bounds themselves, the importance of our asynchronous complexity theorem
is that the algorithms and lower bounds it allows us to derive are intuitive and simple, with
topological proofs that require no mention of concurrency at all.

1. INTRODUCTION

In the last few years, techniques of modeling and analysis based on classical alge-
braic topology [5; 9; 12; 15; 19; 18; 20; 21; 22; 23; 27] in conjunction with distributed
simulation methods [9; 8; 7; 25] have brought about significant progress in our un-
derstanding of computability problems in an asynchronous distributed setting. We
feel the time is ripe to extend these techniques to address asynchronous complexity.

This paper studies the class of problems called decision tasks, input/output prob-
lems in which N asynchronous processes start with input values, communicate via
shared memory and halt with private output values. We focus on the iterated im-
mediate snapshot memory model introduced by Borowsky and Gafni [9] as part of
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their new simplified proof of the asynchronous computability theorem [23] . The
model 18 a restriction of atomic snapshot memory that guarantees that processes’
scan operations return views that contain non-decreasing sets of the participating
processes’ inputs. We believe it is a good first candidate for topological modeling
since 1t has a particularly nice geometric representation, and hence easily lends
itself to topological analysis.

Keeping in style with Herlihy and Shavit’s topological computability framework
[23], our theorem states that the worst case time complexity for solving a decision
task in the IIS model is equivalent to the minimal number of non-uniform chromatic
subdivisions of the input complex necessary to allow a simplicial map from the input
complex to the output complex. The theorem also immediately provides a matching
upper bound given the subdivision and mapping.

The non-uniform chromatic subdivisions we introduce (See Figure 1 for examples)
are a looser and more general form of standard chromatic subdivisions [23]. Unlike
the iterated standard chromatic subdivions used in the computability work of [23;
9], they allow individual simplices in a complex to be subdivided a different number
of times, while assuring that the subdivision of the complex as a whole remains
consistent. Non-uniformity is a necessary property when analyzing complexity since
the number of steps and hence the level of subdivision of an input simplex may differ
from one set of inputs to the next, as for example in the approximate agreement
problem. Taking just the complexity of the execution on the worst case inputs
would make the complexity theorem useless since for example, for the approximate
agreement, problem Aspnes and Herlihy [1] show that for any k one can find a set
of inputs that will require time & in the worst case.

The power of our theorem lies in its ability to allow one to reason about the
complexity of problems in a purely geometric setting. As we show, the subdivisions
of a complex are a clean and higher level way of thinking about the multitude
of different length executions of a concurrent protocol. We found this geometric
representation helpful and are sure that it will prove to be an invaluable tool for
designing and analyzing concurrent algorithms.

We provide two example applications of our theorem. In Section 5 we show tight
upper and lower bounds on the time to acheive n process approximate agreement.
Our bound of |log, =190 | where d = 3 for two processes and d = 2 for 3 or
more shows that the intriguing gap between the known lower and upper bounds
implied by the work of Aspnes and Herlihy [1] is not a technical coincidence. Then,
in Section 6, we show a simple proof that the time complexity of solving the &
process renaming problem of Attiya et al. [3] when the number of names is k(k+1)/2
or more is O(1). This falls short of the O(k) bound of Moir and Garay [16] in
the read/write register model since known implementations of TIS from read/write
registers take ©(k?) time. However, we believe the simplicity and intuitive appeal
of our purely geometric proof offers some advantages.

Since there is quite a bit of mathematical machinery needed in order to under-
stand the foundations on which we build our main theorem, we try in the next
section to start out by presenting it on an intuitive level.

1This model was implicitely used by Herlihy and Shavit in their upper bound proof [22; 23].
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Fig. 1. Two Process Renaming

1.1 A bit of intuition

It is perhaps best to explain our theorem by way of example. Let us begin with a
simple one. Consider any comparison based protocol solving the two process version
of the Attiya et al. renaming problem with 3 names. The left hand side of Figure 1
describes the input and output complexes. Recall that the name space of processes
is very large, that is, the input complex contains many vertices corresponding to
many possible process names. However, since this is a comparison based protocol
they can be represented by two vertices p and ¢ and two edges (1-simplices) between
them representing the case where p > ¢ and the case where p < ¢. The output
complex is a cycle of 1-simplices the describes all the possible combinations of legal
output values in two process executions of renaming with three output names.
Now, our complexity theorem says that the complexity of any protocol solving
the renaming problem in IIS is exactly the number of chromatic subdivisions nec-
essary to allow a simplicial map 2 from the subdivided input complex to the output
complex. And indeed a single subdivision will allow such a map as depicted on the
right hand side. Hence this problem is solvable in the IS model in exactly one step.
As will be shown in great detail later, the idea 1s that the added nodes of the
subdivision actually capture the possible different executions that may result from
processes accessing an IS object. This can be seen in the labeling of the vertexes
that correspond to whether they saw the other process in the view returned from
the IS object. The implied symmetric protocol appears in the middle of Figure 1.
Now, what happens when we go to three processes? Well, a single subdivision of a
2-simplex looks like the left hand side of Figure 2. Notice that with 6 possible output
names we can color this complex so that all 2-simplices have different colors. In
general, as we show in Section 6, one can color a subdivided n-simplex corresponding
to the N = n 4 1 process executions of a protocol with N(N + 1)/2 names, which
implies that one can solve renaming in this case with a single IS object. This offers a
partial explanation for Garay and Moir’s ability to beat all known renaming upper
bounds for the case where there are N(N + 1)/2 names [16].
However, if we only have 5 names, the reader can convince herself that one needs

2Meeting the problem restrictions —i.e. the map must be symmetric for all cases where processors
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Fig. 2. Three Process Renaming with Five and Six Names

to subdivide once more in order to subdivide the 2-simplex so that all subsimplices
can be colored in different names. The right hand side of Figure 2 shows how
this can be done, and is an example of a non-uniform subdivision — some simplices
are subdivided more than others. This figure implies that with 5 names the time
complexity of solving 3 process renaming is two.

Finally, consider the approximate agreement problem, which we discuss in detail
in Section 5. We are able to explain and close the upper/lower bound gap implied
by Aspnes and Herlihy’s approximate agreement work[l]. Figure 5, which shows
the subdivisions induced by a three process approximate agreement protocol on
some given input set. Aspnes and Herlihy derive their lower bound for any N
process algorithm from a “bad” execution in which only the two processes with
inputs farthest apart participate. Such an execution in the figure corresponds to
a sequence of subdivisions of the triangle edge between P and (). Since each
subdivision introduces two new vertexes and splits the edge in three, one can only
get a logg bound. However, note that if one considers three processes, a 2-simplex
and not just a path must be subdivided and and as we show, no matter how one
subdivides it, there is always a path between P and ) that includes vertexes of R
(marked by a darker color in the figure) that will be cut by at most a half in each
subdivision, implying a tight log, lower bound.

2. THE ITERATED IMMEDIATE SNAPSHOT MODEL

This section presents our non-uniform version of the Iterated Immediate Snapshot
model of computation.

Borowsky and Gafni’s immediate snapshot object (IS) [7] is by now a standard
tool for arguing about asynchronous shared memory computation. It is essentially
a restriction of standard atomic snapshot memory, in which a set of processors
write concurrently and then immediately return a snapshot of memory. The object

have the same relative id order.
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consists of a shared array of n cells, and supports a single external operation,
called writeread;, which writes a value to the i-th shared memory array cell, and
subsequently returns a snapshot of the entire array. It guarantees that processes’
scan operations return views that contain non-decreasing sets of the participating
processes’ inputs. A formal I/O automata based specification can be found in the
Appendix.

The iterated IS model (IIS) was recently formulated as a computation model by
Borowsky and Gafni [9]. The model assumes an infinite sequence 1S0,1S1,IS5 . .. of
IS objects. In any given execution, all processes pass through ezactly k IS objects
in sequence, where the input to one object 1s the output to the next. At the end
they apply a mapping function é that returns the output value corresponding to a
process’ collected view.

We generalize the IS model by introducing the concept of a non-uniform protocol
in the IIS model. Unlike in the standard IIS model, each participating processor i
accesses a possibly different number of IS objects, and then halts. Any such protocol
can presented in normal form as in Figure 2 by properly picking the is_final state
predicate for each process.

Non-uniformity i1s necessary when building a complexity model since the number
of steps taken by processes my differ based on the inputs, as in the approximate
agreement problem. Assuming a uniform IS model would mean that the complexity
of the algorithm on any input is the complexity of the execution on the worst case
inputs. This makes a complexity theorem useless since for example, for approximate
agreement, Aspnes and Herlihy [1] show that for any & one can find a set of inputs
that will require time k.

local_view := input_value; k := 0
forever do
if is_final_state(local_view) return 6 (local_view)
else with ISy do
local_view := writeread (local_view)
k := k+1
od

Fig. 3. A Non-Uniform IIS Protocol in Normal Form

We can now define our complexity measure.?> Let P be a protocol in the non-
uniform IIS model, and let o be any execution of P. Let k; be the number of IS
objects accessed by process ¢ in «.

DEFINITION 2.1. The ttme complexity of o ts max; k;, the maximal number of
IS objects accessed by any process.

Since the IIS model is equivalent to a restriction of regular atomic snapshot
memory, in which all processes run in phases, in which writes by a group of processes
are followed immediately by snapshots by the same group of processes, it follows
that:

3Note that our model also lends itself naturally to analysis of “work.”
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LEMMA 2.2. Any time complexity lower bound in the non-uniform IS model is
also a lower bound in the atomic snapshot model.

It should be noted that the lower bounds obtained in this way may be crude, as
they do not take into account executions that do not correspond to executions in
the highly regular IIS model.

3. THE NON-UNIFORM CHROMATIC SUBDIVISION

The standard chromatic subdivision was introduced by Herlihy and Shavit [21; 22],
and has since been used by a number of researchers. It is essentially a chromatic
generalization of the standard barycentric subdivision from classical topology. For
the sake of simplicity in this abstract we present here an informal definition. A
formal definition and proof that the standard chromatic subdivision is a subdivision
appear in the Appendix.

Let K™ be a pure chromatic complex, and let S® = (5p,...,5,) be a sim-
plex in K™, where id(5;) = i, the id of process i. In the standard chromatic
subdivision of S, denoted x(S™), each m-simplex, where m < n, has the form
({0,S0),...,{m,Sm)), where S; is a face of S™, such that (1) ¢ € ids(S;), (2) for
all S; and 5, one is a face of the other, and (3) if j € ids(S;), then S; C S;. The
standard chromatic subdivision of K™ is just the union of all the X(S™), as S”
ranges over all the n-simplices in K.

Applying the standard chromatic subdivision k times, where k£ > 1, yields a sub-
division X*(K") = X(AX*~1(K™)), which we call the kth iterated standard chro-
matic subdivision. Since the chromatic subdivision relation is transitive, X'*(K") is
a chromatic subdivision of K”. The number k is called the level of the subdivision.
The 2-simplex with vertexes in {a, d, e} in the lefthand side of Figure 4 is standard
chromatically subdivided. So is its 1-simplex edge {a,e}. (Ignore the fact that the
complex as a whole isn’t).

Invalid Valid
a

A4 v v A4 hd
c d e c d e
Fig. 4. Valid and Invalid Non-uniform Subdivisions
We introduce the concept of a non-uniform chromatic subdivision, a general-
ization of the standard chromatic subdivision in which the different simplices of

a complex are not necessarily subdivided the same number of times. Informally,
the non-uniform chromatic subdivision of a complex K™, X'(K™), is constructed by
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choosing, for each n-simplex in K, a single face of the simplex (a face can be of any
dimension and could also be the whole simplex) to which we apply the standard
chromatic subdivision. We then induce the subdivision onto the rest of the sim-
plex. This is best seen in Figure 4. Its right hand side shows a valid non-uniform
chromatic subdivision of a complex where the simplex {b, ¢, d}’s subdivision is the
result of subdividing its 1-face {¢, d} once and then inducing this subdivision onto
the rest of the simplex. The left hand side is not a legal subdivision since the
2-simplex {a,b,d} has two subdivided faces. The k-th level non-uniform iterated
chromatic subdivision 1s generated by repeating this process k& times, where only
simplices in faces that were subdivided in round k¥ — 1 can be again subdivided in
phase k. The complex on the right hand side of Figure 4 is an example of a valid
non-uniform iterated chromatic subdivision.

Later, we will show that these structures correspond in a natural way to the set
of protocol complexes in the non-uniform IIS model of computation. In fact, it
turns out that each non-uniform standard chromatic subdivision is equal to some
protocol complex of non-uniform IIS (up to isomorphism).

DEeFINITION 3.1. Let K™ be a pure chromatic complex, where the colors are the
numbers in Z,41. Label each vertex ' in K™ with (i,¥), where i is the color of ¥.
For each mazimal simplez T™ in K™, decompose its complex of faces T wnto two
arbitrarily chosen subcomplezes C and S, such that 7" = C-S. * The vertices in
C are refered to as continuing, and those in 8§ as stopped. We require that these
subcomplezes be chosen such that for all mazimal simplices T7*, T3 an K™, we have
that

—C;NT; CC
*Ciﬂszm

We also require that there is at least one simplex T in K" for which the set of
continuing vertices is nonempty. The the non-uniform chromatic subdivision of K™

of level 1, fl(K”) is defined as

x'kmy = | s-x©)
TeK?
_ A non-uniform chromatic subdivision of K™ of level k, which we typically denote
X*(K™), can be obtained by applying the procedure described above iteratively k
times, in such a way that, at each step, none of the continuing vertices are part of
the set of stopped vertices from the previous step.

Informally speaking, a non-uniform chromatic subdivision of level k is one in
which there is some simplex in K" which is subdivided % times, but no simplex
that is subdivided more than &k times. Note that if we always choose C equal to 7,
we get the iterated standard chromatic subdivision of X", X*(K™). Hence there
for all £ > 0 there exists some non-uniform iterated chromatic subdivision of level
k. The Appendix includes a proof of the following lemma.

4The “.” operator stands for a join [26; 23]
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LEMMA 3.2. Any non-uniform chromatic subdivision .?Fk(IC”) 15 @ chromatic
subdivision of K.

The level of subdivision necessary for the existence of a simplicial map from the
input to the ouput complex of a decision task that agrees with the task specifi-
cation can be interpreted as a topological measure of the task’s time complexity.
The following definition introduces some useful constructs for reasoning about this
relationship.

DEFINITION 3.3. Given a decision task (I™, O™, T) and a non-negative integer
k, we say that .?Fk(I”) 1s a mapable subdivision of the input complex, and k s
a mapable level of subdivision if there exists some color and carrier preserving
simplicial map p from X*(I™) to O™ such that for all T™ in X*(I™), w(T™) €
rrm).

This definition extends naturally to individual simplices as the map induces dif-
ferent levels of subdivision on the individual simplices in accordance with the idea
that, in order to solve a decision task, some processes may have to do more com-
putational work than others, and some inputs may require more computation than
others.

4. AN ASYNCHRONOUS COMPLEXITY THEOREM
We can now state our main theorem.

THEOREM (TIME COMPLEXITY). A decision task (27,07, T) has a wait-free
protocol in the non-uniform IIS model with worst case time complerily kgm on
input S™ iff there is a mapable non-uniform iterated chromatic subdivision X'*(I™)
with level kgm on S™.

Keeping in style with Herlihy and Shavit [23], the theorem simply states that
solvability of a decision task (Z", 0", T} in the TIS model is equivalent to the ex-
istence of a color and carrier preserving simplicial map p from some non-uniform
iterated chromatic subdivision X'*(Z") to O" that agrees with the task specification
I, that is, for all 7™ in .?Fk(I”), u(T™) € T(T™). The level kgm is a lower bound
on the worst case time complexity of solving this task with inputs in S in the IIS
model.

The theorem also immediately provides a matching upper bound given the sub-
division and mapping. Simply run the normal form protocol of Figure 2. Since
each process can locally store the subdivision and mapping, is_final state just
needs to test if a local_view is equal to some node v in the subdivison and if so
return p(v).

5. APPROXIMATE AGREEMENT

As an application of our complexity theorem, we will analyze the well-known ap-
proximate agreement task, in which each process i is given a real-valued input
x;, and 1s required to decide on some output y; such that, for some predeter-
mined ¢ > 0, maxy; — miny; < ¢, and for all i, y; € [mina;, maxa;]. Aspnes and
Herlihy [1] proved 5 a lower bound that implies a worst case time complexity of

5Though their proofs are for the read/write register model, they carry onto ours.
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max z;—minz;

Llog3 fJ and an upper bound of Llog2 . This leaves a small
but intriguing gap. We now show that this gap is not simply a technical fluke.

max £; —min x,J

THEOREM b5.1. Given € > 0, let {xo,...,x,} be a set of inputs to the approzi-

mate agreement problem for n+1 processes, where n > 0. The complexity of solving
approzimate agreement on this input set is exactly {logd WJ where d = 3

for two processes and d = 2 for three or more.

Our theorem provides the matching upper bound algorithm and our lower bound
by Lemma 2.2 applies to atomic snapshots as well. We hope to convince the reader
that this is an excellant example of how topological modelling exposes subtle points
which would otherwise be difficult to grasp.

R

Fig. 5. Simplex Subdivided by an Approximate Agreement Protocol

The key intuition behind our ability to close the upper/lower gap is depicted
in Figureb, which shows the subdivisions induced by a three process execution on
some given input. Aspnes and Herlihy [1] derive their lower bound for any n + 1
process algorithm from a “bad” execution in which only the two processes with
inputs farthest apart participate. Such an execution in our model corresponds to
a sequence of subdivisions of the edge between p and ¢. In the end each simplex
on the subdivided path will have to map its p and ¢ vertexes to output values
that are e apart. Since each subdivision introduces two new vertexes and splits
the edge in three, in logs such steps one can cut the distance among vertexes to e.
However, note that if one considers three process executions we run into a problem.
No matter how we subdivide the 2-simplex, there is always a path between p and ¢
that includes r’s middle vertex (marked by a darker color), and will only be added
a single vertex per subsimplex in each subdivision phase. Thus, the distance among
outputs on this path can be cut by at most a half in each iteration, hence our tight
log, lower bound.
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Of course, the upper and lower bound proofs need not mention the actual execu-
tions and all we need to do is argue about the geometry of the inputs and outputs
and then apply our main complexity theorem.

Proor. We first establish the lower bound. Let P be a protocol that solves
approximate agreement with worst case complexity kg on S, where S is any input
simplex of dimension n > 0. Then the asynchronous time complexity theorem
states that there is some mapable non-uniform chromatic subdivision X'*(Z), with
level ks on S. We will show that ks > {logd EJ The proof uses the following

€
lemma.

LEMMA 5.2, Let I < k. Label the vertices of .?Fl(S) with real numbers in a way
that agrees with the intial value labeling of S, and let ls be the level of X'(S). Then

Bl
d's

ProoF. Suppose for simplicity of argument that [ = lg. We first give the proof
for the case of two processes where d = 3. By definition of | S|, there is a l-simplex
U = (up, u1) in S such that |U] = |S]. © The complex .?FI(U) contains at most 3' 1-
simplices, denoted Uy, ..., Uy, where M < 3*. These form a continuous path from
dp to @y, the endpoints of which are labeled with val(dy) and val(i;), respectively.
So the best we can do is cut |U/| in 3' pieces. The triangle inequality tells us that
U] < Zf‘il |U;| < M max; |U;| < 3% max; |U;|. Hence max; |U;| > |U|/3" = |S]/3".
The lemma follows, since max; |U;| < |2FI(S)|

We now prove the case where d = 2. We argue by induction on I. The case [ = 0
is trivial. Now suppose the claim is true for [ — 1. By definition of |X'=1(S)], there
is a l-simplex U = (uj, 1) in & such that [U] = |X=1(S)|. U is a face of some
2-simplex U’ = (up, U1, tf2). Suppose that the next levels of non-uniform chromatic
subdivision does not subdivide U completely. Then there is some 1-simplex 7" in the
non-uniform subdivision of U’ with |T'| > |U’|/2. Since |U’| = |X'~1(S)| and T| <
|2FI(S)|, the lemma follows by induction. Suppose the next level of subdivision does
subdivide U’ completely. Then this subdivision has an internal vertex ms, colored
with id(is), and two neighboring 1-simplices Ty = (dg,M2) and Ty = (1Mo, iy).
Then the triangle inequality tells us that |U| < |Ty| + |71| < 2max; |T;| Tt follows
that |X1(S)| > |X'=1(S)|/2. The lemma follows by induction. [

|X(S)| >

Suppose now that there exists a simplicial map y : Xk (I) — O such that, for
all simplices T" in .?Fk(I), u(T) € T'(carrier(T)). We can associate this map with
a labeling of the vertices in .?Fk(I) as follows. Label each vertex ¥ in .?Fk(I) with
val(p(¥)). This labeling agrees with the input value labeling of Z, since for any
vertex ¥, the task specification requires that for any simplex Sy that contains ¥, it
must be the case that (%) € |Sp|, where |Sp| is the range of the value labels on Sp.
Choose two neighboring simplices Sy and Sy containing ¢ such that |Sp| N [S1] =
val(¥). Tt follows that u(¥) = val(¥). Now let T' be any simplex in .?Fk(I) By
definition of p, u(7T) is a simplex in @, and hence |u(7T)| < €. Tt follows that |T| =

6Note that we use script notation such as Sto denote the complex of faces of a simplex.
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|u(T)| < €, and hence that |V*(Z)| < ¢, where |X¥(Z)] is equal to maxTEfk(I)|T|.
Clearly, for any input simplex .S, it follows that the labels on the restriction of
X*(T) to S, X*(S), have range less than ¢. The previous lemma then states that

e> |Xk(S)| > Cll,%. We conclude that

S
ks > {logd uJ
€
To prove the upper bound we now construct a mapable non-uniform chromatic
LS]

subdivision X* (T) of the input complex with level kg = {logd TJ on each input

simplex S. As argued above, the requirement that the subdivision be mapable is
equivalent to saying that there is a vertex labeling of X'*(7) that agrees with the ini-
tial value labeling of Z with the additional property that |2Fk(1)| < €. For each level
of subdivision k, for each maximal simplex 7" in the current non-uniform subdivision
X*(T), choose the maximalface S of T' such that |S| < ¢ as stopped vertices, the rest
are continuing. If the dimension of C is 1, label the new vertices in .;t'vk"'l(C) =X(C)
with (2minwval(C) + maxval(C))/3 and (minval(C) + 2maxwval(C))/3. Otherwise,
label the new vertices with (minval(C) + maxval(C))/2. Tt is clear from this con-
struction that, at each step, for all simplices S in Z we have that, if |2Fk(5)| > €,
then either |V +1(S)| = |X*(S)|/d), or |X*+1(S)| < e. It follows that the level kg

of X* (Z) on Sis |log, @ . We conclude from the asynchronous time complexity

theorem that there is a wait-free protocol that solves approximate agreement with
]

worst case time complexity {logd TJ on input S where d = 3 for two processes

and d = 2 for three or more.

6. RENAMING

In this section we use the asynchronous complexity theorem to analyze the com-
plexity of the renaming task of Attiya et al. [3], in which at most n+ 1 processes are
given unique input names taken from a large name space, and must choose unique
output names taken from a smaller name space.

A protocol is comparison-based if the only operations a process can perform on
process ids is to test for equality and order; that is, given two process ids P and @,
a process can test for P = @, P < @, and P > (), but cannot examine the structure
of the identifiers in any more detail (e.g., it cannot test whether P is prime). We
will only consider comparison-based protocols in this section.

Let A and B be complexes where each vertex is labeled with a process id,and
possibly with a value. B is a recoloring of A if there exists a bijective simplicial
map (not color-preserving)

p:A—DB
that is (1) order-preserving on process ids: if id(#) < id(¥) then id(p(#)) < id(p(¥)),
and (2) value-preserving: if val(?¥) is defined then val(¥) = val(p(¥)).
THEOREM (TIME COMPLEXITY FOR COMPARISON-BASED PrROTOCOLS). A de-
cision task (I, 0", T) has a wait-free protocol in the I1.S model with worst case time

complexity kgm on input S™ off there 1s a mapable non-uniform iterated chromatic
subdivision X*(I"™) with level ksm on S™ such that any recoloring p : X*(ST) —
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.?Fk(S{”) induces a recoloring p' : u(fk(SS”)) — u(fk(S{”)) such that for every
face T of S§', p(n(XX(T))) = p(X*(p(T)))

The additional condition captures the notion that the behavior of comparison-
based protocols does not change if processes are renamed in an order-preserving way.
The proof of this theorem is almost identical to the proof of Theorem 4.1, except
that it 1s necessary to check at each step that the equivalence-under-recoloring
property continues to hold.

THEOREM 6.2. The complezity of solving (n+1)(n+2)/2-renaming in the comparison-
based non-uniform I1SS model 1s 1.

The following corollary follows immediately since we can implement .55 objects
in time ©(n) in the atomic snapshot model and time ©(n?) in the read-write model.

COROLLARY 6.3. Let {xg,...,2n} be a set of inputs to the (n + 1)(n + 2)/2-
renaming problem. The complexity of solving (n + 1)(n + 2)/2renaming is at most
O(n) in the atomic snapshot model and at most O(n?) in the read-write model.

ProoF. (Of Theorem 6.2) That 1 is a lower bound on the complexity of solving
renaming follows from the fact that the symmetry requirement of renaming prevents
each processor from simply deciding on its own value, which forces each process to
take at least one step before deciding. We now construct a simplicial map from
the standard chromatic subdivision X' (Z) to the output complex O of renaming
that agrees with the task specification. Let S = (&,...,5,) be any simplex in
7. We now specify the map p. First, for all 5 in X (skel®(S)) (skel™(C) for any
simplex or complex C' is the complex of its faces of dimension at most m), we
let 1(5;) = (id(5;),1). Now suppose u has been specified for all vertices that lie
on X(skel™=1(S)) such that val(p(X(skel™=1(S9)))) = {1,...,m(m + 1)/2}. We
now show how to define y for the extra vertices in X' (skel™(S)). Let S™ be any
m-face of S. X(S™) contains m + 1 vertices not in X' (skel™(S)) that lie on an
m-simplex T™ = ({y,...,1). Let 7 be a permutation of {0,...,m} such that t_;r(i)
has the ith largest process id. We define u(f;) = <zd(t_;), 7(i) + m(m + 1)/2 + 1).
It is clear that the map defined in this way is simplicial from X'(S) to O, and that
for all simplices T in X(S), we have that u(7T) € T(carrier(T)), as required. Let
p: .?Fk(S) — .?Fk(S’) be and recoloring of S. Then since p is simplicial and preserves
the order of process ids , it maps the subdivided m-faces of S to the subdivided m-
faces of S’. For any m, the image of u on the vertices in the subdivided m-skeleton
that are not in the subdivided m— 1-skeleton is disjoint from its image on the m—1-
skeleton. Moreover, the map is defined solely in terms of the ordering of the ids of
these vertices. It follows that p induces a recoloring p’ : p(X*(S)) — p(X*(S"))
that satisfies the conditions of Theorem 6.1. It follows that there is a renaming
protocol of complexity 1. O
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7. APPENDIX

This section presents the missing proofs in the article body. We begin with a formal
specification of Browsky and Gafni’s Immediate Snapshot object.

7.1 Immediate Snapshots

Formally, we can specify IS objects as I/O automata [24]. Let D be any data type
(set of values). Let L be some value not in D. Define J(D) to be the data type
(DU{L})"*! the set of all n + l-arrays whose entries are either an element of D
or L. We index ¥(D) using the numbers in Z,4;. The IS automaton for n + 1
processes and data type D, referred to as IS%H, is then defined as follows.

Signature:

Input:
inv_writeread (v);, v € D
Output:
ret_writeread (S);, S € 9(D)
Internal:
updatey, U C Znp1
States:
memory € 9(D) for some 7, initially (L,.., L)
inv_value € 9(D) for some ¢, initially (L,.., L)
ret_value € 92(D) for some %, initially (L, .., L)
interface € {inv, ret, L} initially (L, .., 1)

Transitions:
inv_writeread (v); ret_writeread (S);
Effect: Precondition:
inv_value(z) := v interface (i) = ret
interface () 1= tnv memory(i) = S
p Effect:
updatey . interface (i) :== L
Precondition: N
. . . . memory(z) := L
Vi € U : interface (i) = tnv
Effect:

Vi €U : memory (1) := v
Vi €U : ret_value(z) :
Vi € U : interface(i) :

memory
ret

Fig. 6. The Immediate Snapshot Specification

7.2 Definition and proof of the standard chromatic subdivision

Our definition of the standard chromatic subdivision taken from [23] is rather ad
hoc. In this section, we will fill in this gap by providing a complete definition of
the standard chromatic subdivision, along with the missing proof that it is in fact
a subdivision.

Let K™ be a pure n-dimensional chromatic complex, where the colors are the
numbers in Z,41. Label each vertex @ in K" with (¢, ¥), where ¢ is the color of @.



16 REFERENCES

In order to define the standard chromatic subdivision of K", we inductively define
a sequence of subdivisions £, of the skeletons of K", where 0 < p < n as follows.
Let Lo = skel®(K™). Now suppose that £,_; is a chromatic subdivision of the
p — l-skeleton of K7, and that each vertex ¢'in £,_1 is labeled (i, %), where 5%
is some simplex in skel’~1(K™) such that 17 = (tg, .. .,t;) is a simplex in £,_q iff
ids(1T7) C ids(carrier(17), and for all 1 <4, j < r, id(t;) # id(t;), and the follwing
conditions hold:

—id(t;) € ids(val(t;))
fval(t;) is a face of val(t}) or vice versa
fid(t;) = ids(val(tz)) = val(t}) is a face of val(t;)

Let S? = ($),...,8p) be a p-simplex in K. The set Bd(SP) is the polytope
of a subcomplex of the p — l-skeleton of K, and hence of a subcomplex of £,_1,
which we denote Lgg(ss). Let b be the barycenter of SP | and let § be some positive
real number such that 0 < & < 1. For each 1 < i < p, define 1i; to be the point
(1+ 6)5— 85;. These points are called the midpoints of SP. Label m; with (i, SP).
Let Mg» be the set of midpoints of S?. We define Lg» to be the union of Lpg(s»)
and all the faces of all chromatic p-simplices TP = (t_é, .. .,t;), such that for all
1<i,j<p:tie skelo(ﬁBd(Sp)) U Mg», and the following conditions hold:

—id(t;) € ids(val(t;))
fval(t;) is a face of val(t}) or vice versa
fid(t;) = ids(val(tz)) = val(t}) is a face of val(t;)

We now define £, to be the complex consisting of the union of the complexes
Lgr, as SP ranges over all the p-simplices of X”. The Appendix includes a proof
of the following lemma that states that this structure make sense mathematically,
that is, that it is in fact a subdivision of the p-skeleton of ™.

LEMMa 7.1. For all0 <p < n, L, is a chromatic subdivision of skelf (K™).

ProoF. We argue by induction. The case p = 0 is trivial. So suppose p > 0, and
suppose the claim holds for Lo, ..., L,—1. We will first prove that £, is a chromatic
simplicial complex. To that end, we prove the following auxiliary lemma.

LEMMA 7.2. For all p-simplices S? wn K™, Lgr ts a chromatic simplicial complex.

Proor. We must show that Lg» is closed under containment and intersection.
Let U? be a simplex in Lg», and let V" be a face of 7Y, where 0 <r < ¢ <p. fU?
is in Lpg(s»), then so is V7, since Lpys») is a complex (since £, is a subdivision
and hence a complex by assumption). Hence V" is in Lg». Suppose U? is not
contained in Lpq(s»). Then U? must be the face of a p-simplex T? as described
above. By definition of Lg», all the faces of TP, and hence all faces of U?, must be
in Lg». It follows that Lg» is closed under containment.

Let Uf*, UJ? be simplices in Lg», and suppose their intersection, denoted V",
is nonempty. If U, U$* are both in Lpa(sr), it follows immediately that V" is
in Lpgs») and hence in Lgy. Similarly, if U is in Lpa(s») but U2 is not, then
Vi =UP NUP =UM N (U N |Lpacsel). Note that Uf* N [Lpgsel is a simplex
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in Lpg(sr), since all the criteria given above are satisfied. Hence it follows that V"
is in Lgg(s»), and hence in Lgr. If neither Ul nor U is in Lpa(sr), then since all
faces of Ulq1 and U2q2 are in Lg», then so is V7. It follows that Lg» is closed under
intersection, and hence 1s a simplicial complex. That Lg» is chromatic follows from
the fact that we only include chromatic simplices in Lg» in our construction. Note
that £,_1 and hence Lpgysr) are chromatic by assumption. []

Notice that for all distinct p-simplices S, TP we have that |Lgz|N|Lrs| = SPNTY?,
which is a simplex in skel?~1(K™), and hence is the polytope of a subcomplex of
L,_1, and hence of both Lgr and Lr». It follows that £, is a simplicial complex
[26]. It remains to show that £, is a chromatic subdivision. To this end, we must
first show that every simplex in £, is contained in some simplex in skel? (K7), and
that every simplex in skelP (K") is the union of finitely many simplices in £,. Now,
it is clear from our construction that any simplex 7, in £, is contained in some
simplex SP in skel? (K™). Also, since for all simplices SP in skel? (K™), the set
of midpoints is finite, and £,_1 is a subdivision of skel’~!(K") by assumption,
it follows that ST is the union of finitely many simplices in £,. Hence £, is a
subdivision. This subdivision is chromatic, since £,_; is chromatic by assumption,
and since the colors used to color the midpoints of any simplex S?P are exactly the
colors used to color SP.

We are now ready to give our definition of the standard chromatic subdivision of
a complex K”.

DEFINITION 7.3. The standard chromatic subdivision of K", denoted X (K"), is
the complex L.

7.3 Proof of the non-uniform chromatic subdivision

Proor. (Of Lemma 3.2) We will prove that, for any complex K™, any non-
uniform chromatic subdivision Xl(IC”) of level 1 as defined above 1s a chromatic

subdivision of K. Since the chromatic subdivision relation is transitive, it follows
that X'*(K") is a chromatic subdivision of K" for any & > 0.

We first show that .?Fl(IC”) is a chromatic simplicial complex. Let 7™ be any
maximal simplexin £”. Let D = (§-X(C). Then, since X'(C) is a subdivision of C by
the previous lemma, we have that D is a chromatic complex, since ids(C)Nids(S) =
(), and starring two chromatic complexes that share no colors give rise to a chromatic
simplicial complex [26]. Now, for any pair of intersecting maximal simplices T} A7
we have that |D;| N |D;]| is the polytope of a subcomplex of both D; and D;, since
we made sure that ¢; N 7; C C; and ¢C; NS; = 0. Hence .?Fl(IC”) i1s a chromatic
simplicial complex. B

It is clear from our construction that any simplex in X'1(K™) is contained in
some simplex 1™ in K™. It remains to be shown that any simplex U™ in K" is
the union of finitely many simplices in X1(K™). U™ is a face of some maximal
T" in K. By construction, .fl(T”) contains finitely many simplices, and hence so
does the subcomplex fl(Um). The union of the simplices in .?Fl(Um) equals U™,
and hence U™ is the union of finitely many simplices. It follows that .?Fl(IC”) is
a subdivision. We have already shown that .?Fl(IC”) is a chromatic complex. In
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order to establish that it is a chromatic subdivision, we must show that for all sim-
plices S™ in .?Fl(IC"), ids(S™) C ids(carrier(S™)). Now, S™ is contained in the
restriction of .?Fl(IC”) to carrier(S™), and so ids(S™) C ids(fl(carrier(Sm))).
We claim that ids(fl(carrier(Sm))) C ids(carrier(S™)). Let C be the com-
plex defined by the continuing vertices in carrier(S™), and & be the complex
defined by the stopped vertices. Then the complex of faces of carrier(S™) is
equal to C - 8. It is clear that ids(fl(S)) = ids(S) C ids(S), and it follows
from lemma 4.1 that ids(fl(C)) = ids(X(C)) C ids(S). The claim follows, since
ids(fl(carrier(Sm))) = ids(fl(C)) U ids(.fl(S)). We conclude that .?Fl(IC”) is a

chromatic subdivision of X?. O

7.4 The proof of our main theorem

We now give a proof of our main asynchronous time complexity theorem. We will
first define the concept of a protocol complex in the non-uniform ITIS model, and
show that the set of such complexes is equal to the set of non-uniform chromatic
subdivisions of the associated input complex.

Given a decision task (Z",0" T) and a solution protocol P of worst case time
complexity k, we define the corresponding uninterpreted protocol complex of the
n+ l-process 1S model, denoted P* | as follows: Each vertex ¥ € P* is labeled with
a process ID and a local state such that there is some execution « of the protocol
in which process id(¥) halts with local state val(¥). A simplex T™ = (t_é, .. .,t;@)
is in P* if there is an execution « of the protocol in which each process id(t;) halts
with local state val(t;) for all 0 < i < m. The subcomplex of P¥ generated by the
executions that start from J™ 1s denoted Pk(jm).

LEMMA 7.4. The protocol complex P of any non-uniform IS protocol of time
complexity 1 with input compler T is equal o some non-uniform chromatic subdi-
vision X1(I™).

Proor. We will establish a one-to-one correspondence between the set of pro-
tocol complexes on 7 of worst case time complexity 1 and the set of non-uniform
chromatic subdivisions of Z. We have already described the process of generat-
ing a non-uniform chromatic subdivision in definition 3.1. Here we show how to
generate the protocol complex P! of any protocol P of worst case time complexity 1.

Consider any maximal input simplex T in Z. Some of the processors will (pro-
vided that they participate), decide on their input values, while others will access
the IS object. These disjoint sets of vertices span two disjoint subcomplexes & and
C of the complex T of faces of T" such that C -8 = 7. Since any one process must,
upon seeing a given input, either access the IS object or not, we have that, for all
maximal simplices T3, T; in 7

—C;N7T; CC
—C; N S]' =0
Since P has worst case time complexity 1, there must be at least one simplex T'

in Z for which the set of continuing processes is nonempty. We refer to the vertices
in § as stopped, and those in C as continuing. The protocol complex P(S) is
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clearly equal to &, since any subset of the processes in & may participate. Since the
processes in C are completely oblivious of those in & and vice versa, the protocol
complex on 7 is equal to all combinations of simplices in P1(8) with those in
PL(C), that is, PL(T) = PL(8) - PL(C). It remains to determine P*(C). We use the

following lemma.

LEMMA 7.5. Let C be an input complex in the uniform 1-shot 1S model. The
corresponding protocol complex equals X (C).

Proor. Consider any input simplex S in C, not necessarily maximal, in which
process ¢ starts with input v; € V5. Let a be an execution in the 1-shot ISS model
with these inputs. Suppose all the processes in ids(S) participate. Let D be the
set of processes that decide in ow. We assume D is nonempty. Each process : € D
decides on a value S} € Vi, since the ret_writeread(v); action returns a snapshot
containing a subset of the inputs entered before the update;; action in which v; is
first written into memory. This value is an encoding of a subsimplex of S. We
must show that 7' ={(i,S}) | i € D } is a |D| — l-simplex in X'(5), and hence in
X(C).

We say that v; is written to memory in action updatey if memory[i] was equal to
1 before updateys, but is equal to v; after this action. Note that no cell in memory
is ever reset, so once ¢’s input value is written to memory, memory[i] will not be
reset during the rest of the execution. In the 1-shot ISS model here, any process’
input value v; 1s written to memory at most once. It follows that for any two
different actions updatey, updatey:, the index sets U, U’ are disjoint.

Since v; must be written to memory before memory is copied to ret_value[i]
(both these events occur, in the given order, in an updatey action), it follows
that ¢ € ids(S}) for all i. Now suppose v; is written to memory by the action
updatey,, and v; is written to memory by the action updatey,. Suppose updatey,
occurs after updatey,. Since no memory cells are ever reset, it follows that the
memory version that is written to ret_value[j] during updatey, is a prefix of the
version that is written to ret_valueli] during updatey,, that is, if a cell equals L in
the memory version written to ret_value[i], then the same is true for the version
written to ret_value[j]. Hence S} C S}. The case where updatey; occurs after
updatey, is similar, and in this case we have S} C S}. Finally, if v; and v; are
written to memory by the same action updatey, = updatey,, then it follows that,
since in updatey, the values of all processes whose index is in U; = U; are written
to memory before any writes to ret_value are made, S} = S}. Finally, suppose
Jj € ids(S}). This implies that v; = S]Q was written to memory during updatey,,
or in an earlier action updatey;,. In either case, S} C S}. Thus the criteria in the
definition of the standard chromatic subdivision are satisfied, and we conclude that
T is a |D| — l-simplex in X'(S™).

Let S™ be a simplex in X(Z). Let sm' = carrier(S™,7). We can write S™
as {{,5;) | i € M} for some M C {0,...,m'}, where Vi,j € M : S; C Sm'
i € ids(S;), S; CS; or S; € S;, and j € ids(S;) = 5; C S;. We must construct a
corresponding execution « of the 1-shot ISS model, that is, an execution in which
process ¢ halts with decision value S; for all : € M. We proceed as follows. Partition
the set M into a collection of nonempty concurrency classes of process indices, U,
..., Uy, for some k such that any two process indices ¢, j are in the same concurrency
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class iff S; = S;. We can define a total order < on the set of concurrency classes
as follows. Let Uy, U, be distinct concurrency classes. Then U, NU, 0. Since both
classes are nonempty, we can pick an element from each, say 5; € U, and S; € U,.
By assumption, S; # S;. Then either S; C S; or S; C S;. In the first case, let
Uy < Uy, and in the second case, let U, < U,.

Now use this ordered partition to define a partition &/’q, ..., U’y of the set M’
as follows. We partition the elements of M N M’ as before. For each concurrency
class U of M, define a concurrency class U’ of M’ as follows. U’ is the union of
U and all i € M’ — M such that ¥ is the least concurrency class (as determined
by <) such that Vj € ¢, i € S;. Note that this is a partition of all of M’ since
sm' = carrier(S™,T). This partition gives us a new collection of concurrency
classes Uy, ..., U'y.

We are now ready to construct a. First position the updateys, actions in increas-
ing order according to the < ordering. For each concurrency class U’,,, position
the inv_writeread(v;); actions of all ¢ such that ¢ € U, immediately before the
updatey action (their internal ordering does not matter). Similarly, position the
ret_writeread(S;); actions of all ¢ such that i € &', and ¢ € M immediately after
the updatey:, action, but before the inv_writeread(v;); actions associated with the
next concurrency class. Processes i whose index is not in M’ take no steps in o.
Processes ¢ whose index is not in M do not execute any ret_writeread actions. By
construction, each deciding process ¢ decides S; in «, as required. [

We immediately conclude that the protocol complex on 7 is equal to § - X(C).
The entire protocol complex, then, is simply the union

Pl={]Js (0
Tel
It is clear that the generation procedure described is equivalent to the one given
in definition 3.1, and hence that the set of protocol complexes of worst case time
complexity 1 is equal to the set of non-uniform chromatic subdivisions of level 1.
the lemma follows.

LEMMA 7.6. The protocol complex P* on I of any protocol in the non-uniform
ILS with worst case time complexity k 1s equal to some non-uniform terated chro-
matic subdivision X*(T).

Proor. By the previous lemma, we know that the claim is true for £ = 1. The
protocol complex P* of a protocol complex of a non-uniform protocol with worst
case time complexity k& can be constructed by applying the procedure described in
the previous lemma iteratively k times, in such a way that, at each step, none of
the continuing vertices are part of the set of stopped vertices from the previous
step. This requirement is necessary, since a process can stop and decide only once.
It follows from the previous lemma that the proecdure for generating the set of
protocol complexes corresponding to non-unifrom protocols with worst case time
complexity k is equal to that for generating the set of non-uniform iterated chro-
matic subdivisions of level k. Hence these sets are equal, and the lemma follows. [

We now give the proof of Theorem 4.1.
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ProoOF. (Of Theorem 4.1) Given a decision task (Z", O™ T). Tt follows imme-
diately from the previous lemma that any non-uniform protocol complex P* with
worst case complexity ks» on input S™ and decision map 6 : P¥ — O™ that agrees
with T' corresponds to a non-uniform iterated chromatic subdivision X'*(Z") with
level ksm on S™ together with a simplicial map p : .?Fk(I”) — O" that agrees with
I', and vice versa. The theorem follows. O



