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Abstract

Distributed graph algorithms provide efficient and theoretically sound methods for solving
graph problems in distributed settings and more generally for performing distributed com-
putation in networks. These algorithms are applicable in a wide variety of settings, ranging
from computer networks to massively parallel computing and beyond.

This thesis addresses a number of the central problems of distributed graph algorithms.
These problems generally revolve around two of the principal challenges of the area, local-
ity and congestion. The problems include computing maximal independent set, minimum
spanning tree, minimum edge cut and minimum vertex cut, graph connectivity decomposi-
tions, network information dissemination, minimum-weight connected dominating set, and
scheduling distributed protocols.

We develop novel techniques, concepts, and tools for these problems, and present algo-
rithms and impossibility results which improve considerably on the state of the art, in several
cases resolving or advancing long-standing open problems.
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Chapter 1

Introduction

Distributed graph algorithms—also known as network algorithms—is an area whose objective
is to provide efficient methods for networked computations and more generally a rigorous
understanding of the fundamental principles of distributed computing in networks. The pro-
totypical setup is as follows: a number of individual entities, each with some computational
power, are connected to each other via a potentially large and complex network; the enti-
ties interact and communicate, by exchanging messages through the network, in order to
perform some computational task. The classical motivation for studying distributed graph
algorithms was to address the problems faced by computer networks, for example, routing
in packet-switched networks. However, this area has grown well beyond that original motive
and is now relevant for a far wider range of settings: it also applies to processors in a super-
computer, cores on a chip, and gates in a logic circuit, or even more broadly to human beings
in a social network, insects in a colony, and neurons in a brain. With the ever-increasing role
that networks play in all aspects of life, and the clear trend of the computational world mov-
ing towards decentralized processing, the relevance of network algorithms and distributed
computing is constantly growing. Perhaps it is more certain now than ever before that

the future is distributed!

This thesis tackles some of the central problems of distributed graph algorithms, in two
subareas revolving around two of its principal challenges, locality and congestion. We next
briefly overview our contribution in each part. A more detailed description follows afterward.

In the subarea centered on locality, the objective is to characterize network computations
that can be performed very efficiently, without the need to learn global information about
the network. Note that the latter is undesirable as it can typically be quite time-consuming.
Arguably, the most central problem of this subarea has been the Maximal Independent Set
(MIS) problem. This is especially true because most of the other classical problems reduce
to MIS. We present a novel algorithmic method which leads to significant improvements
for MIS. We also explain how, thanks to the centrality of MIS, this new algorithm leads to
improvements in about a dozen other problems of the area.
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In the subarea centered on congestion, the objective is to understand how network com-
putations can cope with the limited communication bandwidth of the network and to develop
methods for utilizing this bandwidth efficiently. We provide a novel and systematic approach
for exploiting the network’s bandwidth, almost as much as possible. In an informal sense,
the approach is to decompose the connectivity of the network into small and more manage-
able units, and then work with each of these units separately. For that, we first develop the
purely graph-theoretic foundations of these connectivity decompositions, which itself leads
to answers for a couple of problems in graph theory. We then develop efficient distributed
algorithms which allow us to take these connectivity decompositions to the distributed set-
ting. Along the way, we provide distributed algorithms for a number of graph problems,
which improve on the respective state of the art, and solve a few related open problems.

Finally, we conclude our treatment of congestion by investigating a different aspect of
this challenge: we study how to schedule and run many network computation protocols
simultaneously, given the network’s bandwidth limitations, and we provide a nearly tight
characterization of this problem in a particular mathematical abstraction of it.

1.1 Part I: Locality

A fundamental challenge at the heart of the study of network algorithms is locality. In a
network, each processor can communicate directly with its adjacent processors. However,
accessing the information known only to the far-away processors requires more time. As
such, in any time-efficient networked computation, each processor’s output is dictated by
the information known to the processor itself or to the others nearby. But this is clearly only
a partial and local part of the global problem. That leads to the following general question,
which forms the underpinning of the subarea of locality :

To what extent can a global solution be obtained from local data?

The classical mathematical formulation in investigating this question uses a standard message
passing model, due to Linial [Lin92], called the LOCALmodel: the network is abstracted as an
undirected graph 𝐺 = (𝑉,𝐸) where one processor resides in each node of the graph. Initially,
each processor/node knows only its neighbors1. Communication happens in synchronous
rounds where per round each processor can send one message to each of its neighbors.

The standard objective is to characterize the round complexity of each given computa-
tional problem, i.e., to determine the smallest number of rounds necessary for solving the
problem, modulo constant factors. Besides determining the time needed for solving the prob-
lem in distributed settings, this round complexity characterizes the locality of the problem in
a precise mathematical sense. The reason is as follows: It is easy to see that, in any 𝑡-round
algorithm, each node can learn at most the information in nodes within its distance 𝑡. Thus,

1At the risk of some level of informality, we use the terms processor and node interchangeably in the
remained of this section.
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each node’s output depends only on this information, and particularly on the structure of the
subgraph induced by the nodes within distance 𝑡. Moreover, in its basic form, the model does
not restrict the message sizes. Therefore, in 𝑡 rounds, each node can learn all the information
held initially by the nodes within its distance 𝑡. Hence, providing a 𝑡-round algorithm for
a given problem, or ruling out the possibility of the existence of such an algorithm, show
bounds on what local radius around each node dictates its solution in the problem.

1.1.1 The MIS Problem, its Centrality, and State of the Art

Locality is the oldest branch of distributed graph algorithms. Since its beginning in the
1980’s, the Maximal Independent Set (MIS) problem has been the most central problem of
this subarea, and it has received extensive attention. This is symbolized in the two Dijkstra
prizes awarded for upper and lower bounds on MIS, respectively to Linial [Lin92] in 2013,
and to Luby [Lub86] and Alon, Itai, and Babai [ABI86] in 2016. We next briefly review the
reasons for this primal role.

The Centrality of MIS As explicitly stated by Panconesi and Rizzi [PR01] in the early
1990’s, there are four classical problems which have been central to the subarea of locality:

1. Maximal Independent Set, i.e., finding a set of maximal mutually non-adjacent vertices,
where maximality implies that every vertex is either in the set or has a neighbor in it,

2. (∆ + 1)-vertex coloring, i.e., assigning a color from 1, 2, . . . , ∆ + 1 to each vertex such
that no two adjacent vertices have the same color,

3. (2∆− 1)-edge-coloring, i.e., assigning a color from 1, 2, . . . , 2∆− 1 to each edge such
that no two edges that share an endpoint vertex have the same color, and

4. Maximal Matching, i.e., finding a maximal set of edges no two of which share an
endpoint.

As observed early on [Lin92], all these problems can be reduced locally to MIS. This
means that the MIS problem is the hardest of them and given a LOCAL-model algorithm for
MIS, one can solve all these other problems in essentially the same round complexity, using
only a few simple extra steps. This fact gave the MIS problem a unique and paramount role
in the subarea of locality, e.g., the citation of the 2016 Dijkstra prize calls it “a crown jewel

of distributed symmetry breaking problems".
The MIS problem also has various applications in a wide range of practical settings: from

job scheduling in multi-processor computing, to medium access control in wireless networks,
and even to biological settings such as the selection of Drosophila sensory organ precursor
(SOP) in the nervous system of the fly.

The common denominator to all these settings is captured by the following toy exam-
ple: Imagine that a number of tasks need to be performed but there is interdependency
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between these tasks, abstracted by a graph, and no two adjacent tasks can be performed
simultaneously. For instance, the tasks can be transmissions in a wireless network and no
two adjacent antennas should transmit together due to the signal interferences that they
would cause. Then we wish to find an independent set of tasks to be performed, and we also
wish this set to be as large as possible, especially in a local sense. Particularly, we usually
desire the set to be a maximal independent set2 which means that for each task, either the
task is in the set chosen to be performed, or there is clear excuse for not having it included
because an adjacent task is included in the set.

State of the Art for MIS MIS has received extensive attention since the 1980’s. The
story can be traced back to the surveys of Valiant [Val82] and Cook [Coo83] which mentioned
MIS as an interesting problem in non-centralized computation. Shortly after, Karp and
Wigderson [KW84], presented the first poly(log 𝑛) round randomized distributed/parallel
algorithm. That was followed by the ingenious 𝑂(log 𝑛) round randomized distributed al-
gorithm of Luby [Lub86] and Alon, Babai, and Itai [ABI86], presented independently and
simultaneously in 1986. This algorithm has played a prominent role throughout the sub-
area of distributed graph algorithms. Moreover, in the extreme of high-degree graphs when
log ∆ = Ω(log 𝑛), where ∆ denotes the maximum degree, this bound still remains the best
known.

As progress on the algorithmic side slowed down and seemed less feasible, researchers
turned to proving lower bounds, showing that distributedly solving MIS requires at least
so many rounds. In a seminal work, Linial [Lin92] showed in 1992 that even on a simple
ring graph—i.e., a cycle of 𝑛 vertices—solving MIS requires Ω(log* 𝑛) rounds. A major
breakthrough came in 2004 when Kuhn, Moscibroda, and Wattenhofer [KMW04,KMW16]
showed that any MIS algorithm requires at least Ω( logΔ

log logΔ
) rounds on some graphs with

maximum degree ∆. Though, it should be noted that there is a restriction on the range of
∆ as a function of the network size 𝑛. In other words, the lower bound graph requires a
large network size 𝑛 as a function of ∆. When expressed as a function of 𝑛 and ∆, the lower

bound becomes Ω(min{ logΔ
log logΔ

,
√︁

log𝑛
log log𝑛

}).

This gap between the 𝑂(log 𝑛) upper bound and the Ω(min{ logΔ
log logΔ

,
√︁

log𝑛
log log𝑛

}) lower

bound lasted for a few years, until in 2011, Barenboim, Elkin, Pettie, and Schneider [BEPSv3]
presented a new algorithm with a round complexity of 𝑂(log2 ∆) + 2𝑂(

√
log log𝑛), and more

importantly, a general new technique for coping with local problems, now referred to as
graph shattering. This new bound improves on the 𝑂(log 𝑛) upper bound of [Lub86,ABI86]
when log ∆ = 𝑜(

√
log 𝑛). Still, the gap remained significant. Especially when focusing on

the dependency on ∆, the remaining gap was approximately quadratic, between 𝑂(log2 ∆)

and Ω( logΔ
log logΔ

).

2We remark that one may wish to alternatively find a maximum independent set. However, it is well-
known that computing a maximum independent set distributedly can be prohibitively time-consuming, it
would require Ω(𝑛) rounds in a cycle graph.
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1.1.2 Our Result On MIS and Its Implications

Our Result We present a randomized distributed MIS algorithm that achieves a round
complexity of 𝑂(log ∆) + 2𝑂(

√
log log𝑛). This result appeared in [Gha16b]. This is the first

algorithm, after about 30 years of research on MIS, to attain a nearly optimal bound for a
wide range of the parameter values. Particularly, its 𝑂(log ∆) dependency on ∆ is nearly
optimal, almost matching the Ω( logΔ

log logΔ
) lower bound of [KMW04,KMW16]. Furthermore,

as we will explain in the technical sections, we now understand why this bound might be the
best achievable given the current techniques: e.g., by an argument of Chang et al. [CKP16],
it is known that improving the latter term 2𝑂(

√
log log𝑛) would improve the 2𝑂(

√
log𝑛) round

complexity of deterministic distributed algorithms for MIS [PS92], which would be considered
as a major breakthrough.

Besides the end result, the algorithm exhibits many desired and some surprising prop-
erties, as exemplified by its very local guarantees: it gives that the (expected) time till
the removal of each node 𝑣 depends only on the degree of 𝑣 itself, and not even its neigh-
bors! The dependency on the degree is logarithmic, which is nearly optimal as implied
by [KMW04, KMW16]. This time complexity also has a nice probabilistic concentration,
with an exponential decay. We will formalize this later. Moreover, this local guarantee relies
only on the randomness used by nodes within distance 2 of 𝑣, that is, the guarantee would
hold even if the random coins used by the processors outside this 2-hop neighborhood are
determined adversarially.

Perhaps most surprisingly, the core of the algorithm is extremely simple, natural, and
practical. The chief idea is a careful but clean negative feedback that over time dynamically
adjusts the probability of each node trying to join the MIS based on the probabilities of its
neighbors. In an intuitive sense, this method can be viewed as a blending of ideas from the
Multiplicative Weight Update with those of the Belief Propagation methods.

Implications and Applications Our result on MIS leads to improvements on several
other problems: Using standard reductions, our algorithm leads to a unified and simple
approach for achieving a round complexity of 𝑂(log ∆) + 2𝑂(

√
log log𝑛) for the other three

classical local problems mentioned above, namely (∆ + 1)-vertex-coloring, (2∆ − 1)-edge-
coloring, and Maximal Matching. However, we note that there are better bounds known for
some of these problems. That will be reviewed carefully in the related work section.

Combined with other techniques, we also get a faster LOCAL algorithm for the Lovász

Local Lemma, improving on results of [CPS14]; even faster algorithms for MIS in graphs with
low arboricity, improving on results of [BEPSv3,BE10,LW11]; faster ruling set algorithms,
improving on results of [BKP14, BEPSv3]; an 𝑂(

√
log 𝑛)-round MIS algorithm for Erdös-

Rényi random graphs 𝐺(𝑛, 𝑝), improving on the previous best bound of 𝑂(log 𝑛) [Lub86],
and an 𝑂(log ∆)-round MIS algorithm for the CONGESTED-CLIQUE model of distributed
computing.

Perhaps more instructive than all the above, the new result highlights in a concrete and
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precise sense the barrier of the current lower bound techniques. It shows that in graphs
with tree-like local topologies—which are the only family for which we have distributed

lower bound techniques—the lower bound of Ω(min{ logΔ
log logΔ

,
√︁

log𝑛
log log𝑛

}) is tight, up to doubly
logarithmic factors. Hence, to prove noticeably better lower bounds, we need to come up
with lower bound techniques that can handle graphs with non-tree-like local topologies. This
again will be made precise in the related section.

Further Developments and Extensions Subsequent to the appearance of the confer-
ence version of our MIS result in [Gha16b], there have been a number of works that use this
algorithmic idea, sometimes with some modifications, to solve other problems:

∙ Bar-Yehuda, Censor-Hillel, Ghaffari, and Schwartzman [BYCHGS16] used modifica-
tions of this idea to achieve a round complexity of 𝑂( logΔ

log logΔ
) for distributed (1 + 𝜀)

approximation of maximum cardinality matching and (2 + 𝜀) approximation of maxi-
mum weight matching, improving on 𝑂(log 𝑛) round algorithms of [LPSR09,LPSP15],

∙ Censor-Hillel, Parter, and Schwartzman [CHPS16] used a direct derandomization of
this algorithm to present an 𝑂(log ∆ log 𝑛) round deterministic distributed MIS algo-
rithm in the CONGESTED-CLIQUE model,

∙ Holzer and Lynch [HL16] extended and modified this algorithm to present an efficient
MIS algorithm in the beeping model of wireless networks, and

∙ Ghaffari [Gha16a] used this algorithm as a starting point for an MIS algorithm with a
round complexity of �̃�( logΔ√

log𝑛
+ 1) = �̃�(

√
log ∆) in the CONGESTED-CLIQUE model,

which is the first such algorithm with a sublogarithmic complexity.

1.2 Part II: Congestion

Another fundamental challenge in network algorithms is to cope with the limited communi-
cation capacities of the networks. Communication networks usually have certain bandwidth
limitations, e.g., each communication link can transfer messages only up to a certain rate, or
each node can upload information only up to a certain rate. Since in any networked compu-
tation or communication, many messages might need to pass from one node to the other, this
limited bandwidth naturally gives rise to the possibility of congestion. This makes congestion
a central challenge for virtually all network algorithms. As such, a significant portion of the
research in the area of distributed graph algorithms deals with issues rooted in congestion.
In this subarea, the prototypical questions are as follows:

What is the maximum achievable throughput in network information dissemination?

and

18



Given limited bandwidth, how fast can the network solve a computational problem?

To mathematically formulate these and other related problems, the standard model in the
area is a variant of the LOCAL message passing model explained above, which is called
CONGEST [Pel00]. We consider two variants of this model: In the first version called E-
CONGEST, which stands for edge congestion, per round at most 𝐵 bits can be sent along
each edge. In the second version called V-CONGEST, which stands for vertex congestion, per
round each node can send at most 𝐵 bits in total, which are delivered to all of its neighbors.
Notice that V-CONGEST is a more stringent model and any algorithm in this model can be
run in the E-CONGEST model. This is because the 𝐵 bits that are sent by each node to
all of its neighbors in the V-CONGEST model can also be transferred to all of them in the
E-CONGEST model which admits 𝐵-bit messages per edge per round. We also note that the
most common parameter setting is 𝐵 = 𝑂(log 𝑛). This essentially means that each message
can carry the equivalent of constant many “words”, each describing the identifier of one node
or one edge in the graph.

The standard objective is to characterize the round complexity of each given compu-
tational or communication problem, that is, to determine the smallest number of rounds
necessary for performing a particular computational task or for communicating some infor-
mation from some nodes to some others.

We take a systematic approach in addressing this challenge, as we describe next. We
first explain the graph theoretic foundations of this approach and the graph theoretic results
that we develop for it, in Section 1.2.1. These cover results that appeared in [CHGK14b,
CGG+15]. Then, in Section 1.2.2, we explain the related distributed computation aspects,
our distributed algorithms, and their applications. These distributed algorithms also provide
answers for some classical network optimization graph problems. This part covers results
that appeared in [Gha14,GK13,GH16b]. In Section 1.2.3, we explain the applications of our
connectivity decomposition results for distributed information dissemination in networks.
This covers results that appeared in [CHGK14a] and some remaining parts of [CHGK14b].
Finally, in Section 1.2.4, which covers the results of [Gha15b], we explain a treatment of a
general scheduling questions centered on congestion, which also relates to the algorithms of
Section 1.2.2.

1.2.1 Graph-Theoretic Foundations

Transferring information throughout the network is one of the central objectives of any
communication network and also a core issue in distributed computing [Pel00, Section 1.3.1].
The flow of information in a network has a clear connection to the notion of graph connectivity
in graph theory. In simple and colloquial terms, networks that have bandwidth bottlenecks
cannot admit large flows of information. Mathematically, this concept is captured by graph
connectivity, namely edge connectivity and vertex connectivity, which are among the most
basic and well-studied graph-theoretic concepts.
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Formally, edge connectivity and vertex connectivity are defined as the smallest number
of edges or vertices, respectively, whose removal disconnects the graph. Edge and vertex
connectivity characterize limitations on how well information can be transferred throughout
the network. This is because each edge or vertex cut—a set of edges or vertices whose removal
disconnects the graph—defines an upper bound on the flow across the cut. Naturally, we
expect networks with larger connectivity—that is, those in which the minimum cut size
is larger—to provide a better communication medium and support larger flow. However,
designing distributed algorithms that leverage large connectivity remains challenging.

We propose a systematic method for exploiting large connectivity towards the goal of
obtaining a large flow of information. We use a rather natural approach, which we call
connectivity decomposition, of decomposing connectivity into smaller and more manageable
units. In simple terms, we decompose a graph with large connectivity into many (essentially)
“disjoint" trees, while almost preserving the total connectivity through the trees. This will
be made formal shortly. These decompositions allow us to parallelize the flow of information
along the trees and thus achieve a total flow value close to the connectivity of the network.

An interesting comparison of our approach of handling congestion is to that of addressing
locality. Classically, locality has received significantly more attention and many general
techniques are known for dealing with it. Congestion on the other hand is less understood
and the methods used for handling congestion in different problems appear to be rather ad
hoc, each being well-suited for a particular problem. A fundamental and generic technique
centered around locality is locality-based decomposition [Pel00], which groups nodes in small-
diameter clusters with certain properties; classical examples include [ALGP89, ABCP92,
ABCP96, PS92, KP95]. We believe that connectivity decompositions can be viewed as a
direction orthogonal to that of locality-based decompositions, and we hope they are a first
step towards systematically addressing congestion.

We next explain these connectivity decomposition concepts, while putting them in the
context of the classical graph theoretic results on graph connectivity.

Connectivity Decomposition and Tree Packings

Menger’s theorem (see [BM08, Chapter 9])—which is one of the most basic results concerning
graph connectivity—states that in each graph with edge connectivity 𝜆 or vertex connectivity
𝑘, each pair of vertices are connected via 𝜆 edge-disjoint paths or 𝑘 internally vertex-disjoint
paths, respectively. However, when we have to deal with more than two nodes, this theorem
does not provide a strong enough characterization. This is especially because it does not
provide any information about the structure of the overlaps between paths of different vertex
pairs, or on structures connecting three or more nodes (i.e., Steiner trees).

To organize the connectivity in a way that makes it accessible to algorithms, and espe-
cially for distributed algorithms, we consider edge and vertex connectivity decompositions.
When we are interested in edge connectivity and edge cuts, this will be by decomposing the
graph into edge-disjoint spanning trees. When we are interested in vertex connectivity and
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(a) Two edge-disjoint spanning trees,

i.e., a spanning tree packing of size 2.

(b) Two vertex-disjoint dominating trees, i.e.,

a dominating tree packing of size 2.

vertex cuts, this will decompose the graph into vertex-disjoint dominating trees.
Recall that a tree 𝐻 = (𝑉𝑇 , 𝐸𝑇 ) is a spanning tree of 𝐺 = (𝑉𝐺, 𝐸𝐺) if 𝐸𝑇 ⊆ 𝐸𝐺 and

𝑉𝑇 = 𝑉𝐺. On the other hand, a tree𝐻 = (𝑉𝑇 , 𝐸𝑇 ) is called a dominating tree of 𝐺 = (𝑉𝐺, 𝐸𝐺)

if 𝐸𝑇 ⊆ 𝐸𝐺 and 𝑉𝑇 dominates 𝐺, i.e., each node in 𝑉𝐺 ∖ 𝑉𝑇 has a 𝐺-neighbor in 𝑉𝑇
3.

We next describe and discuss the concepts of edge and vertex connectivity decomposition,
via spanning and dominating tree packings, respectively:

∙ Edge Connectivity Decomposition via Spanning Tree Packing: We define a
spanning tree packing of size 𝜆′ to be a collection of 𝜆′ edge-disjoint spanning trees.
Given such a packing, for each pair of vertices, we get 𝜆′ edge-disjoint paths, one
through each tree. More importantly, for any number of vertex pairs, the paths going
through different trees are edge-disjoint. Hence, a spanning tree packing can be viewed
as a decomposition of edge connectivity. Figure 1-1a shows an example graph with a
spanning tree packing of size 2.

∙ Vertex Connectivity Decomposition via Dominating Tree Packing: We define
a dominating tree packing of size 𝑘′ to be a collection of 𝑘′ vertex-disjoint dominating
trees. Given such a packing, for each vertex pair we get 𝑘′ internally vertex-disjoint
paths, one through each tree. More importantly, for any number of pairs, the paths
going through different trees are internally vertex-disjoint. Hence, a dominating tree
packing can be viewed as a decomposition of vertex connectivity. Figure 1-1b shows
an example graph with a dominating tree packing of size 2.

Let us explain informally how these connectivity decompositions allow us to readily lever-
age a network’s connectivity in information dissemination. Consider the E-CONGEST model
and imagine that there are a large number 𝑁 → ∞ of messages, spread throughout the
network, which all need to be broadcast to all nodes. Without network decompositions, the
best known solution—which is just by standard message pipelining techniques [Pel00]—could

3Note that if we want to have many vertex-disjoint subgraphs, we cannot ask them to be “spanning"

subgraphs. As we soon see, in this case, the “dominating" condition turns out to be the natural and the
practically relevant requirement.

21



only broadcast messages with a throughput of one message per round. Given an edge con-
nectivity decomposition into 𝜆′ edge-disjoint spanning trees, we can improve this throughput
to Θ(𝜆′). For that, we split the message among the trees, say by random assignments, and
then we simultaneously perform broadcasts in each of the trees, where each tree is used only
to broadcast the messages assigned to it.

Fractional Relaxation In both spanning and dominating tree packings, we can relax the
disjointness requirement to fractional disjointness. That is, we allow the trees to overlap but
now each tree 𝜏 has a weight 𝜔𝜏 ∈ [0, 1] and for each edge or vertex, respectively, the total
weight of the trees including it has to be at most 1. In applications, this naturally corresponds
to sharing the edge (or the vertex) between the trees proportional to their weights. For
instance, in information dissemination, we would use time-sharing and each edge (or vertex)
gets used in each of the trees that include it in a fraction of time proportional to the weight
of that tree. In fact, for all the applications that we have in mind, these fractional tree
packings are as useful as their stronger integral packing counterparts.

Previously Known Results and Our Results on Connectivity Decomposition

Edge connectivity decompositions have been well-known4 for a long time, thanks to beautiful
(existential) results of Tutte [Tut61] and Nash-Williams [NW61] from 1960. These results
show that each graph with edge-connectivity 𝜆 contains a spanning tree packing of size
⌈𝜆−1

2
⌉ , see [Kun74]. This bound is existentially tight even for the fractional version and has

numerous important applications.
We proposed vertex connectivity decompositions in [CHGK14a]. We show that each

graph with vertex-connectivity 𝑘 contains a fractional dominating tree packing of size Ω(𝑘/ log 𝑛),
and that the Ω(𝑘/ log 𝑛) fractional packing bound is existentially best possible. For disjoint
dominating tree packings, we shows that each graph with vertex-connectivity 𝑘 contains a
dominating tree packing of size Ω(𝜅/ log2 𝑛), where 𝜅 is the vertex-connectivity of the sam-
pled graph when each vertex is randomly sampled with probability 1/2. Separately, we prove
that with high probability 𝜅 = Ω(𝑘). This is a special case of a more general result that we
discuss shortly.

These results also have implications for other problems: we get a Θ(log2 𝑛) approximation
of the Itai-Zehavi conjecture on vertex-independent trees [ZI89], and we also can show that
the network coding gap in networks with bandwidth limitations on nodes has a tight bound
of Θ(log 𝑛). Both of these points will be made more clear in the technical sections.

Graph Connectivity Under Random Sampling

As alluded to above, to obtain our vertex connectivity decomposition result, we need to
analyze how a graph’s vertex connectivity changes as vertices are removed randomly. This

4Although we remark that they were not called “edge-connectivity decomposition". Often, the phrase
“edge-disjoint spanning trees" was used to refer to the related concept.
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itself touches on central questions in areas of broad interest: random graph processes under

node removals, network reliability under node failures, and site percolation theory.
The problem of characterizing the vertex connectivity under random vertex sampling had

remained open, while the analogues on edge connectivity under edge sampling were resolved
more than two decades ago due to results of Karger [Kar94b]. As we will discuss, despite
the apparent resemblance, the two problems are quite different intrinsically and the known
methods for analyzing edge connectivity under edge sampling do not extend to the vertex
connectivity case. We next explain our result and put it in the broader context of graphs
under random sampling.

Consider a random process where given a base graph 𝐺, each edge or node of 𝐺 is
sampled with some probability 𝑝. Given such a random graph process, it is interesting to
see how various global connectivity properties of the graph induced by the sampled edges
or nodes change as a function of the sampling probability 𝑝. If 𝐺 is the complete 𝑛-node
graph, sampling each edge independently with probability 𝑝 results in the classic Erdős-Rényi
random graph 𝐺𝑛,𝑝, for which exact thresholds for the formation of a giant component, global
connectivity, and many other properties have been studied (e.g., in [Bol98]). Thresholds for
the formation of a giant component are further studied in percolation theory [BR06]—mostly
for regular or random lattice graphs 𝐺. In the context of percolation theory, edge sampling
is called bond percolation whereas vertex sampling is referred to as site percolation.

We are particularly interested in how the vertex connectivity of a general graph 𝐺 changes
under uniform random vertex (or edge sampling). For edge connectivity and edge sampling,
the analogous question has been resolved two decades ago. Karger’s seminal result [Kar94b]
showed that for any 𝜆-edge-connected graph with 𝑛 vertices, sampling edges independently
at random with probability 𝑝 = Ω(log(𝑛)/𝜆) results in an Ω(𝜆𝑝)-edge-connected subgraph,
with high probability5. This was a strong extension of the earlier result by Lomonosov
and Polesskii [LP72], which stated that sampling each edge with probability Θ(log(𝑛)/𝜆)

leads to a connected subgraph, w.h.p. These sampling results and their extensions were
cornerstone tools for addressing various important problems such as various min-cut prob-
lems [Kar94a,Kar94b], constructing cut-preserving graph sparsifiers [BK96,ST04], max-flow
problems [Kar94a,KL98], and network reliability estimations [Kar95].

As in the case of edge connectivity, studying the vertex connectivity of the subgraph
obtained by independently sampling vertices or edges of a 𝑘-vertex-connected graph is of
fundamental interest. However, the vertex connectivity case has been recognized as being
much harder and progress has been scarce. It was not even known whether a Θ(𝑛)-vertex-
connected graph stays (simply) connected when nodes are sampled with probability 𝑝 = 1/2.

We prove that if 𝑝 = Ω(log 𝑛/
√
𝑘), then with high probability the sampled graph is

connected and indeed has vertex connectivity Ω(𝑘𝑝2). This covers results of [CHGK14b,

5As standard throughout theory of computation, we use the phrase ‘with high probability ’ (w.h.p.) to
indicate that some event has a probability of at least 1− 𝑛−Θ(1). Intuitively, this means that within the life
time of system/algorithm, which are usually presumed to be at most polynomial in the network size, we are
unlikely to see that this high probability event did not happen.
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CGG+15].

1.2.2 Distributed Algorithmic Aspects

Here we overview the distributed algorithms that we present on various problems related to
graph connectivity. We divide the exposition into two parts, those relating to edge connec-
tivity and edge cuts, and those relating to vertex connectivity and vertex cut. Generally,
the results in the former are more basic and can serve as a warm up for those of the lat-
ter. Finally, we also explain the information dissemination applications of our distributed
connectivity decomposition algorithms.

Edge Connectivity Decomposition, Edge Cuts, and Spanning Trees

We next discuss our results on distributedly computing minimum spanning trees, minimum
edge cuts, and edge connectivity decompositions. With the exception of the result on MST,
all others improve on the state of the art. The MST algorithm is mainly explained as
a subroutine for the other results. However, this algorithm itself provides a significantly
simpler and more modular method for achieving almost the state of art bound and because
of that, and especially due to the significance of MST in distributed graph algorithms, we
present it as a separate result.

Minimum Spanning Tree (MST) Recall that in the MST problem, given an undirected
graph 𝐺 = (𝑉,𝐸), we assume that each edge 𝑒 of the graph has a real weight 𝑤(𝑒)6 and
the objective is to compute a spanning tree of the graph with the minimum possible weight.
MST is a well-studied problem throughout network optimizations, but it plays a much more
significant role in distributed algorithms. Its algorithms and lower bounds have been used
to derive algorithms and lower bounds for a wide range of other distributed graph problems.

The distributed round complexity of MST is essentially resolved, due to an influential line
of work on algorithms [GHS83,GKP93,KP95] and lower bounds [Elk04c,PR99,DSHK+11].
These culminated in the best known upper bound being 𝑂(𝐷 +

√
𝑛 log* 𝑛), due to Kutten

and Peleg [KP95], and the best known lower bound being Ω(𝐷 +
√︀
𝑛/ log 𝑛), due to Das

Sarma et al. [DSHK+11]. Here, 𝑛 and 𝐷 denote respectively the number of nodes and the
diameter of the network graph.

We present a clean and general framework, centered around the concept of low-congestion
shortcuts which we introduce, that leads to an 𝑂(𝐷+

√
𝑛 log 𝑛) round MST algorithm. This

in part discusses the framework set forth in [GH16b]. Note that this 𝑂(𝐷 +
√
𝑛 log 𝑛)

round algorithm is slightly slower than the 𝑂(𝐷 +
√
𝑛 log* 𝑛) round algorithm of [KP95].

However, the algorithm is significantly simpler and cleaner and thus, we believe that it is
a more suitable choice when teaching distributed MST algorithms. On the other hand, the
concept of low-congestion shortcuts is quite general and, in a certain sense, it can be used to

6These real weights are usually assumed to be truncated to a certain level of precision
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(combinatorially) characterize the distributed round complexity of various graph problems
in different graph families. We also use this framework in some of the latter results.

Edge Connectivity Decomposition via Spanning Tree Packing Recall that in edge
connectivity decomposition, the objective is to decomposition the graph into as many as
possible edge disjoint spanning trees. The classical 1961 results of Tutte [Tut61] and Nash-
Williams [NW61] show that in each graph with edge connectivity 𝜆, there exists an edge
connectivity decomposition into ⌈𝜆−1

2
⌉ edge-disjoint spanning trees. We are not aware of an

efficient distributed method for computing truly edge-disjoint spanning trees. However, we
provide a nearly-optimal distributed algorithm for computing a fractional relaxation of such
a spanning tree packing, which for all our applications, is functionally as good as having the
actual spanning tree packing.

In particular, we show a randomized distributed algorithm with a round complexity of
�̃�(𝐷+

√
𝑛𝜆) that finds a fractional spanning tree packing of size ⌈𝜆−1

2
⌉(1− 𝜀), for any small

constant 𝜀 > 0. This covers a results from [CHGK14a]. The algorithm follows a classical
and generic approach (see e.g. [PST91, SM90,KPST94,Kar96]) which can be viewed as an
adaptation of the Lagrangian relaxation method of optimization theory. Tailored to our
problem, this general approach goes as follows: we gradually build a collection of weighted
trees, by adding trees to the collection one by one. Each time, we define new weights on
the graph edges and then compute a minimum spanning tree based on these new weights.
The weights are defined by an exponential function of the hitherto load, which effectively
penalizes the edges with large load and incentivizes the new tree to pass through those with
lower loads. As such, the overall collection tends not to overload one or few edges, when
possible. We will present a particular instantiation of this general approach which admits to
a very simple and clean analysis.

Minimum Edge Cut Approximation Recall that an edge cut is defined by partitioning
the vertex set into two non-empty sets; the edges with one end-point in each part are the cut
edges, and removing them disconnected the graph. The minimum edge cut asks for finding
a cut (i.e., a bipartition) for which the set of cuts edges has the smallest possible cardinality,
or smallest possible weight, in the case of weighted graphs.

We present distributed algorithms that compute approximations of the (weighted) min-
imum edge cut with a nearly optimal round complexity. This covers results of [GK13].
In particular, we provide a (1 + 𝜀) approximation for any constant approximation 𝜀 > 0 in
�̃�(𝐷+

√
𝑛) rounds. This matches the Ω̃(𝐷+

√
𝑛) lower bound of Das Sarma et al. [DSHK+11],

modulo logarithmic factors, and thus provides an answer to open questions of Elkin [Elk04c]
and Das Sarma et al. [DSHK+11].
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Vertex Connectivity Decomposition, Vertex Cuts, and Dominating Trees

We now overview our analogous distributed algorithmic results on graph problems relating
to vertex connectivity. While in the world of decomposing edge connectivity, spanning
trees are the building blocks, when decomposing vertex connectivity, the building blocks are
dominating trees. As we will see, the right counterpart of minimum cost spanning trees is
minimum cost dominating trees, where now the costs are on the vertices. In an informal
level, the reason for having the costs on vertices is that now we are concerned with vertex
connectivity, disjointness on vertices, and congestion on vertices.

Minimum Cost Connected Dominating Set (MCDS) In the MCDS problem, each
vertex of the graph 𝐺 = (𝑉,𝐸) has a real weight 𝑤(𝑣) and the objective is to compute a
connected dominating set of vertices—that is a set 𝑆 which induces a connected subgraph
𝐺[𝑆] and also such that each node 𝑣 ∈ 𝑉 ∖ 𝑆 has at least one neighbor in 𝑆—such that the
summation of the weights of 𝑆 is minimized. The MCDS problem is often viewed as the node-
weighted analogue of MST. Here, we recap this connection. The natural interpretation of the
definition of CDS is that a CDS is a selection of nodes that provides global connectivity—that
is, any two nodes of the graph are connected via a path that its internal nodes are in the
CDS. On the counterpart, a spanning tree is a (minimal) selection of edges that provides
global connectivity. In both cases, the problem of interest is to minimize the total weight
needed for global connectivity. In one case, each edge has a weight and the problem becomes
MST; in the other, each node has a weight and the problem becomes MCDS.

Despite the seemingly analogous nature of the two problems, MCDS turns out to be a
significantly harder problem: The MST problem can be computed sequentially in 𝒪(𝑚) time,
where 𝑚 is the number of edges [KKT95]. On the other hand, MCDS is NP-hard [GJ90],
and in fact, unless P = NP, no polynomial time algorithm can find any approximation better
than Θ(log 𝑛)-factor for it (see [Fei96,RS97,AMS06]). Furthermore, the known sequential
algorithms for 𝑂(log 𝑛) approximation of MCDS (see [GK98,GK99]) have unspecified poly-
nomial time complexity, which are at least Θ(𝑛3) and thus much larger than the linear time
complexity of computing an MST.

We show that in the distributed setting, MCDS can be solved—that is, approximated
optimally—in a time close to that of MST. More concretely, we present a randomized dis-
tributed algorithm in the CONGEST model that, with high probability, finds an 𝑂(log 𝑛)

approximation of the minimum-weight connected dominating set, in �̃�(𝐷 +
√
𝑛) rounds.

This covers results that appeared in [Gha14]. This algorithm is (near) optimal in both
round complexity and approximation factor: Using techniques of [DSHK+11], we can re-
duce the two-party set-disjointness communication complexity problem on Θ(

√
𝑛)-bit inputs

to MCDS, proving that the round complexity is optimal, up to logarithmic factors, for
any (non-trivial) approximation. As mentioned above, the 𝑂(log 𝑛) approximation factor
is known to be optimal up to a constant factor, unless P = NP, and with the standard
assumption that processors can perform polynomial-time computations.
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Vertex Connectivity Decomposition via Dominating Tree Packing Recall from the
previous subsection that, in the graph-theoretic part, we prove the existence of large vertex
connectivity decompositions. We particularly prove that each graph with vertex-connectivity
𝑘 contains a fractional dominating tree packing of size Ω(𝑘/ log 𝑛+ 1) and a dominating tree
packing of size Ω(𝑘/ log2 𝑛 + 1).

We present efficient and indeed near-optimal distributed algorithms for obtaining such
vertex connectivity decompositions. This covers results that appeared in [CHGK14a]. Con-
cretely, we present a randomized distributed algorithm with a round complexity of �̃�(min{𝐷+√
𝑛, 𝑛

𝑘
})-rounds randomized V-CONGEST model that with high probability finds a fractional

dominating tree packing of size Ω( 𝑘
log𝑛

) and another algorithm with the same round com-

plexity that produces a dominating tree packing of size Ω( 𝑘
log2 𝑛

). We also prove this round
complexity to be near-optimal. By extending results of [DHK+12], we show that any such
decomposition algorithm requires Ω̃(𝐷 +

√︀
𝑛
𝑘
) rounds. Interestingly, this near-optimal dis-

tributed algorithm can also be turned into an �̃�(𝑚)-time centralized algorithm for the same
problem.

Minimum Vetex Cut Approximation Our connectivity decomposition approach also
leads to efficient algorithms for approximating vertex connectivity, both in the centralized
and distributed models. This result appeared in [CHGK14a]. Let us put this result in the
context of what is known.

Extensive attention has been paid to developing algorithms that compute or approximate
vertex connectivity in the centralized model, and it is widely known that this problems is
significantly harder than the counterparts in the edge connectivity case. In 1974, Aho,
Hopcraft and Ulman [AHU74, Problem 5.30] conjectured that there should be an 𝑂(𝑚)

time algorithm for computing the vertex connectivity. Despite much interesting work in this
direction—e.g., [Tar74,Eve75,Gal80,Hen97,HRG96,Gab00]—finding 𝑂(𝑚) time algorithms
for vertex connectivity has yet to succeed. The current state of the art is an 𝑂(min{𝑛2𝑘 +

𝑛𝑘3.5, 𝑛2𝑘+𝑛1.75𝑘2}) time exact algorithm by Gabow [Gab00] and an 𝑂(min{𝑛2.5, 𝑛2𝑘}) time
2-approximation by Henzinger [Hen97]. The situation is considerably worse in distributed
settings and the problem of upper bounds has remained widely open.

Our dominating tree packing algorithm allows us to compute an 𝑂(log 𝑛) approximation
of vertex connectivity, in �̃�(𝑚) time in the centralized model, in �̃�(𝐷 +

√
𝑛) rounds of

the V-CONGEST model of distributed computing. The former is the first sub-quadratic
algorithm for approximating vertex connectivity. In terms of the time-complexity, both of
the algorithms are nearly optimal.

1.2.3 Information Dissemination via Connectivity Decomposition

As their primary application, our connectivity decomposition results lead to time-efficient
distributed constructions for broadcast algorithms with existentially optimal throughput.
This result appeared first in [CHGK14a]. Note that in the V-CONGEST model, vertex cuts
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characterize the main limits on the information flow, and 𝑘 messages per round is the clear
limit on the broadcast throughput in each graph with vertex connectivity 𝑘. Similarly, in
the E-CONGEST model, edge cuts characterize the main limits on the information flow, and
𝜆 messages per round is the limit on the broadcast throughput in each graph with edge
connectivity 𝜆.

We get the following two results using our connectivity decomposition algorithms.

∙ In the V-CONGEST model, using our �̃�(𝐷 +
√
𝑛)-round construction of fractional

dominating tree packings, and then broadcasting each message along a random tree,
we get a broadcast algorithm with throughput of Ω( 𝑘

log𝑛
) messages per round. We also

prove that this throughput is existentially optimal.

∙ In the E-CONGEST model, using our �̃�(𝐷 +
√
𝜆𝑛)-round construction of spanning

dominating tree packings, and then broadcasting each message along a random tree,
we get a broadcast algorithm with throughput of ⌈𝜆−1

2
⌉(1 − 𝜀) messages per round,

which is asymptotically optimal.

1.2.4 Scheduling Many Distributed Protocols

In most of the distributed graph algorithms mentioned above, and in fact more generally in
most of the distributed algorithms, we need to simultaneously perform many subroutines.
Each of these subroutines might compute a different function, or they might compute differ-
ent instances of the same function but for different parts of the network. For instance, this
is clearly the case when we discuss low-congestion shortcuts and distributed computation of
minimum spanning tree.

Simultaneously having many computational tasks is a core issue when dealing with con-
gestion in networked computations and it can be cast much more generally, as follows:
Computer networks are constantly running many applications at the same time and because
of the bandwidth limitations, each application gets slowed down due to the activities of the
others. Despite that, for the vast majority of the distributed algorithms, the design and
analysis are carried out with the assumption that each algorithm uses the network alone.
We investigate what happens when many distributed protocols are to be run together. The
results related to this investigation appeared in [Gha15b].

Specifically, we study the questions of how to run these distributed protocols simultane-

ously as fast as possible and what are the limitations on how fast this can be done. While
being arguably a fundamental issue, to the best of our knowledge, these questions have not
been investigated in their full generality. The general scenario we consider is as follows: We
want to run independent distributed protocols 𝒜1, 𝒜2, . . . , 𝒜𝑘 together in the CONGEST

model, but we do not know what problem is being solved by each protocol. Hence, we
must run each protocol essentially in a black-box manner without altering the content of its
messages, except for potentially adding a small amount of information to its header.
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This problem has two trivial lower bounds: if one of the protocols 𝒜1, 𝒜2, . . . , 𝒜𝑘 that
are to be run together takes 𝑑 rounds, running all of them together will clearly require at
least 𝑑 rounds. We refer to the maximum running time of the protocols as dilation. Moreover,
consider a particular edge 𝑒 of the graph. Let 𝑐𝑖(𝑒) be the number of rounds in which protocol
𝒜𝑖 sends a message over 𝑒. Then, running all the protocols together will also require at least
congestion = max𝑒∈𝐸 congestion(𝑒) rounds where congestion(𝑒) =

∑︀𝑘
𝑖=1 𝑐𝑖(𝑒). Hence, we can

conclude that running all protocols together will need at least max{congestion, dilation} ≥
(congestion + dilation)/2 rounds.

The key question of interest is “can we always find a schedule close to the Ω(congestion+

dilation) lower bound and if yes, can we do that distributedly? ” We provide two complemen-
tary answers:

∙ The result that is technically more interesting is showing an impossibility. We partic-
ularly use the probabilistic method to prove that the trivial lower bound is not always
achievable. This might seem somewhat surprising, especially if contrasted with the
well-known packet-routing results of [LMR94], which show that if each protocol was
simply routing (i.e., forwarding) a packet along an arbitrary fixed path, then the trivial
lower bound could be matched. We prove that there are instances of the distributed
protocol scheduling problem for which any schedule, even if constructed in a central-
ized manner and with no computational restriction, requires Ω(congestion + dilation ·
log 𝑛/ log log 𝑛) rounds.

∙ We complement the above by presenting an efficient distributed algorithm for finding
a near-optimal schedule. Particularly, we show that there is a randomized distributed
algorithm that for any instance of distributed protocol scheduling, produces a schedule
of length 𝑂(congestion+dilation·log 𝑛), in 𝑂(dilation log2 𝑛) rounds of pre-computation.

We remark that a technique that we developed for the latter result is in fact more gen-
eral and perhaps of interest well beyond this particular result. It can be used to remove
the assumption of having shared randomness in a broad family of randomized distributed
algorithms, at the cost of an 𝑂(log2 𝑛) factor increase in their running time. Roughly speak-
ing, the family that this method applies to is those algorithms in which each node out-
puts one (canonical) output in the majority of the executions of the algorithm (for each
given input), that is, algorithms where the randomness does not affect the output (signif-
icantly) and is used only to speed up the computation. This class was termed Bellagio

algorithms [Gol12, GG11], and it is studied as a subclass of randomized algorithms with
some desirable pseudo-deterministic behavior.
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Roadmap

The rest of this thesis is structured as follows. In the next chapter we present the models of
distributed computation that we use throughout the thesis. Then, we turn to the technical
parts of the thesis, which are organized in 4 parts. Among these, the first part deals with
the issue of locality and the other three parts are centered around congestion.

∙ Part I consists of one chapter, Chapter 3, which explains our results on local distributed

graph algorithms and particularly on Maximal Independent Set, together with their
implications and applications.

∙ Part II consists of two chapters, and it presents the graph-theoretic foundations of our
work on graph connectivity. In particular, Chapter 4 explains connectivity decompo-
sitions, proves their existence, and shows some of their applications, and Chapter 5
presents our results on how a graph’s connectivity changes when various elements of it
(vertices or edge) are sampled randomly.

∙ Part III consists of four chapters, which present our distributed algorithms for var-
ious graph problems related to graph connectivity. In particular, in Chapter 6 we
present the concept of low-congestion shortcuts and we use it to derive a simple near-
optimal distributed algorithm for minimum spanning trees. Chapter 7 presents our
near-optimal distributed algorithms for approximating edge connectivity and minimum

edge cut. Chapter 8 presents our near-optimal distributed algorithms for approximat-
ing minimum weight connected dominating sets. Finally, in Chapter 9, we present our
distributed algorithms for constructing connectivity decompositions, and their applica-
tions.

∙ Part IV consists of one chapter, Chapter 10, which presents our results on scheduling
distributed algorithms, that is, it investigates the issue of congestion when multiple
distributed algorithms need to be run together.
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Chapter 2

Models

In this chapter, we review the mathematical models of distributed graph algorithms that
we use throughout this thesis. We consider two standard models, LOCAL and CONGEST

[Pel00], where the latter has two variants: E-CONGEST and V-CONGEST. These models
are all the same, with only one exception: different models have different limitations on the
communication. We next describe these models in a unified manner, and then explain their
communication limitations.

Communication Network and Processes All of the aforementioned models are syn-
chronous message passing models. The communication network is abstracted as an undi-
rected graph 𝐺 = (𝑉,𝐸) with 𝑛 = |𝑉 | nodes. There is one processor residing in each node
of the graph and each processor can communicate directly with only the processors residing
in adjacent nodes. From now on, we use the terms processor and node interchangeably.

Initial Knowledge We assume that at the beginning of the execution, the processors know
only their adjacent processors, and especially that they do not know the full topology of the
network 𝐺 = (𝑉,𝐸). However, we sometimes assume that nodes know certain estimates on
some of the global parameters of the network. For instance, we usually assume that they all
know a polynomial upper bound 𝑁 on the network size 𝑛 such that 𝑁 ≤ 𝑛𝑐 for some fixed
constant 𝑐 ≥ 1.

Synchronous Executions We here provide a brief description of the model for the round-
by-round executions in synchronous network algorithms. This minimal and simplified de-
scription suffices for the discussions in this thesis. We refer the reader to [Lyn96, Chapter
2.1] for a detailed and more formal description.

In all the models in consideration in this thesis, the execution proceeds in synchronous
rounds and particularly, communication happens in lock-step rounds 1, 2, 3, . . . Each round
works as follows: In the beginning of the round, each processor generates messages to send
to its neighbors, and puts these messages in the appropriate communication channels. These
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messages get sent at the beginning of the round and they get delivered to the neighbors
before the end of the round. At the end of the round, each processor performs some local
computations and changes its states, based on the messages it received from the communica-
tion channels. We discuss these local computations shortly. The messages are then removed
from the channel. Then the execution proceeds to the next round.

Communication Limitations and Message Sizes In the LOCAL model, there is no
limitation on the size of the messages, and as far as the model is concerned, each node can
send all the information that it holds to its neighbors. The CONGEST model on the other
hand takes bandwidth-related communication limitations into account. In particular, the
CONGEST model restricts the message size, and this restriction comes in two variants: In
the V-CONGEST variant of the model—abbreviating congestion on vertices—in each round,
each node can send one 𝑂(log 𝑛)-bit message to all of its neighbors. That is, the same
message is sent to all the neighbors. In the E-CONGEST variant of the model—abbreviating
congestion on edges—in each round, each node can send one 𝑂(log 𝑛)-bit message to each of
its neighbors and the model allows the node to send different messages to different neighbors.

Notice that V-CONGEST is more restrictive than E-CONGEST. In the V-CONGEST
model, each node sends at most one message per round to all neighbors. Clearly, this one
message can be sent to all neighbors also in the E-CONGEST model, which allows the node
to send different messages to different neighbors. There is no relation in the other direction,
meaning that the V-CONGEST model cannot simulate the E-CONGEST model (without a
significant round complexity overhead).

We remark that E-CONGEST, often just called CONGEST [Pel00], is the more classical
distributed model that considers congestion and assumes bounded size messages. Consider-
ing congestion on vertices is however also not new. It is motivated by application domains
such as wireless networks where each node can broadcast one message to its neighbors per
time-unit, or peer-to-peer overlay networks and social networks where each node can upload
one message per time-unit.

Remark on Local Computations The distributed models usually do not assume any
limitation on the local computation power of the processors. However, in all the algorithms
that we present, the local computations are quite simple, always being at most polyno-
mial time computations in the network size 𝑛 and most often being at most linear, up to
logarithmic factors.

Performance Measure In essentially all of our results, the main performance measure is
the number of rounds required to perform a given computation or communication task. If
a given algorithm solves the task in a particular number of rounds, we refer to this number
as the round complexity of that algorithm. Usually, this round complexity is expressed as
a function of the parameters of the network graph. Most importantly, many of our bounds

32



depend on the number of nodes 𝑛. Some of the bounds depend on the maximum degree ∆,
the diameter 𝐷, or potentially some other parameters which will be specified when needed.

Randomized Algorithms The vast majority of the algorithms presented in this thesis
are randomized distributed algorithms. In these algorithms, each processor follows a prob-
abilistic state transition process, and in particular, the state transitions at the end of each
round are probabilistic. Then, the messages to be sent to the neighbors in the next round
are a deterministic function of the new state. We do not specify the details of this point
further, as it is similar to the probabilistic process in centralized randomized algorithms. We
refer the interested reader to [Lyn96, Chapter 2.7] for a formal description.

We remark that in our models, the randomness used by the processors is the only source
of randomness in the execution. Moreover, we assume that each processor has access to a
sufficiently long sequence of independent uniformly-distributed random bits, which are used
for determining the probabilistic state transitions at the end of the rounds. We also assume
that these randomness sequences for different processors are distributed independently.

When working with randomized algorithms, we usually desire them to solve each given
problem “with high probability”. Concretely, this means that the algorithm should provide
the following two guarantees with high probability: (1) within the claimed number of rounds,
all the processors should have computed their individual outputs, (2) the computed outputs
should form a valid solution for the given problem. Following the convention in the theory
of computation, and especially in the area of distributed algorithms, we use the phrase ‘with
high probability ’ (w.h.p.) to indicate that some event has a probability of at least 1 − 1/𝑛𝑐

for a desirably large constant 𝑐 ≥ 2. Recall that 𝑛 denotes the number of the nodes in the
network/graph. Intuitively, this high probability guarantee means that within the life-time
of the system/algorithm, which is usually presumed to be at most polynomial in the network
size 𝑛, we are unlikely to see that a high probability event does not happen.

33



Part I

Locality
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Chapter 3

Maximal Independent Set

3.1 Introduction & Related Work

In this chapter, we present a randomized distributed algorithm for computing a Maximal
Independent Set (MIS) which improves significantly over the state of the art and achieves a
near-optimal round complexity. Informally, an MIS is an independent set of vertices, meaning
that no two of them are adjacent, such that the set is maximal with regard to independence,
meaning that adding any other vertex to it would violate independence. See Section 3.2 for
the formal definition. Our MIS result is especially important considering the centrality of
the MIS problem in the subarea of locality in distributed graph algorithms. See Section 1.1
for a discussion about the reasons of this centrality, and also see Section 3.5, which shows
how this progress on MIS leads to improvements in about a dozen other classical problems.

State of the Art for Distributed MIS: Here, we briefly review the most relevant work
on MIS to ours, which constitute the state of the art. See [BEPSv3, Section 1.1] and the
monograph of Barenboim and Elkin [BE13] for more thorough reviews of the related work.

The first related work is the 𝑂(log4 𝑛) round randomized distributed algorithms of Karp
and Wigderson [KW84], which was presented in 1984. This was shortly afterwards followed
in 1986 by the influential work of Luby [Lub85], and Alon, Babai, and Itai [ABI86], which
provided an 𝑂(log 𝑛) round randomized distributed MIS algorithm. After that, the only
significant progress that is relevant to our work happened in 2011 when Barenboim, Elkin,
Pettie, and Schneider [BEPSv3] presented a randomized distributed algorithm with round
complexity of 𝑂(log2 ∆) + 2𝑂(

√
log log𝑛). Here, ∆ denotes the maximum degree in the graph.

There has been also some beautiful work on the lower bound side. In 1992, Linial [Lin92]
showed a lower bound of Ω(log* 𝑛), which holds even on a simple cycle graph. In 2004,
Kuhn, Wattenhofer, and Moscibroda [KMW04,KMW16] proved a lower bound of Ω( logΔ

log logΔ
)

on some (large) graphs with maximum degree ∆. When expressed as a function of both ∆

and 𝑛, the lower bound becomes Ω(min{ logΔ
log log𝑛

,
√︁

log𝑛
log log𝑛

}).
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Roadmap: This chapter is organized as follows. In the remainder of this section, we
present the statement of our result and some high-level discussions about the algorithm,
respectively, in Subsections 3.1.1 and 3.1.2. Some preliminaries are presented in Section 3.2.
We present the algorithm in two parts in Section 3.3 and Section 3.4. Then, Section 3.5
presents some implications and applications of our MIS result. We conclude the chapter
with some open questions in Section 3.6.

3.1.1 Our Result on Distributed MIS

We present an improved distributed randomized MIS algorithm which achieves a round
complexity of 𝑂(log ∆) + 2𝑂(

√
log log𝑛). More formally, we prove the following theorem:

Theorem 3.1.1. There is a randomized distributed that computes an MIS in 𝑂(log ∆) +

2𝑂(
√
log log𝑛) rounds, with probability at least 1− 1/𝑛𝑐 for any arbitrary constant 𝑐 ≥ 2.

Remarks on Near-Optimality: There are three concrete points to state here regarding
the optimality of this bound, or about the difficulty in improving on it.

∙ This 𝑂(log ∆)+2𝑂(
√
log log𝑛) round complexity improves the best-known bound for MIS

and gets close to the Ω(min{ logΔ
log log𝑛

,
√︁

log𝑛
log log𝑛

}) lower bound of Kuhn et al. [KMW04,

KMW16]. In particular, the upper bound is optimal, modulo doubly-logarithmic fac-
tors, when log ∆ ∈ [2

√
log log𝑛,

√
log 𝑛]. This is the first time since the beginning of

research on distributed MIS in 1984 that such a provable near-optimality is obtained.

∙ The new result matches the lower bound in a stronger and much more instructive
sense: as we elaborate in Section 3.5, it perfectly pinpoints why the current lower
bound techniques cannot prove a lower bound better than Ω(min{log ∆,

√
log 𝑛}).

∙ Thanks to a recent observation of Chang, Kopelowitz, and Pettie [CKP16], we also
know why the 2𝑂(

√
log log𝑛) term in the bound is the best-achievable dependency on 𝑛,

given the current techniques. In other words, improving this 2𝑂(
√
log log𝑛) term would

lead to an improvement on the currently best known 2𝑂(
√
log𝑛) round complexity of

deterministic distributed MIS algorithms, which has remained the best known for about
25 years. Such an improvement would be considered a major breakthrough in the area
of distributed graph algorithms, especially if the improvement is significant.

3.1.2 Technical Overview of Our Approach

Here, we present a high-level description of the algorithm. To focus on the core novelty in
Theorem 3.1.1, we present a new perspective for measuring the complexity of distributed
algorithms. We consider two separate measures, a local complexity measure, and a global

complexity measure. We do not formalize these measures completely in their full generality;
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we just explain them in the context of our MIS problem. In the following, we motivate this
division and explain the contribution of our new algorithm in local and global complexity
parts separately. As a side remark, we believe that this separation between local and global
complexities might be helpful and/or instructive also in studying other problems in the
subarea of local distributed graph algorithms, and it might be interesting also for applications
in practical settings.

Local Complexity of Our MIS Result

Despite the local nature of the MIS problem, classically the main focus has been on the
so-called global complexity, which measures the time until all nodes terminate. Moreover,
somewhat strikingly, essentially all the standard analyses also take a non-local approach
by considering the whole graph and showing guarantees on how the algorithm makes global
progress towards its local objectives. A prominent example is the analysis of [Lub85,ABI86]
which show that per round, in expectation, half of the edges of the whole network get
removed, hence leading to the global complexity guarantee that after 𝑂(log 𝑛) rounds, with
high probability, these algorithm terminates everywhere. See [MR10, Section 12.3], [Pel00,
Section 8.4], [Lyn96, Section 4.5] for textbook treatments or [Win04] for a simpler analysis.

The fact that essentially all the tight analysis for the local problem of MIS are based on
global progress arguments seemingly suggests a gap in our understanding of locality. Our
starting point is to seek a local analysis instead. Particularly, what we desire is to have
an analysis that looks only at a node and some small neighborhood of it, and provides a
guarantee for that one node independent of 𝑛. To be concrete, our starting question is:

Local Complexity Question: How long does it take till each node 𝑣 terminates, and
knows whether it is in the (eventual) MIS or not, with probability at least 1− 𝜀?

We remark that this question can be directly relevant for practical network algorithms,
when one wishes to compute an MIS. It is reasonable to imagine that in various practical
settings, it is not crucial to complete the computation of MIS in all nodes. Instead, if
for instance only 1% of nodes remain undecided, the found solution may be regarded as
satisfactory. If as the above question suggests, each node has some small 𝜀 probability, say
𝜀 = 0.01, of not knowing whether it is in the MIS or not, we could infer that overall only
a small fraction of nodes remain undecided. The latter would hold in expectation, simply
by linearity of expectation. It can also be strengthened to a high probability guarantee if
we have certain independence properties between the events of different nodes remaining
undecided. See Theorem 3.1.2 for such an independence property.

Using ∆ to denote the maximum degree, one can obtain answers such as 𝑂(log2 ∆ +

log 1/𝜀) rounds for Luby’s algorithm, or 𝑂(log ∆ log log ∆ + log ∆ log 1/𝜀) rounds for (a pa-
rameter optimized version) of the variant of Luby’s algorithm used by Barenboim, Elkin,
Pettie, and Schneider [BEPSv3] and Chung, Pettie, and Su [CPS14]. However, neither of
these two bounds is optimal. For instance, consider the case where we set 𝜀 = 1/𝑛 and
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∆ = 𝑛𝛿 for a constant 𝛿 > 0. With these parameters, both of the above bounds become
Θ(log2 𝑛). However, standard analysis of Luby’s algorithm provides this per-node termina-
tion guarantee with probability 1− 𝜀 in just 𝑂(log 𝑛) rounds.

We present an extremely simple algorithm that overcomes this problem and provides a
local complexity of 𝑂(log ∆ + log 1/𝜀). More formally, we prove that:

Theorem 3.1.2. There is a randomized distributed MIS algorithm such that for each node

𝑣, the probability that 𝑣 has not made its decision after the first 𝑂(log deg(𝑣) + log 1/𝜀)

rounds is at most 𝜀. Furthermore, this holds even if the bits of randomness outside the 2-hop

neighborhood of 𝑣 are determined adversarially.

The perhaps surprising fact that the bound depends only on the degree of node 𝑣, even
allowing its neighbors to have infinite degree (as 𝑛 → ∞), demonstrates the truly local

nature of this algorithm. The logarithmic degree-dependency in the bound is optimal, mod-
ulo a doubly-logarithmic factor, following a lower bound of Kuhn, Moscibroda and Wat-
tenhofer [KMW04,KMW16], in the following sense: As indicated by [Kuh15], with minor
changes in the arguments of [KMW04,KMW16], one can prove that there are graphs in which
the time until each node 𝑣 knows whether it is in MIS or not with constant probability mus
be at least Ω( logΔ

log logΔ
).

We note that the fact that the analysis looks only at the 2-hop neighborhood of node 𝑣,
and particularly, that the guarantee relies only on the coin tosses within the 2-hop neigh-
borhood of node 𝑣, will prove vital as we move to global complexity.

Finally, we remark that the locality of this guarantee might be interesting for practical
purposes as well. This locality shows that even if things go wrong outside the 2-hop neigh-
borhood of 𝑣—e.g., even if far-away nodes do not follow the algorithm properly—still 𝑣 will
have made its decision about whether it is in the chosen set or not. Notice that in such a
scenario, we cannot guarantee that the chosen set is a maximal independent set in the whole
graph, because those corrupted far-away nodes may behave arbitrarily. However, we can
say that we have the following two properties: (1) it cannot be the case that both 𝑣 and a
neighbor of it are in the chosen set, (2) either 𝑣 in the chosen set or it has a neighbor in the
chosen set. These are in a sense local parts of the definition of MIS—as formalized in Sec-
tion 3.2—for node 𝑣. For further details, see the work of Holzer and Lynch [HL16, Definition
1], which formalizes this notion of local correctness of MIS algorithms.

Global Complexity of Our MIS Result

Notice that one can easily infer from Theorem 3.1.2 that after 𝑂(log 𝑛) rounds, w.h.p., all
nodes have terminated. Thus, this reproves the standard global complexity of 𝑂(log 𝑛)

rounds, but now with the advantage that the related analysis is local. We now explain how
we improve the global complexity bound to 𝑂(log ∆) + 2𝑂(

√
log log𝑛) rounds.

The overall plan is based on the following nice and natural intuition, which was used
in the MIS results of Alon et al. [ARVX12] and Barenboim et al. [BEPSv3]. We note that
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this general strategy is often attributed to Beck, as he used it first in his breakthrough
algorithmic version of the Lovász Local Lemma [Bec91]. Applied to MIS, the intuition is
as follows: when we run any of the usual randomized MIS algorithms, we gradually add
nodes to the eventual MIS and as a result, we remove them and also their neighbors from
the graph. Thus, over time, the remaining graph becomes sparser. After running this base
algorithm for a certain number of rounds, a certain graph shattering phenomenon occurs,
where what remains of the graph is a number of “small” components. Here, “small" might be
in regard to size, diameter, the maximum size of some specially defined independent sets, or
some other measure. Once the graph is shattered, one switches to a deterministic algorithm
to solve the problem in these remaining small components.

It can be shown that the graph shattering phenomenon starts to show up around the
time that the probability 𝜀 of each node remaining falls below 1/∆. This can be inferred for
instance from analysis of Galton-Watson branching processes [WG75] (ignoring some tech-
nicalities, which we deal with in the actual proofs in Section 3.4)1. In a very informal sense,
when the probability 𝜀 of each node remaining is below 1/∆, we expect each particular node
to have at most 𝜀∆ < 1 neighbors remaining, and thus at this point the graph starts to
“break down”. Alon et al. [ARVX12] used an argument of [PR07], showing that Luby’s algo-
rithm reaches this shattering threshold after 𝑂(∆ log ∆) rounds. Barenboim et al. [BEPSv3]
used a variant of Luby’s algorithm, with a small but clever modification, and showed that
it reaches the threshold after 𝑂(log2 ∆) rounds. As Barenboim et al. [BEPSv3] show, after
the shattering, the remaining pieces can be solved deterministically, via the help of known
deterministic MIS algorithms (and some other ideas), in log ∆·2𝑂(

√
log log𝑛) rounds. Thus, the

overall complexity of [BEPSv3] is 𝑂(log2 ∆) + log ∆ · 2𝑂(
√
log log𝑛) = 𝑂(log2 ∆) + 2𝑂(

√
log log𝑛).

To improve this, we use our new MIS algorithm as the base, instead of Luby’s algorithm.
As Theorem 3.1.2 suggests, this algorithm reaches the shattering threshold after 𝑂(log ∆)

rounds. This is formalized in Section 3.4. We also use some minor modifications for the
post-shattering phase to reduce its complexity from log ∆ · 2𝑂(

√
log log𝑛) to 2𝑂(

√
log log𝑛). The

overall round complexity of the algorithm thus becomes 𝑂(log ∆) + 2𝑂(
√
log log𝑛), providing

the round complexity claimed in Theorem 3.1.1.

3.2 Preliminaries

Graph Notations As stated before, we work with an undirected graph 𝐺 = (𝑉,𝐸) where
𝑛 = |𝑉 | and ∆ denotes an upper bound on the maximum degree of the graph. For a node 𝑣,
we use the notation 𝑁(𝑣) to denote the set of its neighbors in the graph, and we also define
𝑁+(𝑣) = 𝑁(𝑣) ∪ {𝑣}. Given a subset of vertices 𝑆, we use 𝐺[𝑆] to denote the subgraph
induced by 𝑆, that is, 𝐺[𝑆] = (𝑆,𝐸𝑆) where 𝐸𝑠 is the set of all edges in 𝐸 for which both

1This ignores a few technicalities. In truth, the probability threshold is 1/poly(Δ), instead of 1/Δ,
because of some unavoidable dependencies. However, due to the exponential concentration, the time to
reach the 1/ poly(Δ) threshold is within a constant factor of that of the 1/Δ threshold. We will also need
to establish some independence. See Section 3.4 for details.
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of the endpoints are in 𝐸. Given an integer 𝑥 ≥ 1, we use the notation 𝐺≤𝑥 to denote the
graph with the same vertex set as 𝐺 but where we put edges between each two 𝐺-nodes that
have distance at most 𝑥. A set 𝑆 of vertices is called 𝑥-independent if it is an independent
set in 𝐺≤𝑥, that is if each two of its vertices have distance at least 𝑥 + 1.

The Maximal Independent Set (MIS) Problem The MIS problem requires selecting
a subset 𝑆 of the vertices of the graph 𝐺 = (𝑉,𝐸) that satisfies the following two properties:
(1) 𝑆 is an independent set, meaning that no two nodes of 𝑆 are adjacent in 𝐺, (2) 𝑆 is
maximal in regard to independence, meaning that for each node 𝑣 ∈ 𝑉 ∖ 𝑆, there is at least
one node 𝑢 ∈ 𝑆 that is adjacent to 𝑣 in 𝐺. In the distributed representation of an MIS 𝑆,
each processor should output whether it is in 𝑆 or not.

Ruling Set This is a generalization of the notion of MIS. A subset 𝑆 of vertices is called
an (𝛼, 𝛽)-ruling set of 𝐺 = (𝑉,𝐸), for positive integers 𝛼 and 𝛽, if and only if we have the
following two properties: (1) each two nodes in 𝑆 are at distance at least 𝛼, (2), each node
𝑣 ∈ 𝑉 ∖ 𝑆 has a node in 𝑆 within its distance at most 𝛽. In particular, a (2, 1)-ruling-set is
simply an MIS.

Network Decomposition A (𝛼, 𝛽)-network decomposition for a graph 𝐺 = (𝑉,𝐸), for
positive integers 𝛼 and 𝛽, is a partitioning of the vertices 𝑉 into subsets 𝑆1, 𝑆2, . . . , such that
the following two properties are satisfied: (1) each two nodes of the same subset have distance
at most 𝛼 in graph 𝐺, (2) there exists a coloring which assigns a color from [1, . . . , 𝛽] to
each subset such that each two subsets which have adjacent vertices are colored differently.
We refer to each of these subsets as a cluster. Typically, we assume that the network
decomposition also includes the coloring of the clusters mentioned in property (2). In the
standard distributed representation of network decompositions (see e.g., [PS92]), each cluster
has a unique leader, each node knows the identifier of its cluster as well as the color of that
cluster.

3.3 Our MIS Algorithm, & Its Local Complexity

Here we present a very simple and clean algorithm that guarantees for each node 𝑣 that
after 𝑂(log ∆ + log 1/𝜀) rounds, with probability at least 1− 𝜀, node 𝑣 has terminated and
it knows whether it is in the (eventual) MIS or it has a neighbor in the (eventual) MIS.

The Intuition The intuitive base of the algorithm is as follows: There are two scenarios
in which a node 𝑣 has a good chance of being removed: either (1) 𝑣 is trying to join the MIS
and it does not have too many competing neighbors, in which case 𝑣 has a chance to join the
MIS, or (2) a large number of neighbors of 𝑣 are trying to join the MIS each of which does
not have too much competition, in which case it is likely that one of them joins the MIS and
thus 𝑣 gets removed. These two cases also depend only on 𝑣’s 2-neighborhood. Our key idea
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is to create a dynamic which makes each node 𝑣 spend a significant amount of time in these
two scenarios, unless it has been removed already.

The algorithm for node 𝑣 The algorithm is divided into iterations, each of which
consists of three consecutive rounds. In the beginning of each iteration 𝑡 ≥ 1, node 𝑣 has
a probability 𝑝𝑡(𝑣). Initially, we set 𝑝0(𝑣) = 1/2. For any 𝑡 ≥ 0, we call the total sum of
the probabilities of neighbors of 𝑣 its effective-degree 𝑑𝑡(𝑣), that is, 𝑑𝑡(𝑣) =

∑︀
𝑢∈𝑁(𝑣) 𝑝𝑡(𝑢).

Iteration 𝑡 of the algorithm, for 𝑡 ≥ 1: Each iteration works as follows:

(R1) At the beginning of the round, node 𝑣 sends its probability 𝑝𝑡−1(𝑣) of the previous
iteration to its neighbors. By the end of the round, node 𝑣 receives the probability
𝑝𝑡−1(𝑢) of each neighbor 𝑢 ∈ 𝑁(𝑣). It then sets 𝑑𝑡−1(𝑣) =

∑︀
𝑢∈𝑁(𝑣) 𝑝𝑡−1(𝑢) and

updates its probability using the following deterministic rule.

𝑝𝑡(𝑣) =

{︃
𝑝𝑡−1(𝑣)/2, if 𝑑𝑡−1(𝑣) ≥ 2

min{2𝑝𝑡−1(𝑣), 1/2}, if 𝑑𝑡−1(𝑣) < 2.

At the end, node 𝑣 marks itself with probability 𝑝𝑡(𝑣), and remains unmarked with
the rest of the probability.

(R2) At the beginning of the round, node 𝑣 sends a message to its neighbors indicating
whether it is marked or not. By the end of the round, it receives those messages
of its neighbors, hence learning whether any of the neighbors is marked. If node 𝑣
is marked and none of its neighbors is marked, then node 𝑣 joins the MIS.

(R3) At the beginning of the round, node 𝑣 sends a message to its neighbors indicating
whether 𝑣 joined the MIS in the previous round or not. By the end of the round,
it receives those messages of its neighbors, hence learning whether any of the
neighbors joined the MIS. Then, if node 𝑣 joined the MIS, or if it received a
message from a neighbor 𝑢 indicating that 𝑢 joined the MIS, then 𝑣 terminates.
In that case, effectively node 𝑣 gets removed from the problem.

Remark about the Message Sizes We also note that 1-bit messages would suffice for
implementing the communication rounds of this algorithm. In particular, reporting being
marked or joining MIS can be done with 1-bit messages. To send the probability 𝑝𝑡(𝑣), it
suffices for the node 𝑣 to inform its neighbors whether 𝑝𝑡(𝑣) decreased or not, which can be
done with a 1-bit message.

Remark about the Contrast with Luby’s Algorithm The idea of marking processes
and taking only isolated marks to MIS is standard and it appears also in (one version of)
Luby’s algorithm [Lub86]. However, at each round, Luby’s algorithm marks each node 𝑣
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with a fixed probability 1
𝑑𝑒𝑔(𝑣)+1

, where 𝑑𝑒𝑔(𝑣) denotes the number of the neighbors of 𝑣
remaining at that time. In this regard, the key element in our new algorithm is the process
that changes the marking probability dynamically and flexibly over time, trying to push
towards the two desirable scenarios mentioned in the intuition paragraph above.

The Analysis The correctness is clear as the set of nodes that join the MIS is an indepen-
dent set and the algorithm terminates at a node only if the node is either in MIS or adjacent
to a node in MIS. We next argue that each node 𝑣 is likely to terminate quickly.

Throughout the analysis, we use the notation deg to denote the degree of node 𝑣 degree
at the start of the algorithm.

Theorem 3.3.1. For each node 𝑣, the probability that 𝑣 has not made its decision within the

first 𝛽(log deg + log 1/𝜀) iterations, for a large enough constant 𝛽 is at most 𝜀. This holds

even if the outcome of the coin tosses outside 𝑁+
2 (𝑣) are determined adversarially.

Let us say that a node 𝑢 is low-degree at time 𝑡 if 𝑑𝑡(𝑢) < 2, and high-degree otherwise.
Considering the intuition discussed above, we define two types of golden iterations for a node
𝑣: (1) iterations in which 𝑑𝑡(𝑣) < 2 and 𝑝𝑡(𝑣) = 1/2, (2) iterations in which 𝑑𝑣(𝑡) ≥ 1 and at
least 𝑑𝑡(𝑣)/10 of it is contributed by low-degree neighbors. These are called golden iterations
because, as we will see, in the first type, 𝑣 has a constant chance of joining the MIS and in
the second type there is a constant chance that one of those low-degree neighbors of 𝑣 joins
the MIS and thus 𝑣 gets removed. For the sake of analysis, we keep track of the number of
golden iterations of each type for node 𝑣.

To prove Theorem 3.3.1, we first show in Lemma 3.3.2 that node 𝑣 will have many golden
iterations. We then prove in Lemma 3.3.3 that in each of these golden iterations, node 𝑣 has
a constant probability to be removed, either because of joining the MIS or having a neighbor
join the MIS. Then, we put these two Lemmas together to prove Theorem 3.3.1.

In the first lemma, we show that node 𝑣 must have many golden iterations.

Lemma 3.3.2. By iteration 𝛽(log deg + log 1/𝜀), either 𝑣 has joined or has a neighbor in

the MIS, or at least one of its golden iteration counts reaches 𝛽
13

(log deg + log 1/𝜀).

Proof. We focus only on the first 𝛽(log deg+log 1/𝜀) iterations. Let 𝑔1 and 𝑔2 be, respectively,
the number of golden iterations for 𝑣 of types 1 and 2, during this period. Moreover, let ℎ be
the number of iterations during which 𝑑𝑡(𝑣) ≥ 2. To prove the lemma, we assume that by the
end of iteration 𝛽(log deg+log 1/𝜀), node 𝑣 is not removed and 𝑔1 ≤ 𝛽

13
(log deg+log 1/𝜀), and

we conclude that, then it must have been the case that 𝑔2 >
𝛽
13

(log deg + log 1/𝜀). For that,
we first argue that assuming 𝑔1 ≤ 𝛽

13
(log deg+ log 1/𝜀) is small implies that ℎ ≥ 4𝛽

13
(log deg+

log 1/𝜀). We then argue that if ℎ ≥ 4𝛽
13

(log deg + log 1/𝜀), then 𝑔2 >
𝛽
13

(log deg + log 1/𝜀).

Small 𝑔1 → Large ℎ: Notice that the changes in 𝑝𝑡(𝑣) are governed by the condition
𝑑𝑡(𝑣) ≥ 2 and the iterations with 𝑑𝑡(𝑣) ≥ 2 are exactly the ones in which 𝑝𝑡(𝑣) decreases
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by a 2 factor. Hence, there are exactly ℎ iterations in which 𝑝𝑡(𝑣) decreases by a 2 factor.
Furthermore, the number of 2 factor increases in 𝑝𝑡(𝑣) can be at most equal to the number
of 2 factor decreases in it, as 𝑝𝑡(𝑣) is capped to 1/2. Hence, the total number of iterations in
which 𝑝𝑡(𝑣) increases or decreases (by a 2 factor) is at most 2ℎ. Therefore, there are at least
𝛽(log deg+log 1/𝜀)−2ℎ iterations in which 𝑝𝑡(𝑣) = 1/2. Now out of these iterations, at most
ℎ of them can be when 𝑑𝑡(𝑣) ≥ 2. Hence, 𝛽(log deg+log 1/𝜀)−3ℎ ≤ 𝑔1. As we have assumed
𝑔1 ≤ 𝛽

13
(log deg+ log 1/𝜀), we get that 𝛽(log deg+ log 1/𝜀)− 3ℎ ≤ 𝛽

13
(log deg+ log 1/𝜀). This

implies that ℎ ≥ 4𝛽
13

(log deg + log 1/𝜀).

Large ℎ → Large 𝑔2: Recall that ℎ counts the number of iterations in which 𝑣 in high-
degree, that is, iterations in which 𝑑𝑡(𝑣) ≥ 2. In an iteration in which 𝑑𝑡(𝑣) ≥ 2, the
first requirement for a golden type-2 iteration is satisfied (in fact with some slack as the
requirement only asks for 𝑑𝑡(𝑣) ≥ 1). However, the second requirement might be not satisfied.
We show that the number of iterations in which the first requirement is satisfied but the
second requirement is not satisfied cannot be too large. We then conclude that a large ℎ

implies a large 𝑔2.
Concretely, let us consider the changes in the effective-degree 𝑑𝑡(𝑣) of 𝑣 over time. If

𝑑𝑡(𝑣) ≥ 1 and this is not a golden iteration of type-2, then we have

𝑑𝑡+1(𝑣) ≤ 2
1

10
𝑑𝑣(𝑡) +

1

2

9

10
𝑑𝑡(𝑣) <

2

3
𝑑𝑡(𝑣).

There are 𝑔2 golden iterations of type-2. Except for these type-2 golden iterations, whenever
𝑑𝑡(𝑣) ≥ 1, the effective-degree 𝑑𝑡(𝑣) shrinks by at least a 2/3 factor. In those exceptions,
it increases by at most a 2 factor. Each of these exception iterations cancels the effect
of at most 2 shrinkage iterations, as (2/3)2 × 2 < 1. Thus, ignoring the total of at most
3𝑔2 iterations lost due to type-2 golden iterations and their cancellation effects, every other
iteration with 𝑑𝑡(𝑣) ≥ 2 pushes the effective-degree down by a 2/3 factor2. This cannot
(continue to) happen more than log3/2 deg times as that would lead the effective degree to
exit the 𝑑𝑡(𝑣) ≥ 2 region. Hence, the number of iterations in which 𝑑𝑡(𝑣) ≥ 2 is at most
log3/2 deg + 3𝑔2. That is, ℎ ≤ log3/2 deg + 3𝑔2. Since ℎ ≥ 4𝛽

13
(log deg + log 1/𝜀), we get

𝑔2 >
𝛽
13

(log deg + log 1/𝜀).

In the next lemma, we show that in each golden iteration, node 𝑣 has at least a constant
probability probability to be removed.

2Notice the switch to 𝑑𝑡(𝑣) ≥ 2, instead of 𝑑𝑡(𝑣) ≥ 1. This slack also appears in the definition of
type-2 iterations (which requires 𝑑𝑡(𝑣) ≥ 1) and those in which 𝑣 is high-degree (where the requirement is
𝑑𝑡(𝑣) ≥ 2). We need to allow a small slack here, as done by switching to threshold 𝑑𝑡(𝑣) ≥ 2, in order to
avoid the possible zigzag behaviors on the boundary. This is because, the above argument does not bound
the number of 2-factor increases in 𝑑𝑡(𝑣) that start when 𝑑𝑡(𝑣) ∈ (1/2, 1) but these would lead 𝑑𝑡(𝑣) to
go above 1. This can continue to happen even for an unlimited time if 𝑑𝑡(𝑣) keeps zigzagging around 1.
However, for 𝑑𝑡(𝑣) to go/stay above 2, it takes increases that start when 𝑑𝑡(𝑣) > 1, and the number of these
is at most 𝑔2.

43



Lemma 3.3.3. In each type-1 golden iteration, with probability at least 1/200, 𝑣 joins the

MIS. Moreover, in each type-2 golden iteration, with probability at least 1/200, a neighbor of

𝑣 joins the MIS. These statements hold even if the coin tosses outside 𝑁+
2 (𝑣) are determined

adversarially.

Proof. In each type-1 golden iteration, node 𝑣 gets marked with probability 1/2. The prob-
ability that no neighbor of 𝑣 is marked is

∏︀
𝑢∈𝑁(𝑣)(1 − 𝑝𝑡(𝑢)) ≥ 4−

∑︀
𝑢∈𝑁(𝑣) 𝑝𝑡(𝑣) = 4−𝑑𝑡(𝑣) >

4−2 = 1/16. Hence, 𝑣 joins the MIS with probability at least 1/32 > 1/200.
Now consider a type-2 golden iteration. For the sake of analysis, we examine the set 𝐿

of low-degree neighbors of 𝑣 one by one, and we expose their randomness—meaning that we
check whether they are marked not not based on their randomness—until we reach a node
that is marked. We will find a marked node with probability at least

1−
∏︁
𝑢∈L

(1− 𝑝𝑢(𝑡)) ≥ 1− 𝑒−
∑︀

𝑢∈L 𝑝𝑢(𝑡)

≥ 1− 𝑒−𝑑𝑡(𝑣)/10 ≥ 1− 𝑒−1/10 > 0.08.

When we reach the first low-degree neighbor 𝑢 that is marked, the probability that no
neighbor of 𝑢 is marked is at least

∏︀
𝑤∈𝑁(𝑢)(1 − 𝑝𝑡(𝑤)) ≥ 4−

∑︀
𝑤∈𝑁(𝑢) 𝑝𝑡(𝑤) ≥ 4−𝑑𝑡(𝑢) > 1/16.

Hence, with probability at least 0.08/16 = 1/200, one of 𝑣’s neighbors joins the MIS.
We now know that in each golden iteration, 𝑣 gets removed with probability at least 1/200,

due to joining MIS or having a neighbor join the MIS. Thus, using Lemma 3.3.2, we get that
the probability that 𝑣 does not get removed is at most (1− 1/200)

𝛽
13

(log deg+log 1/𝜀) ≤ 𝜀.

We now put Lemma 3.3.2 and Lemma 3.3.3 together and prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Lemma 3.3.2 shows that node 𝑣 has at least 𝛽
13

(log deg + log 1/𝜀)

golden iterations during the first 𝛽(log deg+log 1/𝜀) iterations. Lemma 3.3.3 shows that node
𝑣 is removed with probability at least 1/200 in each of these golden iterations. Hence, the
probability that node 𝑣 has not been removed during the first 𝛽(log deg+ log 1/𝜀) iterations
is at most (1 − 1/200)

𝛽
13

(log deg+log 1/𝜀) ≤ (1 − 1/200)
𝛽
13

(log 1/𝜀) ≤ 𝜀. Since each iteration is
simply three communication rounds, this proves the theorem.

3.4 Our MIS Algorithm, and Improved Global Complex-

ity

Here, we explain how combining the algorithm of the previous section with some known
techniques leads to a randomized MIS algorithm with a high probability global complexity
of 𝑂(log ∆) + 2𝑂(

√
log log𝑛) rounds.

Recall from Section 3.1.2 that the high-level outline of the algorithm is as follows: we
first run the algorithm of the previous section for long enough until the graphs shatters and
the remaining components are “small ”. We then solve these remaining small components
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simultaneously using (a modification of) the deterministic distributed MIS algorithm of
[PS92]. The ideal definition of a small component would have been that the component
has at most poly(log 𝑛) nodes. However, we cannot achieve that property. The particular
definition of “small” that works for us is somewhat technical, and it is made precise in
Lemma 3.4.2. Informally, in a small component, the size of the maximum size subset such
that each two of its nodes have distance at least 5 is at most 𝑂(log 𝑛).

Pre-Shattering Phase of the Algorithm and Its Analysis

The pre-shattering phase of the global algorithm simply runs the algorithm of the previous
section for Θ(log ∆) rounds. Thanks to the local complexity of this base algorithm, the
graph gets shattered in 𝑂(log ∆) rounds, with high probability. We formalize this soon, in
Lemma 3.4.2. The fact that Theorem 3.3.1 relies only on the bits of randomness within
2-hop neighborhood of the node under consideration plays a vital role in establishing this
shattering phenomenon. Before stating the achieved shattering property in Lemma 3.4.2, we
first need to establish a helping lemma:

Lemma 3.4.1. Let 𝑐 > 0 be an arbitrary constant. For any 5-independent set of nodes 𝑆,

the probability that all nodes of 𝑆 remain undecided after Θ(𝑐 log ∆) rounds of the algorithm

of Section 3.3 is at most ∆−𝑐|𝑆|.

Proof. We examine the nodes of 𝑆 one by one: when considering node 𝑣 ∈ 𝑆, we know
from Theorem 3.3.1 that the probability that 𝑣 stays undecided after Θ(𝑐 log ∆) rounds is
at most ∆−𝑐, and more importantly, this only relies on the coin tosses within distance 2 of
𝑣. Because of the 5-independence of set 𝑆, the coin tosses we rely on for different nodes of
𝑆 are non-overlapping and hence, the probability that the whole set 𝑆 stays undecided is at
most ∆−𝑐|𝑆|.

From Lemma 3.4.1, we can get a shattering guarantee, as stated formally in Lemma 3.4.2.
Since the proof is similar to that of [BEPSv3, Lemma 3.3], or those of [Bec91, Main Lemma],
[ARVX12, Lemma 4.6], and [LRY15, Theorem 3], we provide only a brief sketch.

Lemma 3.4.2. Let 𝑐 be a large enough constant and 𝐵 be the set of nodes remaining un-

decided after Θ(𝑐 log ∆) rounds of the MIS algorithm of the previous section on a graph 𝐺.

Then, with probability at least 1− 1/𝑛𝑐, we have the following two properties:

(P1) There is no (𝐺≤4)-independent (𝐺≤9)-connected subset 𝑆 ⊆ 𝐵 such that |𝑆| ≥ logΔ 𝑛.

(P2) Each connected component of 𝐺[𝐵] has each at most 𝑂(∆4 · logΔ 𝑛) nodes.

Proof Sketch. Let 𝐻 = 𝐺≤9 ∖ 𝐺≤4, i.e., 𝐻 is the result of removing edges of 𝐺≤4 from
𝐺≤9. That is, 𝐻 has the same vertex set as 𝐺 and two vertices are connected if and only
if their distance is in [5, 9]. For (P1), note that the existence of any such set 𝑆 would
mean 𝐻[𝐵] contains a (logΔ 𝑛)-node tree subgraph. There are at most 4logΔ 𝑛 different
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(logΔ 𝑛)-node tree topologies and for each of them, less than 𝑛∆9 logΔ 𝑛 ways to embed it
in 𝐻. For each of these trees, by Lemma 3.4.1, the probability that all of its nodes stay
is at most ∆−2𝑐(logΔ 𝑛). By a union bound over all trees, we conclude that with probability
1−𝑛(4∆9)logΔ 𝑛∆−2𝑐(logΔ 𝑛) ≥ 1−1/𝑛𝑐, no such such set 𝑆 exists. For (P2), note that if 𝐺[𝐵]

has a component with more than Θ(∆4 · logΔ 𝑛) nodes, then we can find a set 𝑆 violating
(P1): greedily add nodes to the candidate 𝑆 one-by-one, and each time discard all nodes
within 4-hops of the newly added node, which are at most 𝑂(∆4) many.

Post-Shattering Phase of the Algorithm and Its Analysis

Intuitive Discussions Ideally, we would have liked that the pre-shattering phase of the
algorithm leaves components of size at most 𝑂(log 𝑛). If that was the case, we could solve
each of these remaining components in 2𝑂(

√
log log𝑛) rounds, all in parallel, using the de-

terministic MIS algorithm of Panconesi and Srinivasan [PS92], which works in 2𝑂(
√
log𝑛′)

rounds in graphs of size 𝑛′. However, we know only that the size of each remaining compo-
nent is no larger than 𝑂(∆4 logΔ 𝑛), as proved by property (P2) of Lemma 3.4.2. Running
the deterministic MIS algorithm of Panconesi and Srinivasan [PS92] on these components
would take 2𝑂(

√
logΔ+log log𝑛) rounds. However, the appearance of the log ∆ in the expo-

nent is undesirable. In particular, it would not allow us to prove the global complexity of
𝑂(log ∆) + 2𝑂(

√
log log𝑛) claimed in Theorem 3.1.1.

To remedy this, we use an idea similar to [BEPSv3, Section 3.2 and the Algorithm
in their Figure 3], which leverages property (P1) of Lemma 3.4.2. Informally, the (P1)
property of Lemma 3.4.2 opens the road for the following idea: we can turn the problem
into one where the left-over components have size at most logΔ 𝑛 by contracting nodes
around an appropriately chosen 5-hop independent ruling set. By (P1) of Lemma 3.4.2, this
ruling set cannot have cardinality larger than 𝑂(log 𝑛), and thus after the contraction, we
are left with components of size 𝑂(log 𝑛). Once the component sizes are in 𝑂(log 𝑛), the
complexity of deterministically computing an MIS in each component becomes 2𝑂(

√
log log𝑛)

rounds, which would thus avoid the undesirable log ∆ term in the exponent. We show that
these contracted components can be incorporated into the deterministic MIS algorithm, and
the overall algorithm computes an MIS for the whole component before contraction. We
next explain the post-shattering phase of the algorithm that follows this intuition.

The Post-Shattering Phase of the Algorithm We first present the algorithm. We then
provide its analysis in the proof of Theorem 3.1.1, which shows that this global algorithm
computes an MIS in 𝑂(log ∆) + 2𝑂(

√
log log𝑛) rounds, with high probability.

For the sake of simplicity and readability, and following the common practice in this area
(e.g., [Pel00,PS92,BEPSv3,SEW13]), we do not describe the distributed algorithm from the
viewpoint of each individual node. Instead, we explain the steps of the algorithm using a
global perspective. It is easy to see that one can transform this into a description for the
steps that each node needs to take.
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The algorithm consists of six steps. We note that each step requires a fixed number of
rounds, and thus the nodes know when to switch to the next step in a synchronous man-
ner. For the sake of the algorithm description and its analysis, we consider each connected
component 𝐶 of the remaining nodes separately; the algorithm runs in parallel on all the
components.

The Post-Shattering Algorithm: In the following, we explain the algorithm for a com-
ponent 𝐶 of the remaining nodes after running the algorithm of the previous section for
Θ(log ∆) rounds:

1. Run the algorithm of the previous section for Θ(log ∆) further rounds. Let 𝐵𝐶 be the
left-over nodes of component 𝐶 afterwards.

2. Run the distributed algorithm of Schneider, Elkin and Wattenhofer [SEW13] to com-
pute a (5, ℎ)-ruling set 𝑅𝐶 of the set 𝐵𝑐, for ℎ = Θ(log log 𝑛), and with regards to the
distances in component 𝐶. This algorithm takes Θ(ℎ) rounds. Recall that a (5, ℎ)-
ruling set 𝑅𝐶 means each two nodes of 𝑅𝐶 have distance at least 5 while for each node
in 𝐵𝐶 , there is at least one node in 𝑅𝐶 within its distance of ℎ hops.

3. Form clusters around 𝑅𝐶-nodes as follows: each node 𝑣 ∈ 𝐵𝐶 finds its nearest 𝑅𝐶-node
(breaking ties arbitrarily) and remembers that 𝑅𝐶 node as its leader. This can be done
easily in ℎ rounds as each node has its leader within its distance ℎ. These leaders define
our clusters where nodes which have the same leader form one cluster. These clusters
are known in a distributed way, where each node knows its cluster leader.

4. Define a new virtual graph 𝐺′
𝐶 as follows: include one node for each cluster and connect

two new nodes if their respective clusters contain nodes that are adjacent in 𝐶. In other
words, 𝐺′

𝐶 is the graph we get from contracting the clusters to their central nodes in
𝑅𝐶 . In the distributed algorithm, nodes of 𝑅𝐶 construct this virtual graph and simulate
communications on it. Each node 𝑣 ∈ 𝑅𝐶 acts as one node of 𝐺′

𝐶 . Each node in 𝐵𝐶

sends the identifier of its 𝑅𝐶-leader to all its neighbors. Then, each 𝑅𝐶-node gathers
from all 𝐵𝐶-nodes in its cluster the identifiers of all adjacent cluster leaders. This
step is performed in Θ(ℎ) rounds, as each cluster has radius at most ℎ. Then, each 𝑅𝐶

node knows its neighbors in the virtual graph 𝐺′
𝐶 . Since each two neighbors in 𝐺′

𝐶 have
distance at most ℎ = 𝑂(log log 𝑛), a communication round on 𝐺′

𝐶 can be simulated in
𝑂(ℎ) communication rounds on 𝐶.

5. Use the deterministic distributed network decomposition algorithm of Panconesi and

Srinivasan [PS92] to compute an (2𝑂(
√

log logΔ 𝑛), 2𝑂(
√

log logΔ 𝑛))-network decomposition

of 𝐺′
𝐶 . This step takes 2𝑂(

√
log logΔ 𝑛) rounds. See Section 3.2 for the definition of

network decompositions. In particular, the algorithm provides a partitioning/clustering

of 𝐺′
𝐶 where each 𝐺′

𝐶-cluster has radius at most 2𝑂(
√

log logΔ 𝑛), and such that the
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clusters are colored with 2𝑂(
√

log logΔ 𝑛) colors in a way that adjacent clusters do not
have the same color. Use these colors to color the nodes of 𝐵𝐶 by each node 𝑣 ∈ 𝐵𝐶

taking the color of its 𝐺′
𝐶 cluster.

6. The algorithm processes nodes of different colors one by one, in a sequential order.

For each color 𝑗 ∈ [1, 2, . . . , 2𝑂(
√

log logΔ 𝑛)], we solve the problem for nodes of color-𝑗
clusters as follows: we first choose an arbitrary cluster-center for each cluster of color
𝑗. Then, we make the cluster-center node gather the whole topology of its cluster and
also the adjacent MIS nodes of the previous colors. Then, this cluster-center computes
the MIS of its cluster locally. In particular, it first removes the nodes of the cluster
that have MIS neighbors in the previous colors. Then, it computes an MIS among the
remaining nodes in a centralized manner. At the end, this cluster-center returns the
solution to the nodes in the cluster, by reporting to each node of the cluster whether
it is in the computed MIS or not.

Analysis We now present the analysis that proves Theorem 3.1.1, that is, it shows that the
above algorithm computes an MIS in 𝑂(log ∆) + 2𝑂(

√
log log𝑛) rounds, with high probability.

Proof of Theorem 3.1.1. The correctness of the algorithm is immediate, by correctness of
the network decomposition that is computed in step 5, and because of the MIS computation
procedure in step 6. Recall that in step 6, we process the clusters of different colors sequen-
tially. In each color, nodes which have MIS neighbors in previous colors are removed first,
and then we compute an MIS of the remaining nodes is the cluster by gathering the whole
topology in a cluster-center.

We now discuss the round complexity of the algorithm. Steps 1 takes 𝑂(log ∆) rounds.
Step 2—i.e., computing the (5, ℎ)-ruling set 𝑅𝐶—can be computed in 𝑂(log log 𝑛) rounds
using the algorithm3 of Schneider, Elkin and Wattenhofer [SEW13]. See also [BEPSv3, Table
4]. Step 3 takes at most ℎ = 𝑂(log log 𝑛) rounds as each node in 𝐵𝐶 can find its closest 𝑅𝐶

node, which is guaranteed to be in ℎ hops by the choice of 𝑅𝐶 , in ℎ rounds. Step 4 is simply
a local computation step and it does not incur any round complexity.

We next argue that step 5 can be performed in 2𝑂(
√

log logΔ 𝑛) rounds. Panconesi and Srini-
vasan [PS92] present a deterministic algorithm that computes a (2

√
log𝑛′

, 2
√
log𝑛′

)-network
decomposition in any network with 𝑛′ nodes. Thus, we need to argue that with high prob-
ability 𝐺′

𝐶 has at most 𝑂(logΔ 𝑛) nodes. We use property (P1) of Lemma 3.4.2 for that.
We here provide a short sketch of the argument; see [BEPSv3, Page 19, Steps 3 and 4] for
a more complete description. Even though 𝑅𝐶 might be disconnected in 𝐺≤9, by greedily
adding more nodes of 𝐶 to it, one by one, we can make it connected in 𝐺≤9 while keeping it

3This is different than what Barenboim et al. did. They could afford to use the more standard ruling
set algorithm, particularly computing a (5, 32 logΔ + 𝑂(1))-ruling set for their purposes, because the fact
that this 32 logΔ ends up multiplying the complexity of their post-shattering phase did not change (the
asymptotics of) their overall complexity.
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5-independent. We note that this is done only for the analysis. Since by (P1) of Lemma 3.4.2,
the end result should have size at most logΔ 𝑛, with high probability, we conclude 𝐺′

𝐶 has
at most logΔ 𝑛 nodes, with high probability.

Finally, in step 6, we process 2𝑂(
√

log logΔ 𝑛) colors sequentially. When processing each
cluster in each color, the related cluster-center gathers the topology of the cluster, solves the
MIS problem locally, and reports it back. Since each cluster has radius at most log log 𝑛 ·
2𝑂(
√

log logΔ 𝑛), this takes log log 𝑛 · 2𝑂(
√

log logΔ 𝑛) rounds per color. Thus, over all the colors,

the complexity becomes 2𝑂(
√

log logΔ 𝑛) · log log 𝑛 · 2𝑂(
√

log logΔ 𝑛) = 2𝑂(
√
log log𝑛) rounds.

Thus, considering all the steps, the overall round complexity is 𝑂(log ∆)+2𝑂(
√
log log𝑛).

3.5 Implications and Applications

The new MIS algorithm turns out to lead to several other interesting implications and appli-
cations. Most of these are improvements in various local problems, and some are obtained by
combining the new algorithm with some known results and/or techniques. We here provide
a summary of these improvements.

In a couple of the cases, we provide only a sketch of the role of the new MIS algorithm in
the improvement, rather than explaining the whole result in a self-contained manner. This is
simply because doing the latter formally would require restating and repeating prohibitively
large portions of known results/techniques from other work.

(C1) We get a faster distributed MIS algorithm for low-arboricity graphs. This follows
from a combination of our new MIS algorithm with the low-arboricity to low-degree
reduction of Barenboim et al. [BEPSv3]. Recall that the arboricity 𝜆 of an undirected
graph 𝐺 = (𝑉,𝐸) is the minimum number of forests into which the edges of the graph
can be partitioned. Equivalently, 𝜆 is the minimum number of edge-disjoint spanning
forests needed to cover all the edges of the graph 𝐺. The formal result is as follows:

Corollary 3.5.1. There is a randomized distributed algorithm that in any graph with

arboricity 𝜆, computes an MIS in 𝑂(log 𝜆 +
√

log 𝑛) rounds, with high probability.

Proof. Barenboim et al. [BEPSv3] present a general randomized reduction showing
that MIS in 𝜆-arboricity graphs is reducible in 𝑂(log1−𝛾 𝑛) rounds to MIS in graphs
with maximum degree 𝜆 · 2log𝛾 𝑛, for any 𝛾 ∈ (0, 1). Setting 𝛾 = 1, this is an 𝑂(

√
log 𝑛-

round reduction to MIS in graphs with maximum degree, 𝜆 · 2
√
log𝑛. Using our MIS

algorithm for the latter, we get the overal round complexity of 𝑂(log 𝜆 +
√

log 𝑛).
Hence, This improves on results of [BEPSv3,BE10,LW11].

(C2) The new results highlight the limitations of the current lower bound techniques. In
essence, they show that the current techniques cannot prove a lower bound significantly

better than the Ω(min{ logΔ
log log𝑛

,
√︁

log𝑛
log log𝑛

})-round lower bound of Kuhn, Wattenhofer,
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and Moscibroda [KMW04,KMW16]. In particular, we next explain why the current
methods cannot prove a bound better than Ω(min{log ∆,

√
log 𝑛}).

In all the known locality-based lower bound arguments, to establish a 𝑇 -round lower
bound, it is necessary that within 𝑇 rounds, each node sees only a tree. That is,
each 𝑇 -hops neighborhood must induce a tree. Informally, it is said that these graphs
are locally “tree-like”. In particular, the graph must be high-girth and concretely, it
must have girth at least 2𝑇 + 1. Recall that the girth of an undirected graph is the
length of the its shortest cycle. The following corollary, which directly follows from
our MIS algorithm, shows that MIS can be solved faster in high-girth graphs, in a time
essentially matching the lower bound.

Corollary 3.5.2. There is a distributed randomized algorithm that in any graph with

girth 𝑔 = Ω(min{log ∆,
√

log 𝑛}) computes an MIS in 𝑂(min{log ∆+2𝑂(
√
log log𝑛),

√
log 𝑛})

rounds with high probability.

Proof. If log ∆ ≤
√

log 𝑛, then Theorem 3.1.1 implies a global round complexity of
𝑂(log ∆) + 2𝑂(

√
log log𝑛 = 𝑂(min{log ∆ + 2𝑂(

√
log log𝑛),

√
log 𝑛}). Suppose that log ∆ >√

log 𝑛. Then, to prove the claim, we need to establish a running time of 𝑂(
√

log 𝑛)

for graphs with girth 𝑔 = Ω(
√

log 𝑛). It is well-known that any 𝑔-girth graph has
arboricity 𝜆 = 𝑂(𝑛

2
𝑔−2 ). Thus, from Corollary 3.5.1, we get an 𝑂(

√
log 𝑛)-round MIS

algorithm for graphs with girth 𝑔 = Ω(
√

log 𝑛), which completes the argument.

From the above corollary, we can infer (informally) that one cannot obtain a lower
bound better than Ω(min{log ∆,

√
log 𝑛}) when the topology seen by each node within

the allowed time must be a tree. Thus, in an informal sense, to prove a better lower
bound, one has to part with these topologies which are locally “tree-like”. However,
that gives rise to intricate challenges and actually, to the best of our knowledge, there
is no distributed locality-based lower bound, in fact for any (local) problem, that does
not rely on locally tree-like topologies.

(C3) We get a faster MIS algorithm for Erdös-Rényi random graphs 𝐺(𝑛, 𝑝). The formal
statement is as follows:

Corollary 3.5.3. There is a distributed randomized algorithm that in a randomly

sampled Erdös-Rényi random graph 𝐺(𝑛, 𝑝) where the edge between each two nodes is

included with probability 𝑝, computes an MIS in 𝑂(
√

log 𝑛) rounds with high probability.

Proof. If 𝑝 = Ω(2
√
log𝑛

𝑛
), then it is easy to see that w.h.p. the graph has diameter

𝑂(
√

log 𝑛) hops. See e.g. [CL01] for a proof. In this case, in 𝑂(
√

log 𝑛) rounds, we
could make nodes simply learn the topology of the whole and then compute a solution
for it locally. The more interesting case is when 𝑝 = 𝑂(2

√
log𝑛

𝑛
). Here, it is easy to see

that with high probability ∆ = 𝑂(2
√
log𝑛). Hence, the algorithm of Theorem 3.1.1 runs

in at most 𝑂(
√

log 𝑛) rounds.
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(C4) Combined with a recursive sparsification method of Bisht et al. [BKP14], we get a faster
distributed (2, 𝛽)-ruling-set algorithm, which improves on the complexities of [BEPSv3]
and [BKP14]. Recall from Section 3.2 that this is an independent set 𝑆 such that each
node 𝑣 ∈ 𝑉 ∖𝑆 has a node 𝑢 ∈ 𝑆 within its distance 𝛽. In particular, a (2, 1)-ruling-set
is simply a Maximal Independent Set.

Corollary 3.5.4. There is a randomized distributed algorithm that computes a (2, 𝛽)-

ruling-set in 𝑂(𝛽 log1/𝛽 ∆) + 2𝑂(
√
log log𝑛) rounds, with high probability.

Proof Sketch. We make use of a simple probabilistic procedure of Kothapalli an Pem-
maraju [KP12], called sparsify. This procedure receives a parameter 𝑓 , and when run
on a given graph 𝐻 = (𝑉𝐻 , 𝐸𝐻) with maximum degree ∆𝐻 , in 𝑂(log𝑓 ∆𝐻) rounds, it
computes a subset 𝑉 ′

𝐻 ⊆ 𝑉𝐻 with the following two properties with high probability:
(1) each node 𝑣 ∈ 𝑉𝐻 is either in 𝑉 ′

𝐻 or has a neighbor in 𝑉 ′
𝐻 , and (2) each node 𝑣

′ ∈ 𝑉 ′
𝐻

has at most 𝑂(𝑓 log 𝑛) neighbors in 𝑉 ′
𝐻 .

The method for computing a (2, 𝛽)-ruling set works by 𝛽 − 1 recursive calls to the
sparsify subroutine and then one MIS call. The (𝑖 + 1)𝑡ℎ call to sparsify works on the
subgraph induced by the output of the 𝑖𝑡ℎ call and uses a parameter 𝑓𝑖, to be fixed
later. The call to the MIS algorithm runs on the graph induced by the output of the
last call to the sparsify subroutine. We use our MIS algorithm for this last step.

It is easy to see that the final output is a (2, 𝛽)-ruling set. The independence of it
holds trivially because of the last step being an MIS computation. The ruling property
of it—meaning that each node 𝑣 of 𝐺 has a node in the finally chosen set within its
distance 𝛽—follows because in each of the steps, the distance from the 𝑣 to the output
set grows by at most one.

Given the round complexity of each sparsify call and that of the MIS algorithm, the
overall round complexity is

log ∆

log 𝑓1
+

log(𝑓1 log 𝑛)

log 𝑓2
+ · · ·+ log(𝑓𝛽−2 log 𝑛)

log 𝑓𝛽−1

+ log(𝑓𝛽−1 log 𝑛) + 2𝑂(
√
log log𝑛).

To optimize this round complexity, we set 𝑓𝑖 = (log ∆)1−
𝑖

𝛽−1 . Thus, the overall round
complexity becomes 𝑂(𝛽 log1/𝛽 ∆) + 2𝑂(

√
log log𝑛), as claimed.

(C5) We get a faster distributed algorithm for the Lovász Local Lemma4, which improves
on results of Chung, Pettie, and Su [CPS14]. The exact guarantee provided by an

4We note that having an algorithm for a lemma might seem strange. This has become the standard
terminology in the literature and we just follow the standard. The concrete relation is as follows: The
Lovász Local Lemma proves the existence of a certain structure in a probabilistic spaces that satisfy particular
properties. The phrase algorithm for the Lovász Local Lemma is usually used to refer to an algorithm that
makes this existential result algorithmic and finds the related structure efficiently. Similarly, a distributed
algorithm for the Lovász Local Lemma is a an efficient distributed algorithm that finds this structure.
See [CPS14] for details.
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algorithm for the Lovász Local Lemma is somewhat detailed. We refer the interested
reader to [CPS14] for the precise description. Here, we just state the informal claim.

Corollary 3.5.5 (Informal). There is a randomized distributed algorithm for the Lovász

Local Lemma with round complexity of 𝑂(log 1
𝑒𝑝(Δ+1)

𝑛 · log ∆). Here 𝑒 is the base of the

natural logarithm, and ∆ and 𝑝 are respectively the degree of dependency and the given

upper bound on the probability of the each bad event in the LLL instance.

Proof Sketch. The core piece in the LLL algorithm of [CPS14] is an algorithm that
computes a Weak-MIS. Our MIS algorithm allows us to perform this part faster, hence
leading to an improvement on the time complexity. Roughly speaking, a Weak-MIS
computation should produce an independent set 𝑆 such that for each node 𝑣, with
probability at least 1− 1/ poly(∆), node 𝑣 is either in 𝑆 or has a neighbor in 𝑆. This
guarantee is achieved by our MIS algorithm in 𝑂(log ∆) rounds, as Lemma 3.4.2 proves.
In contrast, the method of [CPS14] used 𝑂(log2 ∆) round to compute a weak-MIS.
Thus, our new algorithm improves the round complexity of the distributed algorithmic
version of the Lovász Local Lemma presented by Chung, Pettie, and Su [CPS14] from
𝑂(log 1

𝑒𝑝(Δ+1)
𝑛 · log2 ∆) to 𝑂(log 1

𝑒𝑝(Δ+1)
𝑛 · log ∆). We note that for a weak-MIS to be

useful in the constructive Lovász Local Lemma version of [CPS14], there is another
technical condition regarding the independence between the events of different nodes.
We do not express this condition explicitly, as formally stating it is somewhat cum-
bersome. But we note that it is satisfied by our MIS algorithm and it follows directly
from the independence guarantee stated in Lemma 3.4.2.

(C6) In the Local Computation Algorithms (LCA) model of Rubinfeld et al. [RTVX11] and
Alon et al. [ARVX12], we get improved bounds for computing MIS. This works by
replacing a part of the algorithm of Levi et al. [LRY15] with our MIS algorithm. We
do not define the model or describe the whole approach here. We simply point out the
change that is needed to improve the bound. We refer the interested to [LRY15] for
details.

Corollary 3.5.6. There is a randomized local computation algorithm that computes

a maximal independent set with time complexity 2𝑂(log2 Δ) log 𝑛 and space complexity

2𝑂(log2 Δ) log2 𝑛.

Proof Sketch. The result follows from replacing the 𝑂(log2 ∆) round Weak-MIS dis-
tributed algorithm of [LRY15, Algorithm], which is based on the distributed Weak-
MIS algorithm of [CPS14], with our new distributed MIS algorithm. Then, following
steps of [LRY15, Section 3.3], this distributed algorithm is turned into an LCA using
a transformation approach of Parnas and Ron [PR07]. In this transformed algorithm,
when answering the query about each one node, the algorithm needs to process its
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𝑂(log ∆)-neighborhood, instead of its 𝑂(log2 ∆)-neighborhood done before. Since the
graph has maximum degree at most ∆, this means that the algorithm needs to process
∆𝑂(logΔ) = 2𝑂(log2 Δ) nodes, instead of the previous bound of ∆𝑂(log2 Δ) = 2𝑂(log3 Δ). It
is easy to go through the proofs of [LRY15, Lemma 3 and Theorem 4] and see that this
change improves the time and space complexities from, respectively, 2𝑂(log3 Δ) log3 𝑛

and 2𝑂(log3 Δ) log2 𝑛 bounds of [LRY15] to 2𝑂(log2 Δ) log3 𝑛 and 2𝑂(log2 Δ) log2 𝑛.

(C7) We get a faster distributed MIS algorithm for the CONGESTED-CLIQUEmodel [LPPSP03].
In this model, per round, each node can send one 𝑂(log 𝑛)-bit message to each of the
other nodes (even those not adjacent to it). The formal statement is as follows:

Corollary 3.5.7. There is a randomized distributed MIS algorithm in the CONGESTED-

CLIQUE model that computes an MIS in 𝑂(log ∆) rounds, with high probability.

Proof. To obtain the claimed MIS algorithm, run the MIS algorithm of Theorem 3.1.2
for Θ(log ∆) rounds. If ∆ ≥ 𝑛0.1, with high probability, all nodes are removed and
thus we are already done. Suppose that ∆ ≥ 𝑛0.1. It follows from Lemma 3.4.2
that each edge is left with probability at most 1/∆10. Thus, the expected number
of edges that remain is at most 𝑛Δ

Δ10 ≪ 𝑛. The number of remaining edges is in
𝑂(𝑛) with high probability. The reason is as follows: Lemma 3.4.2 shows we have
independence between the random events of different edges remaining, as each edge
can only depend on the events of nodes within 2-hop distance of its endpoints, and thus,
each edge depends on no more than ∆7 edges. Using a standard variant of Chernoff’s
concentration bound for random variables with bounded dependency degrees [Pem01,
Theorem 1], we get that that the total number of edges left is at most 𝑂(𝑛), with high
probability. Now since only 𝑂(𝑛) edges remain, all these edges can be gathered in a
leader using Lenzen’s routing scheme [Len13] in 𝑂(1) rounds. Lenzen’s routing scheme
in the congested clique provides the following guarantee: in 𝑂(1) rounds, it can deliver
messages, each from a given source to a given destination, assuming that each node
is the source for at most 𝑂(𝑛) messages and each node is the destination for at most
𝑂(𝑛) messages. Note that in our application, since we desire to deliver 𝑂(𝑛) edges
to the leader, the latter condition is satisfied. Once the leader has received all these
edges, it solves the remaining problem locally and then sends back the outputs to all
nodes, reporting to them whether they are in the final MIS or not, in 𝑂(1) rounds.

Further Developments and Extensions Subsequent to the publication of the confer-
ence version of our MIS result in [Gha16b], there have been a number of papers that use
this algorithmic idea, sometimes with some modifications, to solve other problems. We here
simply list these papers and very briefly overview the role of our algorithm in their results.

∙ Bar-Yehuda, Censor-Hillel, Ghaffari, and Schwartzman [BYCHGS16] used modifica-
tions of our MIS algorithm to achieve a round complexity of 𝑂( logΔ

log logΔ
) for distributed
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(1 + 𝜀) approximation of maximum cardinality matching and (2 + 𝜀) approxima-
tion of maximum weight matching. These improve on 𝑂(log 𝑛) round algorithms
of [LPSR09,LPSP15] for the same problems.

∙ Censor-Hillel, Parter, and Schwartzman [CHPS16] used a direct derandomization of
our MIS algorithm to present an 𝑂(log ∆ log 𝑛) round deterministic distributed MIS
algorithm in the CONGESTED-CLIQUE model.

∙ Holzer and Lynch [HL16] extended and modified this algorithm to present an efficient
MIS algorithm in the beeping model of wireless networks.

∙ Ghaffari [Gha16a] used this algorithm as a starting point for an MIS algorithm with a
round complexity of �̃�( logΔ√

log𝑛
+ 1) = �̃�(

√
log ∆) in the CONGESTED-CLIQUE model,

which is the first such algorithm with a sublogarithmic complexity.

3.6 Open Questions

For the MIS problem, closing the gap between the new upper bound of 𝑂(log ∆)+2𝑂(
√
log log𝑛)

and the lower bounds of Ω(min{ logΔ
log logΔ

,
√︁

log𝑛
log log𝑛

}) is the most obvious and also the most

important open question. We can focus on this gap in three regimes, which we discuss below.

∙ The gap is most significant when log ∆ = 𝜔(
√

log 𝑛). It is unclear if here, the upper
bound is the one that should be improved—e.g., as suggested by the case of random
graphs or high-girth graphs, discussed in (C3) and (C2) above—or the lower bound
should be improved. It appears that either would require quite novel techniques. Par-
ticularly, we saw in (C2) of Section 3.5 that if the lower-bound is the one that should
be improved, we need to develop lower bound arguments that can handle topologies
which are not locally “tree-like”.

∙ The additive 2𝑂(
√
log log𝑛) term becomes the dominant part of the complexity when the

maximum degree ∆ is very small. The only concrete lower bound known in this regime
is the Ω(log* 𝑛) round lower bound of Linial [Lin92], which holds for cycle graph where
∆ = 2. However, thanks to recent results of Chang et al. [CKP16], we now know
why improving this 2𝑂(

√
log log𝑛) term might be a hard task, or more concretely, that it

requires significant new ideas. In particular, Chang et al. show that improving on the
2𝑂(

√
log log𝑛) 𝑛-dependency term in the round complexity of randomized MIS algorithms

would lead to an improvement in the 𝑛-depenency of deterministic MIS algorithms,
where the best known bound is 2𝑂(

√
log𝑛) due to Panconesi and Srinivasan [PS92]. The

latter has remained the best known bound for about 25 years. Improving this bound is
one of the most well-known open problems in the area of distributed graph algorithms
and any (significant) improvement would be considered a major breakthrough.
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∙ Finally, a third curious case in the gap is the log log ∆ factor difference between the de-
pendencies on ∆, between the upper and lower bound. Although this is a small gap, it
hinges on a very intriguing point. In particular, the lower bound of Kuhn, Wattenhofer,
and Moscibroda [KMW04,KMW16] is proven by showing a lower bound on constant
approximation of vertex cover and then using reductions from maximal matching to
vertex cover, and from maximal independent set to maximal matching, to lift the lower
bound to MIS. It is worth noting that the Ω(log ∆) seemed to be the more natural
lower bound and indeed, at the time of the publication of the conference version of our
result [Gha16b], it was believed that Ω(log ∆) is a lower bound. This is because of a
lower bound improvement from Ω(log ∆/ log log ∆) to Ω(log ∆), which was claimed in
a technical report [KMW10] follow up of [KMW04]. However, this improvement was
refuted very recently. Bar-Yehuda et al, Censor-Hillel, and Schwartzman [BYCHS16]
presented a 2 + 𝜀 approximation of vertex cover running in time 𝑂(log ∆/ log log ∆),
which proves that the initial lower bound is indeed tight. We note that the journal
version of the lower bound [KMW16] has fixed the issue and the provides a correct
proof for an Ω(log ∆/ log log ∆) lower bound. Hence, clearly the lower bound methods
of [KMW04,KMW16], which are based on reductions from MIS to vertex cover, can-
not prove a lower bound better than Ω(log ∆/ log log ∆) for MIS. This gives the hope
that maybe the upper bound for MIS can be improved. Indeed, recently Bar-Yehuda,
Censor-Hillel, Ghaffari, and Schwartzman [BYCHGS16] presented an algorithm with a
round complexity of 𝑂(log ∆/ log log ∆) for 1 + 𝜀 approximation of Maximum Match-
ing. A core part of this algorithm of [BYCHGS16] takes a step towards improving
the complexity of MIS; it particularly computes an almost-maximal independent set
in 𝑂(log ∆/ log log ∆), under a certain strong definition of almost-maximality. The
algorithm is in fact a simple modification of the MIS algorithm that we presented here.
See [BYCHGS16] for details. However, it is not clear if this round complexity bound
can be obtained also for maximal independent set.
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Part II

Congestion—Graph-Theoretic

Foundations & Results
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Chapter 4

Connectivity Decompositions

4.1 Introduction & Related Work

Edge and vertex connectivity are two basic graph-theoretic concepts. As an important
application, they characterize limits on how well information can be transferred among nodes
of a network: one of the central goals of any communication network and also a core issue
in distributed computing [Pel00, Section 1.3.1]. This is because each edge or vertex cut
defines an upper bound on the flow across the cut. Naturally, we expect networks with
larger connectivity—that is, those in which the minimum cut size is larger—to provide a
better communication medium and support larger information flow. However, designing
distributed algorithms that leverage large connectivity remains challenging.

With the goal of obtaining a large flow of information, we set forth a framework—
which we call connectivity decomposition—that decomposes the connectivity of the graph
into smaller and more manageable units, roughly speaking. More concretely, a connectivity
decomposition partitions a graph with large connectivity into many (essentially) “disjoint”
trees, while almost preserving the total connectivity through the trees. These decompositions
open the road for parallelizing the flow of information along the trees and thus achieving a
total flow value close to the connectivity of the network.

The remainder of this section is organized as follows: In Section 4.1.1, we explain the
concepts of these connectivity decompositons, while drawing parallels between those of the
edge connectivity decomposition and those of the vertex connectivity decomposition. In
Section 4.1.2, we then review the edge connectivity decomposition results that follow from
previously known work, especially the seminal 1960 work of Tutte [Tut61] and Nash-Williams
[NW61]. In Section 4.1.3, we present our results on vertex connectivity decompostions.
Finally, in Section 4.1.4, we state some implications and applications of our results.

As a side remark, we note that the graph-theoretic framework and the related existen-
tial results presented here provide the basics and set the stage for some of the distributed
algorithms that we present in Part III of the thesis. In particular, in Chapter 9 of Part III,
we present efficient distributed and centralized algorithms for constructing the connectivity
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decompositions that we prove to exist in this chapter, and we also explain the algorithmic
applications of these constructions.

4.1.1 Introducing Connectivity Decompositions

Connectivity Decomposition and Tree Packings

Menger’s theorem (see [BM08, Chapter 9])—which is one of the most basic results concerning
graph connectivity—states that in each graph with edge connectivity 𝜆 or vertex connectivity
𝑘, each pair of vertices is connected via 𝜆 edge-disjoint paths or 𝑘 internally vertex-disjoint
paths, respectively. However, when we have to deal with more than two nodes, this theorem
does not provide a strong enough characterization. This is especially because it does not
provide any information about the structure of the overlaps between paths of different vertex
pairs, or about structures connecting three or more nodes (i.e., Steiner trees).

To organize the connectivity in a way that makes it accessible to algorithms, and espe-
cially for distributed algorithms, we consider edge and vertex connectivity decompositions.
When we are interested in edge connectivity and edge cuts, this will be by decomposing the
graph into edge-disjoint spanning trees. When we are interested in vertex connectivity and
vertex cuts, this will be by decomposing the graph into vertex-disjoint dominating trees.

Recall that a tree 𝐻 = (𝑉𝑇 , 𝐸𝑇 ) is a spanning tree of 𝐺 = (𝑉𝐺, 𝐸𝐺) if 𝐸𝑇 ⊆ 𝐸𝐺 and
𝑉𝑇 = 𝑉𝐺. On the other hand, a tree𝐻 = (𝑉𝑇 , 𝐸𝑇 ) is called a dominating tree of 𝐺 = (𝑉𝐺, 𝐸𝐺)

if 𝐸𝑇 ⊆ 𝐸𝐺 and 𝑉𝑇 dominates 𝐺, that is, each node in 𝑉𝐺 ∖ 𝑉𝑇 has a 𝐺-neighbor in 𝑉𝑇
1.

We next describe and discuss the concepts of edge and vertex connectivity decomposition,
via spanning and dominating tree packings, respectively:

∙ Edge Connectivity Decomposition via Spanning Tree Packing: We define a
spanning tree packing of size 𝜆′, for a non-negative integer 𝜆′, to be a collection of 𝜆′

edge-disjoint spanning trees. Given such a packing, for each pair of vertices, we get 𝜆′

edge-disjoint paths, one through each tree. More importantly, for any number of vertex
pairs, the paths going through different trees are edge-disjoint. Hence, a spanning tree
packing can be viewed as a decomposition of edge connectivity. Figure 4-1a shows an
example graph with a spanning tree packing of size 2.

∙ Vertex Connectivity Decomposition via Dominating Tree Packing: We define
a dominating tree packing of size 𝑘′, for a non-negative integer 𝑘′, to be a collection
of 𝑘′ vertex-disjoint dominating trees. Given such a packing, for each vertex pair we
get 𝑘′ internally vertex-disjoint paths, one through each tree. More importantly, for
any number of pairs, the paths going through different trees are internally vertex-
disjoint. Hence, a dominating tree packing can be viewed as a decomposition of vertex

1Note that if we want to have many vertex-disjoint subgraphs, we cannot ask them to be “spanning"

subgraphs. As we will see soon, in this case, the “dominating" condition turns out to be the natural and the
practically relevant requirement.
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(a) Two edge-disjoint spanning trees,

that is, a spanning tree packing of size 2.

(b) Two vertex-disjoint dominating trees,

that is, a dominating tree packing of size 2.

connectivity. Figure 4-1b shows an example graph with a dominating tree packing of
size 2.

Fractional Relaxation In both spanning and dominating tree packings, we can relax the
disjointness requirement to fractional disjointness. That is, we allow the trees to overlap
but now each tree 𝜏 has a weight 𝜔𝜏 ∈ [0, 1] and for each edge or vertex, respectively,
the total weight of the trees including it has to be at most 1. In applications, this naturally
corresponds to sharing the edge (or the vertex) between the trees in a way that is proportional
to their weights. For instance, in information dissemination, we could use time-sharing where
each edge (or vertex) gets used in each of the trees that include it for a fraction of time
proportional to the weight of that tree. In fact, for all the applications that we have in mind,
these fractional tree packings are as useful as their stronger integral packing counterparts.

4.1.2 Known Results On Edge Connectivity Decomposition

Edge connectivity decompositions have been well-known2 for a long time, thanks to beau-
tiful (existential) results of Tutte [Tut61] and Nash-Williams [NW61] from 1960. As shown
in [Kun74], the results of these papers imply that each graph with edge-connectivity 𝜆

contains a spanning tree packing of size ⌈𝜆−1
2
⌉. This bound is existentially tight even for

the fractional version. This structural result leads to numerous applications for different
problems concerning edge-connectivity. Two well-known examples in the area of graphs al-
gorithms are the first near-linear time (and also the current best) min-cut algorithm [Kar96]
and the tightest proof of the upper bound of 𝑂(𝑛2𝛼) on the number of 𝛼-minimum edge-
cuts [Kar94a], which itself has many implications including Karger’s famous random edge-
sampling results [Kar94a,Kar95].

2However, we remark that they were not called “edge-connectivity decompositions”. Often, the phrase
“edge-disjoint spanning trees” was used to refer to the same concept.
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Remark We note that although we do not present a new graph-theoretic result on edge
connectivity decomposition, we mentioned them here for two reasons: (1) Edge connectivity
decompositions are quite similar, in nature, to those of vertex connectivity decomposition
and thus contrasting them seems instructive. (2) In Part III of the thesis, and particularly
in Chapter 9, we present distributed algorithms for constructing edge connectivity decom-
positions, as well as vertex connectivity decompositions, and thus reviewing these basic
graph-theoretic concepts here sets the stage for those parts.

4.1.3 Our Results on Vertex Connectivity Decomposition

Our results on vertex connectivity decompostion can be viewed as analogues of the classical
results of Tutte [Tut61] and Nash-Williams [NW61] on edge connectivity decomposition. We
particularly show matching or nearly matching results on fractional and integral dominating
tree packing sizes in 𝑘-vertex-connected graphs.

To simplify matters, instead of working directly with dominating trees, we work with
closely related objects, Connected Dominating Sets (CDSs), and packings of CDSs. A Con-
nected Dominating Set (CDS) is a dominating set of vertices—meaning that each node of
the graph is either in this set or has a neighbor in it—that induces a connected subbgraph.
Note that packing dominating trees and CDSs are equivalent, in the following sense: On
one hand, given a CDS of the graph 𝐺, one can easily find a dominating tree in this CDS,
simply by picking a spanning tree of the subgraph induced by the CDS. On the other hand,
given a dominating tree of the graph 𝐺, the set of vertices of this dominating tree form a
CDS. We work with CDSs because then we only need to identify the subsets of the nodes in
each structure, i.e. each CDS, instead of needing to also identify the related edges. Once the
CDSs in the packing are identified, one can use any spanning tree of the subgraph induced
by each CDS to get a corresponding dominating tree packing.

Before stating our results, we note that the concept of CDS packing was touched upon
in the past in the literature. However, obtaining an optimal CDS packing, or even CDS
packings whose size is the vertex connectivity, remained wide open. The CDS packing
problem was first studied in [HL83] where the size of a maximum CDS packing is called
the connected domatic number (CDN). Zelinka [Zel86] showed a number of results on corner
cases of the CDN; for instance, the simple observation that it is upper bounded by the vertex
connectivity. Moreover, Hartnell and Rall [HF01] showed that the CDN of planar graphs is
at most 4.

Our Results: We provide three results on the size of fractional and integral CDS pack-
ings in 𝑘-vertex-connected graphs, Theorem 4.1.1, Theorem 4.1.2, and Theorem 4.1.3. The
first two theorems are constructive, and prove existence of large fractional or integral CDS
packings. The third is an impossibility result, which complements the first two and proves
their bounds to be tight or nearly tight.
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We first show that each graph with vertex-connectivity 𝑘 contains a fractional CDS
packing of size Ω(𝑘/ log 𝑛).

Theorem 4.1.1. Every 𝑘-vertex-connected 𝑛-vertex graph has a fractional CDS packing of

size Ω
(︀

𝑘
log𝑛

+ 1
)︀
.

Specifically, we show how to construct a collection of 𝑘 CDSs, each consisting of 𝑂
(︀
𝑛 log𝑛

𝑘

)︀
vertices, such that each vertex is in at most 𝑂(log 𝑛) of the CDSs.

Using a similar construction style to that of Theorem 4.1.1, we also obtain an efficient
way to get a large CDS partition, which leads to Theorem 4.1.2.

Theorem 4.1.2. Every 𝑘-vertex-connected 𝑛-vertex graph graph 𝐺 has an integral CDS

packing of size Ω
(︀

𝑘
log2 𝑛

+ 1
)︀
.

The following theorem complements the above by showing that the Ω
(︀

𝑘
log𝑛

)︀
bound

achieved for fractional CDS packing bound is optimal.

Theorem 4.1.3. For any sufficiently large 𝑛, and any 𝑘 ∈ [1, 𝑛/4], there exist 𝑛-vertex

graphs with vertex connectivity 𝑘 where the maximum fractional (or integral) CDS packing

size is 𝑂
(︀

𝑘
log𝑛

+ 1
)︀
.

4.1.4 Implications & Applications of Our Results

Our vertex connectivity decomposition result has implications for problems in graph theory
and in network information dissemination. These implications are interesting also as existen-
tial results, that is, even without considering the related algorithmic aspects. We overview
this existential implications here. In Chapter 9, we see how these implications can be made
algorithmic with efficient algorithms.

Vertex-Independent Trees Zehavi and Itai [ZI89] conjectured in 1989 that each 𝑘-
vertex-connected graph contains 𝑘 vertex-independent trees, that is, 𝑘 spanning trees all
rooted in one node 𝑟 ∈ 𝑉 such that for each vertex 𝑣 ∈ 𝑉 , the paths between 𝑟 and 𝑣 in
different trees are internally vertex-disjoint. This conjecture remains open. Theorem 4.1.2
allows us to obtain an approximation of this conjecture. Concretely, we show that

Corollary 4.1.4. Any 𝑘-vertex-connected 𝑛-node graph contains Ω(𝑘/ log2 𝑛 + 1) vertex-

independent trees.

This is because, given a CDS packing of size Ω(𝑘/ log2 𝑛+1), we can obtain Ω(𝑘/ log2 𝑛+1)

vertex-independent trees as follows: define each tree by taking a spanning subtree of the CDS,
then adding all nodes that are not in the CDS as the leaves of the tree, and orienting the tree
as rooted in vertex 𝑟. Notice that since different CDSs are vertex-disjoint, for each vertex
𝑣 ∈ 𝑉 , the paths between 𝑟 and 𝑣 in different trees will be internally vertex-disjoint.
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Throughput of Network Information Dissemination and the Network Coding

Gap Vertex connectivity decompositions and CDS packings provide an asymptotically
tight combinatorial characterization of the throughput of network information dissemina-
tion protocols. This leads to an interesting and important result in network information
disseminations. Here, we describe only the existential aspects. The algorithmic aspects are
deferred to Part III of this thesis.

Consider the V-CONGEST model where in each round, each node of a network can send
one 𝐵-bits message to all its neighbors. We show that the achievable total throughput when
globally broadcasting messages using routing-based algorithms can exactly be characterized
by the size of the largest CDS packing of the network graph. A routing-based algorithm
(also known as store-and-forward) corresponds to the classical paradigm of routing where
messages are viewed as atomic tokens and each node only stores and forwards messages and
cannot combine them or parts of them3.

Theorem 4.1.5. Consider any network in the V-CONGEST model. Given a (fractional) CDS

packing of size 𝐾, we can construct a store-and-forward broadcast algorithm with throughput

Ω(𝐾) messages per round. Conversely, given a store-and-forward broadcast algorithm with

throughput 𝐾 messages per round, we can construct a fractional CDS packing of size 𝐾.

The proof of this theorem is presented in Section 4.6. Using Theorem 4.1.5 and our CDS
packing result Theorem 4.1.1, we get that there exists a routing-based broadcast algorithm
with throughput Θ( 𝑘

log𝑛
) messages per round. Moreover, combining Theorem 4.1.5 with

Theorem 4.1.3, we get that this throughput is indeed optimal, in the worst case network
graph with vertex connectivity 𝑘.

The above also tightly characterizes the network coding gap (i.e., the throughput gain
provided by network coding compared to routing) for the V-CONGEST model. Techniques
of [Hae11] can be used to prove, given full knowledge of the topology of the network, one
can design a protocol based on network coding that can achieve a throughput of Θ(𝑘).
Thus, our tight Θ( 𝑘

log𝑛
) CDS-packing bound—proven in two parts in Theorem 4.1.1 and

Theorem 4.1.3—implies that the network coding gap for broadcast in V-CONGEST is a tight
Θ(log 𝑛).

We note that network coding has been studied extensively (see [ACLY00] and citations
thereof). Since the gains of network coding are usually accompanied by new complications
and costs (see e.g. [FS07]), determining the network coding gap for different networking
models is one of the important related questions. This has been of interest both in theory
(see, e.g., [LLL09, AC04, LM09, GK08, AGHK13]) and in practice (especially for wireless
networks—see [KRH+06] and its citations). In particular, in a seminal paper, Li et al.
[LLL09] use the Tutte-Nash-Williams edge-disjoint spanning trees result to show that in
undirected wired networks—the model where in each round each node can send one distinct
message to each of its neighbors—the network coding gap is Θ(1). Agarwal and Charikar

3This is in contrast to the newer (more general and complex) paradigm of network coding (see [ACLY00]
and citations thereof) where each node can send any 𝐵-bit function of the received messages.
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[AC04] prove an Ω(log2 𝑛/ log2 log 𝑛) lower bound on the network coding gap in directed
wired networks, while the related upper bound remains wide open. Alon et al. [AGHK13]
showed an Ω(log log 𝑛) bound on the network coding gap for the wireless network model
below the MAC layer (i.e., with collisions).

4.2 Preliminaries

Definition 4.2.1. (Dominating Set and Connected Dominating Set) Given a graph

𝐺 = (𝑉,𝐸), a set 𝑆 ⊆ 𝑉 is called a dominating set iff each vertex 𝑢 ∈ 𝑉 ∖ 𝑆 has a neighbor

in 𝑆. The set 𝑆 is called a connected dominating set (CDS) iff 𝑆 is a dominating set and

𝐺[𝑆] is connected. If 𝑆 is a dominating set of 𝐺, we also say that 𝑆 dominates 𝑉 .

Definition 4.2.2 (CDS Packing). A CDS packing of a graph 𝐺 = (𝑉,𝐸) is a partition

𝑉1∪· · ·∪𝑉𝑡 = 𝑉 of the vertices 𝑉 such that each set 𝑉𝑖 is a CDS. The size of a CDS packing

is the number of CDSs of the partition. The maximum size of a CDS packing of 𝐺 is denoted

by 𝐾CDS (𝐺).

Definition 4.2.3 (Fractional CDS Packing). Let CDS (𝐺) be the set of all CDSs of a

graph 𝐺. A fractional CDS packing of 𝐺 assigns a non-negative real-valued weight 𝑥𝜏 to each

𝜏 ∈ CDS (𝐺) such that for each vertex 𝑣 ∈ 𝑉 ,
∑︀

𝜏∋𝑣 𝑥𝜏 ≤ 1. The size of this fractional CDS
packing is

∑︀
𝜏∈CDS(𝐺) 𝑥𝜏 . The maximum size of a fractional CDS packing of 𝐺 is denoted by

𝐾 ′
CDS (𝐺).

Note that a CDS packing is a special case of a fractional CDS packing where each
𝑥𝜏 ∈ {0, 1}. In other words, fractional CDS packing is the LP relaxation of CDS pack-
ing when formulating CDS packing as an integer programming problem in the natural way.
Consequently, we have 𝐾CDS (𝐺) ≤ 𝐾 ′

CDS (𝐺) for every graph 𝐺.
We remark that the maximum CDS packing size of graph 𝐺 is sometimes also called the

connected domatic number of 𝐺 [HL83,Zel86,HF01]. Analogously, the maximum fractional
CDS packing size can be referred to as the fractional connected domatic number of 𝐺.

As each CDS must contain at least one vertex of each vertex cut, we have 𝐾CDS (𝐺) ≤ 𝑘.
Based on the same basic argument, the same upper bound applies to fractional CDS packings:

Proposition 4.2.4. For each graph with vertex-connectivity 𝑘, we have

𝐾CDS (𝐺) ≤ 𝐾 ′
CDS (𝐺)

(*)
≤ 𝑘.

Proof. Consider a vertex cut 𝒞 ⊆ 𝑉 of 𝐺 that has size exactly 𝑘. Each CDS 𝜏 must include
at least one node in 𝒞. For each CDS 𝜏 ∈ CDS (𝐺), pick one node 𝑣 ∈ 𝐶 as a representative
of 𝜏 in the cut and let us denote it by Rep(𝜏). Thus, for any fractional CDS Packing of 𝐺,
we have ∑︁

𝜏∈CDS(𝐺)

𝑥𝜏 =
∑︁
𝑣∈𝒞

∑︁
𝜏∈CDS(𝐺)

𝑠.𝑡. 𝑣=Rep(𝜏)

𝑥𝜏 ≤
∑︁
𝑣∈𝒞

1 = |𝒞| = 𝑘.
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Since the above holds for any fractional CDS Packing of 𝐺, we get that 𝐾 ′
CDS (𝐺) ≤ 𝑘.

We prove in Theorem 4.1.3, which is presented in Section 4.5, that the gap in the in-
equality (*) can be as large as Ω(log 𝑛). On the other hand, Theorem 4.1.1, which we prove
in the next section shows that this gap cannot be larger than 𝑂(log 𝑛).

4.3 Fractional CDS Packing

In this section, we present a method to construct a fractional CDS packing of size 𝑂(𝑘/ log 𝑛+

1). This serves mainly as a proof of existence, but it can also be seen as an polynomial-time
centralized construction. Recall that Theorem 4.1.3 (proven in Section 4.5) shows that this
𝑂(𝑘/ log 𝑛) bound is existentially optimal.

We note that in Section 4.4, we use a variant of the construction we explain here to
obtain an integral CDS packing. In particular, the construction in Section 4.4 relies on a
random sampling of vertices. To keep the explanations as close as possible, we generalize
the construction of this section, and we present it in a generalized setting where each vertex
is kept with probability 𝑝. In this generalized setting, we give a fractional CDS packing with
size Ω(𝑘𝑞2/ log 𝑛), where 𝑞 = 1 − (1 − 𝑝)1/(3𝐿) and 𝐿 = 𝜆 log 𝑛 = Θ(log 𝑛) is the number of
layers in the construction (to be explained soon). Setting 𝑝 = 1 easily takes us back to the
setting where all nodes are kept. In particular, when we set 𝑝 = 1, we get 𝑞 = 1 and thus,
the fractional CDS packing size becomes Ω(𝑘/log 𝑛) as claimed.

4.3.1 High-Level Outline of the Construction

Construction Framework: Transition to a Nicely-Structured Virtual Graph

We construct the fractional CDS packing gradually. We start in a setting where each even-
tual CDS is an empty set. We then gradually add nodes to the eventual CDSs until they
satisfy domination. Afterward, we gradually add more nodes until the eventual CDSs satisfy
connectivity.

To realize the above outline, we ideally would like to partition the vertices of the graph
into 𝐿 layers and to construct the CDSs gradually, as we through the layers one-by-one. In
each layer, we would add only the vertices of that layer to the (eventual) CDSs. For this
layer-by-layer construction to work, we need that the subgraph induced by each layer has a
high vertex connectivity. However, it is not easy to partition the graph into many layers and
have a high vertex connectivity in the subgraph induced by each layer. That is, having a
high per-layer vertex connectivity is hard when partitioning the vertices of the original graph
𝐺 into layers. Because of this, instead of working directly on 𝐺, we transform 𝐺 into a new
graph 𝒢 = (𝒱 , ℰ) that we call the virtual graph. We next present an informal discussion
about this virtual graph and how it helps us in the construction, and then we present its
formal definition.
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Informal Discussion about the Virtual Graph: In an informal sense, the virtual graph
𝒢 is essentially made of Θ(log 𝑛) copies of the original graph 𝐺. In particular, it has Θ(log 𝑛)

layers, where each layer is a copy of the original graph 𝐺. Moreover, copies of the same or
adjacent vertices are connected even across different layers. Since each layer is a copy of
𝐺, each layer has a high vertex connectivity. This opens the road for our layer-by-layer
CDS packing construction. In particular, we will construct an integral CDS packing of size
Θ(𝑘𝑞2) on this virtual graph 𝒢 by putting each copy vertex in exactly one CDS. Then, this
integral CDS packing of 𝒢 can be easily turned into a fractional CDS packing with size
Θ(𝑘𝑞2/ log 𝑛) in the original graph 𝐺, simply by giving each CDS weight 1/Θ(log 𝑛). This
will be formalized soon.

Formal Definition of the Virtual Graph 𝒢 = (𝒱 , ℰ): For each vertex 𝑣 ∈ 𝑉 (and
a sufficiently large constant 𝜆), create 3𝐿 = 3𝜆 log 𝑛 virtual vertices that are copies of 𝑣,
referred to as (𝑣, 1), (𝑣, 2), . . . , (𝑣, 3𝐿), three for each layer ℓ in [1, 𝐿]. Connect two virtual
vertices (𝑣, 𝑖) and (𝑢, 𝑗) if and only if they are copies of the same real vertex, that is 𝑣 = 𝑢,
or they are copies of two adjacent real vertices, that is, 𝑣 and 𝑢 are adjacent in 𝐺.

Note that for each layer ℓ, the virtual vertices of layer ℓ induce a copy of 𝐺. For each set
of virtual vertices 𝒲 ⊆ 𝒱 , define the projection Ψ(𝒲) of 𝒲 onto 𝐺 as the set 𝑊 ⊆ 𝑉 of
real vertices 𝑤, for which at least one virtual copy of 𝑤 is in 𝒲 .

Proposition 4.3.1. Two vertices in 𝒢 are connected directly if and only if they project to

the same vertex or to neighboring vertices in 𝐺. Thus, 𝒢[𝒲 ] is connected (resp. dominating)

if and only if 𝐺[Ψ(𝒲)] is connected (resp. dominating).

Translating Random Sampling to the Virtual Graph Recall from the second para-
graph of the section that we are working in a generalized setting where each node of 𝐺 is
sampled with probability 𝑝, and with the remaining probability, the node is discarded. In
particular, setting 𝑝 = 1 takes us back to the setting with no sampling where all nodes are
kept. To translate this sampling to 𝒢, consider the following process: sample each virtual
vertex with probability 𝑞 = 1− (1− 𝑝)1/(3𝐿) and then sample each real vertex 𝑣 ∈ 𝑉 if and
only if at least one of its virtual copies is sampled (that is, the sampled real vertices are
obtained by projecting the sampled virtual vertices onto 𝐺). The probability of each real
vertex being sampled is exactly 1− (1− 𝑞)3𝐿 = 𝑝. Henceforth, we work on 𝒢 assuming that
each virtual vertex is sampled independently with probability 𝑞 = 1− (1− 𝑝)1/(3𝐿) ≥ 𝑝

6𝐿
.

Construction Outline on the Virtual Graph

High-Level Discussion In the rest of this section, we work on 𝒢 and show how to con-
struct 𝑡 = 𝛿 · 𝑘𝑞2 vertex-disjoint connected dominating sets on the sampled virtual vertices,
for a sufficiently small constant 𝛿 > 0. That is, we create an integral CDS packing of size
Ω(𝑘𝑞2) on the sampled virtual vertices. This can be easily transformed into the claimed
fractional CDS packing size of Ω(𝑘𝑞2/ log 𝑛) on the original sampled graph: since each real
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vertex has Θ(log 𝑛) virtual copies, by giving a weight of 1/Θ(log 𝑛) to each CDS in the
integral CDS packing of 𝒢, we get the claimed fractional CDS packing size of 𝐺.

We have 𝑡 classes and we assign each sampled virtual vertex to one class, such that,
eventually each class is a CDS, w.h.p. To organize the construction, we group the virtual
vertices in 𝐿 layers, putting three copies of graph 𝐺 in each layer. Inside each layer, the
three copies are distinguished by a type number in {1, 2, 3}.

Notation We now present the notations that we use throughout the construction and the
analysis. Let 𝒮 𝑖

ℓ be the set of sampled virtual vertices of layers 1 to ℓ that are assigned to
class 𝑖. Let 𝑁 𝑖

ℓ be the number of connected components of 𝒢[𝒮 𝑖
ℓ]. Finally, define 𝑀ℓ :=∑︀𝑡

𝑖=1(𝑁
𝑖
ℓ − 1) to be the total number of excess components after considering layers 1, . . . , ℓ,

compared to the ideal case where each class is connected.

Construction Plan: Domination and Connectivity Initially 𝑀1 ≤ 𝑛. The idea is
to do the assignments of vertices to classes such that 𝑀ℓ decreases essentially exponentially
with ℓ, until it becomes zero, meaning each class induces a connected sub-graph.

The assignments are done as follows: We first do a jump start and use all the first 𝐿
2

layers together in one shot to achieve domination for all the classes. We describe this part in
Section 4.3.2. We note this part of the construction is straightforward, and the technically
interesting aspect is in achieving connectivity. After obtaining domination in the first half
of the layers, we aim for achieving connectivity in each class. This part is described in
Section 4.3.3. In particular, we go over the remaining 𝐿

2
layers one by one, and gradually

add vertices of the layers to the classes in order to achieve connectivity. In an informal
sense, in each layer ℓ ∈ [𝐿/2, 𝐿− 1], we assign vertices of layer ℓ + 1 to classes based on the
assignments of vertices of layers 1 to ℓ, using a careful method. This method ensures that
the total number 𝑀ℓ of excess connected components over all the classes together decreases
essentially as much as possible. We show that in each layer this number decreases by a
constant factor (in expectation). After working through all the layers, we reach a setting
where𝑀ℓ = 0 for ℓ = 𝐿, with high probability, Once𝑀ℓ = 0, all the classes have connectivity.
Hence, at that point, each class is a CDS.

4.3.2 Domination

Assignments for Domination We begin the assignment with a jump-start, assigning
each of the sampled virtual vertices of layers 1 to 𝐿

2
to a random classes.

We next show in Lemma 4.3.2 that this straightforward random assignment already
gives domination.

Lemma 4.3.2 (Domination Lemma). W.h.p., for each class 𝑖, 𝒮 𝑖
𝐿/2 dominates 𝒱.

Proof. Since 𝐺 has vertex connectivity 𝑘, each real node 𝑣 has at least 𝑘 real neighbors and
in these 𝑘 real neighbors, in expectation at least 𝑘𝑞

2𝑡
= Ω(log 𝑛) virtual nodes are sampled,
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Figure 4-2: Potential Connector Paths for component 𝒞1 in layer ℓ + 1 copies of 𝐺

have layer number between 1 and 𝐿
2
, and join class 𝑖. These are virtual nodes that are in

𝒮 𝑖
𝐿
2

. Thus, the claim follows from a standard Chernoff bound combined with a union bound

over all choices of 𝑣 and over all classes.

Note that the domination of each class follows directly from this lemma. For the rest of
this section, we assume that for each class 𝑖, 𝒮 𝑖

𝐿/2 dominates 𝒱 , and we use this property
also in achieving connectivity. In particular, as we explain in Lemma 4.3.4, it will be used
for obtaining short connector paths.

4.3.3 Connectivity

Outline After the first 𝐿
2
layers, which provide domination of each class, we try to achieve

connectivity for all classes, using the last 𝐿
2
layers. In particular, we work on these remaining

layers one by one and for each layer ℓ ∈ [𝐿/2, 𝐿 − 1], we assign vertices of layer ℓ + 1 to
classes based on the assignments of vertices of layers 1 to ℓ. We now explain this assignment
for layer ℓ + 1. We refer to vertices of layers 1 to ℓ as old vertices whereas vertices of layer
ℓ + 1 are called new vertices. The goal is to perform the class assignment of the newly
sampled vertices such that (in expectation) the number of connected components decreases
by a constant factor in each layer. This is formalized in the Fast Merger Lemma presented
as Lemma 4.3.5. During the recursive assignments, our main construction tool will be the
concept of connector paths, defined next.

Defining Connector Paths and Proving Their Abundance

Consider a class 𝑖, suppose 𝑁 𝑖
ℓ ≥ 2, and consider a component 𝒞 of 𝒢[𝒮 𝑖

ℓ]. We use the
projection Ψ(𝒮 𝑖

ℓ) onto graph 𝐺 as defined above. A path 𝑃 in 𝐺 is called a potential connector
for Ψ(𝒞) if it satisfies the following three conditions: (A) 𝑃 has one endpoint in Ψ(𝒞) and
the other endpoint in Ψ(𝒮 𝑖

ℓ ∖𝒞), (B) 𝑃 has at most two internal vertices, (C) if 𝑃 has exactly
two internal vertices and has the form 𝑠, 𝑢, 𝑤, 𝑡 where 𝑠 ∈ Ψ(𝒞) and 𝑡 ∈ Ψ(𝒮 𝑖

ℓ ∖ 𝒞), then 𝑤
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does not have a neighbor in Ψ(𝒞) and 𝑢 does not have a neighbor in Ψ(𝒮 𝑖
ℓ ∖ 𝒞). Condition

(C) is an important condition, requiring minimality of each potential connector path. That
is, there is no potential connector path connecting Ψ(𝒞) to another component of Ψ(𝒮 𝑖

ℓ) via
only 𝑢 or only 𝑤.

From a potential connector path 𝑃 on graph 𝐺, we derive a potential connector path 𝒫
on virtual graph 𝒢 by determining the types of related internal vertices as follows: (D) If 𝑃
has one internal real vertex 𝑤, then for 𝒫 we choose the virtual vertex of 𝑤 in layer ℓ + 1

in 𝒢 with type 1. (E) If 𝑃 has two internal real vertices 𝑤1 and 𝑤2, where 𝑤1 is adjacent to
Ψ(𝒞) and 𝑤2 is adjacent to Ψ(𝒮 𝑖

ℓ ∖ 𝒞), then for 𝒫 we choose the virtual vertices of 𝑤1 and 𝑤2

in layer ℓ+ 1 with types 2 and 3, respectively. Finally, for each endpoint 𝑤 of 𝑃 we add the
copy of 𝑤 in 𝒮 𝑖

ℓ to 𝒫 . A given potential connector path 𝒫 on the virtual vertices of layer
ℓ+ 1 is called a connector path if and only if the internal vertices of 𝒫 are sampled. We call
a connector path that has one internal vertex a short connector path, whereas a connector
path with two internal vertices is called a long connector path. Because of condition (C),
and rules (D) and (E) above, we get the following fact:

Proposition 4.3.3. For each class 𝑖, each type-2 virtual vertex 𝑢 of layer ℓ+1 is on connector

paths of at most one connected component of 𝒢[𝒮 𝑖
ℓ].

Figure 4-2 demonstrates an example of potential connector paths for a component 𝒞1 ∈
𝒢[𝒮 𝑖

ℓ]. The figure on the left shows graph 𝐺, where the projection Ψ(𝒮 𝑖
ℓ) is indicated via

green vertices, and the green paths are potential connector paths of Ψ(𝒞1). On the right
side, the same potential connector paths are shown, where the type of the related internal
vertices are determined according to rules (D) and (E) above, and vertices of different types
are distinguished via different shapes (for clarity, virtual vertices of other types are omitted).

The following lemma shows that in each class that has at least two components, each
component is likely to have many connector paths.

Lemma 4.3.4 (Connector Abundance Lemma). Consider a layer ℓ ≥ 𝐿/2 and a class

𝑖 such that 𝒮 𝑖
𝐿/2 ⊆ 𝒮 𝑖

ℓ is a dominating set of 𝒢 and 𝑁 𝑖
ℓ ≥ 2. Further consider an arbitrary

connected component 𝒞 of 𝒢[𝒮 𝑖
ℓ]. Then, with probability at least 1/4, 𝒞 has at least 𝑡 internally

vertex-disjoint connector paths. Recall that 𝑡 = 𝛿 · 𝑘𝑞2, for a small enough constant 𝛿, is the

number of classes.

Proof. Fix a layer ℓ ∈ [𝐿/2, 𝐿− 1]. Let 𝒟 be the set of dominating sets of 𝒢 consisting only
of nodes from layers 1, . . . , 𝐿/2. Further, for all ℓ ≥ 𝐿/2, let 𝒟ℓ contain all sets 𝒯 ⊆ 𝒱ℓ such
that there exists a 𝐷 ∈ 𝒟 for which 𝐷 ⊆ 𝒯 . That is, 𝒟ℓ is the collection of all sets of virtual
nodes in layers 1, . . . , ℓ that contain a dominating set 𝐷 ∈ 𝒟. Fix an arbitrary set 𝒯 ∈ 𝒟ℓ

and fix 𝒮 𝑖
ℓ = 𝒯 .

Consider the projection Ψ(𝒮 𝑖
ℓ) onto 𝐺 and recall Menger’s theorem: Between any pair

(𝑢, 𝑣) of non-adjacent nodes of a 𝑘-vertex connected graph, there are 𝑘 internally vertex-
disjoint paths connecting 𝑢 and 𝑣. Applying Menger’s theorem to a node in Ψ(𝒞) and a node
in Ψ(𝒮 𝑖

ℓ ∖𝒞), we obtain at least 𝑘 internally vertex-disjoint paths between Ψ(𝒞) and Ψ(𝒮 𝑖
ℓ ∖𝒞)
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in 𝐺. We first show that these paths can be shortened so that each of them has at most 2

internal nodes i.e., to get property (B) of potential connector paths. Pick an arbitrary one
of these 𝑘 paths and denote it 𝑃 = 𝑣1, 𝑣2, ..., 𝑣𝑟, where 𝑣1 ∈ Ψ(𝒞) and 𝑣𝑟 ∈ Ψ(𝒮 𝑖

ℓ ∖𝒞). By the
assumption that 𝒮 𝑖

𝐿/2 dominates 𝒢, we get that Ψ(𝒮 𝑖
ℓ) dominates 𝐺. Hence, since 𝑣1 ∈ Ψ(𝒞)

and 𝑣𝑟 ∈ Ψ(𝒮 𝑖
ℓ ∖ 𝒞), either there is a node 𝑣𝑖 along 𝑃 that is connected to both Ψ(𝒞) and

Ψ(𝒮 𝑖
ℓ ∖ 𝒞), or there must exist two consecutive nodes 𝑣𝑖, 𝑣𝑖+1 along 𝑃 , such that one of them

is connected to Ψ(𝒞) and the other is connected to Ψ(𝒮 𝑖
ℓ ∖ 𝒞). In either case, we can derive a

new path 𝑃 ′ which satisfies (B) and is internally vertex-disjoint from the other 𝑘 − 1 paths
since its internal nodes are a subset of the internal nodes of 𝑃 and are not in Ψ(𝒮 𝑖

ℓ). After
shortening all the 𝑘 internally vertex-disjoint paths, we get 𝑘 internally vertex-disjoint paths
in graph 𝐺 that satisfy conditions (A) and (B), as stated Section 4.3.3.

Now using rules (D) and (E) in Section 4.3.3, we get 𝑘 internally vertex-disjoint potential
connector paths on the virtual nodes of layer 𝑙+1. It is clear that during the transition from
the real nodes to the virtual nodes, the potential connector paths remain internally vertex-
disjoint. Now, for each fixed potential connector path on the virtual nodes, the probability
that the internal nodes of this path are sampled is at least 𝑞2. Hence, in expectation, 𝒞 has
at least 𝑘𝑞2 internally vertex-disjoint connector paths (on virtual nodes). Since the paths
are internally vertex-disjoint, we have independence among different paths. Thus, we can
apply a Chernoff bound and conclude that with probability at least 1/2, component 𝒞 has
at least 𝑡 = Ω(𝑘𝑞2) internally vertex-disjoint connector paths.

The Algorithm for Class Assignments Using Connector Paths

From Lemma 4.3.4 we know that for each connected component of each class 𝑖 with 𝑁 𝑖
ℓ ≥ 1,

with probability at least 1/2, this component has at least 𝑡 connector paths. Call a component
poor if it has less than 𝑡 connector paths, and rich otherwise. For each rich component, pick
exactly 𝑡 of its connector paths. We expect at most 𝑀ℓ/2 poor components, over all the
classes and components. Thus, by Markov’s inequality, the probability that there are more
than 3𝑀ℓ/4 poor components is at most 2/3. Therefore, with probability at least 1/3, there
are at least 𝑀ℓ · 𝑡/4 connector paths in total, over all the class and components. We use
these connector paths to assign the class numbers of vertices of layer ℓ+ 1. This part is done
via a greedy-style algorithm, in three stages as follows:

(I) For each type-1 new vertex 𝑣: For each class 𝑖, define the class-𝑖-degree of 𝑣 to be the
number of connected components of class 𝑖 that have a short connector path through
𝑣. Let ∆ be the maximum class-𝑖-degree of 𝑣 as 𝑖 ranges over all classes, and let 𝑖* be
a class that attains this maximum. If ∆ ≥ 1: Assign 𝑣 to class 𝑖*. Also, remove all
connector paths of all classes that go through 𝑣 and remove all connector paths of all
the connected components of class 𝑖* that have 𝑣 on their short connector paths.

(II) For each type-3 new vertex 𝑢: For each class 𝑖, define the class-𝑖-degree of 𝑢 to be the
number of connected components of class 𝑖 which have a long connector path through
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𝑢. Let ∆ be the maximum class-𝑖-degree of 𝑢 as 𝑖 ranges over all classes and let 𝑖* be
a class that attains this maximum. If ∆ ≥ 1: Assign 𝑢 to class 𝑖*. Moreover, each of
the ∆ long connector paths of class 𝑖* that goes through 𝑢 also has a type-2 internal
vertex. Let these type-2 vertices be 𝑣1, . . . , 𝑣Δ. Assign 𝑣1, . . . , 𝑣Δ to class 𝑖*. Then,
remove all the connector paths that go through 𝑢 or any of the vertices 𝑣1, . . . , 𝑣Δ.
Also remove all connector paths of each component of class 𝑖* that has a connector
path going through 𝑢.

(III) Assign each remaining new vertex to a random class.

Analysis of the Class Assignments

We now analyze the above class assignment procedure and prove that it is likely to lead to
a constant factor reduction in the total number of excess components. More concretely, we
prove that:

Lemma 4.3.5 (Fast Merger Lemma). For each ℓ ≥ 𝐿
2
and every assignment of the

sampled vertices of layers 1, . . . , ℓ to classes such that for all classes 𝑖, 𝒮 𝑖
𝐿/2 is a dominating

set of 𝒢, we have (a) 𝑀ℓ+1 ≤𝑀ℓ, and (b) with probability at least 1/3, 𝑀ℓ+1 ≤ 23
24
·𝑀ℓ.

The proof is based on an accounting argument that uses the total number of remaining
connector paths over all classes and components as the budget, and shows that number of
components that are merged, each with at least one other component, is at least 𝑀ℓ

3
.

Proof. For part (a) of the lemma, note that since for each class 𝑖, set 𝒮 𝑖
𝐿/2 is a dominating

set of 𝒢 and for each layer ℓ ≥ 𝐿/2, 𝒮 𝑖
𝐿/2 ⊆ 𝑆𝑖

ℓ, we get that 𝑆
𝑖
ℓ dominates set 𝒱 . Thus, each

virtual sampled node in layer ℓ + 1 has a neighbor in 𝑆𝑖
ℓ which means that each connected

component of 𝒢[𝒮 𝑖
ℓ+1] contains at least one connected component of 𝒢[𝒮 𝑖

ℓ]. Hence, 𝑁
𝑖
ℓ+1 ≤ 𝑁 𝑖

ℓ ,
which also means that 𝑀ℓ+1 ≤𝑀ℓ.

For part (b), consider a class 𝑖 such that 𝑁 𝑖
ℓ ≥ 2 and let 𝒞1 be a connected component

of 𝒢[𝒮 𝑖
ℓ]. We say component 𝒞1 is good if for at least one connector path 𝑝 of 𝒞1, all internal

nodes of 𝑝 — one or two nodes depending on whether 𝑝 is short or long — join class 𝑖. Note
that if 𝒞1 is good, then it gets connected to another component of 𝒢[𝒮 𝑖

ℓ]. In order to prove the
lemma, we first show that with probability at least 1/3, at least 𝑀ℓ

12
connected components

(summed up over all classes) are good. This is achieved using a simple accounting method
by considering the number of remaining connector paths as the budget.

We know that with probability at least 1/3, initially we have a budget of at least 𝑀ℓ · 𝑡/4.
We show that the greedy algorithm spends this budget in a manner that at the end, we get
𝑀ℓ+1 ≤ 23

24
𝑀ℓ.

In each step of each of stages I or II, if respectively a type-1 node or a type-3 nodes and
some associated type-2 nodes join a class, then at least ∆ components become good where ∆

is defined as explained in the algorithm description. We show that in that case, we remove
at most 3∆𝑡 connector paths in the related bookkeeping part. Thus, in the accounting

70



argument, we get that at most 3∆ · 𝑡 amount of budget is spent and ∆ components become
good. Hence, in total over all steps, at least 𝑀ℓ

12
components become good.

Let us first check the case of short connector paths, which is performed in stage I. Let 𝑣
be the new type-1 node under consideration in this step and suppose that the related ∆ ≥ 2,
and node 𝑣 joins class 𝑖*. For class 𝑖*, we remove all paths of all connected components of 𝑖*

that have 𝑣 on their short connector paths. This includes ∆ such connected components, and
𝑡 connector paths for each such component. Thus, in total we remove at most ∆ · 𝑡 connector
paths of components of class 𝑖*. For each class 𝑖 ̸= 𝑖*, we remove at most ∆ connector
paths. This is because 𝑣 can be on short connector paths of at most ∆ components, at most
once for each such component. These are respectively because of definition of ∆ and due to
internally vertex-disjointedness of connector paths of each component. There are less than
𝑡 classes other than 𝑖*, so in total over all classes other than 𝑖*, we remove at most ∆ · 𝑡
connector paths. Therefore, we can conclude that the total amount of decrease in budget is
at most 2∆ · 𝑡.

Now we check the case of long connector paths, performed in stage II. Suppose that in
this step, we are working on a type-3 new node 𝑢, it has ∆ ≥ 1, and we assign node 𝑢 and
associated type-2 new nodes 𝑣1, . . . , 𝑣Δ to class 𝑖*. It follows from Proposition 4.3.3 that
nodes 𝑣1, . . . , 𝑣Δ are not on long connector paths of components of class 𝑖* other than the
∆ components which have long paths through 𝑢. Thus, any connector path of class 𝑖* that
goes through any of 𝑣1 to 𝑣Δ also goes through 𝑢. For each component of class 𝑖* that has a
long connector path through 𝑢, we remove all the connector paths. By definition of ∆, there
are ∆ such components and from each such component, we remove at most 𝑡 paths. Hence,
the number of such connector paths that are removed is at most ∆ · 𝑡. On the other hand, for
each class 𝑖 ̸= 𝑖*, we remove at most 2∆ connector paths. This is because by definition of ∆,
removing just node 𝑢 removes at most ∆ long paths from each class. Moreover, because of
Proposition 9.4.2 and internally vertex-disjointedness of connector paths of each component,
removing each type-2 node 𝑣𝑗 (where 𝑗 ∈ {1, 2, . . . ,∆}) removes at most one long connector
path of one connected component of class 𝑖 ̸= 𝑖*. Over all classes 𝑖 ̸= 𝑖*, in total we remove
at most 2∆ · 𝑡 connector paths. Hence, when summed up with removed connector paths
related to class 𝑖*, we get that the total amount of decrease in the budget is at most 3∆ · 𝑡.

Now we know that with probability at least 1/3, at least 𝑀ℓ

12
connected components

(summed up over all classes) are good. Recall that each good component gets merged with
at least one other component of its class. Thus, Pr

[︀
𝑀ℓ+1 ≤ 23

24
·𝑀ℓ | 𝒮ℓ = 𝒯

]︀
≥ 1/3.

4.3.4 Wrap Up

We are now ready to put the parts of the construction and its analysis together and prove
Theorem 4.1.1 by showing that the above construction provides a fractional CDS packing of
size Ω(𝑘/ log 𝑛 + 1).

Theorem 4.1.1 Every 𝑘-vertex-connected 𝑛-vertex graph 𝐺 has a fractional CDS packing of

size Ω
(︀

𝑘
log𝑛

+ 1
)︀
.
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Proof of Theorem 4.1.1. We first argue that the above construction provides an integral CDS
packing of size 𝑡 = 𝛿 · 𝑘𝑞2 in the virtual graph 𝒢. We then explain how this can be easily
turned into a fractional CDS packing of size Ω(𝑘𝑞2/ log 𝑛) in the original graph 𝐺.

By the description of the construction, the constructed 𝑡 classes are vertex-disjoint. By
Lemma 4.3.2, each of these classes is a dominating set of 𝒢, with high probability. What
remains is to prove that each of the classes is also a connected subgraph of 𝒢, w.h.p.

This connectivity property follows from Lemma 4.3.5, as follows: In the beginning of
the class assignments for connectivity, we have 𝑀ℓ ≤ 𝑛 for ℓ = 𝐿/2 + 1. Call a layer ℓ

good if 𝑀ℓ+1 ≤ 5
6
𝑀ℓ. Note that by part (b) of Lemma 4.3.5, we know that each layer is

good with probability at least 1/3. Note that 𝑀ℓ is a non-increasing function of ℓ because
we always have 𝑀ℓ+1 ≤ 𝑀ℓ, as shown by part (a) of Lemma 4.3.5. Hence, if we have
at least 𝐿′ = log24/23 𝑛 + 1 good layers ℓ ∈ [𝐿/2 + 1, 𝐿/2], then we can conclude that
𝑀𝐿 ≤ 𝑀𝐿/2+1 · (23/24)𝐿

′
< 𝑛 · 1

𝑛
= 1. Since 𝑀𝐿 is an integer, this would imply that

𝑀𝐿 = 0, which would mean that all classes are connected. Now since each layer is good with
probability at least 1/3, among layers ℓ ∈ [𝐿/2 + 1, 𝐿/2], we expect at least 𝐿/6 good layers.
As we have independence between different layers, by a simple application of the Chernoff
bound, we see that with high probability, we have at least 𝐿′ good layers. This proves
connectivity of all classes. It thus also complete the proof showing that the 𝑡 constructed
classes are vertex-disjoint CDS of the virtual graph 𝒢.

Now we transform this integral 𝑡-size CDS packing of 𝒢, for 𝑡 = 𝛿 · 𝑘𝑞2, to a fractional
CDS packing of 𝐺. This transformation works as follows. Each CDS 𝑆𝒢 of 𝒢 is turned into
a CDS 𝑆𝐺 of 𝒢 simply by adding each real node 𝑣 ∈ 𝐺 to 𝑆𝐺 if and only if there is a copy
(𝑣, 𝑖) ∈ 𝒢 of 𝑣 that is in 𝑆𝒢. That is, 𝑆𝐺 = Ψ(𝑆𝐺), which means 𝑆𝐺 is the projection of 𝑆𝒢

to the original graph 𝐺. By Proposition 4.3.1, we get that 𝑆𝐺 is a CDS of 𝐺.
Since the constructed CDSs were vertex-disjoint in 𝒢, and because each real vertex 𝑣 ∈ 𝐺

has exactly Θ(log 𝑛) virtual copies, each of which can be in one of the CDSs in our integral
CDS packing of 𝒢, we get that in the projection of the CDSs on 𝐺, each vertex is in at
most Θ(log 𝑛) different CDSs. Hence, by giving a weight 1/Θ(log 𝑛) to each of these CDSs,
we get a fractional CDS packing of 𝐺. Clearly, this reduces the size of CDS packing by
exactly the same factor 1/Θ(log 𝑛). That is, we get a fractional CDS packing with size
𝑡/Θ(log 𝑛) = Ω(𝑘𝑞2/ log 𝑛) of 𝐺. By setting 𝑝 = 1 and thus 𝑞 = 1 − (1 − 𝑝)1/(3𝐿) = 1, this
becomes a CDS packing of size Ω(𝑘/ log 𝑛) of 𝐺, hence proving Theorem 4.1.1.

4.4 Integral CDS Packing

We now prove our integral CDS packing result:

Theorem 4.1.2 Every 𝑘-vertex-connected 𝑛-vertex graph graph 𝐺 has an integral CDS pack-

ing of size Ω
(︀

𝑘
log2 𝑛

+ 1
)︀
.

To achieve this CDS packing, we use the general construction style of the CDS packing
of the previous section. Here, we explain the key changes: since in a CDS packing, each
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node can join only one CDS, we cannot use the layering style of the previous section, which
uses Θ(log 𝑛) copies of 𝐺 and where each node can join 𝑂(log 𝑛) CDSs. Instead, we use
random layering: each node chooses a random layer number in {1, . . . , 𝐿} and a random
type number in {1, 2, 3}. The construction is again recursive, with first assigning nodes of
layers 1 to 𝐿/2 randomly to one of 𝑡 random classes. This suffices to give domination. Here,
we set the number of classes to be 𝑡 = 𝛿 𝑘

log2 𝑛
. After that, for each ℓ ∈ [𝐿/2, 3𝐿/4 − 1], we

assign class numbers of nodes of layer ℓ + 1 based on the configuration of classes in layers
1 to ℓ, using the same greedy algorithm as in Section 4.3.3. The vertices of the remaining
layers are assigned to CDSs randomly. Next, we re-define the connector paths, incorporating
the random layering.

Connector Paths for Integral CDS packing: Let 𝑉 𝑖
ℓ be the set of all nodes of layers

1 to ℓ in class 𝑖. Consider a component 𝒞 of 𝐺[𝑉 𝑖
ℓ ]. Define potential connector paths on 𝐺

as in Section 4.3.3 (conditions (A) to (C)). Then, for each potential connector path on 𝐺,
this path is called a connector path if its internal nodes are in layer ℓ + 1 and the types of
its internal nodes satisfy rules (D) and (E) in Section 4.3.3.

The key technical change compared to the CDS packing of Section 4.3, appears in ob-
taining a Connector Abundance Lemma, which we present Lemma 4.4.1.

Lemma 4.4.1 (Connector Abundance Lemma). For each class 𝑖 and layer ℓ ∈ [𝐿/2, 3𝐿/4−
1] such that 𝑁 𝑖

ℓ ≥ 2, for each connected component 𝒞 of 𝐺[𝑉 𝑖
ℓ ], with probability at least 1/2,

𝒞 has at least Ω
(︀

𝑘
log2 𝑛

)︀
internally vertex-disjoint connector paths, with independence between

different layers ℓ ≤ 𝐿/2.

To prove Lemma 4.4.1, we use the sampling result of Theorem 5.1.1, which we prove in
the next chapter. Roughly speaking, for each layer ℓ ≤ 𝐿/2, from Lemma 4.4.1 we get that
the graph induced by layers ℓ+ 1 to 𝐿 has vertex connectivity Ω(𝑘). Then, we get that each
component 𝒞 has at least Ω( 𝑘

log2 𝑛
) internally vertex-disjoint connector paths (with internal

nodes of right type and layer ℓ + 1).

Proof. Let 𝑊 *
ℓ be the set of all nodes with a layer number in {ℓ + 1, . . . , 𝐿}. Since the

probability of each node to be in 𝑊 *
ℓ is at least 1/4 (because ℓ ≤ 3𝐿/4), Theorem 5.1.1

shows that, w.h.p, the vertex-connectivity of 𝐺[𝑊 *
ℓ ] is Ω(𝑘). It is easy to see that therefore,

the vertex-connectivity of 𝐺[𝑊 *
ℓ ∪ 𝑉 𝑖

ℓ ] is also Ω(𝑘). Thus, for each component 𝒞 of 𝐺[𝑉 𝑖
ℓ ],

we can follow the first part of the proof of Lemma 4.3.4, this time using Menger’s theorem
on 𝐺[𝑊 *

ℓ ∪ 𝑉 𝑖
ℓ ], and find Ω(𝑘) internally vertex-disjoint potential connector paths in graph

𝐺[𝑊 *
ℓ ∪ 𝑉 𝑖

ℓ ]. It is clear that the internal nodes of these potential connector paths are not in
𝑉 𝑖
ℓ , which means they are in 𝑊 *

ℓ . For each potential connector path, for each of its internal
nodes, given that this node is in 𝑊 *

ℓ , the probability that the node is in layer ℓ + 1 and has
the type which satisfies rules (A) and (B) of Section 4.3.3 is at least Θ(1/𝐿) = Θ(1/ log 𝑛).
Hence, the probability of each of these potential connector paths being a connector path is
at least Θ(1/ log2 𝑛). From internally vertex-disjointedness of the potential connector paths,
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and since there are Ω(𝑘) of them, it follows that with probability at least 1/2, component 𝒞
has at least Ω( 𝑘

log2 𝑛
) internally vertex-disjoint connector paths.

4.5 Bad Graphs with No Large Fractional CDS Packing

In this section, we prove Theorem 4.1.3, which shows that in some graphs, the maximum
CDS packing size is a Θ(log 𝑛) factor smaller than the vertex connectivity.

Theorem 4.1.3 For any sufficiently large 𝑛, and any 𝑘 ∈ [1, 𝑛/4], there exist 𝑛-vertex graphs

with vertex connectivity 𝑘 where the maximum CDS packing (or partition) size is 𝑂
(︀

𝑘
log𝑛

+1
)︀
.

First, in Lemma 4.5.1 we present a graph H with vertex connectivity 𝑘, size between 2𝑘

and 4𝑘, and 𝐾 ′
CDS (H) < 2. This lemma proves the theorem for 𝑘 = 𝑂(log 𝑛). To prove the

theorem for the case of larger vertex-connectivity compared to 𝑛, in Lemma 4.5.2, we look
at randomly chosen sub-graphs of H and apply the probabilistic method [AS04].

Lemma 4.5.1. For any 𝑘, there exists an 𝑛-node graph H with vertex connectivity 𝑘 and

𝑛 ∈ [2𝑘, 4𝑘] such that 𝐾 ′
CDS (H) < 2.

Proof. We obtain graph H by simple modifications to the graph presented by Sanders
et al. [SET03] for proving an Ω(log 𝑛) network coding gap in the model where network is
directed and each node can send distinct unit-size messages to its different outgoing neigh-
bors.

The graph H has two layers. The first layer is a clique of 2𝑘 nodes. The second layer has(︀
2𝑘
𝑘

)︀
nodes, one for each subset of size 𝑘 of the nodes of the first layer. Each second layer

node is connected to the 𝑘 first-layer nodes of the corresponding subset. Note that the total
number of nodes is

(︀
2𝑘
𝑘

)︀
+ 2𝑘 ∈ [2𝑘, 4𝑘]. Let 𝒜 and ℬ denote the set of nodes in the first and

second layer, respectively.
First, we show that H has vertex connectivity 𝑘. Since the degree of each second layer

node is exactly 𝑘, it is clear that the vertex connectivity of H is at most 𝑘. To prove that the
vertex connectivity of H is at least 𝑘, let 𝑢 and 𝑣 be two arbitrary nodes of H. We show that
there are at least 𝑘 internally vertex disjoint paths between 𝑢 and 𝑣. If 𝑢 and 𝑣 are both
in 𝒜, then there is one direct edge between 𝑣 and 𝑢 and there are 2𝑘 − 2 paths of length 2

between them. If exactly one of 𝑣 and 𝑢 is in 𝒜, say 𝑢 ∈ 𝒜 and 𝑣 ∈ ℬ, then 𝑢 is directly
connected to 𝑘 neighbors of 𝑣. Otherwise, if both 𝑢 and 𝑣 are in ℬ, then let 𝑝 be the size
of the intersection of the neighbors of 𝑣 and 𝑢. Note that these neighbors are all in 𝒜. It is
clear that 𝑢 and 𝑣 have exactly 𝑝 paths of length 2 between themselves and 𝑘 − 𝑝 paths of
lengths 3, and that these paths are internally vertex disjoint.

To see that 𝐾 ′
CDS (𝐻) < 2, first note that each CDS 𝜏 must include at least 𝑘 + 1 nodes

of 𝒜. This is because, otherwise, there are at least 𝑘 nodes of 𝒜 that are not included in 𝜏

and thus, there is a node in ℬ—corresponding to a subset of size 𝑘 of these uncovered nodes
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of 𝒜—which is not dominated by 𝜏 . Thus we have,∑︁
𝑣∈𝒜

∑︁
𝜏∈CDS(H)
𝑠.𝑡. 𝑣∈𝜏

𝑥𝜏 ≥ (𝑘 + 1) ·
∑︁

𝜏∈CDS(H)

𝑥𝜏 .

On the other hand we have,∑︁
𝑣∈𝒜

∑︁
𝜏∈CDS(H)
𝑠.𝑡. 𝑣∈𝜏

𝑥𝜏 ≤
∑︁
𝑣∈𝒜

1 = |𝒜| = 2𝑘,

and thus we can conclude that
∑︀

𝜏∈CDS(H) 𝑥𝜏 ≤ 2𝑘
𝑘+1

< 2. Since this holds for any CDS-
Packing of H, we get 𝐾 ′

CDS (𝐻) < 2.

Note that in the above construction, we have 𝐾CDS (H) = 1 as H is connected and
𝐾CDS (H) has to be an integer.

Lemma 4.5.2. For each large enough 𝑘 and 𝜂 ∈ [4𝑘, 2𝑘], there exists a sub-graph 𝐻 ′ ⊆ H

that has 𝜂 nodes and vertex connectivity 𝑘 but 𝐾 ′
CDS (𝐻 ′) = 𝑂( 𝑘

log 𝜂
).

Proof. Pick an arbitrary 𝑘 ≥ 64, fix an 𝜂 ∈ [4𝑘, 2𝑘] and let 𝛽 = log 𝜂
8
. Consider a random

subset 𝑉𝑧 ⊆ 𝑉 , where 𝑉𝑧 includes all nodes of 𝒜 and for each node 𝑢 ∈ ℬ, 𝑢 is independently
included in 𝑉𝑧 with probability 𝑝, where

𝑝 =
65𝛽2(︀
2𝑘−𝛽

𝑘

)︀ .
We now look at the sub-graph 𝐻𝑧 of H induced on 𝑉𝑧. With the same argument as for H,
we get that for any such 𝑉𝑧, the graph 𝐻𝑧 has vertex connectivity exactly 𝑘. We show that
(a) with probability at least 1

2
, 𝑉𝑧 is such that 𝐾 ′

CDS (𝐻𝑧) < 2𝑘
𝛽

= 𝑂( 𝑘
log 𝜂

), and (b) with
probability at least 3

4
, we have |𝑉𝑧| ≤ 𝜂. A union bound then completes the proof.

Property (a) We first show that with probability at least 1
2
, 𝑉𝑧 is such that there does

not exist a subset of size 𝛽 of the nodes of 𝒜 that dominates 𝑉𝑧. For each subset 𝑊 ⊂ 𝒜
such that |𝑊 | = 𝛽, there are

(︀
2𝑘−𝛽

𝑘

)︀
nodes in ℬ which are not dominated by 𝑊 . Thus, for 𝑊

to dominate 𝑉𝑧, none of these second layer nodes should be included in 𝑉𝑧. The probability
for this to happen is

(1− 𝑝)(
2𝑘−𝛽

𝑘 ) ≤ 𝑒−65𝛽2

There are
(︀
2𝑘
𝛽

)︀
possibilities for set 𝑊 . Hence, using a union bound, the probability that

there exists such a set 𝑊 that dominates 𝑉𝑧 is at most

𝑒−65𝛽2

(︂
2𝑘

𝛽

)︂
≤ 𝑒−65𝛽2 · (2𝑒𝑘

𝛽
)𝛽

(†)
< 𝑒−65𝛽2 · (𝜂2)𝛽

= 𝑒−65𝛽2+64𝛽2 ≤ 1

2
,
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where Inequality (†) follows since 64 ≤ 𝑘 ≤ 𝜂
4
, which gives 2𝑒𝑘 < 𝑘2 < 𝜂2.

Thus, with probability at least 1
2
, 𝑉𝑧 is such that each CDS of 𝐻𝑧 includes at least

𝛽 + 1 nodes of 𝒜. From this, similar to the last part of the proof of Lemma 4.5.1, we have
that,

∑︀
𝜏∈CDS(H) 𝑥𝜏 ≤ 2𝑘

𝛽+1
< 2𝑘

𝛽
. Since this holds for any packing of 𝐻𝑧, we get that with

probability at least 1
2
, 𝑉𝑧 is such that 𝐾 ′

CDS (𝐻𝑧) <
2𝑘
𝛽
.

Property (b) Note that E[|𝑉𝑧|] = 2𝑘 + 𝑝 ·
(︀
2𝑘
𝑘

)︀
. Substituting 𝑝 = 65𝛽2

(2𝑘−𝛽
𝑘 )

and noting that

𝛽 ≤ 𝑘
2
, we get

E[|𝑉𝑧|]− 2𝑘 = 𝑝 ·
(︂

2𝑘

𝑘

)︂
= 65𝛽2 ·

(︀
2𝑘
𝑘

)︀(︀
2𝑘−𝛽

𝑘

)︀
= 65𝛽2 · 2𝑘

2𝑘 − 𝛽
· 2𝑘 − 1

2𝑘 − 𝛽 − 1
. . .

𝑘 + 1

𝑘 − 𝛽 + 1

≤ 65𝛽2 · (1 +
2𝛽

𝑘
)𝑘

≤ 65 log2 𝜂

64
· 𝜂

1
4 ≤ 𝜂

4
.

As the second-layer nodes are picked independently, for 𝜂 sufficiently large, we can apply a
Chernoff bound to get Pr[|𝑉𝑧|−2𝑘 > 𝜂

2
] ≤ 1

4
. Since 2𝑘 ≤ 𝜂

2
, we then obtain Pr[|𝑉𝑧| > 𝜂] ≤ 1

4
.

If desired, we can adjust the number of nodes to exactly 𝜂 by adding enough nodes in the
second layer which are each connected to all nodes of the first layer.

Proof of Theorem 4.1.3. The theorem follows directly from Lemma 4.5.1 and Lemma 4.5.2,
which prove it for when 𝑘 = 𝑂(log 𝑛) and 𝑘 = Ω(log 𝑛), respectively. In particular,
Lemma 4.5.1 presents a 𝑘-vertex connected graph H with 𝑛 vertices where 𝑛 ∈ [2𝑘, 4𝑘],
and 𝐾 ′

CDS (H) < 2. This lemma proves the theorem for 𝑘 = 𝑂(log 𝑛). Lemma 4.5.2 presents
a 𝑘-vertex connected graph 𝐻 ′, for large enough 𝑘, with 𝑛 vertices where 𝑛 ∈ [4𝑘, 2𝑘], such
that 𝐾 ′

CDS (𝐻 ′) = 𝑂( 𝑘
log𝑛

). This lemma proves the theorem for 𝑘 = Ω(log 𝑛).

4.6 Vertex Connectivity Decomposition and Throughput

in Network Information Dissemination

In this section, we explain how the size of vertex connectivity decompositions—particularly
CDS packings—is tightly coupled with the throughput of network information dissemination
procedures. In particular, we show that the size of maximum fractional CDS packing and the
maximum achievable throughput in a V-CONGEST model network are equal, up to constant
factors.

Theorem 4.1.5 Consider any network in the V-CONGEST model. Given a fractional CDS
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packing with size 𝐾, we can construct a store-and-forward broadcast algorithm with through-

put Ω(𝐾) messages per round. Conversely, given a store-and-forward broadcast algorithm

with throughput 𝐾 messages per round, we can construct a fractional CDS packing of size

𝐾.

Proof. Fractional CDS Packing → Broadcast Algorithm First consider a CDS 𝜏 and
suppose that the graph induced by 𝜏 has diameter 𝐷𝜏 . Using 𝜏 , we can perform 𝑝 broadcasts
(or multicast or unicasts) in time 𝑂(𝑝 + 𝐷𝜏 ). This can be seen as follows: Since 𝜏 is a
dominating set, we can deliver each message to a node of 𝜏 in at most 𝑝 rounds. Because
𝜏 is connected, 𝑂(𝑝 + 𝐷𝜏 ) rounds are enough to broadcast the messages to all nodes in 𝜏 .
Finally, because 𝜏 is a dominating set, at most 𝑝 more rounds are enough to deliver the
messages to all the desired destination nodes. Hence, a CDS structure allows for performing
broadcasts with an (amortized) rate of Ω(1) messages per round. In other words, a CDS can
be viewed as a communication backbone with throughout Ω(1) messages per round.

Consequently, 𝐾 vertex-disjoint CDS sets form a communication backbone with through-
put of Ω(𝐾) messages per round. Intuitively, we can use those 𝐾 vertex-disjoint sets in par-
allel with each other and get throughput of Ω(1) message per round from each of them. For
a more formal description, consider 𝑝 broadcasts such that no more than 𝑞 broadcasts have
the same source node. We first deliver each messages to a randomly and uniformly chosen
CDS set. This can be done in time at most 𝑞. With high probability, the number of messages
in each CDS is 𝑂( 𝑝

𝐾
+ log 𝑛) and thus, we can simultaneously broadcast messages in time

𝑂( 𝑝
𝐾

+ log 𝑛 + 𝐷max) where 𝐷max is the maximum diameter of the CDSs. Thus, the total
time for completing all the broadcasts is 𝑂(𝑞 + 𝑝

𝐾
+ log 𝑛 + 𝐷max). That is, we can perform

the broadcasts with a rate (throughput) of Ω(min{𝐾, 𝑝/𝑞}). Note that since each source
can send only one packet per round, if 𝑞 ≤ 𝐾, then the maximum achievable throughout
with any algorithm including network coding approaches is at most 𝑞 packets per round. In
other words, in that case, the bottleneck is not the communication protocol but rather the
sources of the messages. As long as no node is the source of more than Θ(𝑝/𝐾) messages,
𝐾 vertex-disjoint CDS sets form a communication backbone with throughput Ω(𝐾).

Similarly one can see that a fractional CDS packing with size 𝐾 provides a backbone
with a throughput of Ω(𝐾) messages per round. The only change with respect to above
description is that now each node 𝑣 spends a 𝑥𝜏 -fraction of its time for sending the messages
assigned to CDS 𝜏 for every 𝜏 such that 𝑣 ∈ 𝜏 . Further, messages are assigned to each CDS
𝜏 with probability proportional to 𝑥𝜏 .

We remark here that even though this scheme provides a backbone with throughput
Ω(𝐾), if the weights 𝑥𝜏 are too small, the outlined time sharing might impose a considerably
large additive term on the overall time for completing the broadcasts. This would not impact
the throughput, but it would include a high latency. In fact since the number of potential
CDS sets can be exponential, the time sharing might lead to exponentially large additive
terms. Note that in the fractional CDS packing we present in Theorem 4.1.1, each CDS
has weight at least Ω(1/ log 𝑛) and thus using the partition also leads to an asymptotically
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optimal throughput for a relatively small number of broadcast messages.
Broadcast Algorithm→ Fractional CDS Packing Let us now argue that a broadcast

algorithm with throughput 𝐾 also leads to a fractional CDS packing of size 𝐾. Suppose
that there exists a a store-and-forward algorithm that broadcasts 𝑝 messages originating
from potentially different sources, for a desirably large integer 𝑝, in 𝑇 ≤ 𝑝

𝐾
rounds. For each

message 𝜎 that is being broadcast, define set 𝑆(𝜎) to be the set of nodes that send 𝜎 in some
round of the algorithm. Clearly 𝑆(𝜎) induces a connected sub-graph and because every node
needs to receive the message 𝑆(𝜎) also is a dominating set. For each node 𝑣 and message 𝜎,
let 𝑁𝜎(𝑣) be the number of rounds in which node 𝑣 sends message 𝜎 and let 𝑦𝜎(𝑣) = 𝑁𝜎(𝑣)

𝑇
.

Moreover, for each CDS 𝜏 such that 𝑣 ∈ 𝜏 , let

𝑧𝜏 (𝑣) =
∑︁

𝜎
𝑆(𝜎)=𝜏 ∧ 𝑣∈𝜏

𝑦𝜏 (𝑣).

Finally, let 𝑥𝜏 = min𝑣∈𝜏{𝑧𝜏 (𝑣)}. Given these parameters, first notice that for each node 𝑣,
we have ∑︁

𝜏
𝑣∈𝜏

𝑥𝜏 ≤
∑︁

𝜏
𝑣∈𝜏

𝑧𝜏 (𝑣) =
∑︁

𝜏
𝑣∈𝜏

∑︁
𝜎

𝑆(𝜎)=𝜏

𝑦𝜎(𝑣) =
∑︁
𝜎

𝑁𝜎(𝑣)

𝑇

(†)
≤ 1.

Here, Inequality (†) is because in each round, node 𝑣 can send at most one message and thus,∑︀
𝜎 𝑁𝜎(𝑣) ≤ 𝑇 . On the other hand, we show that

∑︀
𝜏 𝑥𝜏 ≥ 𝑝

𝑇
= Ω(𝐾). For this purpose,

consider a CDS 𝜏 and let 𝑢* be a node such that 𝑧𝜏 (𝑢*) = 𝑥𝜏 . Since each message 𝜎 such
that 𝑆(𝜎) = 𝜏 is sent at least once by 𝑢*, we have∑︁

𝜎
𝑆(𝜎)=𝜏

1 ≤
∑︁

𝜎
𝑆(𝜎)=𝜏

𝑁𝜎(𝑢*) =
∑︀

𝜎
𝑆(𝜎)=𝜏

𝑦𝜎(𝑢*) · 𝑇

= 𝑧𝜏 (𝑢*) · 𝑇 = 𝑥𝜏 · 𝑇

Moreover, we have that

𝑝 =
∑︁
𝜎

1 =
∑︁
𝜏

∑︁
𝜎

𝑆(𝜎)=𝜏

1 ≤
∑︁
𝜏

𝑥𝜏 · 𝑇

Thus,
∑︀

𝜏 𝑥𝜏 ≥ 𝑝
𝑇
. Since 𝑇 ≤ 𝑝

𝐾
, we get that

∑︀
𝜏 𝑥𝜏 ≥ 𝐾.

Remark We remark that in the general formulation of CDS packings, each node might
participate in arbitrarily many CDSs. In fact, this number can be even exponential in the
number of nodes 𝑛. This would make CDS packing inefficient from a practical point of view
if the number of messages is small compared to the number of CDSs used. Fortunately, in
our construction (cf., Theorem 4.1.1), each node participates in only 𝑂(log 𝑛) CDSs, which
makes the CDS packing efficient even for a small number of messages.
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Chapter 5

Vertex Connectivity Under Random

Sampling

5.1 Introduction & Related Work

Consider a random process where given a base graph 𝐺, each edge or node of 𝐺 is sampled
randomly with some probability 𝑝, i.e., removed with probability 1−𝑝. Given such a random
graph process, it is interesting to see how various global connectivity properties of the graph
induced by the sampled edges or nodes change as a function of the sampling probability
𝑝. If 𝐺 is the complete 𝑛-node graph, sampling each edge independently with probability
𝑝 results in the classic Erdős-Rényi random graph 𝐺𝑛,𝑝, for which exact thresholds for the
formation of a giant component, global connectivity, and many other properties have been
studied (e.g., in [Bol98]). Thresholds for the formation of a giant component are further
studied more generally in percolation theory [BR06]—mostly for graphs 𝐺 defined by some
regular or random lattice. In the context of percolation theory, edge sampling is called bond
percolation whereas vertex sampling is referred to as site percolation.

We are interested in how the vertex connectivity of a general graph 𝐺 changes under
uniform random vertex or edge sampling. This is in part because we use random sampling
methods in the constructions of our vertex connectivity decomposition results, particularly
in Section 4.4. But it is also motivated by understanding the reliability of a network when
vertices of it fail randomly, more concretely, characterizing which networks are likely to get
disconnected when each node in the network fails with some given probability 𝑞 = 1− 𝑝.

For edge connectivity and edge sampling, the analogous question was resolved already two
decades ago. Karger’s seminal result [Kar94b] showed that for any 𝜆-edge-connected graph
with 𝑛 vertices, sampling edges independently at random with probability 𝑝 = Ω(log(𝑛)/𝜆)

results in an Ω(𝜆𝑝)-edge-connected subgraph, with high probability1. This was a strong ex-
tension of the earlier result by Lomonosov and Polesskii [LP72], which stated that sampling

1Recall from Chapter 2 that we use the phrase ‘with high probability ’ (w.h.p.) to indicate that some
event has a probability of at least 1− 𝑛−Θ(1).
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each edge with probability Θ(log(𝑛)/𝜆) leads to a connected subgraph, w.h.p. These sam-
pling results and their extensions were cornerstone tools for addressing various important
problems such as various min-cut problems [Kar94a, Kar94b], constructing cut-preserving
graph sparsifiers [BK96, ST04], max-flow problems [Kar94a,KL98], and network reliability
estimations [Kar95].

As in the case of edge connectivity, studying the vertex connectivity of the subgraph
obtained by independently sampling vertices or edges of a 𝑘-vertex-connected graph is of
fundamental interest. However, the vertex connectivity case has been recognized as being
much harder and the problem remained widely open. Let us briefly overview the challenge.
We briefly explain why tools with a similar flavor to the ones used for edge connectivity do
not take us far in the vertex connectivity case. The key to most results about edge sampling
is the so-called cut counting argument introduced in [Kar93], where it is shown that in a
graph of edge connectivity 𝜆, the number of cuts of size at most 𝛼𝜆 is at most 𝑂(𝑛2𝛼).
Combined with a standard Chernoff argument and a union bound over all cuts, this shows
that when independently sampling each edge with probability 𝑝 = Ω(log(𝑛)/𝜆), it holds
w.h.p. for the subgraph induced by the sampled edges, that the size of each cut does not
deviate from its expectation by more than a constant factor [Kar94b]. Hence, in particular,
the edge connectivity of the sampled subgraph is Ω(𝜆𝑝), w.h.p. Unfortunately, the same
approach cannot work for vertex connectivity under vertex or edge sampling, because in
graphs with vertex connectivity 𝑘, even the number of minimum vertex cuts can be as large
as Θ(2𝑘(𝑛/𝑘)2) [Kan90].

Our Result We propose a new method which overcomes this challenge and leads to tight
bounds for the threshold probability for vertex connectivity and the remaining connectivity
under both vertex and edge sampling. Formally, we prove the following two theorems:

Theorem 5.1.1. Let 𝐺 = (𝑉,𝐸) be an arbitrary 𝑘-vertex-connected 𝑛-node graph, and let

𝑆 be a randomly sampled subset of 𝑉 where each node 𝑣 ∈ 𝑉 is included in 𝑆 independently

with probability 𝑝 ≥ 𝛼
√︀

log(𝑛)/𝑘, for a sufficiently large constant 𝛼. Then the subgraph 𝐺[𝑆]

of 𝐺 induced by 𝑆 has vertex connectivity Ω(𝑘𝑝2), with probability 1− 𝑒−Ω(𝑘𝑝2).

Theorem 5.1.2. Let 𝐺 = (𝑉,𝐸) be a 𝑘-vertex-connected 𝑛-node graph, and let 𝐸 ′ be a

randomly sampled subset of 𝐸 where each edge 𝑒 ∈ 𝐸 is included in 𝐸 ′ independently with

probability 𝑝 ≥ 𝛼 log(𝑛)/𝑘, for a sufficiently large constant 𝛼. Then the subgraph 𝐺′ = (𝑉,𝐸 ′)

of 𝐺 has vertex connectivity Ω(𝑘𝑝), with probability 1− 𝑒−Ω(𝑘𝑝).

The bounds in both of these theorem statements are tight. In Section 5.5, we discuss
simple graphs that show the optimality of the bounds in Theorems 5.1.1 and 5.1.2.

Organization of the next sections: Our method for proving Theorems 5.1.1 and 5.1.2
has two parts. The main part studies the sampling process and proves tight bounds on the
probability of the graph becoming disconnected. In the main regime of interest, these are
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probabilities that are exponentially close to 0 and for our result to be useful, we need to even
prove the tight exponents in how fast this probability vanishes to 0. We thus refer to this
part as probability concentration for connectivity, which is presented in Section 5.2. The
second part then uses this high probability concentration for remaining simply connected
and transforms it into lower bounds for the remaining connectivity. This part is presented in
Section 5.3. In Section 5.4, present simple graphs which show the optimality of the bounds
claimed in Theorems 5.1.1 and 5.1.2. We conclude the chapter in Section 5.5 by presenting
a discussion on open problems and furture work.

5.2 Probability Concentration for Connectivity

The most important component in our approach is proving tight bounds (on the exponent
of) the probability of the graph becoming disconnected when we sample each vertex with
probability 𝑝. Formally we prove the following statement.

Theorem 5.2.1. Let 𝐺 = (𝑉,𝐸) be a 𝑘-vertex-connected 𝑛-node graph. For an arbitrary

0 < 𝛿 < 1, let 𝑆 be a randomly sampled subset of 𝑉 such that each 𝑣 ∈ 𝑉 is included

in 𝑆 independently with probability 𝑝 ≥ 𝛽
√︀

log(𝑛/𝛿)/𝑘, for a sufficiently large constant 𝛽

(independent of 𝑛, 𝑘 and 𝛿). Then, with probability at least 1− 𝑒−Ω(𝑘𝑝2) ≥ 1− 𝛿, the set 𝑆 is

a connected dominating set of 𝐺 (and thus graph 𝐺[𝑆] is connected).

Remark Before diving into the proof, we note that the power of Theorem 5.2.1 comes
from the ability to plug exponentially small values into the error probability 𝛿.

5.2.1 Warm Up

Instead of directly diving into the full proof of Theorem 5.2.1, we start with a much simpler
argument which shows that that the remaining the graph is connected with probability at
least 1 − Ω(𝑘𝑝2/ log 𝑛). In the next subsection, we explain how to tighten the bound to
1− Ω(𝑘𝑝2).

Lemma 5.2.2. Let 𝐺 be a 𝑘-vertex-connected graph with 𝑛 vertices. Suppose we sample

each vertex independently with probability 𝑝 ≥ 𝑐 log𝑛√
𝑘

for a sufficiently large constant 𝑐 > 0.

The sampled vertices induce a connected graph, with probability at least 1− 𝑒−Ω(𝑘𝑝2/ log𝑛).

Proof Idea We consider the vertex sampling as a slowed-down gradual process that hap-
pens in phases, each being a sampling process with a smaller probability, and we analyze
the set of sampled vertices as they are gradually added throughout these phases. More con-
cretely, we show that after a few phases, the sampled vertices form a dominating set, with
very high probability. From that point onward, we focus on the number of connected com-
ponents of the sampled vertices and show that each new phase of sampling is likely to reduce
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the number of connected components by a constant factor. Hence, after 𝑂(log 𝑛) phases, the
subgraph induced by the sampled nodes becomes connected, with high probability.

Proof Sketch. We view the sampling in 𝐿 = Θ(log 𝑛) layers, where now in each layer, each
vertex that is not sampled in the previous layers gets sampled with probability 𝑞, such that
we have 1− (1− 𝑞)𝐿 = 𝑝. It is easy to see that 𝑞 = Ω(𝑝/𝐿) = Ω(𝑝/ log 𝑛). One can see that
the sampled vertices of the first 𝐿/2 layers are a dominating set of the graph, with probability
at least 1− 𝑒−Ω(𝑘𝑝). This is because, in a 𝑘-vertex-connected graph, each vertex has at least
𝑘 neighbors and the probability of each vertex to be sampled in one of the first 𝐿/2 layers is
at least Ω(𝑝). Hence, the probability of each node not to have a sampled neighbor in these
layers is at most (1 − Ω(𝑝))𝑘 = 𝑒−Ω(𝑘𝑝). Taking a union bound over all nodes, we get that
with probability at least 1− 𝑒−Ω(𝑘𝑝) ≥ 1− 𝑒−Ω(𝑘𝑝2/ log𝑛), all nodes are dominated.

Consider a layer ℓ > 𝐿/2 and consider the subgraph induced by the sampled vertices
of layers 1 to ℓ. From Menger’s theorem, we know that each connected component of this
subgraph is connected to other components via at least 𝑘 vertex-disjoint paths (in total),
that are made of non-sampled internal nodes. Thanks to the domination provided by the
first 𝐿/2 layers, we get a stronger statement: each such component is connected to other
components via at least 𝑘 vertex-disjoint paths, each with at most 2 non-sampled internal

nodes (thus the length of each of these paths is at most 3). We call these connector paths.
With the arrival of the sampled vertices of layer ℓ + 1—which are sampled with probability
Θ(𝑝/log 𝑛)—each of these short connector paths has (both of) its middle nodes sampled with
probability at least 𝑞2 = Θ((𝑝/ log 𝑛)2). Hence, the probability that at least one of these
paths has its middle nodes sampled is at least 1− (1− 𝑞2)𝑘 = 1− 𝑒−Ω(𝑘𝑝2/ log2 𝑛). Thus, the
probability that this component is bad meaning that is does not get connected to another
component is at most 𝑒−Ω(𝑘𝑝2/ log2 𝑛). Call this layer bad if more than half of its components
are bad. Using Markov’s inequality, we get that the probability that the layer is bad is
at most 𝑒−Ω(𝑘𝑝2/ log2 𝑛). Now, we overall have 𝐿/2 = Θ(log 𝑛) layers after domination and
each is bad with probability at most 𝑒−Ω(𝑘𝑝2/ log2 𝑛). Therefore, the probability that more
than 𝐿/4 of these layers are bad is at most

(︀
𝐿/2
𝐿/4

)︀
𝑒−Ω(𝑘𝑝2/ log2 𝑛)·𝐿/4 ≤ 𝑒−Ω(𝑘𝑝2/ log𝑛). That is,

with probability at least 1− 𝑒−Ω(𝑘𝑝2/ log𝑛), at least 𝐿/4 of the layers are good. Since in each
good layer the number of connected components goes down by a constant factor, the latter
would mean that after 𝐿/4 = Θ(log 𝑛) good layers, the sampled vertices induce a connected
graph. Hence, taking a union bound over the 𝑒−Ω(𝑘𝑝) failure probability of domination and
the 𝑒−Ω(𝑘𝑝2/ log𝑛) failure probability of connectivity, we get that the sampled vertices induce
a connected graph with probability at least 1− 𝑒−Ω(𝑘𝑝2/ log𝑛).

5.2.2 Intuition and Challenges in Proving Theorem 5.2.1

In this subsection, we provide some intuition for the proof of Theorem 5.2.1.
One of the contributions of this theorem is that we can plug very small values of the

error probability 𝛿 into it. For explaining the intuition, we just focus on the specific case of
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𝛿 = 𝑛−Θ(1). That is, we explain why a sampling probability of 𝑝 = Θ(
√︀

log(𝑛)/𝑘) leads to
a connected sampled subgraph w.h.p. As a comparison, the warm up result we proved in
the previous subsection applies only to this case and needed the stronger assumption that
𝑝 = Ω(log(𝑛)/

√
𝑘).

We again look at the sampling process as slowly adding nodes over time. In particular,
instead of sampling nodes with probability 𝑝 at once, one samples nodes over multiple, 𝑇 =

Ω(log 𝑛), rounds, where in each round nodes are sampled with some smaller probability 𝑞 ≈
𝑝/𝑇 . This allows to study and analyze the emergence and merging of connected components,
as time progresses and more and more nodes are sampled.

Next, let us take a look at a single edge cut, the canonical bad cut consisting of a 𝑘-
edge matching as will be discussed in Observation 5.4.1. We emphasize that understanding
the behavior of all cuts simultaneously is the part that makes the problem challenging, but
focusing on this single cut should be sufficient for delivering the right intuition about the
key new element in our analysis.

In the cut consisting of a 𝑘-edge-matching, in any round, both endpoints of an edge will
become sampled with probability 𝑞2. Since there are 𝑘 such edges, the probability that at
least one edge gets sampled in a round is bounded by 𝑘𝑞2. Now, in order for a cut to merge
w.h.p. in this way over the course of 𝑇 rounds, we need that 𝑇𝑘𝑞2 = 𝑘𝑝2/𝑇 = Ω(log 𝑛). Since
we assumed 𝑇 = Ω(log 𝑛), this results in 𝑝 = Ω(log(𝑛)/

√
𝑘) being a necessary condition. This

explains in a very simplified manner why the argument of the previous warm up section does
not work for 𝑝 = 𝑜(log(𝑛)/

√
𝑘).

Here, we refine this layer-by-layer sampling by further exploiting that connectivity evolves
gradually. In particular, while the probability of obtaining one complete edge in one round
is only 𝑞2, and thus quite small, the number of sampled nodes on each side of the cut grows
by roughly 𝑘𝑞 in each round. Thus, after 𝜆/𝑘𝑞 rounds for some 𝜆 = Ω(log 𝑛), the number
of such nodes is at least 𝜆 w.h.p. Each of these nodes intuitively already goes half way in
crossing the cut. In particular, with 𝜆 such nodes, there is a chance of 𝜆𝑞 per each of the
next rounds to complete such a semi-sampled edge into a fully sampled edge that crosses
the cut. This means that after such 𝜆-“semi-connectivity” is achieved, log(𝑛)/𝜆𝑞 further
rounds suffice to get an edge crossing the cut to be fully sampled, with high probability. The
optimal value for 𝜆 is now chosen to balance between the 𝜆/𝑘𝑞 rounds to achieve 𝜆-semi-
connectivity and the log(𝑛)/𝜆𝑞 additional rounds required to lead to connectivity. This leads
to 𝜆 =

√︀
log(𝑛)/𝑘, and results in 𝑇 = Θ

(︀√︀
log(𝑛)/𝑘/𝑞

)︀
rounds and a sampling probability

of 𝑝 = Θ
(︀√︀

log(𝑛)/𝑘
)︀
being sufficient for a single cut.

In the above description we focused on a single cut. However, understanding the behavior
of all (the exponentially many) cuts together turns out to be significantly more complex.
Overall, the main technical challenge is to develop notions, definitions and arguments to
prove that semi-connectivity indeed gets established quickly, for all cuts.
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5.2.3 Proof of Theorem 5.2.1 via Semi-Connectivity

In this section, we present the formal definition of semi-connectivity, and explain how the
proof of Theorem 5.2.1 incorporates the analysis of semi-connectivity. At a high level,
the process of sampling consists of three parts for obtaining (i) domination, (ii) 𝜆-semi-
connectivity for a 𝜆 = Θ(

√︀
𝑘 log(𝑛/𝛿)), and (iii) connectivity. Establishing domination

is trivial, and the proof of connectivity after having 𝜆-semi-connectivity follows easily a
layer-by-layer analysis, as done in the warm up result. The key challenge is to prove 𝜆-semi-
connectivity. Precisely, we show that sampling with probability Θ(𝜆/𝑘) suffices for increasing
the semi-connectivity of a dominating set by an additive term of 𝜆, for 𝜆 = Ω(log 𝑛).

We start by fixing some basic notation. We say that a node 𝑢 ∈ 𝑉 is a neighbor of 𝑆 ⊆ 𝑉

or is adjacent to 𝑆 if 𝑢 is adjacent to some node 𝑣 ∈ 𝑆 and 𝑢 /∈ 𝑆. The set of neighbors of 𝑆
is denoted by 𝜕𝑆. An edge or path between two sets 𝑆 and 𝑆 ′ is one with endpoints 𝑢 ∈ 𝑆

and 𝑢′ ∈ 𝑆 ′.
We formally define the notion of semi-connectivity as follows.

Definition 5.2.3 (𝜆-Semi-Connected Set). A node set 𝑆 ⊆ 𝑉 is 𝜆-semi-connected, for some

𝜆 ≥ 0, if for any partition of 𝑆 into two sets 𝑇 and 𝑆 ∖ 𝑇 with no edges between them, 𝑇

and 𝑆 ∖ 𝑇 have at least 𝜆 common neighbors, i.e., |𝜕𝑇 ∩ 𝜕(𝑆 ∖ 𝑇 )| ≥ 𝜆.

If a set is (𝜆+1)-semi-connected, then it is 𝜆-semi-connected, as well. Also, any connected
set is 𝜆-semi-connected for any 𝜆 ≥ 0, as the condition in Definition 5.2.3 is vacuously true
in this case.

Next we observe that adding a node from 𝑉 ∖ 𝑆 to a 𝜆-semi-connected set 𝑆 does not
break semi-connectivity, provided that 𝑆 is a dominating set.

Claim 5.2.4. If 𝑆 ⊆ 𝑉 is a 𝜆-semi-connected dominating set, then for any node 𝑢 ∈ 𝑉 ∖ 𝑆,
the set 𝑆 ∪ {𝑢} is also a 𝜆-semi-connected dominating set.

Proof. Since 𝑆 is a dominating set, so is the set 𝑆 ′ = 𝑆 ∪ {𝑢}. Next, we show that 𝑆 ′ is
𝜆-semi-connected. Consider any partition of 𝑆 ′ into two sets 𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′, such that these
sets have no edges between them. We show that 𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′ have at least 𝜆 common
neighbors. We assume w.l.o.g. that 𝑢 ∈ 𝑇 ′. We observe that 𝑇 ′ ̸= {𝑢}, because 𝑆 is a
dominating set and thus if 𝑇 ′ = {𝑢} then there would be an edge between 𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′.
Thus, the set 𝑇 = 𝑇 ′ ∖ {𝑢} is non-empty, and the two sets 𝑇 and 𝑆 ∖ 𝑇 = 𝑆 ′ ∖ 𝑇 ′ constitute
a partition of 𝑆. We have that 𝑇 and 𝑆 ∖ 𝑇 have no edges between them, for otherwise the
same edge would also connect 𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′. Since 𝑆 is 𝜆-semi-connected, there are at least
𝜆 common neighbors for 𝑇 and 𝑆 ∖ 𝑇 . Each of these nodes is also a common neighbor for
𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′, because it cannot be equal to 𝑢 (otherwise there is an edge between 𝑇 ′ and
𝑆 ′ ∖𝑇 ′). Since this holds for any such partition, this implies that 𝑆 ′ is 𝜆-semi-connected.

We now show that, if we start with a set 𝑆 of nodes that is a 𝜆-semi-connected dominating
set, then it suffices to sample the remaining nodes with probability Θ(log(𝑛/𝛿)/𝜆) to end up
with a connected dominating set with probability 1− 𝛿.
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Lemma 5.2.5. Let 𝑆 ⊆ 𝑉 be a 𝜆-semi-connected dominating set. Sampling each remaining

node 𝑢 ∈ 𝑉 ∖ 𝑆 with probability log𝛾(𝑛/𝛿)/𝜆, where 𝛾 = 2𝑒
𝑒+1

, yields a set 𝑆 ′ such that 𝑆 ∪ 𝑆 ′

is a connected dominating set with probability at least 1− 𝛿.

Proof. We perform sampling in rounds, where in each round every node that has not been
sampled yet is sampled with probability 1/𝜆. The total number of rounds is 𝑟 = log𝛾(𝑛/𝛿),
thus the probability for any given node 𝑢 ∈ 𝑉 ∖ 𝑆 to get sampled in one of those rounds
is at most 𝑟/𝜆 = log𝛾(𝑛/𝛿)/𝜆, as required by the lemma statement. Let 𝑆𝑖, for 0 ≤ 𝑖 ≤ 𝑟,
denote the set consisting of all nodes sampled in the first 𝑖 rounds and of all nodes 𝑢 ∈ 𝑆

(so 𝑆0 = 𝑆). Further, let 𝑋𝑖 denote the number of connected components of the induced
subgraph 𝐺[𝑆𝑖]. We bound E[𝑋𝑖] next.

Fix a set 𝑆𝑖 and suppose that 𝐺[𝑆𝑖] is disconnected, i.e., 𝑋𝑖 > 1. Since 𝑆 is a 𝜆-semi-
connected dominating set, 𝑆𝑖 is also a 𝜆-semi-connected dominating set, by Claim 5.2.4.
Hence, each connected component 𝐶 of 𝐺[𝑆𝑖] has at least 𝜆 common neighbors with other
connected components. If any of those common neighbors gets sampled in round 𝑖+ 1, then
𝐶 gets merged with another component. Then the probability of 𝐶 to get merged in round
𝑖+1 is at least 1−(1−1/𝜆)𝜆 ≥ 1−1/𝑒. Since the drop 𝑋𝑖−𝑋𝑖+1 in the number of connected
components in round 𝑖 + 1 is at least half the total number of connected components that
get merged, it follows that

E[𝑋𝑖 −𝑋𝑖+1 | 𝑆𝑖] ≥
1− 1/𝑒

2
𝑋𝑖 = (1− 1/𝛾)𝑋𝑖.

This inequality assumes that 𝑋𝑖 > 1 (notice that 𝑋𝑖 is fixed because 𝑆𝑖 is fixed). To lift this
assumption we define the random variables 𝑌𝑖 = 𝑋𝑖− 1 and consider them instead. We have

E[𝑌𝑖 − 𝑌𝑖+1 | 𝑆𝑖] = E[𝑋𝑖 −𝑋𝑖+1 | 𝑆𝑖] ≥ (1− 1/𝛾)𝑋𝑖 ≥ (1− 1/𝛾)𝑌𝑖.

The above inequality E[𝑌𝑖−𝑌𝑖+1 | 𝑆𝑖] ≥ (1− 1/𝛾)𝑌𝑖 also holds (trivially) when 𝑋𝑖 = 1, since
then 𝑌𝑖 = 0. Taking now the unconditional expectation yields E[𝑌𝑖−𝑌𝑖+1] ≥ (1− 1/𝛾)E[𝑌𝑖],
which implies E[𝑌𝑖+1] ≤ E[𝑌𝑖]/𝛾. Applying this inequality repeatedly gives

E[𝑌𝑟] ≤ E[𝑌0]/𝛾
𝑟 ≤ 𝑛/𝛾𝑟,

since 𝑌0 < 𝑛. This yields E[𝑌𝑟] ≤ 𝑛/𝛾𝑟 = 𝛿, as 𝑟 = log𝛾(𝑛/𝛿). By Markov’s inequality then
we obtain Pr(𝑌𝑟 > 0) = Pr(𝑌𝑟 ≥ 1) ≤ E[𝑌𝑟]/1 ≤ 𝛿. Therefore, the probability that there is
only one connected component by the end of the last round is at least 1− 𝛿.

Lemma 5.2.5 requires that we start with a set 𝑆 of (already sampled) nodes which is a
𝜆-semi-connected dominating set. To achieve domination (but not 𝜆-semi-connectivity) with
probability at least 1− 𝛿, it suffices to sample nodes with probability Θ(log(𝑛/𝛿)/𝑘). Recall
that 𝑘 is the vertex connectivity of the graph and thus also a lower bound on the minim
degree of the graph.
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Lemma 5.2.6. Sampling each node with probability ln(𝑛/𝛿)/𝑘 yields a dominating set with

probability at least 1− 𝛿.

Proof. From the 𝑘-vertex-connectivity of the graph, it follows that each node has degree at
least 𝑘. Thus the probability for a given node that none of its neighbors gets sampled is at
most

(︀
1− ln(𝑛/𝛿)

𝑘

)︀𝑘 ≤ 𝑒−
ln(𝑛/𝛿)

𝑘
·𝑘 = 𝛿

𝑛
. By the union bound, the probability that this happens

for at least one of the 𝑛 nodes is at most 𝛿.

It remains to bound the sampling probability needed to achieve 𝜆-semi-connectivity.
This is the key part in our analysis. In particular, we show that a sampling probability of
Θ((𝜆 + log 𝑛)/𝑘) suffices to achieve 𝜆-semi-connectivity. Section 5.2.4 is dedicated to the
proof of this result, which is formally stated as follows.

Lemma 5.2.7 (Key Semi-Connectivity Claim). Let 𝑆 ⊆ 𝑉 be a dominating set. Sampling

each remaining node 𝑢 ∈ 𝑉 ∖ 𝑆 with probability 16𝜆/𝑘 yields a set 𝑆 ′ such that 𝑆 ∪ 𝑆 ′ is a

𝜆-semi-connected dominating set with probability at least 1− 𝑛/2𝜆.

We now have all the ingredients to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. If 𝑘 = 𝑂(log(𝑛/𝛿)) then the theorem holds trivially by choosing the
constant 𝛽 such that 𝛽

√︀
log(𝑛/𝛿)/𝑘 ≥ 1. Below we assume that 𝑘 > log(3𝑛/𝛿).

We consider three phases. First, we sample nodes with probability ln(3𝑛/𝛿)/𝑘, and from
Lemma 5.2.6 we have that the resulting set, denoted 𝑆1, is a dominating set with probability
1− 𝛿/3.

In the next phase, we sample the remaining nodes 𝑢 ∈ 𝑉 ∖𝑆1 with probability 16𝜆/𝑘, for
𝜆 =

√︀
𝑘 log(3𝑛/𝛿). From Lemma 5.2.7 it follows that if 𝑆1 is a dominating set, then the set

𝑆2 of all nodes sampled in the first two phases is a 𝜆-semi-connected dominating set with
probability 1−𝑛/2𝜆. Note that 1−𝑛/2𝜆 ≥ 1− 𝛿/3, because 𝜆 =

√︀
𝑘 log(3𝑛/𝛿) ≥ log(3𝑛/𝛿),

as we have assumed 𝑘 > log(3𝑛/𝛿).

In the last phase, we sample the remaining nodes 𝑢 ∈ 𝑉 ∖𝑆2 with probability log𝛾(𝑛/𝛿)/𝜆,
and obtain from Lemma 5.2.5 that the probability for the set 𝑆3 of nodes sampled in the
three phases to be a connected dominating set is at least 1 − 𝛿/3, provided that 𝑆2 is a
𝜆-semi-connected dominating set.

A union bound over all three phases shows that the probability of ending up with a
connected dominating set 𝑆3 is indeed 1− 𝛿, and the total sampling probability is at most

ln(3𝑛/𝛿)

𝑘
+

16
√︀
𝑘 log(3𝑛/𝛿)

𝑘
+

log𝛾(𝑛/𝛿)√︀
𝑘 log(3𝑛/𝛿)

,

which is 𝑂
(︀√︀

log(𝑛/𝛿)/𝑘
)︀
.
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5.2.4 Proof of Lemma 5.2.7: Sampling for 𝜆-Semi-Connectivity

We assume that sampling is performed in rounds. In each round, each node that has not
been sampled yet is sampled with probability 1/𝑘. Within a round, the sampling of nodes
is done sequentially, in steps, with a single node considered for sampling at each step (the
order in which nodes are considered in a round can be arbitrary). We will denote by 𝑆𝑡 the
set containing all nodes sampled in the first 𝑡 steps and all nodes 𝑢 ∈ 𝑆 (so 𝑆0 = 𝑆).

Along with the sampling process, we consider a procedure that colors the edges of the
graph. We describe this procedure and the related notion of novo-connectivity next.

Edge-Coloring Procedure. At any point in time, each edge has a color from the set
{black, gray, white, color-1, . . . , color-𝜆}. The same color can be used for more than one
edge, and the color of an edge may change during the sampling process.

We have the following coloring initially: Edges with both endpoints in 𝑆0 = 𝑆 are black;
the edges between 𝑆 and 𝑉 ∖𝑆 are gray; and all remaining edges (between nodes from 𝑉 ∖𝑆)
are white. There are no color-𝑖 edges initially, for any 1 ≤ 𝑖 ≤ 𝜆.

In each step of the sampling process, some edges may change color. The possible changes
are that white edges may switch to color-𝑖, for some 𝑖, and edges of any color may switch to
black. At any point in time we have the following invariants:

∙ An edge is black iff both its endpoints belong to the set 𝑆𝑡 of nodes sampled up to that
point.

∙ If an edge is gray or of color-𝑖, for some 𝑖, then exactly one of its endpoints is in 𝑆𝑡

and the other in 𝑉 ∖ 𝑆𝑡.

∙ If both endpoints of an edge are in 𝑉 ∖ 𝑆𝑡 then this edge is white. (But it is possible
for a white edge to have one endpoint in 𝑆𝑡 and the other in 𝑉 ∖ 𝑆𝑡.)

Before we describe precisely the color changes that take place in each step we must
introduce the key concept of novo-connectivity.

Definition 5.2.8 (𝑖-Novo-Connectivity). A simple path between two sampled nodes is an

𝑖-novo-path, for some 1 ≤ 𝑖 ≤ 𝜆, if (1) each edge in the path has a color from the set

{black, gray, color-𝑖}, and (2) for any two consecutive edges whose common endpoint is not

sampled, at least one of them is a color-𝑖 edge.2 Two sampled vertices are 𝑖-novo-connected
if there is an 𝑖-novo-path between them. Finally, an 𝑖-novo-connected component, or simply

𝑖-novo-component, is a maximal subset of the sampled nodes such that any two nodes in that

set are 𝑖-novo-connected.3

We describe now the color changes that take place during step 𝑡 ≥ 1. Suppose that
node 𝑢 /∈ 𝑆𝑡−1 is considered for sampling in step 𝑡. If 𝑢 is not sampled in that step, i.e.,

2The other edge is then either a color-𝑖 or a gray edge.
3We will see, in Claim 5.2.9, that 𝑖-novo-connectivity is an equivalence relation between sampled nodes.
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𝑆𝑡 = 𝑆𝑡−1, then there are no changes. If 𝑢 is sampled, i.e., 𝑆𝑡 = 𝑆𝑡−1 ∪{𝑢}, all edges 𝑢𝑣 with
𝑣 ∈ 𝑆𝑡−1 become black, and then the following 𝜆 sub-steps are performed. In each sub-step
𝑖 = 1, . . . , 𝜆, some edges incident to 𝑢 may switch from white to color-𝑖. Precisely, an edge
𝑢𝑣 switches to color-𝑖 in sub-step 𝑖 of step 𝑡 if all the conditions below hold simultaneously:

1. 𝑢𝑣 is white before sub-step 𝑖.

2. 𝑣 is adjacent to only one 𝑖-novo-component before step 𝑡—we say 𝑣 is an exclusive

neighbor of that component.

3. 𝑢 is not adjacent to the same 𝑖-novo-component as 𝑣 before step 𝑡.

We also have the additional rule:

4. If there are more than one node 𝑣 that satisfy the three conditions above and are all
adjacent to the same 𝑖-novo-component before step 𝑡, then only one edge 𝑢𝑣 is colored
with color-𝑖 (choosing an arbitrary one among those nodes 𝑣).

Our proof of Lemma 5.2.7 relies on analyzing how 𝑖-novo-components evolve over time
as the sampling proceeds. Intuitively, we will show that in the end, for each color 𝑖, all
the connected components of the subgraph induced by the sampled nodes are connected
by length-2 paths consisting of color-𝑖 edges and gray edges. Moreover, these paths can be
chosen in such a way that the connector paths for different colors are internally vertex-disjoint
so that together, they imply that the sampled set is 𝜆-semi-connected.

Roadmap of the Rest of the Proof. The remainder of the proof unfolds in a series of
claims. Claim 5.2.9 shows that 𝑖-novo-connectivity is an equivalence relation; this is required
for our definition of 𝑖-novo-components. In Claim 5.2.10, we identify the setting under which
two 𝑖-novo-components merge into a single component, and in Claim 5.2.11, we prove that
if two nodes are 𝑖-novo-connected, they are also (𝑖− 1)-novo-connected. Next, we introduce
the notion of a critical node of an 𝑖-novo-component (Definition 5.2.12). Roughly speaking,
such a node, when sampled, causes the 𝑖-novo-component to merge with another component
or, if not, it causes some 𝑗-novo-component, for 𝑗 < 𝑖, to merge (Claim 5.2.14). We also
show, in Claim 5.2.13, that the number of critical nodes for each 𝑖-novo-component is at least
equal to the vertex connectivity 𝑘. These two results are used in Claims 5.2.15 and 5.2.16
to compute the expected drop in a round, of the number of distinct novo-components. This
expected drop is used then in Claim 5.2.17 to bound by 𝑂(𝜆) the number of rounds before
there is just a single 𝜆-novo-component (at that time, from Claim 5.2.11, it follows that for
any 𝑖 there is just a single 𝑖-novo-component). Finally, we show that having just a single 𝑖-
novo-component, for each 1 ≤ 𝑖 ≤ 𝜆, implies 𝜆-semi-connectivity (Claim 5.2.18), concluding
the proof of Lemma 5.2.7.

We first show that 𝑖-novo-connectivity is indeed an equivalence relation between sampled
nodes, making the notion of an 𝑖-novo-component well defined.
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Figure 5-1: Illustrating the proof of Claim 5.2.9

Claim 5.2.9. 𝑖-novo-connectivity is an equivalence relation between sampled nodes.

Proof. It is straightforward to see that 𝑖-novo-connectivity is reflexive and symmetric. It
remains to show transitivity, i.e., if a node 𝑢 is 𝑖-novo-connected with nodes 𝑣 and 𝑤, then
𝑣 and 𝑤 are 𝑖-novo-connected with each other.

Suppose, for the sake of contradiction, that the transitivity property is violated at some
point, and let 𝑡 be the earliest step when this happens. That is, at some point during step 𝑡,
there is some 𝑖 and nodes 𝑢, 𝑣, 𝑤 such that 𝑢 is 𝑖-novo-connected with both 𝑣 and 𝑤, but 𝑣
and 𝑤 are not 𝑖-novo-connected with each other. Recall that before the first step there are
no color-𝑖 edges, so at that time two nodes are 𝑖-novo-connected iff they are connected (by
a path of black edges), and thus transitivity holds.

Let 𝑝 be an 𝑖-novo-path between 𝑣 and 𝑢, and 𝑞 an 𝑖-novo-path between 𝑤 and 𝑢 (see
Figure 5-1). Let 𝑥 be the first node where the two paths intersect when going from 𝑤 towards
𝑢 on path 𝑞. We define 𝑟 to be the concatenation of the subpath of 𝑝 connecting 𝑣 and 𝑥

and of the subpath of 𝑞 connecting 𝑥 and 𝑤. Note that 𝑟 is a simple path connecting 𝑣 and
𝑤, and node 𝑥 is the only node of 𝑟 that is in the intersection of paths 𝑝 and 𝑞 (otherwise at
least one of these paths is not a simple path). Further note that 𝑥 cannot be a sampled node
because in that case the path 𝑟 is an 𝑖-novo-path connecting nodes 𝑣 and 𝑤 and thus 𝑣 and
𝑤 are 𝑖-novo-connected. Hence, in particular, 𝑥 /∈ {𝑢, 𝑣, 𝑤}. Let 𝑣′ and 𝑤′ be the neighbors
of 𝑥 in path 𝑟 towards 𝑣 and 𝑤, respectively, and let 𝑢′ be the neighbor of 𝑥 in 𝑝 towards 𝑢.
Note that it is possible that 𝑢 = 𝑢′, 𝑣 = 𝑣′, or 𝑤 = 𝑤′. We also observe that both edges 𝑥𝑣′

and 𝑥𝑤′ must be gray, because if at least one of them is color-𝑖 then 𝑟 is an 𝑖-novo-path.
We have thus established that node 𝑥 is not sampled and both edges 𝑥𝑣′ and 𝑥𝑤′ are

gray. Since 𝑥𝑣′ and 𝑥𝑢′ are consecutive edges in 𝑖-novo-path 𝑝 and 𝑥 is not sampled, it
follows that 𝑥𝑢′ must be color-𝑖. Consider the step 𝑡′ ≤ 𝑡 at which this edge changed from
white to color-𝑖, when 𝑢′ was sampled. It must be the case that before step 𝑡′, and thus
before step 𝑡, 𝑥 was an exclusive neighbor to a single 𝑖-novo-component. We stress here that
at any point before step 𝑡, 𝑖-novo-components are well defined as the transitivity property
holds for 𝑖-novo-connectivity up to that step, because of the minimality of 𝑡. Since 𝑥𝑣′ and
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𝑥𝑤′ are both gray and since no edge becomes gray at any step, these edges were also gray
before step 𝑡′, which means that 𝑣′ and 𝑤′ were in the same 𝑖-novo-component before step 𝑡.

We now argue that at least one of the nodes 𝑣 and 𝑤 is also in the same 𝑖-novo-component
as 𝑣′ and 𝑤′ before step 𝑡: The subpath of 𝑟 between 𝑣 and 𝑣′ and the subpath between 𝑤

and 𝑤′ are both 𝑖-novo-paths and they do not intersect. We also have that in step 𝑡, as in
any step, only edges incident to the node sampled in that step (if one is indeed sampled)
may change color. Since the subpaths above do not share a common node, at least one of
them does not change in step 𝑡. Suppose, w.l.o.g., that the subpath between 𝑤 and 𝑤′ does
not change. It follows then that 𝑤 is in the same 𝑖-novo-component as 𝑣′ and 𝑤′ before step
𝑡. Thus there is an 𝑖-novo-path 𝑞1 between 𝑤 and 𝑣′ before step 𝑡. We further denote the
subpath of 𝑝 between 𝑣 and 𝑣′ by 𝑝1.

We now apply a very similar argument as above using paths 𝑝1 and 𝑞1 in place of 𝑝 and
𝑞. Two key observations here are that (1) 𝑝1 is a proper subpath of 𝑝, and thus 𝑝1 is strictly
shorter than 𝑝; and (2) the 𝑖-novo-path 𝑞1 between 𝑤 and 𝑣′ existed before step 𝑡. Similarly
to before, we let 𝑥1 be the first node in the intersection of 𝑝1 and 𝑞1 when going from node
𝑣 towards node 𝑣′ on path 𝑝1 and we denote 𝑟1 the concatenation of the subpaths of 𝑝1 and
𝑞1 connecting 𝑥1 with 𝑣 and 𝑤, respectively. Again 𝑥1 cannot be sampled as otherwise 𝑟1 is
an 𝑖-novo-path. Defining 𝑣′1 and 𝑤′

1 in a similar manner as before and using an analogous
argument, we get that 𝑣′1 and 𝑤′

1 are in the same 𝑖-novo-component before step 𝑡. Observe
that 𝑤 is also in that 𝑖-novo-component, because 𝑤 and 𝑤′

1 are connected by an 𝑖-novo-path
before step 𝑡, namely the subpath of 𝑞1 between 𝑤 and 𝑤′

1 (see observation (2) made earlier).
Thus there is an 𝑖-novo-path 𝑞2 between 𝑤 and 𝑣′1 before step 𝑡. We then define 𝑝2 to be the
subpath of 𝑝1 between 𝑣 and 𝑣′1, and repeat the exact same argument for 𝑝2 and 𝑞2, and so
on. Since the length of the paths 𝑝1, 𝑝2, . . . strictly decreases, it follows that for some 𝑠 we
will have 𝑣′𝑠 = 𝑣, and from this we obtain that 𝑣 and 𝑤 are in the same 𝑖-novo-component
before step 𝑡—a contradiction.

Two distinct 𝑖-novo-components merge into a single component, if an 𝑖-novo-path is
created between them. According to our method of changing edge colors, there are only
two possible types of color changes that can cause a merge of 𝑖-novo-components. The first
is if a common neighbor of the components is sampled and thus a black path is created
between them. The second is if a neighbor 𝑢 of the one component is sampled and then an
edge 𝑢𝑣 to a neighbor 𝑣 of the other component switches to color-𝑖. Notice that any other
case of an edge changing color to black or to color-𝑖 does not merge the two components
because it does not create an 𝑖-novo-path between them, and that any other color change of
an edge is from white to color-𝑗 for some 𝑗 ̸= 𝑖, and therefore also cannot cause a merge of
𝑖-novo-components.

The next claim talks about the latter case.

Claim 5.2.10. Suppose that node 𝑢 is sampled in step 𝑡, and edge 𝑢𝑣 is colored with color-𝑖

in sub-step 𝑖 of that step. If 𝑢 belongs to 𝑖-novo-component 𝐶 before sub-step 𝑖 of step 𝑡, and

𝑣 is adjacent to 𝑖-novo-component 𝐶 ′ before step 𝑡, then 𝐶 and 𝐶 ′ merge.
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Proof. We need to show that an 𝑖-novo-path is created between 𝐶 and 𝐶 ′. Let 𝑤 be a node
in 𝐶 ′ ∩ 𝑆 to which 𝑣 is connected (recall that 𝑆 is the set of nodes we start with, before the
first step). The node 𝑤 exists, because 𝑆 is a dominating set so there must be a node in 𝑆

which is connected to 𝑣, and that node must belong to 𝐶 ′ because 𝑣 is an exclusive neighbor
of 𝐶 ′ (otherwise, 𝑢𝑣 would not be colored with color-𝑖). Therefore, the edge 𝑤𝑣 must be
gray since 𝑤 ∈ 𝑆 and 𝑣 ∈ 𝑉 ∖ 𝑆𝑡. Since the edge 𝑣𝑢 is colored with color-𝑖, this implies an
𝑖-novo-path between 𝑤 and 𝑢, completing the proof.

The next claim says that at any point, the partition of sampled nodes into 𝑖-novo-
components is a refinement of the partition into (𝑖− 1)-novo-components.

Claim 5.2.11. At any point in time, for any 2 ≤ 𝑖 ≤ 𝜆, each 𝑖-novo-component is a subset

of some (𝑖− 1)-novo-component.

Proof. The proof is by induction on the number of steps 𝑡. The base case holds since when
𝑡 = 0 there are only white, black, and gray edges, implying that any 𝑖-novo-component is
also a 𝑗-novo-component for every 1 ≤ 𝑖, 𝑗 ≤ 𝜆. Assume the claim holds after the first 𝑡− 1

steps and consider step 𝑡.

Suppose node 𝑢 is sampled at step 𝑡, and let 𝑣1, . . . , 𝑣ℓ ∈ 𝑆𝑡−1 be the neighbors of 𝑢 that
are already sampled. Since 𝑆𝑡−1 ⊇ 𝑆 is a dominating set, we have that ℓ ≥ 1. Let 𝐶1, . . . , 𝐶ℓ

denote the 𝑖-novo-components to which 𝑣1, . . . , 𝑣ℓ, respectively, belong to before step 𝑡 (these
components are not necessarily distinct). When 𝑢 is sampled, all edges 𝑢𝑣𝑗, for 1 ≤ 𝑗 ≤ ℓ,
become black, and a new 𝑖-novo-component 𝐶 = {𝑢} ∪ 𝐶1 ∪ · · · ∪ 𝐶ℓ is formed, replacing
𝐶1, . . . , 𝐶ℓ. Similarly, if 𝐶 ′

1, . . . , 𝐶
′
ℓ are the (𝑖−1)-novo-components of 𝑣1, . . . , 𝑣ℓ, respectively,

before step 𝑡, then a new (𝑖−1)-novo-component 𝐶 ′ = {𝑢}∪𝐶 ′
1∪· · ·∪𝐶 ′

ℓ replaces 𝐶
′
1, . . . , 𝐶

′
ℓ.

From the induction hypothesis it follows that 𝐶𝑗 ⊆ 𝐶 ′
𝑗 for any 1 ≤ 𝑗 ≤ ℓ, and thus 𝐶 ⊆ 𝐶 ′.

Also, any other 𝑖-novo-component which was a subset of one of the 𝐶 ′
𝑗 before step 𝑡, is now

a subset of 𝐶. This proves that the claim holds before the first sub-step of step 𝑡.

It is also immediate that the claim holds before sub-step 𝑖 of step 𝑡, because in the first
𝑖− 1 sub-steps 𝑖-novo-components do not change, and in step 𝑖− 1, (𝑖− 1)-novo-components
may merge, but merging existing (𝑖− 1)-novo-components cannot invalidate the claim.

Consider now sub-step 𝑖. Let 𝑢𝑣 be an edge that is white and turns color-𝑖 at this sub-step,
and let 𝑤 be a neighbor of 𝑣 in the 𝑖-novo-component for which 𝑣 is an exclusive neighbor
before step 𝑡. We need to show that 𝑢 and 𝑤 are (𝑖 − 1)-novo-connected at this time. We
assume otherwise, towards a contradiction, and show that 𝑢𝑣 fulfilled all the requirements
for becoming color-(𝑖 − 1) at sub-step 𝑖 − 1. First, 𝑢𝑣 was white at sub-step 𝑖 − 1 since
it is white before sub-step 𝑖. Second, 𝑢 and 𝑣 were not adjacent to the same (𝑖 − 1)-novo-
component before step 𝑡, otherwise 𝑢 and 𝑤 belong to the same (𝑖 − 1)-novo-component,
which we assumed to be false. Finally, 𝑣 was adjacent to only one (𝑖 − 1)-novo-component
before step 𝑡, since otherwise, by the induction hypothesis, it is also adjacent to more than
one 𝑖-novo-component. Since 𝑢𝑣 remained white after sub-step 𝑖− 1, it must be that 𝑢 and
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𝑤 were already (𝑖− 1)-novo-connected, or became (𝑖− 1)-novo-connected at this sub-step by
a different common neighbor 𝑣′, for which 𝑢𝑣′ became color-(𝑖− 1).

Finally, in the remaining sub-steps of step 𝑡 after sub-step 𝑖, 𝑖-novo-components and
(𝑖− 1)-novo-components do not change and thus the claim holds.

Next, we define the notion of critical nodes of an 𝑖-novo-component, and show that each
𝑖-novo-component has at least 𝑘 such critical nodes, where 𝑘 is the vertex connectivity of the
graph. Further, we show that the total number of 𝑗-novo-components for any 𝑗 ≤ 𝑖 that get
merged in a round is bounded from below by the number of 𝑖-novo components for which
some critical node gets sampled in that round.

Definition 5.2.12 (Critical Nodes). Let 𝐶 be an 𝑖-novo-component before round 𝑟. A node

𝑢 is critical for 𝐶 in round 𝑟, if one of the following two conditions holds before round 𝑟:

(1) 𝑢 is a non-exclusive neighbor of 𝐶, i.e., it is adjacent to 𝐶 and also to some 𝑖-novo-

component 𝐶 ′ ̸= 𝐶; or (2) 𝑢 is not in 𝐶 or adjacent to 𝐶, but is adjacent to some exclusive

neighbor of 𝐶.

Claim 5.2.13. Let 𝐶 be an 𝑖-novo-component before round 𝑟. If there is more than one

𝑖-novo-components at that time, then there are at least 𝑘 critical nodes for 𝐶 in round 𝑟.

Proof. Since the graph is 𝑘-vertex-connected, there are 𝑘 internally-disjoint paths connecting
𝐶 to other 𝑖-novo-components. We show that there is a critical node on each such path.
First, we argue that there are 𝑘 such paths of length 2 or 3. Then, we consider these two
cases separately. For paths of length 2 we have that the internal node is critical for 𝐶,
following directly from Definition 5.2.12. For paths of length 3, we show that the internal
node that is not a neighbor of 𝐶 is critical for 𝐶, by arguing that the other internal node
must be an exclusive neighbor of 𝐶.

Formally, since 𝑆 is a dominating set, there are 𝑘 such paths of length 2 or 3. This is
because, from a longer path 𝑝, we can obtain a path 𝑝′ of length 2 or 3 whose internal nodes
are also internal nodes of 𝑝: If 𝑝 contains a node 𝑥 that is a non-exclusive neighbor of 𝐶
then we let 𝑥 be the internal node of 𝑝′, and 𝑝′ has length 2. If no such node 𝑥 exists, we
let 𝑦, 𝑧 /∈ 𝐶 be a pair of consecutive nodes in 𝑝 such that 𝑦 is a neighbor of 𝐶 and 𝑧 is not,
and we let these two nodes be the internal nodes of 𝑝′—𝑝′ has length 3 in this case. Since 𝑧
is not adjacent to 𝐶 it must be adjacent to another 𝑖-novo-component, as 𝑆 is a dominating
set.

Consider now the internal nodes of all paths of length 2 between 𝐶 and other 𝑖-novo-
components. These nodes are critical for 𝐶, by the first condition of Definition 5.2.12. If the
number ℓ of such nodes is at least 𝑘 then we are done. So, suppose that ℓ < 𝑘, and consider
the paths of length 3 that are internally-disjoint to all paths of length 2. Each internal node
𝑦 on such a path 𝑝 that is adjacent to 𝐶 is an exclusive neighbor of 𝐶, otherwise it would
have been on a path of length 2. Therefore, the other internal node 𝑧 on 𝑝 will be adjacent
to 𝑦 and to a component other than 𝐶, thus it is critical for 𝐶 by the second condition of
Definition 5.2.12. Since there are at least 𝑘 − ℓ such disjoint paths of length 3 with internal
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Figure 5-2: Illustrating the proof of Claim 5.2.14

nodes that are not on paths of length 2, we have at least 𝑘 − ℓ additional critical nodes for
𝐶.

Claim 5.2.14. The total number of 𝑗-novo-components, summed over all 𝑗 ≤ 𝑖, that get

merged in round 𝑟 is at least equal to the number of 𝑖-novo-components before round 𝑟, for

which some critical node gets sampled in a step of round 𝑟.

Proof. Let 𝐶 be an 𝑖-novo-component before round 𝑟, for which a critical node gets sampled
in some step of round 𝑟. Let 𝑡 be the earliest step when this happens, and let 𝑢 be the
critical node of 𝐶 sampled at that step. Suppose that 𝐶 does not merge with any other
𝑖-novo-component in round 𝑟. Precisely, there is no 𝑖-novo-component 𝐷 ̸= 𝐶 before round
𝑟, such that an 𝑖-novo-path is created between 𝐶 and 𝐷 during round 𝑟. We prove that a
merge occurs between two 𝑗-novo-components in step 𝑡, for some 𝑗 < 𝑖, and moreover, we
have a distinct such merge for each such 𝐶.

First we observe that, from the assumption that 𝐶 does not merge with another 𝑖-novo-
component in round 𝑟, 𝑢 cannot be a non-exclusive neighbor of 𝐶 before round 𝑟, as this
would imply that 𝑢 was also adjacent to some other 𝑖-novo-component 𝐷 ̸= 𝐶 before round
𝑟, and thus sampling 𝑢 creates a black path between 𝐶 and 𝐷. Hence, from the definition
of a critical node, we know that before the start of round 𝑟, 𝑢 is not adjacent to 𝐶, but it is
adjacent to some exclusive neighbor 𝑣 of 𝐶, and it is also adjacent to some 𝑖-novo-component
𝐷 ̸= 𝐶 since 𝑆 is a dominating set (see Figure 5-2). Consider now the graph before step
𝑡. Let 𝐶 ′ ⊇ 𝐶 and 𝐷′ ⊇ 𝐷 denote the current 𝑖-novo-components at that time, containing
respectively 𝐶 and 𝐷. (Note that 𝐶 ′ may be a proper superset of 𝐶 even though 𝐶 does not
merge, e.g., if some exclusive neighbor of 𝐶 was sampled in a previous step of the round.)
Then 𝑢 is a neighbor of 𝐷′, and we claim that it is not a neighbor of 𝐶 ′, otherwise sampleing
𝑢 would create an 𝑖-novo-path between 𝐶 ′ and 𝐷′, and thus one between 𝐶 and 𝐷. We also
claim that 𝑣 is an exclusive neighbor of 𝐶 ′: First, 𝑣 cannot have been sampled in an earlier
step, because then sampleing 𝑢 would create a black path between 𝐶 ′ and 𝐷′. Second, 𝑣
cannot be a non-exclusive neighbor of 𝐶 ′, otherwise some neighbor 𝑢′ of 𝑣 was sampled before
step 𝑡 in round 𝑟, and 𝑢′ does not belong to 𝐶 ′, implying that 𝑢′ is not a neighbor of 𝐶, and
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thus 𝑢′ must be a critical node for 𝐶 for round 𝑟. But this contradicts the assumption that
𝑢 is the first critical node of 𝐶 to get sampled in round 𝑟.

We have thus established that before step 𝑡, 𝑢 is adjacent to 𝐷′ and not adjacent to 𝐶 ′,
and 𝑣 is an exclusive neighbor of 𝐶 ′. We now argue that 𝑢𝑣 cannot be white before sub-step
𝑖: If 𝑢𝑣 was white, then Conditions 1–3 required for 𝑢𝑣 to switch to color-𝑖 would be satisfied.
From this and the last condition, 4, it would follow that either 𝑢𝑣 or some other edge 𝑢𝑣′

would become color-𝑖, for some exclusive neighbor 𝑣′ ̸= 𝑣 of 𝐶 ′. From Claim 5.2.10 then,
this would create an 𝑖-novo-path between 𝐶 ′ and 𝐷′ (because there is a black edge between
𝑢 and 𝐷′), and thus between 𝐶 and 𝐷.

Since 𝑢𝑣 is not white before sub-step 𝑖 (of step 𝑡), and it is clearly white at the beginning
of step 𝑡 as none of its endpoints is sampled at the time, it follows that 𝑢𝑣 switches from
white to color-𝑗, for some 𝑗 < 𝑖, in sub-step 𝑗 of step 𝑡. Claim 5.2.10 then implies that two
𝑗-novo-components 𝑅 and 𝑅′, such that 𝑢 ∈ 𝑅 and 𝑣 is an exclusive neighbor of 𝑅′, get
merged by coloring 𝑢𝑣.

Finally, suppose that 𝑢 is also a critical node for some 𝑖-novo-component 𝐶 ′′ ̸= 𝐶 ′, and
that, like 𝐶 ′, 𝐶 ′′ does not merge with 𝐷′. As before this implies that a pair of 𝑗′-novo-
components 𝑄 and 𝑄′ get merged instead, for some 𝑗′ < 𝑖. We observe that (𝑗, 𝑅,𝑅′) ̸=
(𝑗′, 𝑄,𝑄′), i.e, the merges of 𝐶 ′ with 𝐷′ and of 𝐶 ′′ with 𝐷′ are prevented by distinct merges
of 𝑗,𝑗′-novo-components for smaller 𝑗 and 𝑗′. This is clear if 𝑗′ ̸= 𝑗, and if 𝑗′ = 𝑗 it follows
from Condition 4 for coloring an edge color-𝑗.

We have thus shown that a distinct merge of two 𝑗-novo-components occurs, for some
𝑗 ≤ 𝑖, for each 𝑖-novo-component 𝐶 before round 𝑟 for which a critical node gets sampled in
round 𝑟.

We will use Claims 5.2.13 and 5.2.14 to show next that the expected drop in a round
of the total number of 𝑗-novo-components for all 𝑗 ≤ 𝑖 is at least a linear function in the
expected number of 𝑖-novo-components before the round.

For 1 ≤ 𝑖 ≤ 𝜆 and 𝑟 ≥ 0, let 𝑋𝑖,𝑟 denote the number of 𝑖-novo-components after the first
𝑟 rounds. Also let 𝑌𝑖,𝑟 = 𝑋𝑖,𝑟 − 1, and let 𝑦𝑖,𝑟 = E[𝑌𝑖,𝑟].

Claim 5.2.15. For any 1 ≤ 𝑖 ≤ 𝜆 and 𝑟 ≥ 1, and for 𝜌 = 𝑒−1
2𝑒

, we have
𝑖∑︁

𝑗=1

(𝑦𝑗,𝑟−1 − 𝑦𝑗,𝑟) ≥

𝜌𝑦𝑖,𝑟−1.

Proof. By Claim 5.2.13 we have that every 𝑖-novo-component 𝐶 has at least 𝑘 critical nodes.
The probability that a node gets sampled in a given round is 1/𝑘, thus the probability at
least one of 𝐶’s critical nodes gets sampled in round 𝑟 is at least 1−(1−1/𝑘)𝑘 ≥ 1−1/𝑒 = 2𝜌.
If this happens we say that 𝐶 causes a merge.

By Claim 5.2.14 we have that the total number of 𝑗-novo-components over all 𝑗 ≤ 𝑖 that
get merged in round 𝑟 is at least equal to the number of 𝑖-novo-components that cause a
merge. The decrease in the number of 𝑗-novo-components is at least half the number of
those merges.
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Let 𝑋𝐶 be an indicator random variable that is 1 if component 𝐶 causes a merge and
0 otherwise. Given the number 𝑋𝑖,𝑟−1 of 𝑖-novo-components before round 𝑟, the expected
number of such components that cause a merge is E[

∑︀
𝑋𝐶 |𝑋𝑖,𝑟−1] =

∑︀
E[𝑋𝐶 |𝑋𝑖,𝑟−1] ≥

2𝜌𝑌𝑖,𝑟−1. Then

E

[︃
𝑖∑︁

𝑗=1

(𝑋𝑗,𝑟−1 −𝑋𝑗,𝑟)

⃒⃒⃒⃒
𝑋𝑖,𝑟−1

]︃
≥ 1

2
E
[︁∑︁

𝑋𝐶 |𝑋𝑖,𝑟−1

]︁
≥ 𝜌𝑌𝑖,𝑟−1,

and by the law of total expectation

E

[︃
𝑖∑︁

𝑗=1

(𝑋𝑗,𝑟−1 −𝑋𝑗,𝑟)

]︃
≥ 𝜌E[𝑌𝑖,𝑟−1].

We therefore obtain

𝑖∑︁
𝑗=1

(𝑦𝑗,𝑟−1 − 𝑦𝑗,𝑟) = E

[︃
𝑖∑︁

𝑗=1

(𝑌𝑗,𝑟−1 − 𝑌𝑗,𝑟)

]︃

= E

[︃
𝑖∑︁

𝑗=1

(𝑋𝑗,𝑟−1 −𝑋𝑗,𝑟)

]︃
≥ 𝜌E[𝑌𝑖,𝑟−1] = 𝜌𝑦𝑖,𝑟−1,

which concludes the proof.

Using Claim 5.2.15 we establish the following upper bound on 𝑦𝑖,𝑟.

Claim 5.2.16. For any 1 ≤ 𝑖 ≤ 𝜆 and 𝑟 ≥ 0, and for 𝜌 = 𝑒−1
2𝑒

as in Claim 5.2.15, we have

𝑦𝑖,𝑟 ≤ 𝑛
(︁

1− 𝜌

2

)︁𝑟 (︂
1 +

2

𝜌

)︂𝑖−1

.

Proof. We prove the statement by induction on 𝑟. For 𝑟 = 0, we have 𝑦𝑖,𝑟 ≤ 𝑛 and thus the
claimed inequality clearly holds for all 𝑖 ∈ {1, . . . , 𝜆}.

For the induction step, we assume that the inequality holds for 𝑦𝑖,𝑟−1 for all 𝑖 ∈ {1, . . . , 𝜆},
for some 𝑟 ≥ 1, and bound 𝑦𝑖,𝑟. Solving the inequality in Claim 5.2.15 for 𝑦𝑖,𝑟 and using the
trivial lower bound 𝑦𝑗,𝑟 ≥ 0 for all 𝑗 ≤ 𝑖− 1, gives

𝑦𝑖,𝑟 ≤ (1− 𝜌)𝑦𝑖,𝑟−1 +
𝑖−1∑︁
𝑗=1

𝑦𝑗,𝑟−1.

95



Applying the induction hypothesis to all terms on the right-hand side, we obtain

𝑦𝑖,𝑟
(I.H.)

≤ 𝑛
(︁

1− 𝜌

2

)︁𝑟−1

·

[︃
(1− 𝜌)

(︂
1 +

2

𝜌

)︂𝑖−1

+
𝑖−1∑︁
𝑗=1

(︂
1 +

2

𝜌

)︂𝑗−1
]︃

< 𝑛
(︁

1− 𝜌

2

)︁𝑟−1

·

[︃(︂
1 +

2

𝜌

)︂𝑖−1
(︃
−𝜌 +

∞∑︁
ℎ=0

(︂
1 +

2

𝜌

)︂−ℎ
)︃]︃

= 𝑛
(︁

1− 𝜌

2

)︁𝑟−1
[︃(︂

1 +
2

𝜌

)︂𝑖−1 (︁
1− 𝜌

2

)︁]︃
,

and thus the claim follows.

Using Claim 5.2.16 and Markov’s inequality we bound the number of rounds before there
is just a single 𝜆-novo-component left.

Claim 5.2.17. All 𝜆-novo-components have merged into a single component after 16𝜆 rounds,

with probability at least 1− 𝑛/2𝜆.

Proof. The probability there is more than one 𝜆-novo-component after the first 𝑟 rounds is
Pr(𝑋𝜆,𝑟 > 1) = Pr(𝑌𝜆,𝑟 > 0) = Pr(𝑌𝜆,𝑟 ≥ 1) ≤ E[𝑌𝜆,𝑟]/1, by Markov’s inequality. Also from
Claim 5.2.16,

E[𝑌𝜆,𝑟] ≤ 𝑛
(︁

1− 𝜌

2

)︁𝑟 (︂
1 +

2

𝜌

)︂𝜆

.

Thus, in order to have Pr(𝑋𝜆,𝑟 > 1) ≤ 𝑛/2𝜆, it suffices that

𝑛
(︁

1− 𝜌

2

)︁𝑟 (︂
1 +

2

𝜌

)︂𝜆

≤ 𝑛/2𝜆.

Solving for 𝑟 and substituting 𝜌’s value, 𝜌 = 𝑒−1
2𝑒
, we obtain 𝑟 ≥ 𝜆 ln

(︀
𝜌

2𝜌+4

)︀
/ ln

(︀
1 − 𝜌

2

)︀
≈

15.6085 · 𝜆.

We now show that if there is just one 𝑖-novo-component after step 𝑡, then the set 𝑆𝑡 of
nodes that have been sampled by that time is 𝑖-semi-connected, i.e., for any partition of 𝑆𝑡

into two sets 𝑇 and 𝑆𝑡 ∖𝑇 with no edges between them, the two sets have at least 𝑖 common
neighbors.

Claim 5.2.18. If there is only one 𝑖-novo-component after step 𝑡, then 𝑆𝑡 is 𝑖-semi-connected.

Proof. We show that if there is only one 𝑖-novo-component after step 𝑡, then for any partition
of 𝑆𝑡 into two sets 𝑇 and 𝑆𝑡 ∖𝑇 with no edges between them, there is a 𝑗-novo-path between
𝑇 and 𝑆𝑡 ∖ 𝑇 for each 1 ≤ 𝑗 ≤ 𝑖, such that all these paths have length 2 and are internally
disjoint. In particular, this means that 𝑆𝑡 is 𝑖-semi-connected.

For this, we show by induction on 𝑗 that for each 1 ≤ 𝑗 ≤ 𝑖 we can identify a 𝑗-novo-path
of length 2 between 𝑇 and 𝑆𝑡 ∖ 𝑇 which is internally disjoint from all previous paths.
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We first note that for every 𝑗, at any point during the random process, and for any subset
𝑇 ′ of the set 𝑆 ′ of nodes sampled by that time, if 𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′ are not connected by an
edge and if there exists a 𝑗-novo-path between 𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′, then there also exists such a
𝑗-novo-path of length 2. That is, there exists a path 𝑢𝑤𝑣, where 𝑢 ∈ 𝑇 ′, 𝑣 ∈ 𝑆 ′ ∖ 𝑇 ′, and
𝑤 ̸∈ 𝑆 ′, and where at least one of the edges 𝑢𝑤 and 𝑣𝑤 is color-𝑗 and the other edge is either
color-𝑗 or gray. This follows directly from the definition of 𝑗-novo-paths. As 𝑗-novo-paths
only consist of color-𝑗 edges and of gray edges, at least one of the nodes of each edge has to
be sampled and therefore on a 𝑗-novo-path, at least every second node has to be sampled.
Any minimal 𝑗-novo-path connecting 𝑇 ′ and 𝑆 ′ ∖ 𝑇 ′ therefore has to be of length 2.

Since there is just a single 𝑖-novo-component after step 𝑡, Claim 5.2.11 gives that there
is also just a single 𝑗-novo-component. Hence, there must be at least one 𝑗-novo-path
connecting 𝑇 and 𝑆𝑡 ∖ 𝑇 . In particular, using the above observation, there must be such a
𝑗-novo-path of length 2.

We need to show that among these length 2 𝑗-novo-paths there is at least one that is
internally disjoint from all of the ℓ-novo-paths given by the induction hypothesis, for all
1 ≤ ℓ < 𝑗. Consider the first time in which such a length 2 𝑗-novo-path is created. At this
time one of the two edges of the path becomes color-𝑗 (the other edge is gray or became
color-𝑗 in an earlier step). Let 𝑢 ∈ 𝑇 and 𝑣 ∈ 𝑆𝑡 ∖ 𝑇 be the two endpoints of the path and
𝑤 ∈ 𝑉 ∖ 𝑆𝑡 be its internal node. Assume w.l.o.g., edge 𝑤𝑣 is the one that becomes color-𝑗.

First we argue that there is no gray edge 𝑤𝑣′ between 𝑤 and some node 𝑣′ ∈ 𝑆𝑡 ∖ 𝑇 :
Suppose there is such a gray edge 𝑤𝑣′. Then edge 𝑢𝑤 cannot be color-𝑗, because then 𝑢𝑤𝑣′

is a 𝑗-novo-path created before 𝑢𝑤𝑣. Thus edge 𝑢𝑤 is gray. However, it must be the case
that before 𝑤𝑣 became color-𝑗, node 𝑤 was an exclusive neighbor of a 𝑗-novo-component,
and since both 𝑢𝑤 and 𝑤𝑣′ are gray, it follows that 𝑢 and 𝑣′ belonged to the same 𝑗-novo-
component. Thus before 𝑤𝑣 became color-𝑗 there was already a 𝑗-novo-path between nodes
𝑢 ∈ 𝑇 and 𝑣′ ∈ 𝑆𝑡 ∖𝑇 , and thus there was also a 𝑗-novo-path of length 2 (see above) between
two nodes from these two sets. This contradicts that 𝑢𝑤𝑣 was the first such 𝑗-novo-path.

We now show that path 𝑢𝑤𝑣 is internally disjoint from the ℓ-novo-paths given by the
induction hypothesis for all 1 ≤ ℓ < 𝑗. Fix some ℓ ∈ {1, . . . , 𝑗 − 1}. Consider an ℓ-novo-path
of length 2 between 𝑇 and 𝑆𝑡 ∖ 𝑇 whose internal node is 𝑤; let 𝑢′′𝑤𝑣′′ denote that path
where 𝑢′′ ∈ 𝑇 and 𝑣′′ ∈ 𝑆𝑡 ∖ 𝑇 . Since we have shown that there is no gray edge between
𝑤 and some node from 𝑆𝑡 ∖ 𝑇 , it must be that edge 𝑤𝑣′′ is color-ℓ. We argue that 𝑣′′ is
sampled after 𝑣: Suppose, for contradiction, that 𝑣′′ is sampled before 𝑣. Then when 𝑣 is
sampled, 𝑣′′ and 𝑢 must be in the same 𝑗-novo-component, otherwise 𝑤 is adjacent to two
distinct 𝑗-novo-components, preventing 𝑤𝑣 from becoming color-𝑗. Thus before 𝑤𝑣 became
color-𝑗 there was a 𝑗-novo-path between nodes 𝑢 ∈ 𝑇 and 𝑣′′ ∈ 𝑆𝑡 ∖ 𝑇 , and thus there was
also a 𝑗-novo-path of length 2 between two nodes from these two sets. This contradicts that
𝑢𝑤𝑣 was the first such 𝑗-novo-path. We conclude that 𝑣′′ was sampled after 𝑣. This means
that the ℓ-novo-path created when edge 𝑤𝑣′′ was colored, cannot be the first one created
between 𝑇 and 𝑆𝑡 ∖𝑇 , because that first path must have been created no later than the first
𝑗-novo-path, by Claim 5.2.11.
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By Claim 5.2.17, the sampling procedure results in a single 𝜆-novo-component after at
most 16𝜆 rounds, with probability at least 1−𝑛/2𝜆. In each round the sampling probability is
1/𝑘, thus the total sampling probability is at most 16𝜆/𝑘. Once there is just a single 𝜆-novo-
component, by Claim 5.2.18 we have that the set 𝑆𝑡 of sampled nodes is 𝜆-semi-connected.
This concludes the proof of Lemma 5.2.7.

5.3 From Concentration for Simple Connectivity to High

Connectivity

In this section, we prove Theorem 5.1.1 and Theorem 5.1.2, assuming that Theorem 5.2.1
holds. In simple words, the arguments presented in this section allow us to turn a “very
high probability of remaining (simply) connected after sampling” to a “very likely high vertex

connectivity after sampling.” In each part, we first provide an informal sketch of the idea
and then proceed to the formal proof.

5.3.1 Vertex Connectivity under Vertex Sampling

Proof Idea: To show the lower bound of Theorem 5.1.1 on the remaining vertex connec-
tivity after vertex sampling, we view the sampling with probability 𝑝 as a two-step process:
first sampling with probability 2𝑝, and then sub-sampling with probability 1/2. We argue
that if the set sampled in the first step did not have sufficiently high vertex connectivity (with
sufficiently high probability), then the two-step sampling would not result in a connected set
with sufficiently high probability, thus contradicting Theorem 5.2.1.

Proof of Theorem 5.1.1. Let 𝛼 = 2𝛽
√

3, where 𝛽 is the constant in the statement of Theo-
rem 5.2.1, and let 𝛾 = 𝛼−2. We show that for vertex-sampling probability 𝑝 ≥ 𝛼

√︀
log(𝑛)/𝑘,

the resulting graph has vertex connectivity at least 𝛾𝑘𝑝2, with probability at least 1−𝑒−𝛾𝑘𝑝2 .
Assume, towards a contradiction, that the above is not true. That is, for some sampling

probability 𝑝 ≥ 𝛼
√︀

log(𝑛)/𝑘, with probability greater than 𝑒−𝛾𝑘𝑝2 the sampled graph has
vertex connectivity less than 𝛾𝑘𝑝2. We show that this contradicts Theorem 5.2.1.

We denote by 𝑞 = 𝑝/2 a sampling probability for using in Theorem 5.2.1. We view the
process of vertex sampling with probability 𝑞 as a two-stage sampling process: one sampling
stage with probability 𝑝 = 2𝑞, and afterwards an independent subsampling with probability
1/2.

Assume that the vertex connectivity after sampling with probability 𝑝 is less than 𝛾𝑘𝑝2.
This event happens with probability greater than 𝑒−𝛾𝑘𝑝2 , by our assumption above. Then,
conditioned on this event, if we zoom in on a single vertex cut of size at most 𝛾𝑘𝑝2 in this
graph, during the further 1/2-sampling, all nodes of this cut are removed with probability
at least 2−𝛾𝑘𝑝2 . Overall this means that sampling nodes with probability 𝑞 has a probability
of at least 𝑒−2𝛾𝑘𝑝2 to sample a set 𝑆 that is not a connected dominating set.
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On the other hand, applying now Theorem 5.2.1 with failure probability 𝛿 = 𝑒−2𝛾𝑘𝑝2 ,

we obtain that when sampling with probability at least 𝛽
√︁

log(𝑛/𝛿)
𝑘

, we obtain a connected

dominating set with probability at least 1− 𝛿 = 1− 𝑒−2𝛾𝑘𝑝2 . However, since

𝛽

√︂
log(𝑛/𝛿)

𝑘
= 𝛽

√︂
log 𝑛

𝑘
+ 2𝛾𝑝2 = 𝛽

√
𝛾𝑝

√︃
log 𝑛

𝑘𝛾𝑝2
+ 2

= 𝛽𝛼−1𝑝

√︃
log 𝑛

𝑘𝛼−2𝑝2
+ 2 ≤ 𝛽𝛼−1𝑝

√
3 =

𝑝

2
= 𝑞,

this contradicts the result we showed just before. (The inequality in the expression above
arises from the assumption on 𝑝.)

5.3.2 Vertex Connectivity under Edge Sampling

Proof Idea: We consider a two-phase sampling process: in one phase edges are sampled
with probability 𝑝, and in the other phase vertices are sampled with probability 1/2. We
can analyze the process in two ways. One way is first to argue that vertex sampling with
probability 1/2 reduces vertex connectivity by at most a constant factor, by Theorem 5.1.1,
implying the same lower bound on edge connectivity, and then to apply an edge sampling
result by Karger [Kar94b] to conclude that the graph remains connected with very high
probability. The second way of analyzing the process is first to bound from below the
remaining vertex connectivity after edge sampling, as in the statement of Theorem 5.1.2,
and to combine that with the probability that a minimum edge cut in the sampled graph
survives the subsequent vertex sampling. Comparing the results of the above two approaches
yields the bound of Theorem 5.1.2.

Proof of Theorem 5.1.2. We use the following result from [Kar94b]: There are constants
𝜁, 𝜂 > 0, such that for any 𝑛-node 𝜆-edge-connected graph, independent edge sampling with
probability 𝑝 ≥ 𝜁 log(𝑛)/𝜆 yields a spanning subgraph with edge connectivity at least 𝜂𝜆𝑝,
with probability at least 1− 𝑒−𝜂𝜆𝑝.

We also use the following statement for vertex sampling with probability 1/2 which follows
from Theorem 5.1.1: There are constants 𝑔, ℎ > 0, such that for any 𝑛-node graph with vertex
connectivity 𝑘 ≥ 𝑔 log 𝑛, vertex sampling with probability 1/2 yields a dominating set which
induces a subgraph with edge connectivity at least ℎ𝑘, with probability at least 1−𝑒−ℎ𝑘 (the
domination is immediate from the proof of Theorem 5.1.1).

Let 𝛼 = 𝜁/ℎ and 𝛾 = 𝜂ℎ/2. Suppose also that 𝑘 ≥ 𝑔 log 𝑛 (otherwise the statement of
Theorem 5.1.2 holds trivially). We show that for edge-sampling probability 𝑝 ≥ 𝛼 log(𝑛)/𝑘,
the sampled graph has vertex connectivity at least 𝛾𝑘𝑝, with probability at least 1− 𝑒−𝛾𝑘𝑝.

Assume, towards a contradiction, that this is not true. Then for some edge-sampling
probability 𝑝 ≥ 𝛼 log(𝑛)/𝑘, with probability greater than 𝑒−𝛾𝑘𝑝 the sampled graph has vertex
connectivity less than 𝛾𝑘𝑝.
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Consider the following two-phase sampling process: First we sample edges with probabil-
ity 𝑝, and then in the resulting graph we sample vertices with probability 1/2. Suppose that
the vertex connectivity after the edge-sampling phase is less than 𝛾𝑘𝑝. This event happens
with probability greater than 𝑒−𝛾𝑘𝑝, by our assumption of Theorem 5.1.2 not holding. Then,
conditioned on this event, if we look at a single edge cut of size at most 𝛾𝑘𝑝 in this graph,
during the vertex-sampling phase, the event that no edge in this cut has both its endpoints
sampled, and thus no edge in the cut survives the sampling, has probability at least (3/4)𝛾𝑘𝑝.
Overall this means that the two-phase sampling process has a probability of at least 2−2𝛾𝑘𝑝

to result in a graph that is not connected or its vertex set is not a dominating set of 𝐺.
Consider now the sampling process that is similar to the above, but with the two phases

executed in reverse order. As explained above, it follows from Theorem 5.1.1 that after the
vertex-sampling phase with probability 1/2, the set of sampled vertices is a dominating set
of 𝐺 and induces a subgraph 𝐻 with vertex connectivity at least ℎ𝑘, with probability at
least 1 − 𝑒−ℎ𝑘. It follows that the edge connectivity of the induced subgraph 𝐻 is at least
ℎ𝑘 with probability at least 1 − 𝑒−ℎ𝑘, as well. Further, from the result on edge sampling
mentioned at the beginning, it follows that after the edge-sampling phase, the probability
that the graph is a connected spanning subgraph of 𝐻, given that 𝐻 has edge-connectivity
at least 𝜆 = ℎ𝑘, is at least 1− 𝑒−𝜂ℎ𝑘𝑝 (here we used the assumption 𝛼 = 𝜁/ℎ, which implies
𝑝 ≥ 𝛼 log(𝑛)/𝑘 = 𝜁 log(𝑛)/𝜆, and thus we can use the result on edge sampling). Overall this
means that the two-phase sampling process has a probability of at least 1− 𝑒−ℎ𝑘 − 𝑒−𝜂ℎ𝑘𝑝 to
result in a connected subgraph of 𝐺 whose vertex set is a dominating set of 𝐺.

Observe that the outcome of the two-phase sampling process should not depend on the
order in which the phases are executed. Comparing the results above for the two different
orders of the phases, we obtain the desired contradiction, because

𝑒−ℎ𝑘 + 𝑒−𝜂ℎ𝑘𝑝 < 2−2𝛾𝑘𝑝.

This inequality is obtained by using that 𝛾 = 𝜂ℎ/2 and 𝑘𝑝 = Ω(log 𝑛), and by assuming
w.l.o.g. that 𝜂 < 1.

5.4 Optimality of Our Sampling Results

We here argue that the bounds in Theorem 5.1.1 and Theorem 5.1.2 are existentially optimal.
The bound of Theorem 5.1.1 is existentially tight up to constant factors, as demonstrated

in the following simple example.

Observation 5.4.1. Let 𝐺 be a 2𝑛-node graph consisting of two disjoint 𝑛-node cliques

connected via a matching of 𝑘 ≤ 𝑛 edges. The vertex connectivity of 𝐺 is 𝑘, and when

each node is sampled with probability 𝑝 ≥ 2 ln𝑛/𝑛, the expected vertex connectivity of the

subgraph induced by the sampled nodes is at most 𝑘𝑝2 + 𝑜(𝑘𝑝2). If the sampling probability
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is 𝑝 = 𝑜(
√︀

log(𝑛)/𝑘), then the subgraph is disconnected4 with probability at least 𝑛−𝑜(1).

Proof of Observation 5.4.1. The edge connectivity of 𝐺 is at most 𝑘 as it contains an edge-
cut of size 𝑘, and thus its vertex connectivity is also at most 𝑘. On the other hand, it is
easy to verify that the removal of any 𝑘− 1 vertices does not disconnect 𝐺. Therefore 𝐺 has
vertex connectivity exactly 𝑘.

Let 𝐾 denote the number of edges in the matching that survive after sampling (i.e., both
their endpoint nodes are sampled). The expected value of 𝐾 is E[𝐾] = 𝑘𝑝2, since each edge
survives with probability 𝑝2. If 𝐾 ̸= 0 then 𝐾 is an upper bound on the edge connectivity
and thus on the vertex connectivity of the sampled subgraph. If 𝐾 = 0 then it is still possible
for the vertex connectivity to be positive, if no nodes are sampled from the one clique and at
least one is sampled from the other. Let 𝑁𝑖, for 𝑖 = 1, 2, denote the number of nodes sampled
in each of the two cliques respectively, and let 𝑍𝑖 be the indicator random variable with 𝑍𝑖 = 1

if 𝑁𝑖 = 0 and 𝑍𝑖 = 0 otherwise. Then E[𝑁𝑖] = 𝑝𝑛, and E[𝑍𝑖] = Pr(𝑁𝑖 = 0) = (1− 𝑝)𝑛. From
the discussion above it follows that the vertex expansion of the sampled subgraph is at most
𝐾 + 𝑍2𝑁1 + 𝑍1𝑁2, and thus the expected vertex expansion is at most

E[𝐾 + 𝑍2𝑁1 + 𝑍1𝑁2] = E[𝐾] + 2E[𝑍2𝑁1] = E[𝐾] + 2E[𝑍2] · E[𝑁1]

= 𝑘𝑝2 + 2𝑛𝑝(1− 𝑝)𝑛 ≤ 𝑘𝑝2 + 2𝑛𝑝𝑒−𝑛𝑝.

If 𝑝 ≥ 2 ln𝑛/𝑛, then the second term in the last line above is 𝑘𝑝2 · (2𝑛/𝑘𝑝)𝑒−𝑛𝑝 ≤ 𝑘𝑝2 ·
(1/𝑘 ln𝑛) = 𝑜(𝑘𝑝2); thus the expected vertex connectivity is at most 𝑘𝑝2 + 𝑜(𝑘𝑝2).

For the probability that the sampled subgraph is disconnected, we first observe that
if 𝑝 = 𝑂(1/𝑛) then the subgraph is empty (and thus by convention disconnected) with
constant probability. Thus, below we assume that 𝑝 ≥ 2/𝑛. The probability that the
sampled subgraph is disconnected is bounded from below by

Pr(𝐾 = 0 ∧𝑁1 ̸= 0 ∧𝑁2 ̸= 0) ≥ 1− (Pr(𝐾 ̸= 0) + Pr(𝑁1 = 0) + Pr(𝑁2 = 0))

= Pr(𝐾 = 0)− 2 Pr(𝑁1 = 0)

= (1− 𝑝2)𝑘 − 2(1− 𝑝)𝑛.

The second term in the last line is at most (1− 𝑝2)𝑘/2, as

2(1− 𝑝)𝑛

(1− 𝑝2)𝑘
≤ 2(1− 𝑝)𝑛

(1− 𝑝2)𝑛
=

2

(1 + 𝑝)𝑛
≤ 2

(1 + 2/𝑛)𝑛
≤ 1

2
.

It follows that the probability of the sampled subgraph to be disconnected is at least (1 −
𝑝2)𝑘/2, and this is at least 1/𝑛𝑜(1) if 𝑝 = 𝑜(

√︀
log(𝑛)/𝑘).

Even if one desires the sampled subgraph to be connected with merely a constant proba-
bility, our vertex sampling threshold 𝑝 = Ω(

√︀
log(𝑛)/𝑘) is essentially tight as shown by the

4For the purposes of this statement, we consider the empty graph disconnected.
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next simple example.

Observation 5.4.2. Let 𝐺 be an 𝑛-node graph consisting of 𝑛/𝑘 𝑘-cliques ordered 1 to 𝑛/𝑘,

where each two consecutive cliques are connected via a 𝑘-edge matching. We assume that 𝑛

is a multiple of 𝑘, and 𝑘 < 𝑛. Graph 𝐺 has vertex connectivity 𝑘, and when sampling nodes

with probability 𝜔(1/𝑛) < 𝑝 < 𝑜(
√︀

log(𝑛/𝑘)/𝑘), the subgraph induced by the sampled nodes

is disconnected with probability 1− 𝑜(1).

Proof Sketch of Observation 5.4.2. Since 𝑝 = 𝜔(1/𝑛), we have with probability 1−𝑜(1) that
at least one node gets sampled from the first 𝑛/3𝑘 cliques, and at least one gets sampled from
the last 𝑛/3𝑘 cliques. The probability that no edge survives in the cut between two given
consecutive cliques is (1 − 𝑝2)𝑘 = 𝑒−𝑜(log(𝑛/𝑘)) = 𝜔(𝑘/𝑛), as 𝑝 = 𝑜(

√︀
log(𝑛/𝑘)/𝑘). Thus, the

probability that at least one of the cuts between the middle 𝑛/3𝑘 cliques gets disconnected
is at least

1− (1− 𝜔(𝑘/𝑛))𝑘/6𝑘 = 1− 𝑜(1),

where for this computation we just considered every second cut, i.e., 𝑛/6𝑘 cuts in total, and
used the fact that these cuts are vertex-disjoint. Combining the above yields the claim.

The bound of Theorem 5.1.2 is also existentially optimal. The reason is as follows:
Karger’s result from [Kar94b] states that the remaining edge connectivity is Θ(𝜆𝑝) w.h.p.
after edge sampling with probability 𝑝, when the initial edge connectivity is 𝜆. Since the
vertex connectivity 𝑘 of a graph is upper bounded by its edge connectivity 𝜆, but there are
also graphs with 𝑘 = 𝜆, Karger’s result implies, for such graphs, that the remaining vertex
connectivity is 𝑂(𝜆𝑝) w.h.p. after edge sampling with probability 𝑝.

5.5 Discussion and Open Problems

In this chapter, we showed two main results: (1) When independently sampling vertices of a
𝑘-vertex-connected 𝑛-node graph with probability 𝑝 = Ω(

√︀
log (𝑛)/𝑘), the sampled subgraph

has a vertex connectivity of Ω(𝑘𝑝2), with high probability; and (2) When independently sam-
pling edges of a 𝑘-vertex-connected 𝑛-node graph with probability 𝑝 = Ω(log (𝑛)/𝑘), the sam-
pled subgraph has a vertex connectivity of Ω(𝑘𝑝), with high probability. The core technical
part, for both results, is to prove that vertex sampling with probability 𝑝 = Ω(

√︀
log (𝑛)/𝑘)

yields a subgraph that is (just) connected with sufficiently high probability. This is achieved
by considering sampling as a gradual random process, and carefully analyzing the growth of
the connected components.

The constant factors in our results are much smaller than 1; it would be interesting
to identify the correct constants. Most importantly, we leave open whether the remaining
vertex connectivity under vertex sampling is in fact at least 𝑘𝑝2(1 − 𝜖), for an arbitrary
small 𝜀 > 0, assuming 𝑘𝑝2 is large enough, e.g., 𝑘𝑝2 = Ω(log 𝑛/ poly(𝜀)). In particular, for a
sampling probability of 𝑝 = 1−𝑜(1), or equivalently a sub-constant deletion probability, this
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would imply a remaining connectivity of 𝑘 − 𝑜(𝑘) instead of just 𝑂(𝑘). The same question
can also be asked for the remaining vertex connectivity under edge sampling.

Our results show only lower bounds on the remaining vertex connectivity. There are
𝑘-vertex-connected graphs which, under the same sampling processes, would retain a much
higher vertex connectivity, e.g., up to 𝑘𝑝 when sampling vertices, and up to 𝑘 when sampling
edges. It would be interesting to see if one can tightly characterize the (e.g., expected)
remaining vertex connectivity under sampling of a given graph as a simple and natural
function of it. Alternatively, is there a variant of these random sampling processes, which
in effect sparsifies the graph, but for which we can tightly characterize the remaining vertex
connectivity?
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Part III

Congestion—Distributed Algorithms
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Chapter 6

Low-Congestion Shortcuts, and

Minimum Spanning Tree

6.1 Introduction

In this chapter, as well as in the next chapters of this part, we present near-optimal dis-
tributed algorithms for various fundamental network optimization problems.

In this chapter, and mainly as a warm up for the next chapters, we present a near-
optimal algorithm for the problem of computing a minimum spanning tree (MST). The
reason that this can be viewed as a warm up is twofold: (1) the problem of computing an
MST has turned out to have a central role in distributed algorithms for network optimization
problems, significantly more central than its role in the centralized algorithms domain. The
upper and lower bound techniques for the MST problem are used frequently in solving other
distributed network optimization problems. (2) We use the MST problem here to introduce
the concept of low-congestion shortcuts, which gives rise to a combinatorial framework that
unifies the solutions of many of these problems, and also serves as a tool for obtaining better
complexities in special families of network graphs.

Distributed algorithms for global network optimization problems have a long and rich his-
tory. The standard model in studying global network optimization problems is the CONGEST
model, as explained in Chapter 2. A first-order summary of the state of the art is that,
for many of the basic problems, including MST, Minimum Cut Approximation, Maximum
Flow, and Shortest-Paths, the best-known upper bound is �̃�(𝐷 +

√
𝑛) rounds, or close to

it, where 𝐷 denotes the network diameter. See for instance [KP95, Elk04b, LPS13,GK13,
Nan14,LPS14,CHGK14a,NS14,GL14,Gha14,GKK+15]. Furthermore, it is known that this
round complexity is essentially the best-possible in general graphs, that is, there are graphs
in which any (non-trivial approximation) algorithm for these problems requires Ω̃(𝐷 +

√
𝑛)

rounds [PR99,Elk04c,DSHK+11].

We introduce the concept of low-congestion shortcuts and exhibit their utility, by using
this concept to derive a very simple distributed algorithm for MST. Low-congestion shortcuts
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lead to a nice unification of algorithmic approaches for network optimizations listed above,
and particularly MST. On one hand, they can be used to obtain �̃�(𝐷+

√
𝑛)-round algorithms

in general graphs, this is a bound that is nearly optimal in comparison the best possible on
worst case networks. On the other hand, they provide a simple means for obtaining more
efficient algorithms in special network graph families.

We next motivate and introduce low-congestion shortcuts. We then explain how they
lead to an extremely simple �̃�(𝐷 +

√
𝑛) round algorithm for MST in general graphs, and

faster algorithms in some special graph families.

6.1.1 The Motivation and Definition of Low-Congestion Shortcuts

Consider the following scenario, which is a recurring theme throughout distributed ap-
proaches for many network optimization problems:

The graph is partitioned into a number of disjoint parts, each of which induces

a connected subgraph, and we need to compute a (typically simple) function for

each part, e.g., the minimum of the values held by the nodes in the part.

This scenario typically appears when the algorithmic approach works via (iterations of)
merging solutions of smaller subproblems. This includes various methods based on divide and
conquer. There are many examples, for instance [GHS83,GKP93,KP95,Elk04b,DSHK+11,
GK13,NS14,Gha14,GKK+15]. Perhaps the most prominent example is the 1926 algorithm
of Boruvka1 [NMN01] for computing a Minimum Spanning Tree. This algorithm works as
follows: We start with the trivial partition of each node being its own part. Then, in each
iteration, each part computes its minimum-weight outgoing edge, and adds it to the current
partial solution. This added edge makes the parts incident on it merge. After 𝑂(log 𝑛)

iterations, we arrive at the MST.
Typically, since the number of parts can be large, we need to solve the problems of

all parts in parallel. Most naturally, this would be by solving each part’s problem using
communication only inside the part. However, this would take a long time as the diameter
of these parts can be large, much larger than the diameter 𝐷 of the graph. It is often hard
to enforce small part-wise diameters because the structure of the parts (i.e., subproblems)
is usually dictated by the problem itself. For instance, think of the MST problem and
Boruvka’s method, discussed above.

To overcome this generic issue, we introduce the notion of low-congestion shortcuts :
Intuitively, we want to augment each part with some extra edges, taken from the network
𝐺, so that we effectively reduce the diameter of the part. These shortcutting edges are to
be used for communication purposes. To be able to use these shortcuts without creating

1We note that, within the distributed literature, this method is more often called the GHS approach,
after Gallagher, Humblet and Spira who rediscovered it in 1983 [GHS83], and extended it to a distributed
asynchronous setting.
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communication bottlenecks, we need to ensure that each edge is not used in too many
shortcuts. We next formalize this intuition:

Definition 6.1.1. Given a graph 𝐺 = (𝑉,𝐸) and a partition of 𝑉 into disjoint subsets

𝑆1, . . . , 𝑆𝑁 ⊂ 𝑉 , each inducing a connected subgraph 𝐺[𝑆𝑖], we define an 𝛼-congestion

shortcut with dilation 𝛽 to be a set of subgraphs 𝐻1, . . . , 𝐻𝑁 ⊂ 𝐺, one for each set 𝑆𝑖,

such that:

(1) For each 𝑖, the diameter of the subgraph 𝐺[𝑆𝑖] + 𝐻𝑖 is at most 𝛽.

(2) For each 𝑒 ∈ 𝐸, the number of subgraphs 𝐺[𝑆𝑖] + 𝐻𝑖 containing 𝑒 is at most 𝛼.

As we see later, given such a low-congestion shortcut, one can solve the common scenario
problem stated above in �̃�(𝛼 + 𝛽) rounds, using standard random delay techniques for
pipelining messages [LMR94].

6.1.2 Our Results

As the main application of low-congestion shortcuts, we provide the following unified dis-
tributed algorithm for computing an MST. As evident from the statement, the round com-
plexity of this algorithm can be optimized easily as a function of the graph family on which
we work on, by finding the best possible low-congestion shortcut for that family.

Theorem 6.1.2. Suppose that the graph family 𝒢 is such that for each graph 𝐺 ∈ 𝒢, and
any partition of 𝐺 into vertex-disjoint connected subsets 𝑆1, . . . , 𝑆𝑁 , we can find an 𝛼-

congestion 𝛽-dilation shortcut such that max{𝛼, 𝛽} ≤ 𝐾. Then, there is a randomized

distributed MST algorithm that computes an MST in 𝑂(𝛼 log 𝑛 + 𝛽 log2 𝑛) = �̃�(𝐾) rounds,

with high probability, in any graph from the family 𝒢. Here, 𝐾 can be a function of the

family 𝒢, and it can depend on 𝑛 and 𝐷.

In particular, as we discuss next, general graphs easily admit shortcuts with congestion
and dilation in 𝑂(𝐷 +

√
𝑛). Thus, we get a very simple and clean way to obtain the near-

optimal �̃�(𝐷 +
√
𝑛) round complexity for computing an MST in general graphs.

Corollary 6.1.3. For any 𝑛-node 𝐷-diameter graph, any partition of its vertices admits

an 𝛼-congestion 𝛽-dilation shortcut such that max{𝛼, 𝛽} ≤ 𝑂(𝐷 +
√
𝑛). Thus, there is a

distributed algorithm that computes MST in general graphs in �̃�(𝐷 +
√
𝑛) rounds.

Proof. Simply set the shortcut 𝐻𝑖 = 𝐺 for each part 𝑆𝑖 where |𝑆𝑖| ≥
√
𝑛, and set 𝐻𝑖 = ∅ for

any other part. This ensures that each shortcutted part has diameter at most max{𝐷,
√
𝑛} =

𝑂(𝐷 +
√
𝑛) and each edge is used in at most 𝑛/

√
𝑛 + 1 = 𝑂(

√
𝑛) shortcutted parts.

We note that a slightly more improved bound, with less logarithmic factors, is explained
at the end of this chapter. Moreover, as a consequence of Theorem 6.1.2, we get more
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optimized results for a few special graph families: for planar networks by using results of
Ghaffari and Haeupler [GH16b] on shortcuts in planar graphs, and for near-expanders by
using results of Ghaffari, Kuhn, and Su [GKS16] on shortcuts in near-expander graphs. In
the following, we state these corollaries.

Theorem 6.1.4 (Ghaffari & Haeupler [GH16b] ). For any planar graph with 𝑛 nodes and

diameter 𝐷, any partition of the vertices admits an 𝛼-congestion 𝛽-dilation shortcut such

that max{𝛼, 𝛽} = 𝑂(𝐷 log𝐷). Moreover, such a shortcut can be computed distributedly in

�̃�(𝐷) rounds.

Corollary 6.1.5. There is a randomized distributed algorithm that computes an MST in

planar graphs in �̃�(𝐷) rounds, with high probability.

Theorem 6.1.6 (Ghaffari, Kuhn, & Su [GKS16]). In any graph graph 𝐺 = (𝑉,𝐸) with

𝑛 nodes, edge expansion at least 1
poly(log𝑛)

, and maximum degree at most poly(log 𝑛), any

partition of the vertices admits an 𝛼-congestion 𝛽-dilation shortcut such that max{𝛼, 𝛽} =

2𝑂(
√
log𝑛 log log𝑛). Moreover, such a shortcut can be computed distributedly in 2𝑂(

√
log𝑛 log log𝑛)

rounds. Here, the edge expansion of graph 𝐺 = (𝑉,𝐸) is defined as expansion(𝐺) :=

min𝑆⊂𝑉,|𝑆|≤𝑛/2
𝑒(𝑆,𝑉 ∖𝑆)

|𝑆| , where 𝑒(𝑆, 𝑉 ∖𝑆) denotes the number of 𝐺-edges between 𝑆 and 𝑉 ∖𝑆.

Corollary 6.1.7. There is a randomized distributed algorithm that computes an MST in

any graph with edge-expansion at least 1
poly(log𝑛)

and maximum degree at most poly(log 𝑛) in

2𝑂(
√
log𝑛 log log𝑛) rounds, with high probability.

6.2 Shortcuts in Action: Minimum Spanning Tree

In this section, we explain how to use low-congestion shortcuts to solve the common scenario
problem described above. In particular, we explain how to compute an MST using low-
congestion shortcuts. The method can be easily extended to solving a few of the other
network optimization problems, for instance it can be used to compute a (1+𝜀) approximation
of the minimum cut, as we explain in the next chapter.

6.2.1 The Generic Method For Using Shortcuts

Before starting the MST algorithm, we explain the generic method for using low-congestion
shortcuts, in the context of a simple example of simultaneously growing BFSs in the short-
cutted parts.

Growing BFSs on Shortcuts via Random Delay: Suppose that we are given a
partition of the graph 𝐺 = (𝑉,𝐸) into parts 𝑆1, 𝑆2, . . . , 𝑆𝑁 , each inducing a connected
subgraph and having a leader 𝑠𝑖 ∈ 𝑆𝑖. Assume that we are also given the corresponding
shortcuts 𝐻1, 𝑆2, . . . , 𝑆𝑁 , which form an 𝛼-congestion 𝛽-dilation shortcut. We explain how
to simultaneously grow 𝑁 BFSs, one BFS for each 𝑖 ∈ [1, 𝑁 ] which is a BFS in the graph
𝐺[𝑆𝑖] + 𝐻𝑖 rooted in 𝑠𝑖. All these BFSs will be constructed in 𝑂(𝛼 + 𝛽 log 𝑛) rounds.
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Claim 6.2.1. There is a randomized distributed algorithm that simultaneously constructs all

the 𝑁 BFSs, one for each subgraph 𝐺[𝑆𝑖] + 𝐻𝑖 rooted in the leader 𝑠𝑖 of the corresponding

part 𝑆𝑖, all in 𝑂(𝛼 + 𝛽 log 𝑛) rounds, with high probability.

Proof. To construct these BFSs, we make use of the random delays technique [LMR94].
Divide time into phases, each having 𝑂(log 𝑛) rounds. Delay the start of each BFS by a
random delay, a uniformly chosen number of phases in [0, 𝛼/ log 𝑛]. Once A BFS starts, it
proceeds at a speed of one hop per phase. If a node 𝑣 receives the BFS token of a leader 𝑠𝑖
in phase 𝑗 for the first time, it forwards this token to all its neighbors in shortcut subgraph
𝐺[𝑆𝑖]+𝐻𝑖 in phase 𝑗+1. We claim that over all BFSs, with high probability, there is a total
of at most 𝑂(log 𝑛) tokens that need to go through each edge 𝑒 in each phase, and thus, since
a phase has 𝑂(log 𝑛) rounds, there is time for sending all of these 𝑂(log 𝑛) tokens along the
edge. For a given BFS, the probability that it has to go through a particular edge 𝑒 in a given
phase is at most log𝑛

𝛼
. Hence, over all the at most 𝛼 BFSs that can go through 𝑒—because

of the definition of the shortcuts—we expect at most log 𝑛 of them to be scheduled to go
through it in any particular phase. Since the random delays of different BFSs are chosen
independently, we can apply a Chernoff bound and conclude that no more than 𝑂(log 𝑛)

BFSs need to cross the edge in each phase, w.h.p. Hence, each phase has enough time for all
the messages that need to go through an edge 𝑒 in this phase. This allows us to run all the
BFS simultaneously. We need only 𝛼/ log 𝑛 + 𝛽 phases, because each BFS starts by phase
𝛼/ log 𝑛 and each BFS runs for at most 𝛽 phases. Therefore, all BFSs finish in 𝑂(𝛼+𝛽 log 𝑛)

rounds. Each node remembers for each BFS its parent from whom it received the related
BFS token for the first time. The nodes can also easily known their depth in the BFS trees,
simply by adding a standard hop-counter to each BFS token, which starts equal to 0 at the
root and gets incremented before being passed on to the neighbors.

6.2.2 Computing an MST via Shortcuts

In this subsection, we present the proof of Theorem 6.1.2, which uses shortcuts to compute
an MST. For simplicity, we first restate the theorem here.

Theorem 6.1.2 Suppose that the graph family 𝒢 is such that for each graph 𝐺 ∈ 𝒢, and
any partition of 𝐺 into vertex-disjoint connected subsets 𝑆1, . . . , 𝑆𝑁 , we can find an 𝛼-

congestion 𝛽-dilation shortcut such that max{𝛼, 𝛽} ≤ 𝐾. Then, there is a randomized

distributed MST algorithm that computes an MST in 𝑂(𝛼 log 𝑛 + 𝛽 log2 𝑛) = �̃�(𝐾) rounds,

with high probability, in any graph from the family 𝒢. Here, 𝐾 can be a function of the

family 𝒢, and it can depend on 𝑛 and 𝐷.

Proof of Theorem 6.1.2. The high-level idea is to incorporate low-congestion shortcuts into
(a variant of) the classic 1926 approach of Boruvka [NMN01]. Let us first recall this variant
of Boruvka’s approach.
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The Algorithm Outline: We have 𝑂(log 𝑛) iterations where we gradually grow a forest
until we reach a spanning tree. We start with the trivial forest where each node forms its
own component of the forest, that is, each node is one separate part in our partition of 𝐺.

In each iteration, each part 𝑆𝑖 will have a leader node 𝑠𝑖 ∈ 𝑆𝑖. Each part 𝑆𝑖 suggests a
merge along the edge with exactly one endpoint in 𝑆𝑖 that has the smallest weight among
such edges. This is called the minimum weight outgoing edge (MWOE). It is well-known that
all such edges belong to MST2. We soon explain how to compute these min-weight outgoing
edges, one per part, using shortcuts. Let us for now continue with the high-level explanation
of how to use these edges to merge parts. We restrict the merge shapes to be star shapes,
using a simple random coin idea: toss a random coin per part and then allow only merges
centered on head-parts, each accepting incoming suggested merge-edges from tail-parts. The
leader of this head-part becomes the leader of the merged new part.

Let 𝑁 be the current number of connected components of the forest. If 𝑁 = 1, we are
done already. Otherwise, each component suggests one merge edge. Each suggested merge
edge is accepted for a merge with probability 1/4. Thus, we expect to have 𝑁/4 accepted
merge edges. Hence, the number of (excess) parts shrinks in expectation by a constant
factor. Since we start with at most 𝑛 components, after 𝑂(log 𝑛) iterations, the expected
number of (excess) parts is down to 1

𝑛2 . Using Markov’s inequality, this implies that, with
high probability, we have at most one component, that is, we have reached a spanning tree.

The Computational Steps of Each Iteration What remains is to explain how to
find the merge edges, and how to perform the merges. Both of these steps make use of
low-congestion shortcuts. More concretely, we use the same procedure as the method for
simultaneously growing BFSs, as explained in the proof of Claim 6.2.1, to do communications
inside each part. In particular, using this method, we make all nodes learn (1) the coin tossed
by their leader, (2) the minimum-weight outgoing edge of their part, and finally (3) the ID of
their new part leader. We next explain how to perform each of these steps in 𝑂(𝛼+ 𝛽 log 𝑛)

rounds. Thus, each iteration takes 𝑂(𝛼 + 𝛽 log 𝑛) rounds. Since the MST algorithm uses
𝑂(log 𝑛) iterations, the overall complexity becomes 𝑂(𝛼 log 𝑛 + 𝛽 log2 𝑛) = �̃�(𝐾).

∙ Item (1)—which is to let each node know the coin toss of its part leader—is by a simple
repetition of the messages sent in growing the BFS, while now the message starting at
the root also carries the random bit flipped by the leader.

∙ Item (2)—which is to let each node know the the minimum weight outgoing edge of
its component—can be also computed by two iterations of the same procedure. Let
each node 𝑣 set 𝑐(𝑣) to be the minimum-weight outgoing edge among edges incident

2This assumes that the edge-weights are unique, which is a common assumption in this area. Fur-
thermore, if the goal is to compute one MST, assuming unique edge weights is without loss of generality.
The reason is as follows: we can append the identifier of the edge—composed of the identifiers of its two
endpoints—to its weight in a manner that makes the edge weights unique, and guarantees that the MST
according to the new weights is one of the MSTs according to the original weights.
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to 𝑣. The objective is that each node 𝑣 ∈ 𝑆𝑖 learns the weight of the minimum-weight
outgoing edge among edges all edges incident on part 𝑆𝑖. Each node 𝑣 starts with
its own smallest weight-outgoing edge and its weight 𝑐(𝑣). Notice that node 𝑣 can
easily find 𝑐(𝑣) by first receiving from all neighbors the part leader IDs of their parts
and then only considering the smallest of those edges having the other endpoint in a
different part. Then, we perform a convergecast on the BFS trees, by a simple reversal
of the schedule of the growth of the BFSs. This convergecast goes from the leaves
to the root, maintaining the minimum value seen, and thus eventually delivering the
minimum-weight outgoing edge to the part leader. The information about this edge
can be delivered to all nodes of the part by repeating the BFS schedule in the forward
direction, from the root to the leaves. At the end of these steps, each edge chosen for
merge can be identified by its endpoint in the part holding a tail coin.

∙ Item (3)—which is to let each node knows its new part leader ID—is performed as
follows. We define the part leader ID to be the leader of the center part of the merge,
who had a head coin. This ID is already delivered to the physical endpoint of the
merge edge in the tail part. We perform a convergecast and then a broadcast along
the BFS tree, similar to above, to deliver this ID first to the root of the part BFS, and
then to all its nodes. This ensures that all nodes know the ID of their new leader.

Better MST for General Graphs As stated in Corollary 6.1.3, the above approach
leads to an 𝑂((𝐷 +

√
𝑛) log2 𝑛)-round distributed MST algorithm in general graphs. We

next explain how to improve this bound to 𝑂((𝐷 +
√
𝑛) log 𝑛), by leveraging the special

structure of the shortcuts in Corollary 6.1.3. This results in a simple MST algorithm that is
only a log 𝑛 factor slower than the 𝑂((𝐷+

√
𝑛 log* 𝑛) algorithm of Kutten and Peleg [KP95].

Notice that the choice of the shortcut in the proof of Corollary 6.1.3 treats parts in two
different categories: (1) large parts 𝑆𝑖 for which |𝑆𝑖| ≥

√
𝑛 and thus we set 𝐻𝑖 = 𝐺, and

(2) small parts 𝑆𝑖 for which |𝑆𝑖| ≤
√
𝑛 and thus we set 𝐻𝑖 = ∅. For the latter category

of small parts, the BFS-growth, and BFS-based broadcast and converge-cast all happen
inside the part and we can perform these all in parallel in

√
𝑛 rounds, as each of these parts

has diameter at most
√
𝑛 and they are disjoint. What takes somewhat more care is the

communications of the large parts. However, there are at most 𝑛/
√
𝑛 =

√
𝑛 large parts.

Hence, we can let the broadcast and convergecast of these parts happen on the BFS of the
whole graph 𝐺, simultaneously. Using standard pipelining techniques [Pel00], we can see that
we can perform one convergecast per each large part, all in parallel, in 𝑂(𝐷 +

√
𝑛) rounds.

The same holds also for their broadcasts. Therefore, we conclude that we can perform one
iteration of Boruvka in general graphs in 𝑂(𝐷 +

√
𝑛) rounds. This leads to overall round

complexity of 𝑂((𝐷 +
√
𝑛) log 𝑛).

We note that this is slower than the 𝑂(𝐷 +
√
𝑛 log* 𝑛) algorithm of Kutten and Peleg

[KP95]. However, we believe that this approach is considerably simpler than that of [KP95],
and it perhaps provides a more suitable choice for teaching distributed MST algorithms.
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Chapter 7

Minimum Edge Cut Approximation

7.1 Introduction & Related Work

Finding minimum cuts or approximately minimum cuts are classical and fundamental al-
gorithmic graph problems with many important applications. In particular, minimum edge
cuts and their size (i.e., the edge connectivity) are relevant in the context of networks, where
edge weights might represent link capacities and therefore edge connectivity can be inter-
preted as the throughput capacity of the network. Decomposing a network using small cuts
helps designing efficient communication strategies and finding communication bottlenecks
(see, e.g., [PQ82, KS93]). Both the exact and approximate variants of the minimum cut
problem have received extensive attention in the domain of centralized algorithms (cf. Sec-
tion 7.1.2 for a brief review of the results in the centralized setting). This line of research
has led to (almost) optimal centralized algorithms with running times �̃�(𝑚+ 𝑛) [Kar00] for
the exact version and 𝑂(𝑚+𝑛) [Mat93] for constant-factor approximations, where 𝑛 and 𝑚

are the numbers of nodes and edges, respectively.

As indicated by Elkin [Elk04a] and Das Sarma et al. [DHK+12], the problem has remained
essentially open in the distributed setting. In the LOCAL model [Pel00] where in each round,
a message of unbounded size can be sent over each edge, the problem has a trivial time
complexity of Θ(𝐷) rounds, where 𝐷 is the (unweighted) diameter of the network. The
problem is therefore more interesting and also practically more relevant in models where
messages are of some bounded size 𝐵. The standard model incorporating this restriction is
the CONGEST model [Pel00], a synchronous message passing model where in each time unit,
𝐵 bits can be sent over every link (in each direction). It is often assumed that 𝐵 = Θ(log 𝑛).
The only known non-trivial result is an elegant lower bound by Das Sarma et al. [DHK+12]
showing that any 𝛼-approximation of the minimum cut in weighted graphs requires at least
Ω(𝐷 +

√︀
𝑛/(𝐵 log 𝑛)) rounds.
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7.1.1 Our Contribution

We present three distributed minimum edge cut approximation algorithms for undirected
weighted graphs, with successively better approximations but increasing round-complexities.
The complexities of all these algorithms match the lower bound of [DHK+12] up to at most
logarithmic factors. We also extend the lower bound of [DHK+12] to unweighted graphs and
multigraphs.

Algorithms

Our first algorithm, presented in Section 7.4, with high probability1 finds a cut of size
at most 𝑂(𝜀−1𝜆), for any 𝜖 ∈ (0, 1) and where 𝜆 is the edge connectivity, i.e., the size
of the minimum cut in the network. The time complexity of this algorithm is 𝑂(𝐷) +

𝑂(𝑛1/2+𝜖 log3 𝑛 log log 𝑛 log* 𝑛). The algorithm is based on a simple and novel approach for
analyzing random edge sampling, a tool that has proven extremely successful also for study-
ing the minimum cut problem in the centralized setting (see, e.g., [KS93]). Our analysis is
based on random layering, and we believe that the approach might also be useful for studying
other connectivity-related questions. Assume that each edge 𝑒 ∈ 𝐸 of an unweighted multi-
graph 𝐺 = (𝑉,𝐸) is independently sampled and added to a subset 𝐸 ′ ⊂ 𝐸 with probability
𝑝. For 𝑝 ≤ 1

𝜆
, the graph 𝐺′ = (𝑉,𝐸 ′) induced by the sampled edges is disconnected with

at least a constant probability (just consider one min-cut). In Section 7.3, we use random
layering to show that if 𝑝 = Ω( log𝑛

𝜆
), the sampled graph 𝐺′ is connected w.h.p. This bound

is optimal and was known previously, with two elegant proofs: [LP72] and [Kar94b]. Our
proof is simple and self-contained and it serves as a basis for our algorithm in Section 7.4.

The second algorithm, presented in Section 7.5, finds a cut with size at most (2+𝜀)𝜆, for
any constant 𝜀 > 0, in time 𝑂((𝐷 +

√
𝑛 log* 𝑛) log2 𝑛 log log 𝑛 · 1

𝜀5
). This algorithm combines

the general approach of Matula’s centralized (2 + 𝜀)-approximation algorithm [Mat93] with
Thurimella’s algorithm for sparse edge-connectivity certificates [Thu97] and with the famous
random edge sparsification technique of Karger (see e.g., [Kar94a]).

The third algorithm, presented in Section 7.6, is somewhat slower but it still runs in
�̃�(𝐷 +

√
𝑛) in general graphs and obtains a better approximation factor of 1 + 𝜀. It uses

a mix of a number of technical ingredients: the tree-packing approach of Thorup [Tho01],
the sampling idea of Karger [Kar94b], our MST algorithm from the previous chapter, and
some further applications of low-congestion shortcuts, and finally some sketching ideas that
we present. We note that the distributed min-cut (1 + 𝜀)-approximation of Nanongkai and
Su [NS14] also uses the first two of these ingredients to achieve a (1 + 𝜀)-approximation
of minimum-cut in �̃�(𝐷 +

√
𝑛) rounds. We believe that our result is more modular and

more general. This is especially true because it easily fits the framework of low-congestion
shortcuts, and thus extends to more efficient algorithms for special graph families such as

1Recall from Chapter 2 that we use the phrase with high probability (w.h.p.) to indicate probabilities
greater than 1− 1

𝑛

𝑐
for a desirably large constant 𝑐 ≥ 2.
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planar networks or near-expanders, as we point out in Section 7.6.

Lower Bound:

To complement our upper bounds, we also extend the lower bound of Das Sarma et al. [DHK+12]
to unweighted graphs and multigraphs. When the minimum cut problem (or more generally
problems related to small edge cuts and edge connectivity) are in a distributed context, of-
ten the weights of the edges correspond to their capacities. It therefore seems reasonable to
assume that over a link of twice the capacity, we can also transmit twice the amount of data
in a single time unit. Consequently, it makes sense to assume that over an edge of weight (or
capacity) 𝑤 ≥ 1, 𝑂(𝑤 log 𝑛) bits can be transmitted per round (or equivalently that such a
link corresponds to 𝑤 parallel links of unit capacity). The lower bound of [DHK+12] critically
depends on having links with (very) large weight over which in each round only 𝑂(log 𝑛) bits
can be transmitted. We generalize the approach of [DHK+12] and obtain the same lower
bound result as in [DHK+12] for the weaker setting where edge weights correspond to edge
capacities (i.e., the setting that can be modeled using unweighted multigraphs). Formally, we
show that if 𝐵𝑤 bits can be transmitted over every edge of weight 𝑤 ≥ 1, for every 𝛼 ≥ 1 and
sufficiently large 𝜆, there are 𝜆-edge-connected networks with diameter 𝑂(log 𝑛) on which
computing an 𝛼-approximate minimum cut requires time at least Ω

(︀√︀
𝑛/(𝐵 log 𝑛)

)︀
. Further,

for unweighted simple graphs with edge connectivity 𝜆, we show that for diameter at most
𝐷 = 𝑂

(︀
1
𝜆
·
√︀

𝑛/(𝛼𝜆𝐵 log 𝑛)
)︀
finding an 𝛼-approximate minimum cut or approximating the

edge connectivity by a factor of 𝛼 requires at least time Ω
(︀√︀

𝑛/(𝛼𝜆𝐵 log 𝑛)
)︀
.

7.1.2 Related Work in the Centralized Setting

Starting in the 1950s [FF56,EFS56], the traditional approach to the minimum cut problem
was to use max-flow algorithms (cf. [FF62] and [KS93, Section 1.3]). In the 1990s, three
new approaches were introduced which go away from the flow-based method and provide
faster algorithms: The first method, presented by Gabow [Gab91], is based on a matroid
characterization of the min-cut and it finds a min-cut in 𝑂(𝑚 + 𝜆2𝑛 log 𝑛

𝑚
) steps, for any

unweighted (but possibly directed) graph with edge connectivity 𝜆. The second approach
applies to (possibly) weighted but undirected graphs and is based on repeatedly identifying
and contracting edges outside a min-cut until a min-cut becomes apparent (e.g., [NI92,Kar93,
KS93]). The beautiful random contraction algorithm (RCA) of Karger [Kar93] falls into this
category. In the basic version of RCA, the following procedure is repeated 𝑂(𝑛2 log 𝑛) times:
contract uniform random edges one by one until only two nodes remain. The edges between
these two nodes correspond to a cut in the original graph, which is a min-cut with probability
at least 1/𝑂(𝑛2). Karger and Stein [KS93] also present a more efficient implementation of
the same basic idea, leading to total running time of 𝑂(𝑛2 log3 𝑛). The third method, which
again applies to (possibly) weighted but undirected graphs, is due to Karger [Kar96] and
is based on a “semiduality" between minimum cuts and maximum spanning tree packings.
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This third method leads to the best known centralized minimum-cut algorithm [Kar00] with
running time 𝑂(𝑚 log3 𝑛).

For the approximation version of the problem (in undirected graphs), the main known
results are as follows. Matula [Mat93] presents an algorithm that finds a (2 + 𝜀)-minimum
cut for any constant 𝜀 > 0 in time 𝑂((𝑚+ 𝑛)/𝜀). This algorithm is based on a graph search
procedure called maximum adjacency search. Based on a modified version of the random
contraction algorithm, Karger [Kar94b] presents an algorithm that finds a (1 + 𝜀)-minimum
cut in time 𝑂(𝑚 + 𝑛 log3 𝑛/𝜀4).

7.2 Preliminaries

Notations and Definitions

We usually work with an undirected weighted graph 𝐺 = (𝑉,𝐸,𝑤), where 𝑉 is a set of 𝑛
vertices, 𝐸 is a set of (undirected) edges 𝑒 = {𝑣, 𝑢} for 𝑢, 𝑣 ∈ 𝑉 , and 𝑤 : 𝐸 → R+ is a
mapping from edges 𝐸 to positive real numbers. For each edge 𝑒 ∈ 𝐸, 𝑤(𝑒) denotes the
weight of edge 𝑒. In the special case of unweighted graphs, we simply assume 𝑤(𝑒) = 1 for
each edge 𝑒 ∈ 𝐸.

For a given non-empty proper subset 𝐶 ⊂ 𝑉 , we define the cut (𝐶, 𝑉 ∖ 𝐶) as the set of
edges in 𝐸 with exactly one endpoint in set 𝐶. The size of this cut, denoted by 𝑤(𝐶) is the
sum of the weights of the edges in set (𝐶, 𝑉 ∖ 𝐶). The edge-connectivity 𝜆(𝐺) of the graph
is defined as the minimum size of 𝑤(𝐶) as 𝐶 ranges over all nonempty proper subsets of 𝑉 .
A cut (𝐶, 𝑉 ∖𝐶) is called 𝛼-minimum, for an 𝛼 ≥ 1, if 𝑤(𝐶) ≤ 𝛼𝜆(𝐺). When clear from the
context, we sometimes use 𝜆 to refer to 𝜆(𝐺).

Model

Throughout this chapter, we work with the E-CONGEST model. Recall that here, the exe-
cution proceeds in synchronous rounds and in each round, each node can send a message of
size 𝐵 bits to each of its neighbors. A typically standard case is 𝐵 = Θ(log 𝑛).

For upper bounds, for simplicity we assume2 that 𝐵 = Θ(log 𝑛). For upper bounds, we
further assume that 𝐵 is large enough so that a constant number of node identifiers and
edge weights can be packed into a single message. For 𝐵 = Θ(log 𝑛), this implies that each
edge weight 𝑤(𝑒) is at most (and at least) polynomial in 𝑛. W.l.o.g., we further assume that
edge weights are normalized and each edge weight is an integer in the range {1, . . . , 𝑛Θ(1)}.
Thus, we can also view a weighted graph as a multi-graph in which all edges have unit weight
and multiplicity at most 𝑛Θ(1) (but still only 𝑂(log 𝑛) bits can be transmitted over all these
parallel edges together).

2Note that by choosing 𝐵 = 𝑏 log 𝑛 for some 𝑏 ≥ 1, in all our upper bounds, the term that does not
depend on 𝐷 could be improved by a factor

√
𝑏.
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For lower bounds, we assume a weaker model where 𝐵 · 𝑤(𝑒) bits can be sent in each
round over each edge 𝑒. To ensure that at least 𝐵 bits can be transmitted over each edge,
we assume that the weights are scaled such that 𝑤(𝑒) ≥ 1 for all edges. For integer weights,
this is equivalent to assuming that the network graph is an unweighted multigraph where
each edge 𝑒 corresponds to 𝑤(𝑒) parallel unit-weight edges.

Problem Statement

In the problem of computing an 𝛼-approximation of the minimum cut, the goal is to find a
cut (𝐶*, 𝑉 ∖𝐶*) that is 𝛼-minimum. To indicate this cut in the distributed setting, each node
𝑣 should know whether 𝑣 ∈ 𝐶*. In the problem of 𝛼-approximation of the edge-connectivity,
all nodes must output an estimate �̃� of 𝜆 such that �̃� ∈ [𝜆, 𝜆𝛼]. In randomized algorithms
for these problems, the time complexity and correctness guarantees are required to hold with
high probability.

Black-Box Algorithms

We again make frequent use of Thurimella’s connected component identification algorithm
[Thu97] as a subroutine. This algorithm itself builds on the MST algorithm of Kutten and
Peleg [KP95]. We next state the guarantee that this subroutine provides.

Thurimella’s Algorithm: Given a graph 𝐺 = (𝑉,𝐸) and a subgraph 𝐻 = (𝑉,𝐸 ′) such
that 𝐸 ′ ⊆ 𝐸, Thurimella’s algorithm identifies the connected components of 𝐻 by assigning
a label ℓ(𝑣) to each node 𝑣 ∈ 𝑉 such that two nodes get the same label iff they are in the
same connected component of 𝐻. The time complexity of the algorithm is 𝑂(𝐷+

√
𝑛 log* 𝑛)

rounds, where 𝐷 is the (unweighted) diameter of 𝐺. Moreover, it is easy to see that the
algorithm can be made to produce labels ℓ(𝑣) such that ℓ(𝑣) is equal to the smallest (or the
largest) ID in the connected component of 𝐻 that contains 𝑣. Furthermore, the connected
component identification algorithm can also be used to test whether the graph𝐻 is connected
(assuming that 𝐺 is connected). 𝐻 is not connected if and only if there is an edge {𝑢, 𝑣} ∈ 𝐸

such that ℓ(𝑢) ̸= ℓ(𝑣). If some node 𝑢 detects that for some neighbor 𝑣 (in 𝐺), ℓ(𝑢) ̸= ℓ(𝑣),
𝑢 broadcasts not connected. Connectivity of 𝐻 can therefore be tested in 𝑂(𝐷) additional
rounds. We refer to this as Thurimella’s connectivity-tester algorithm. Finally, we remark
that the same algorithms can also be used to solve 𝑘 independent instances of the connected
component identification problem or 𝑘 independent instances of the connectivity-testing
problem in 𝑂(𝐷 + 𝑘

√
𝑛 log* 𝑛) rounds. This is achieved by pipelining the messages of the

broadcast parts of different instances.
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7.3 Edge Sampling and The Random Layering Technique

Here, we study the process of random edge-sampling and present a simple technique, which
we call random layering, for analyzing the connectivity of the graph obtained through sam-
pling. This technique also forms the basis of our min-cut approximation algorithm presented
in the next section.

Edge Sampling Consider an arbitrary unweighted multigraph 𝐺 = (𝑉,𝐸). Given a prob-
ability 𝑝 ∈ [0, 1], we define an edge sampling experiment as follows: choose a subset 𝑆 ⊆ 𝐸

by including each edge 𝑒 ∈ 𝐸 in set 𝑆 independently with probability 𝑝. We call the graph
𝐺′ = (𝑉, 𝑆) the sampled subgraph.

We use the random layering technique to answer the following network reliability question:
“How large should 𝑝 be, as a function of the minimum cut size 𝜆, so that the sampled graph
is connected w.h.p.?”3 Considering just one cut of size 𝜆 we see that if 𝑝 ≤ 1

𝜆
, then the

probability that the sampled subgraph is connected is at most 1
𝑒
. We show that 𝑝 ≥ 20 log𝑛

𝜆

suffices so that the sampled subgraph is connected w.h.p. Note that this is non-trivial as
a graph has exponentially many cuts. It is easy to see that this bound is asymptotically
optimal [LP72].

Theorem 7.3.1. Consider an arbitrary unweighted multigraph 𝐺 = (𝑉,𝐸) with edge con-

nectivity 𝜆 and choose subset 𝑆 ⊆ 𝐸 by including each edge 𝑒 ∈ 𝐸 in set 𝑆 independently

with probability 𝑝. If 𝑝 ≥ 20 log𝑛
𝜆

, then the sampled subgraph 𝐺′ = (𝑉, 𝑆) is connected with

probability at least 1− 1
𝑛
.

We remark that this result was known previously, via two different proofs by Lomonosov
and Polesskii [LP72] and Karger [Kar94b]. The Lomonosov-Polesskii proof [LP72] uses an
interesting coupling argument and shows that among the graphs of a given edge-connectivity
𝜆, a cycle of length 𝑛 with edges of multiplicity 𝜆/2 has the smallest probability of remaining
connected under random sampling. Karger’s proof [Kar94b] uses the powerful fact that the
number of 𝛼-minimum cuts is at most 𝑂(𝑛2𝛼) and then uses basic probability concentration
arguments (Chernoff and union bounds) to show that, w.h.p., each cut has at least one
sampled edge. There are many known proofs for the 𝑂(𝑛2𝛼) upper bound on the number of 𝛼-
minimum cuts (see [Kar00]); an elegant argument follows from Karger’s random contraction

algorithm [Kar93].
Our proof of Theorem 7.3.1 is simple and self-contained, and it is the only one of the

three approaches that extends to the case of random vertex failures4 [CHGK13, Theorem
1.5].

3A rephrased version is, how large should the edge-connectivity 𝜆 of a network be such that it remains
connected w.h.p. if each edge fails with probability 1− 𝑝.

4There, the question is, how large the vertex sampling probability 𝑝 has to be chosen, as a function of
vertex connectivity 𝑘, so that the vertex-sampled graph is connected, w.h.p. The extension to the vertex
version requires important modifications and leads to 𝑝 = Ω( log𝑛√

𝑘
) being a sufficient condition. Refer

to [GK13, Section 3] for details.
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Figure 7-1: Graph 𝐺𝑖 and its connected components. The green solid links represent edges in 𝑆𝑖−
and the blue dashed links represent 𝐸 ∖ 𝑆𝑖−.

Proof of Theorem 7.3.1. Let 𝐿 = 20 log 𝑛. For each edge 𝑒 ∈ 𝐸, we independently choose
a uniform random layer number from the set {1, 2, . . . , 𝐿}. Intuitively, we add the sampled
edges layer by layer and show that with the addition of the sampled edges of each layer, the
number of connected components goes down by at least a constant factor, with at least a
constant probability, and independently of the previous layers. After 𝐿 = Θ(log 𝑛) layers,
connectivity is achieved w.h.p.

We start by presenting some notations. For each 𝑖 ∈ {1, . . . , 𝐿}, let 𝑆𝑖 be the set of
sampled edges with layer number 𝑖 and let 𝑆𝑖− =

⋃︀𝑖
𝑗=1 𝑆𝑗, i.e., the set of all sampled edges

in layers {1, . . . , 𝑖}. Let 𝐺𝑖 = (𝑉, 𝑆𝑖−) and let 𝑀𝑖 be the number of connected components
of the graph 𝐺𝑖. We show that 𝑀𝐿 = 1, w.h.p.

For any 𝑖 ∈ [1, 𝐿 − 1], since 𝑆𝑖− ⊆ 𝑆(𝑖+1)−, we have 𝑀𝑖+1 ≤ 𝑀𝑖. Consider the indicator
variable 𝑋𝑖 such that 𝑋𝑖 = 1 iff 𝑀𝑖+1 ≤ 0.87𝑀𝑖 or 𝑀𝑖 = 1. We show the following claim,
after which, applying a Chernoff bound completes the proof.

Claim 7.3.2. For all 𝑖 ∈ [1, 𝐿− 1] and 𝑇 ⊆ 𝐸, we have Pr[𝑋𝑖 = 1|𝑆𝑖− = 𝑇 ] ≥ 1/2.

To prove this claim, we use the principle of deferred decisions [Knu96] to view the two
random processes of sampling edges and layering them. More specifically, we consider the
following process: first, each edge is sampled and given layer number 1 with probability
𝑝/𝐿. Then, each remaining edge is sampled and given layer number 2 with probability
𝑝/𝐿

1−𝑝/𝐿
≥ 𝑝/𝐿. Similarly, after determining the sampled edges of layers 1 to 𝑖, each remaining

edge is sampled and given layer number 𝑖 + 1 with probability 𝑝/𝐿
1−(𝑖 𝑝)/𝐿

≥ 𝑝/𝐿. After doing
this for 𝐿 layers, any remaining edge is considered not sampled and it receives a random layer
number from {1, 2, . . . , 𝐿}. It is easy to see that in this process, each edge is independently
sampled with probability exactly 𝑝 and each edge 𝑒 gets a uniform random layer number from
{1, 2, . . . , 𝐿}, chosen independently of the other edges and also independently of whether 𝑒
is sampled or not.

Fix a layer 𝑖 ∈ [1, . . . , 𝐿 − 1] and a subset 𝑇 ⊆ 𝐸. Let 𝑆𝑖− = 𝑇 and consider graph
𝐺𝑖 = (𝑉, 𝑆𝑖−). Section 7.3 presents an example graph 𝐺𝑖 and its connected components.
If 𝑀𝑖 = 1 meaning that 𝐺𝑖 is connected, then 𝑋𝑖 = 1. Otherwise, suppose that 𝑀𝑖 ≥ 2.
For each component 𝒞 of 𝐺𝑖, call the component bad if (𝒞, 𝑉 ∖ 𝒞) ∩ 𝑆𝑖+1 = ∅. That is, 𝒞 is
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bad if after adding the sampled edges of layer 𝑖 + 1, 𝒞 does not get connected to any other
component. We show that Pr[𝒞 is bad] ≤ 1

𝑒
.

Since 𝐺 is 𝜆-edge connected, we have 𝑤(𝐶) ≥ 𝜆. Moreover, none of the edges in (𝒞, 𝑉 ∖𝒞)
is in 𝑆𝑖−. Thus, using the principle of deferred decisions as described, each of the edges of
the cut (𝒞, 𝑉 ∖𝒞) has probability 𝑝/𝐿

1−(𝑖 𝑝)/𝐿
≥ 𝑝/𝐿 to be sampled and given layer number 𝑖+1,

i.e., to be in 𝑆𝑖+1. Since 𝑝 ≥ 20 log𝑛
𝜆

, the probability that none of the edges (𝒞, 𝑉 ∖ 𝒞) is in
set 𝑆𝑖+1 is at most (1− 𝑝/𝐿)𝜆 ≤ 1/𝑒. Thus, Pr[𝒞 is bad] ≤ 1/𝑒.

Now let 𝑍𝑖 be the number of bad components of 𝐺𝑖. Since each component is bad
with probability at most 1/𝑒, we have E[𝑍𝑖] ≤ 𝑀𝑖/𝑒. Using Markov’s inequality, we get
Pr[𝑍𝑖 ≥ 2𝑀𝑖/𝑒] ≤ 1/2. Since each component that is not bad gets connected to at least
one other component (when we look at graph 𝐺𝑖+1), we have 𝑀𝑖+1 ≤ 𝑍𝑖 + (𝑀𝑖−𝑍𝑖)

2
= 𝑀𝑖+𝑍𝑖

2
.

Therefore, with probability at least 1/2, we have 𝑀𝑖+1 ≤ 1+2/𝑒
2

𝑀𝑖 < 0.87𝑀𝑖. This means
that Pr[𝑋𝑖 = 1] ≥ 1/2, which concludes the proof of the claim.

Now using the claim, we get that E[
∑︀𝐿−1

𝑖=1 𝑋𝑖] ≥ 10 log 𝑛. A Chernoff bound then shows
that Pr[

∑︀𝐿−1
𝑖=1 𝑋𝑖 ≥ 5 log 𝑛] ≥ 1− 1

𝑛
. This means that w.h.p, 𝑀𝐿 ≤ 𝑛

2log𝑛 = 1. That is, w.h.p,
𝐺𝐿 = (𝑉, 𝑆) = (𝑉, 𝑆𝐿−) = 𝐺′ is connected.

Theorem 7.3.1 provides a very simple approach for finding an 𝑂(log 𝑛)-approximation of
the edge connectivity of a network graph 𝐺 in 𝑂(𝐷 +

√
𝑛 log2 𝑛 log* 𝑛) rounds, simply by

trying exponentially growing sampling probabilities and checking the connectivity.

Corollary 7.3.3. There exists a distributed algorithm that for any unweighted multi-graph

𝐺 = (𝑉,𝐸), in 𝑂(𝐷 +
√
𝑛 log2 𝑛 log* 𝑛) rounds, finds an approximation �̃� of the edge con-

nectivity such that �̃� ∈ [𝜆, 𝜆 ·Θ(log 𝑛)] with high probability.

Proof. We run Θ(log2 𝑛) edge-sampling experiments: Θ(log 𝑛) experiments for each sampling
probability 𝑝𝑗 = 2−𝑗 where 𝑗 ∈ [1,Θ(log 𝑛)]. From Theorem 7.3.1, we know that, if 𝑝𝑗 ≥
Ω
(︀
log𝑛
𝜆

)︀
, the sampled graph is connected with high probability. On the other hand, by

focusing on just one minimum cut, we see that if 𝑝𝑗 ≤ 1
𝜆
, then the probability that the

sampled graph is connected is at most 3/4. Let 𝑝* be the smallest sampling probability
𝑝𝑗 such that at least 9/10 of the sampling experiments with probability 𝑝𝑗 lead to sampled
graph being connected. With high probability, �̃� := 1

𝑝* is an 𝑂(log 𝑛)-approximation of the
edge-connectivity. To check whether each sampled graph is connected, we use Thurimella’s
connectivity-tester (refer to Section 7.2), and doing that for Θ(log2 𝑛) different sampled
graphs requires 𝑂(𝐷 +

√
𝑛 log2 𝑛 log* 𝑛) rounds.

7.4 A Constant Approximation of Minimum Edge Cut

Now we use random layering to design a min-cut approximation algorithm. We first present
the outline of the algorithm and its major ideas. Then, Section 7.4.3 explains how to put
the pieces together to prove Theorem 7.4.1.
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Algorithm 1 An 𝑂(log 𝑛) Approximation Algorithm for the Edge-Connectivity

1: for 𝑖 = 1 to log 𝑛 do

2: for 𝑗 = 1 to 4 log 𝑛 do

3: Choose subset 𝐸𝑗
𝑖 ⊆ 𝐸 by adding each edge 𝑒 ∈ 𝐸 to 𝐸𝑗

𝑖 independently with probability 2−𝑖

4: Run Thurimella’s connectivity-tester on graph 𝐺 with Θ(log2 𝑛) subgraphs 𝐻𝑗
𝑖 = (𝑉,𝐸𝑗

𝑖 ), in 𝑂(𝐷 +√
𝑛 log2 𝑛 log* 𝑛) rounds. ◁ Refer to Section 7.2 for Thurimella’s connectivity-tester algorithm.

5: for 𝑖 = 1 to Θ(log 𝑛) do
6: for 𝑗 = 1 to 𝑐 log 𝑛 do

7: if graph 𝐺 = (𝑉,𝐸𝑗
𝑖 ) is connected then

8: 𝑋𝑗
𝑖 ← 1

9: else

10: 𝑋𝑗
𝑖 ← 0

11: 𝑋𝑖 ←
∑︀𝑐 log𝑛

𝑗=1 𝑋𝑗
𝑖

12: 𝑖* ← argmax𝑖∈[1,Θ(log𝑛)](𝑋𝑖 ≥ 9𝑐 log 𝑛/10)

13: �̃�← 2𝑖
*

14: Return �̃�

Theorem 7.4.1. There is a distributed algorithm that, for any 𝜖 ∈ (0, 1), finds an 𝑂(𝜖−1)-

minimum cut in 𝑂(𝐷) + 𝑂(𝑛0.5+𝜖 log3 𝑛 log log 𝑛 log* 𝑛) rounds, w.h.p.

7.4.1 Algorithm Outline

The algorithm is based on closely studying the sampled graph when the edge-sampling
probability is between the two extremes of 1

𝜆
and Θ(log𝑛)

𝜆
. Throughout this process, we

identify a set ℱ of 𝑂(𝑛 log 𝑛) cuts such that, with at least a ‘reasonably large probability’,
ℱ contains at least one ‘small’ cut.

The Crux of the Algorithm: Sample edges with probability 𝑝 = 𝜖 log𝑛
2𝜆

for a small
𝜖 ∈ (0, 1). Also, assign each edge to a random layer in [1, . . . , 𝐿], where 𝐿 = 20 log 𝑛.
For each layer 𝑖 ∈ [1, . . . , 𝐿 − 1], let 𝑆𝑖 be the set of sampled edges of layer 𝑖 and
let 𝑆𝑖− =

⋃︀𝑖
𝑗=1 𝑆𝑗. For each layer 𝑖 ∈ [1, . . . , 𝐿 − 1], for each component 𝒞 of graph

𝐺𝑖 = (𝑉, 𝑆𝑖−), add the cut (𝒞, 𝑉 ∖ 𝒞) to the collection ℱ . Since in each layer we add at
most 𝑛 new cuts and there are 𝐿 = 𝑂(log 𝑛) layers, we collect 𝑂(𝑛 log 𝑛) cuts in total.

We show that with probability at least 𝑛−𝜖/2, at least one of the cuts in ℱ is an 𝑂(𝜖−1)-
minimum cut. Note that thus repeating the experiment for Θ(𝑛𝜖 log 𝑛) times is enough to
get that an 𝑂(𝜖−1)-minimum cut is found w.h.p.

Theorem 7.4.2. Consider performing the above sampling and layering experiment with edge
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sampling probability 𝑝 = 𝜖 log𝑛
2𝜆

for 𝜖 ∈ (0, 1) and 𝐿 = 20 log 𝑛 layers. Then,

Pr[ℱ contains an 𝑂(𝜖−1)-minimum cut] ≥ 𝑛−𝜖/2.

Proof. Fix an edge sampling probability 𝑝 = 𝜖 log𝑛
2𝜆

for an 𝜖 ∈ (0, 1) and let 𝛼 = 40𝜖−1. We
say that a sampling and layering experiment is successful if ℱ contains an 𝛼-minimum cut
or if the sampled graph 𝐺𝐿 = (𝑉, 𝑆𝐿−) is connected. We first show that each experiment is
successful with probability at least 1 − 1

𝑛
. The proof of this part is very similar to that of

Theorem 7.3.1.

For an arbitrary layer number 1 ≤ 𝑖 ≤ 𝐿 − 1, consider graph 𝐺𝑖 = (𝑉, 𝑆𝑖−). If 𝑀𝑖 = 1

meaning that 𝐺𝑖 is connected, then 𝐺𝐿 is also connected. Thus, in that case, the experiment
is successful and we are done. In the more interesting case, suppose 𝑀𝑖 ≥ 2. For each
component 𝒞 of 𝐺𝑖, consider the cut (𝒞, 𝑉 ∖ 𝒞). If any of these cuts is 𝛼-minimum, then
the experiment is successful as then, set ℱ contains an 𝛼-minimum cut. On the other
hand, suppose that for each component 𝒞 of 𝐺𝑖, we have 𝑤(𝐶) ≥ 𝛼𝜆. Then, for each such
component 𝒞, each of the edges of the cut (𝒞, 𝑉 ∖ 𝒞) has probability 𝑝/𝐿

1−(𝑖 𝑝)/𝐿
≥ 𝑝/𝐿 to be

in set 𝑆𝑖+1 and since 𝑤(𝒞) ≥ 𝛼𝜆, where 𝛼 = 20𝜖−1, the probability that none of the edges
of this cut in set 𝑆𝑖+1 is at most (1 − 𝑝/𝐿)𝛼𝜆 ≤ 𝑒

𝑝
𝐿
·𝛼𝜆 = 𝑒−

𝜖 log𝑛
2𝜆

· 1
𝐿
· 40
𝜖
·𝜆 = 1/𝑒. Hence, the

probability that component 𝒞 is bad as defined in the proof of Theorem 7.3.1 (i.e., in graph
𝐺𝑖+1, it does not get connected to any other component) is at most 1/𝑒. The rest of the
proof can be completed exactly as the last paragraph of of the proof of Theorem 7.3.1, to
show that

Pr[successful experiment] ≥ 1− 1/𝑛.

Thus we have a bound on the probability that ℱ contains an 𝛼-minimum cut or that the
sampled graph 𝐺 = (𝑉, 𝑆𝐿−) is connected. However, in Theorem 7.4.2, we are only interested
in the probability of ℱ containing an 𝛼-minimum cut. Using a union bound, we know that

Pr[successful experiment] ≤ Pr[ℱ contains an 𝛼-min cut] + Pr[𝐺𝐿 is connected].

On the other hand,
Pr[𝐺𝐿 is connected] ≤ 1− 𝑛−𝜖.

This is because, considering a single mininmum cut of size 𝜆, the probability that none of
the edges of this cut are sampled, in which case the sampled subgraph is disconnected, is
(1− 𝜖 log𝑛

2𝜆
)𝜆 ≥ 𝑛−𝜖. Hence, we can conclude that

Pr[ℱ contains an 𝛼-min cut] ≥ (1− 1/𝑛)− (1− 𝑛−𝜖) = 𝑛−𝜖 − 1/𝑛 ≥ 𝑛−𝜖/2.

Remark: It was brought to our attention that the approach of Theorem 7.4.2 bears some
cosmetic resemblance to the technique of Goel, Kapralov and Khanna [GKK10]. As discussed
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in personal communication with Kapralov during 2013, the approaches are fundamentally
different. The only similarity is having 𝑂(log 𝑛) repetitions of sampling. In [GKK10], the ob-
jective is to estimate the strong connectivity of edges via a streaming algorithm. See [GKK10]
for related definitions and note also that strong connectivity is (significantly) different from
(standard) connectivity. In a nutshell, [GKK10] uses 𝑂(log 𝑛) iterations of sub-sampling,
each time further sparsifying the graph until at the end, all edges with strong connectivity
less than a threshold are removed (and identified) while edges with strong connectivity that
is a Θ(log 𝑛) factor larger than the threshold are preserved (proven via Benczur-Karger’s
sparsification).

7.4.2 Testing Cuts

So far we know that ℱ contains an 𝛼-minimum cut with a reasonable probability. We now
need to devise a distributed algorithm to read or test the sizes of the cuts in ℱ and find that
𝛼-minimum cut, in 𝑂(𝐷) + �̃�(

√
𝑛) rounds. In the remainder of this section, we explain our

approach to this part.
Consider a layer 𝑖 and the graph 𝐺𝑖 = (𝑉, 𝑆𝑖−). For each component 𝒞 of 𝐺𝑖, 𝑑𝑖𝑎𝑚(𝒞)

rounds is enough to read the size of the cut (𝒞, 𝑉 ∖ 𝒞) such that all the nodes in component
𝒞 know this size. However, 𝑑𝑖𝑎𝑚(𝒞) can be considerably larger than 𝐷 = 𝑑𝑖𝑎𝑚(𝐺) and
thus, this method would not lead to a round complexity of �̃�(𝐷 +

√
𝑛). To overcome this

problem, notice that we do not need to read the exact size of the cut (𝒞, 𝑉 ∖ 𝒞). Instead,
it is enough to devise a test that passes w.h.p. if 𝑤(𝐶) ≤ 𝛼𝜆, and does not pass w.h.p. if
𝑤(𝐶) ≥ (1 + 𝛿)𝛼𝜆, for a small constant 𝛿 ∈ (0, 1/4). In the distributed realization of such a
test, it would be enough if all the nodes in 𝒞 consistently know whether the test passed or
not. Next, we explain a simple algorithm for such a test. This test itself uses random edge
sampling. Given such a test, in each layer 𝑖 ∈ [1, . . . , 𝐿 − 1], we can test all the cuts and if
any cut passes the test, meaning that, w.h.p., it is a ((1 + 𝛿)𝛼)-minimum cut, then we can
pick such a cut.5

Lemma 7.4.3. Given a subgraph 𝐺′ = (𝑉,𝐸 ′) of the network graph 𝐺 = (𝑉,𝐸), a threshold

𝜅 and 𝛿 ∈ (0, 1/4), there exists a randomized distributed cut-tester algorithm with round

complexity Θ
(︀
𝐷 + 1

𝛿2

√
𝑛 log 𝑛 log* 𝑛

)︀
such that, w.h.p., for each node 𝑣 ∈ 𝑉 , we have: Let 𝒞

be the connected component of 𝐺′ that contains 𝑣. If 𝑤(𝒞) ≤ 𝜅/(1 + 𝛿), the test passes at 𝑣,

whereas if 𝑤(𝒞) ≥ 𝜅(1 + 𝛿), the test does not pass at 𝑣.

Proof of Lemma 7.4.3. For pseudo-code, see Algorithm 2. We first run Thurimella’s con-
nected component identification algorithm (refer to Section 7.2) on graph 𝐺 for subgraph
𝐺′, so that each node 𝑣 ∈ 𝑉 knows the smallest ID in its connected component of graph 𝐺′.
Then, each node 𝑣 adopts this label 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 as its own ID (temporarily). Thus, nodes

5This can be done for example by picking the cut which passed the test and for which the related
component has the smallest ID among all the cuts that passed the test.
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Algorithm 2 Distributed cut tester vs. threshold 𝜅 @ node 𝑣

Given a subgraph 𝐺′ = (𝑉,𝐸′) where 𝐸′ ⊆ 𝐸, and a threshold 𝜅

1: 𝑣.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 ← the smallest ID in the component of 𝐺′ that contains 𝑣 ◁ Using Thurimella’s
Component Identification Alg.

2: for 𝑗 = 1 to 𝑐 log(𝑛)/𝛿2 do

3: Choose subset 𝐸𝑖 ⊆ 𝐸 ∖ 𝐸′ by adding each edge 𝑒 ∈ 𝐸 ∖ 𝐸′ to 𝐸𝑗 independently with probability

1− 2−
1
𝜅

4: ℓ𝑚𝑎𝑥
𝑗 (𝑣)← the largest 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 in the connected component of 𝐻𝑖 = (𝑉,𝐸′ ∪ 𝐸𝑖) that contains 𝑣

5: ℓ𝑚𝑖𝑛
𝑗 (𝑣)← the smallest 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 in the connected component of 𝐻𝑖 = (𝑉,𝐸′ ∪𝐸𝑖) that contains 𝑣

◁ Using Thurimella’s Component Identification on the Θ(log 𝑛) values of 𝑖, simultaneously. (cf.
Section 7.2)

6: 𝑋𝑖 ← 0
7: for 𝑖 = 1 to 𝛼 log 𝑛 do

8: if ℓ𝑚𝑎𝑥
𝑗 (𝑣) ̸= 𝑣.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 or ℓ𝑚𝑖𝑛

𝑗 (𝑣) ̸= 𝑣.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 then 𝑋𝑖 ← 𝑋𝑖 + 1

9: Test passes @ node 𝑣 iff 𝑋𝑖 ≤ 𝑐 log𝑛
2𝛿2

of each connected component of 𝐺′ will have the same id. Now, the test runs in Θ(log2 𝑛/𝛿2)

experiments, each as follows: in the 𝑗𝑡ℎ experiment, for each edge 𝑒 ∈ 𝐸 ∖ 𝐸 ′, put edge 𝑒 in
set 𝐸𝑗 with probability 𝑝′ = 1 − 2− 1

𝜅 . Then, run Thurimella’s algorithm on graph 𝐺 with
subgraph 𝐻𝑗 = (𝑉,𝐸 ′ ∪ 𝐸𝑗) and with the new ids twice, such that at the end, each node
𝑣 knows the smallest and the largest ID in its connected component of 𝐻𝑗. Call these new
labels ℓ𝑚𝑖𝑛

𝑗 (𝑣) and ℓ𝑚𝑎𝑥
𝑗 (𝑣), respectively. For a node 𝑣 of a component 𝒞 of 𝐺𝑖, we have that

ℓ𝑚𝑖𝑛
𝑗 (𝑣) ̸= 𝑣.𝑖𝑑 or ℓ𝑚𝑎𝑥

𝑗 (𝑣) ̸= 𝑣.𝑖𝑑 iff at least one of the edges of cut (𝒞, 𝑉 ∖ 𝒞) is sampled
in 𝐸𝑗, i.e., (𝒞, 𝑉 ∖ 𝒞) ∩ 𝐸𝑗 ̸= ∅. Thus, each node 𝑣 of each component 𝒞 knows whether
(𝒞, 𝑉 ∖ 𝒞) ∩ 𝐸𝑗 ̸= ∅ or not. Moreover, this knowledge is consistent between all the nodes of
component 𝒞. After Θ(log 𝑛/𝛿2) experiments, each node 𝑣 of component 𝒞 considers the test
passed iff 𝑣 noticed (𝒞, 𝑉 ∖ 𝒞) ∩𝐸𝑗 ̸= ∅ in at most half of the experiments. The full proof is
as follows.

If a cut (𝒞, 𝑉 ∖𝒞) has size at most 𝜅/(1 + 𝛿), then the probability that (𝒞, 𝑉 ∖𝒞)∩𝐸𝑗 ̸= ∅
is at most 1− (1− 𝑝′)

𝜅
1+𝛿 = 1− 2− 1

1+𝛿 ≤ 0.5− 𝛿
4
. On the other hand, if cut (𝒞, 𝑉 ∖𝒞) has size

at least ((1+ 𝛿)𝜅), then the probability that (𝒞, 𝑉 ∖𝒞)∩𝐸𝑗 ̸= ∅ is at least 1− (1−𝑝′)(1+𝛿)𝜅 ≥
1− 2−1+𝛿 ≥ 0.5 + 𝛿

4
. This Θ(𝛿) difference between these probabilities gives us our basic tool

for distinguishing the two cases. Since we repeat the experiment presented in Section 7.4.2
for Θ( log𝑛

𝛿2
) times, an application of Hoeffding’s inequality shows that if cut (𝒞, 𝑉 ∖ 𝒞) has

size at most 𝜅/(1 + 𝛿), the test passes w.h.p., and if cut (𝒞, 𝑉 ∖ 𝒞) has size at least 𝜅(1 + 𝛿),
then, w.h.p., the test does not pass.
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7.4.3 Wrap up

Here, we explain how to put the pieces presented in Section 7.4 together to get the claim of
Theorem 7.4.1.

Proof of Theorem 7.4.1. For simplicity, we first explain an 𝑂(𝜀−1) minimum-cut approxi-
mation algorithm with time complexity 𝑂((𝐷 +

√
𝑛 log* 𝑛 log 𝑛)𝑛𝜖 log2 𝑛 log log 𝑛). Then,

we explain how to reduce it to the claimed bound of 𝑂(𝐷) + 𝑂(𝑛0.5+𝜖 log3 𝑛 log log 𝑛 log* 𝑛)

rounds.

We first find an 𝑂(log 𝑛) approximation �̃� of 𝜆, using Corollary 7.3.3, in time 𝑂(𝐷) +

𝑂(
√
𝑛 log*) log2 𝑛). This complexity is subsumed by the complexity of the later parts. After

this, we use Θ(log log 𝑛) guesses for a 2-approximation of 𝜆 in the form 𝜆′
𝑖 = 𝐶2𝑖 where

𝑖 ∈ [−Θ(log log 𝑛),Θ(log log 𝑛)]. For each such guess 𝜆′
𝑖, we have 𝑛𝜖 log 𝑛 epochs as follows:

In each epoch, we sample edges with probability 𝑝 = 𝜖 log𝑛
2𝜆′ and assign each edge to a

random layer in [1, . . . , 𝐿], where 𝐿 = 20 log 𝑛. For each layer 𝑖 ∈ [1, . . . , 𝐿− 1], we let 𝑆𝑖 be
the set of sampled edges of layer 𝑖 and let 𝑆𝑖− = ∪𝑖𝑗=1𝑆𝑗. Then, for each 𝑖 ∈ [1, . . . , 𝐿], we
use the Cut-Tester Algorithm (see Section 7.4.2) on graph 𝐺 with subgraph 𝐺𝑖 = (𝑉, 𝑆𝑖−),
threshold 𝜅 = 50𝜆′/𝜖, and with parameter 𝛿 = 1/8. This takes 𝑂((𝐷+

√
𝑛 log 𝑛 log* 𝑛) log 𝑛)

rounds (for each layer). If in a layer, a component passes the test, it means its cut has size
at most 𝑂(𝜆′/𝜖), with high probability. To report the results of the test, we construct a BFS
tree rooted in a leader in 𝑂(𝐷) rounds and we convergecast the minimum 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷

that passed the test, in time 𝑂(𝐷). We then broadcast this 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 to all nodes and
all nodes that have this 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 define the cut that is 𝑂(𝜆′/𝜖)-minimum, with high
probability.

Over all the guesses, we know that there is a guess 𝜆′
𝑗 that is a 2-approximation of 𝜆. In

that guess, from Theorem 7.4.2 and a Chernoff bound, we know that at least one cut that
is an 𝑂(𝜖−1)-minimum cut will pass the test. We stop the process in the smallest guess for
which a cut passes the test.

Finally, to reduce the time complexity to 𝑂(𝐷) + 𝑂(𝑛0.5+𝜖 log3 𝑛 log log 𝑛 log* 𝑛) rounds,
note that we can parallelize (i.e., pipeline) the Θ(𝑛𝜖 log2 𝑛 log log 𝑛) runs of the Cut-Testing
algorithm, which come from Θ(log log 𝑛) guesses 𝜆′

𝑖, 𝑛𝜖 log 𝑛 epochs for each guess, and
Θ(log 𝑛) layers in each epoch. We can do this pipelining simply because these instances of
Cut-Testing do not depend on the outcomes of each other and 𝑘 instances of Thurimella’s al-
gorithms can be run together in time 𝑂(𝐷+𝑘

√
𝑛 log* 𝑛) rounds (refer to Section 7.2). To out-

put the final cut, when doing the convergecast of the Cut-Testing results on the BFS, we ap-
pend the edge-connectivity guess 𝜆′

𝑗, epoch number, and layer number to the 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷.
Then, instead of taking minimum on just 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷, we choose the 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷 that
has the smallest tuple (guess 𝜆′

𝑗, epoch number, layer number, 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷). Note that
the smallest guess 𝜆′

𝑗 translates to the smallest cut size, and the other parts are simply for
tie-breaking.
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Algorithm 3 (2 + 𝜀)-minimum cut approximation: Matula’s Approach

Given a (1 + 𝜀/10)-factor approximation �̃� of 𝜆

1: 𝐸𝑐 ← ∅, 𝐸* ← 𝐸, 𝜂𝑜𝑙𝑑 ← 𝑛, 𝜂𝑛𝑒𝑤 ← 1
2: while (𝜂 ≥ 2) & (𝜂𝑛𝑒𝑤 ≤ 𝜂𝑜𝑙𝑑(1− 𝜀/10)) do
3: 𝐸𝑐 ← 𝐸 ∖ 𝐸*

4: 𝐸* ← a sparse certificate for �̃�(1 + 𝜀/5)-edge-connectivity of graph 𝐺′ = (𝑉 ′, 𝐸′) obtained by
contracting edges of 𝐸𝑐

5: 𝜂𝑛𝑒𝑤 ← number of connected components of subgraph 𝐻 = (𝑉,𝐸 ∖ 𝐸*)

6: endwhile

7: Test cuts defined by connected components of graph 𝐻 = (𝑉,𝐸 ∖ 𝐸*) versus threshold 𝜅 = �̃�(2 + 𝜀/3)
8: Output the component that passes the test and contains the smallest ID between such components

7.5 A (2 + 𝜀) Approximation of Minimum Edge Cut

In [Mat93], Matula presents an elegant centralized algorithm that for any constant 𝜀 > 0,
finds a (2 + 𝜀)-min-cut in 𝑂(|𝑉 | + |𝐸|) steps. Here, we explain how with the help of a few
additional elements, this general approach can be used in the distributed setting, to find a
(2 + 𝜀)-minimum cut in 𝑂

(︀
(𝐷 +

√
𝑛 log* 𝑛) log2 𝑛 log log 𝑛 · 1

𝜀5

)︀
rounds. We first recap the

concept of sparse certificates for edge connectivity.

Definition 7.5.1. For a given unweighted multi-graph 𝐻 = (𝑉𝐻 , 𝐸𝐻) and a value 𝑘 > 0, a

set 𝐸* ⊆ 𝐸𝐻 of edges is a sparse certificate for 𝑘-edge-connectivity of 𝐻 if (1) |𝐸*| ≤ 𝑘|𝑉𝐻 |,
and (2) for each edge 𝑒 ∈ 𝐸𝐻 , if there exists a cut (𝒞, 𝑉 ∖ 𝒞) of 𝐻 such that |(𝒞)| ≤ 𝑘 and

𝑒 ∈ (𝒞, 𝑉 ∖ 𝒞), then we have 𝑒 ∈ 𝐸*.

Thurimella [Thu97] presents a simple distributed algorithm that finds a sparse certificate
for 𝑘-edge-connectivity of a network graph 𝐺 in 𝑂(𝑘(𝐷 +

√
𝑛 log* 𝑛)) rounds. With simple

modifications, we get a generalized version, presented in Lemma 7.5.2.

Lemma 7.5.2. Let 𝐸𝑐 be a subset of the edges of the network graph 𝐺 and define the virtual

graph 𝐺′ = (𝑉 ′, 𝐸 ′) as the multi-graph that is obtained by contracting all the edges of 𝐺 that

are in 𝐸𝑐. Using the modified version of Thurimella’s certificate algorithm, we can find a set

𝐸* ⊆ 𝐸 ∖𝐸𝑐 that is a sparse certificate for 𝑘-edge-connectivity of 𝐺′, in 𝑂(𝑘(𝐷+
√
𝑛 log* 𝑛))

rounds.

Proof of Lemma 7.5.2. The idea of Thurimella’s original sparse certificate-algorithm [Thu97]
is relatively simple: 𝐸* is made of the edges of 𝑘 MSTs that are found in 𝑘 iterations. Initially,
we set 𝐸* = ∅. In each iteration, we assign weight 0 to the edges in 𝐸 ∖ 𝐸* and weight 1

to the edges in 𝐸*. In each iteration, we find a new MST with respect to the new weights
using the MST algorithm of [KP95], and add the edges of this MST to 𝐸*. Because of
the weights, each MST tries to avoid using the edges that are already in 𝐸*. In particular,
if in one iteration, there exist two edges 𝑒, 𝑒′, a cut (𝒞, 𝑉 ∖ 𝒞) such that 𝑒, 𝑒′ ∈ (𝒞, 𝑉 ∖ 𝒞)
and 𝑒 ∈ 𝐸* but 𝑒′ /∈ 𝐸*, then the new MST will not contain 𝑒 but will contain an edge
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𝑒′′ ∈ (𝐸 ∖𝐸*)∩ (𝒞, 𝑉 ∖ 𝒞). This is because, MST will prefer 𝑒′′ to 𝑒 and there is at least one
such 𝑒′′, namely edge 𝑒′. As a result, if there is a cut with size at most 𝑘, in each MST, at
least one edge of the cut gets added to 𝐸*, until all edges of the cut are in 𝐸*.

To solve our generalized version of sparse certificate, we modify the algorithm in the
following way. As before, we construct the set 𝐸* iteratively such that at the beginning
𝐸* = ∅. In each iteration, we give weight 0 to edges of 𝐸𝑐, weight 1 to edges of 𝐸 ∖ (𝐸𝑐∪𝐸*)

and weight 2 to edges in 𝐸*. Moreover, in each iteration, if the newly found MST is 𝑇 , we
only add edges in 𝑇 ∖ 𝐸𝑐 to the set 𝐸*. Note that if for an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸, nodes 𝑢

and 𝑣 correspond to the same node of the edge-contracted graph 𝐺′, then edge 𝑒 will never
be added to 𝐸* as either it is in 𝐸𝑐 or 𝑢 and 𝑣 are connected via a path made of edges in
𝐸𝑐 and thus, in each MST, that path is always preferred to 𝑒. Moreover, if there is a cut
(𝒞, 𝑉 ∖ 𝒞) of 𝐺 such that (𝒞, 𝑉 ∖ 𝒞) ∩ 𝐸𝑐 = ∅ and there are two edges 𝑒, 𝑒′ ∈ (𝒞, 𝑉 ∖ 𝒞) such
that 𝑒 ∈ 𝐸* but 𝑒′ /∈ 𝐸*, then the new MST will not contain 𝑒 but will contain an edge
𝑒′′ ∈ (𝐸 ∖ 𝐸*) ∩ (𝒞, 𝑉 ∖ 𝒞).

Following the approach of Matula’s centralized algorithm6 [Mat93], and with the help of
the sparse certificate algorithm of Lemma 7.5.2 and the random sparsification technique of
Karger [Kar94b], we get the following result.

Theorem 7.5.3. There is a distributed algorithm that, for any constant 𝜀 > 0, finds a

(2 + 𝜀)-minimum cut in 𝑂((𝐷 +
√
𝑛 log* 𝑛) log2 𝑛 log log 𝑛 · 1

𝜀5
) rounds.

Proof of Theorem 7.5.3. We assume that nodes know a (1 + 𝜀/10)-factor approximation
�̃� of the edge connectivity 𝜆, and explain a distributed algorithm with round complexity
𝑂((𝐷 +

√
𝑛 log* 𝑛) log2 𝑛 · 1

𝜀4
). Note that this assumption can be removed at the cost of

a Θ( log log𝑛
log (1+𝜀/10)

) = Θ(log log 𝑛 · 1
𝜀
) factor increase in round complexity by trying Θ( log log𝑛

𝜀
)

exponential guesses �̃�(1 + 𝜀/10)𝑖 for 𝑖 ∈ [0,Θ( log log𝑛
𝜀

)] where �̃� is an 𝑂(log 𝑛)-approximation
of the edge-connectivity, which can be found by Corollary 7.3.3.

For simplicity, we first explain an algorithm that finds a (2+𝜀)-minimum cut in 𝑂(𝜆(𝐷+√
𝑛 log* 𝑛) log 𝑛 · 1

𝜀2
) rounds. Then, we explain how to reduce the round complexity to

𝑂((𝐷 +
√
𝑛 log* 𝑛) log2 𝑛 · 1

𝜀4
).

First, we compute a sparse certificate 𝐸* for �̃�(1 + 𝜀/5)-edge-connectivity for 𝐺, using
Thurimella’s algorithm. Now consider the graph 𝐻 = (𝑉,𝐸*). We have two cases: either (a)
𝐻 has at most |𝑉 |(1− 𝜀/10) connected components, or (b) there is a connected component
𝒞 of 𝐻 such that 𝑤(𝒞) ≤ 2𝜆(1+𝜀/10)(1+𝜀/5)

1−𝜀/10
≤ (2 + 𝜀)𝜆. Note that if (a) does not hold, case (b)

follows because 𝐻 has at most (1 + 𝜀/5)�̃�|𝑉 | edges.
In Case (b), we can find a (2+𝜀)-minimum cut by testing the connected components of 𝐻

versus threshold 𝜅 = �̃�(2 + 𝜀/3), using the Cut-Tester algorithm presented in Lemma 7.4.3.
In Case (a), we can solve the problem recursively on the virtual graph 𝐺′ = (𝑉 ′, 𝐸 ′) that is
obtained by contracting all the edges of 𝐺 that are in 𝐸𝑐 = 𝐸∖𝐸*. Note that this contraction

6We remark that Matula [Mat93] never uses the name sparse certificate but he performs maximum

adjacency search which indeed generates a sparse certificate.
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process preserves all the cuts of size at most �̃�(1+𝜀/5) ≥ 𝜆 but reduces the number of nodes
(in the virtual graph) at least by a (1− 𝜀/10)-factor. Consequently, 𝑂(log(𝑛)/𝜀) recursions
reduce the number of components to at most 2 while preserving the minimum cut.

We now explain how to remove the dependence on 𝜆 from the time complexity. Let 𝐸𝑆 be
a subset of the edges of 𝐺 = (𝑉,𝐸) where each 𝑒 ∈ 𝐸 is independently included in 𝐸𝑆 with
probability 𝑝 = 100 log𝑛

𝜀2
· 1
𝜆
. Then, using the edge-sampling result of Karger [Kar94b, Theorem

2.1]7, we know that with high probability, for each 𝒞 ⊆ 𝑉 , we have

(1− 𝜀/3) · |(𝒞, 𝑉 ∖ 𝒞)| · 𝑝 ≤ |(𝒞, 𝑉 ∖ 𝒞) ∩ 𝐸𝑆| ≤ (1 + 𝜀/3) · |(𝒞, 𝑉 ∖ 𝒞)| · 𝑝.

Hence, in particular, we know that graph 𝐺𝑛𝑒𝑤 = (𝑉,𝐸𝑆) has edge connectivity at least
𝜆𝑝(1 − 𝜀/3) and at most 𝜆𝑝(1 + 𝜀/3), i.e., 𝜆𝑛𝑒𝑤 = Θ(log 𝑛 · 1

𝜀2
). Moreover, for every cut

(𝒞, 𝑉 ∖ 𝒞) that is a (1 + 𝜀/3)-minimum cut in graph 𝐺𝑛𝑒𝑤, we have that (𝒞, 𝑉 ∖ 𝒞) is a
(1 + 𝜀)-minimum cut in graph 𝐺. We can therefore solve the cut-approximation problem in
graph 𝐺𝑛𝑒𝑤, where we only need to use sparse certificates for Θ(log 𝑛 · 1

𝜀2
) edge-connectivity8.

The new round complexity becomes 𝑂
(︀
(𝐷 +

√
𝑛 log* 𝑛) log2 𝑛 · 1

𝜀4

)︀
rounds.

The above round complexity is assuming a (1+𝜀/10)-approximation of edge-connectivity
is known. Substituting this assumption with trying Θ(log log 𝑛/𝜀) guesses around the𝑂(log 𝑛)

approximation obtained by Corollary 7.3.3 (and outputting the smallest found cut) brings
the round complexity to the claimed bound of 𝑂((𝐷 +

√
𝑛 log* 𝑛) log2 𝑛 log log 𝑛 · 1

𝜀5
).

7.6 A (1 + 𝜀) Approximation of Minimum Edge Cut

Here, we explain a distributed algorithm which finds a 1 + 𝜀 approximation of the minimum
edge cut, with a nearly-optimal time complexity. The formal result is as follows:

Theorem 7.6.1. There is an �̃�(𝐷 +
√
𝑛) round distributed algorithm that in any weighted

network, computes a (1 + 𝜀) approximation of the min-cut, for any constant 9 𝜀 > 0.

To present a more general result, which can also be made more efficient in special graph
families, we present a modular algorithm using the framework of low-congestion shortcuts. In
particular, we explain an algorithm with round complexity �̃�(𝐾), where 𝐾 is a given known
upper bound such that for any partition of 𝐺 = (𝑉,𝐸) into vertex-disjoint individually-
connected subsets 𝑆1, 𝑆2, . . . , 𝑆𝑁 , there is a low-congestion shortcut with congestion at most
𝐾 and dilation at most𝐾, and assuming that this shortcut can be computed in at most �̃�(𝐾)

rounds. Recall the definitions of low-congestion shortcuts from Chapter 6. In particular,

7We emphasize that this result is non-trivial. The proof follows from the powerful bound of 𝑂(𝑛2𝛼) on
the number of 𝛼-minimum cuts [Kar93] and basic concentration arguments (Chernoff and union bounds).

8Note that, solving the cut approximation on the virtual graph 𝐺𝑛𝑒𝑤 formally means that we set the
weight of edges outside 𝐸 ∖𝐸0 equal to zero. However, we still use graph 𝐺 to run the distributed algorithm
and thus, the round complexity depends on 𝑑𝑖𝑎𝑚(𝐺) = 𝐷 and not on the possibly larger 𝑑𝑖𝑎𝑚(𝐺𝑛𝑒𝑤).

9We assume a constant 𝜀 for simplicity. The round complexity has a poly(1/𝜀) dependency.
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following Corollary 6.1.3, we can set 𝐾 = 𝐷 +
√
𝑛 in general graphs. Moreover, following

results of Ghaffari and Haeupler [GH16b], we can set 𝐾 = 𝐷 log𝐷 in any planar network,
and following results of Ghaffari, Kuhn, and Su [GKS16], we can set 𝐾 = 2𝑂(

√
log𝑛 log log𝑛) in

any network with edge-expansion at least 1
poly(log𝑛)

and maximum degree at most poly(log 𝑛).

7.6.1 High-Level Description of the Algorithm

Throughout, we assume that we have a 2-approximation �̃� of the min-cut size 𝜆. This
assumption can be removed by trying 𝑂(log 𝑛) guesses of the form �̃� = 2𝑘 and outputting
the smallest cut found overall. Having this, we use Karger’s sampling [Kar94b] to reduce
the min-cut size to 𝜆′ = 𝑂(log 𝑛), while keeping the min-cut sizes around their expectation.
Then, we greedily pack �̃�(𝜆′7) = poly(log 𝑛) minimum spanning trees, one by one, using the
MST algorithm of the previous subsection. Thorup’s fascinating result shows that, there is
going to be one of these trees 𝒯 , and specially one of its edges 𝑒*, that if we remove 𝑒* from
𝒯 , the remaining components define the two sides of a min-cut. We will check all the trees
in our collection, and moreover, for each tree, we will check all the cuts each induced by
removing one of the tree edges, and we report the smallest cut found. Doing this latter part
in �̃�(𝐾) rounds is where we use our new ideas.

Having this brief and very rough explanation, we now proceed to present the algorithm:

Karger’s Sampling Although the communications will always be in the base graph 𝐺, for
the following discussions, imagine that we replace the weighted graph 𝐺 with an unweighted
multi-graph 𝐺′ where each edge 𝑒 is replaced by 𝑤(𝑒) copies of 𝑒. Then, sample each edge
with probability Θ( log𝑛

𝜀2�̃�
) and let 𝒢 be the spanning graph with the sampled edges. By

classical results of Karger [Kar94b], we get that w.h.p. 𝒢 has min-cut size 𝜆′ = Θ( log𝑛
𝜀2

),
which is Θ(log 𝑛) for constant 𝜀 > 0, and each cut of 𝒢 has size within 1 ± 𝜀

3
factor of its

expectation. Hence, finding a (1 + 𝜀
3
) approximation of the min-cut on 𝒢 gives an 1 + 𝜀

approximation (at most) for the min-cut of 𝐺.

Throup’s Tree-Packing Now we use the tree-packing idea of Thorup [Tho01] on this
graph 𝒢. Initially, define the load of each edge to be 0. Then, for 𝜂 = Θ(𝜆′ 7 log3 𝑛) =

Θ(log10 𝑛) iterations, do as follows: In iteration 𝑖, compute the minimum spanning tree
where the weight/cost of each edge is simply its load, and remember this as tree 𝒯𝑖. Increase
the load of each of the edges in 𝒯𝑖 by 1, and go to the next iteration. To compute each
of these MSTs, we simply use our �̃�(𝐾)-round MST algorithm, presented in the previous
chapter.

By Throup’s results [Tho01], there is one of these trees 𝒯𝑖 and one edge 𝑒* ∈ 𝒯𝑖 such
that if we remove 𝑒* from 𝒯𝑖, we get a min-cut; more precisely, each of the two connected
component of 𝒯𝑖 ∖ 𝑒* is one of the sides of a min-cut. Hence, to find the min-cut, we will
work on these trees one by one, each time looking for this special edge 𝑒*, which gives us our
desired small cut.
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What remains to be solved When working on each tree 𝒯𝑖, even if this is the right tree,
we still do not know which of its edges is that special min-cut defining edge 𝑒*. Hence, we
will need to read/approximate the sizes of all the cuts, each defined by removing a single
edge of 𝒯𝑖, and we will report the smallest of these, overall, and its associated cut.

Thus, the problem that remains to be solved distributedly can be recapped as follows:
given an arbitrary tree 𝒯 , we want to read the size of each of the cuts defined by removing
an edge of 𝒯 , and report the smallest of these cuts (smallest up to 1 + 𝜀/3 factor).

Reading Tree-Edge Induced Cuts Imagine that we pick an arbitrary root for 𝒯 and
orient its edges outwards from the root, i.e., from the parents to the children. Then, the
weight of the cut defined by each edge 𝑒 = (𝑢, 𝑣), where 𝑢 is the 𝒯 -parent of 𝑣, is equal to the
total summation of the weights of 𝒢-edges that connect the subtree 𝒯𝑣 below 𝑣 to the rest
of the tree, i.e., 𝒯 ∖ 𝒯𝑣. To solve this problem, a basic subroutine that we will make frequent
use of it is subset sums, where each node 𝑢 starts with a value 𝑥𝑢, and each node 𝑣 must
learn the sum of the values of itself and its descendants, 𝑦𝑣 =

∑︀
𝑢∈𝒯𝑣 𝑥𝑢. In Section 7.6.2,

we explain how to solve this problem in �̃�(𝐾), using our low-congestion shortcuts. Then,
in Section 7.6.3, we explain how by using poly(log 𝑛) iterations of this subroutine, we can
(simultaneously) compute a (1 + 𝜀/3)-approximation of the sizes of cuts each defined by
removing one 𝒯 -edge, all in �̃�(𝐾) rounds.

7.6.2 Subtree Sums

We first explain how to orient the tree from the root outwards, in �̃�(𝐾) rounds, and then
explain how to use this orientation to compute the subtree sums, in �̃�(𝐾) rounds. Both
parts make use of our low-congestion shortcuts.

Orienting A Tree in �̃�(𝐾) Rounds Let us first see how to algorithmically orient 𝒯
such that each node knows its parent, in �̃�(𝐾) rounds. Note that the tree 𝒯 might have
an arbitrarily large diameter and hence, the standard approaches such as doing a flooding
on 𝒯 from the root outwards would not finish in �̃�(𝐾) rounds. The remedy is in using our
low-congestion shortcuts.

Consider the following fragment-merging process which has 𝑂(log 𝑛) levels: in each level,
the tree 𝒯 is partitioned into a number of fragments, each being an induced subtree. In
level 1, each node is its own fragment. From that point on, in each level, each fragment of
level 𝑖 is formed by merging some of the fragments of the level 𝑖− 1, which are adjacent in
𝒯 . More precisely, in each iteration 𝑖, each fragment picks a 𝒯 -edge 𝑒 that connects it to
one of the other fragments, and suggests a merge along 𝑒. At the same time, each fragment
tosses a coin. Then, each head-fragment accepts the proposed merge edges coming from
tail-fragments. That is, each merge is a star-formation, centered at a fragment that has a
head in its random coin toss, and with a number of sides which each had a tail coin. See
Figure 7-2, which shows the fragments of three levels. As in the previous subsection, it is
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Figure 7-2: The fragmentation of a tree; each color shows the fragments of one level. The fragments

of the first level, where each node is trivially its own fragment, are not depicted.

easy to see that after 𝑂(log 𝑛) such iterations, w.h.p., we have a single fragment, that is
the whole tree 𝒯 . During the iterations, each of the fragments might have a large diameter.
Hence, we use our low-congestion shortcuts and the random-delay based routing explained
in the proof of Theorem 6.1.2, which allows each fragment to pick an edge to one of the other
fragments and make this edge, as well as the outcome of the random coin toss, known to
all the nodes of the fragment, and this happens for all the fragments together in 𝑂(𝐾 log 𝑛)

rounds, per level.

Now let us take a look at these fragments of the 𝑂(log 𝑛) levels, from the last level
backwards. In the very last level, we have (at most) a single star merge. One of the
fragments in this merge contains the root 𝑟 of 𝒯 . For every other fragment, we can easily
find the root of it, using a few iterations of working on the low-congestion shortcuts. First,
identify the fragment that contains the root. Then, let each of the nodes in this fragment
send a special message to their neighbors in 𝒯 . Nodes that received this special message but
were not in that root fragment are actually root of their own fragment. Via one application
of low-congestion shortcuts, we can make all of the nodes in these fragments know their
fragment root. Since a star has depth at most 2, with one more repetition of the same
idea, we will reach the point that we have identified the root of each fragment, in the top
level. Now we remove the 𝒯 -edges between these fragments, and recurse, going one level
deeper. Since always the fragments are disjoint parts of the graph, and each of them induces
a connected subgraph, in each level, we can use low-congestion shortcuts to identify the root
of each fragment, in 𝑂(𝐾 log 𝑛) rounds. After repeating this for 𝑂(log 𝑛) levels, which takes
𝑂(𝐾log2 𝑛) rounds, we have identified the roots of the fragments of each of the levels.

Now each node 𝑣 can easily identify its 𝒯 -parent as follows: 𝑣 considers its lowest-level
fragment, say level 𝑖, in which 𝑣 is not the root of this fragment. Notice that this level-𝑖
fragment is a star-shape merge of some level 𝑖 − 1 fragments, one of which contains 𝑣 as
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Figure 7-3: A fragmentation where each level-𝑖 fragment is made of merging a level-(𝑖−1) fragment

and some of its level-(𝑖− 1) fragment children.

its root. During the root-identification of level-𝑖 fragments, 𝑣 received the ID of this level-𝑖
fragment’s root along an edge between level-(𝑖−1) fragments, i.e., from one of its 𝒯 -neighbors
which is in a different level-(𝑖− 1) fragment. This neighbor is in fact the parent of 𝑣 in 𝒯 .

Subtree Sums in �̃�(𝐾) Rounds Having the orientation defined above, here we explain
an �̃�(𝐾) round algorithm which computes subtree sums. More formally, suppose each node
𝑢 has a 𝑂(log 𝑛)-bit value 𝑥𝑢. The objective is to have each node 𝑣 know the summation
of the values in the 𝒯 -subtree below it, i.e., 𝑦𝑣 =

∑︀
𝑢∈𝒯𝑣 𝑥𝑢, where 𝒯𝑣 includes 𝑣 and all its

𝒯 -descendants. In the next subsubsection, we explain how this scheme helps us to find the
min-cut.

The first step, which is mainly done for simplicity, is to redefine the 𝑂(log 𝑛)-level frag-
mentation process such that each level-𝑖 fragment is made of merging a level-(𝑖−1) fragment
and some of its level-(𝑖 − 1) fragment children. See Figure 7-3 for an example. This frag-
mentation process is quite similar to the process explained above, with the exception that
here, in iteration 𝑖, each fragment suggests the edge to its parent fragment for the merge
and then, the head-fragments accept all their children tail fragments. Again, we easily see
that after 𝐿 = 𝑂(log 𝑛) levels, w.h.p., we reach a single fragment which includes the whole
tree 𝒯 . As explained above, this process takes 𝑂(𝐾 log2 𝑛) rounds overall, thanks to using
low-congestion shortcuts in each level.

Having these fragments, we are ready to compute the subtree sum for each node. We
will solve the problem recursively. Note that in level-𝐿, there is only one fragment, but this
is (potentially) made of a level 𝐿 − 1 fragment and its level 𝐿 − 1 children. The first step
is to separate the problems of these level 𝐿 − 1 fragments, by removing the edges between
them. Notice that the children level 𝐿− 1 fragments are ready to start the problem within
their own fragment and do not need to learn any information from the parent level 𝐿 − 1

fragment. However, this parent fragment needs to learn some information from the children.
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Particularly, for each of the children fragments 𝐹𝑐, there is one node 𝑣 in the parent fragment
𝐹𝑝 that is the parent of the root of this child fragment 𝐹𝑐. We need to deliver the total sum of
the values in 𝐹𝑐 to node 𝑣. If we do this for all such nodes 𝑣 in 𝐹𝑝, those nodes can increment
their value by the received amount and afterwards drop the 𝒯 -edge to 𝐹𝑐. At that point, the
problem would be to solve the subtree sum within each level 𝐿 − 1 fragment, which means
we have progressed one recursion level, and we can continue to solve the problem recursively
now, for 𝐿 = 𝑂(log 𝑛) recursion levels.

To compute the sum of the values in each of the (children) level 𝐿 − 1 fragments, so
that we can deliver it to 𝑣 ∈ 𝐹𝑝, we use another recursion, now going bottom-top, i.e., from
level 1 to level 𝐿 − 1: That is, we walk through these 𝑂(log 𝑛) levels, and keep the variant
that at each point, the root of each fragment knows the summation of the values in that
fragment. At the start, this is trivially satisfied as each level-1 fragment, which is simply a
node, knows its own value. In level 𝑖 ≥ 2, each level-𝑖 fragment is formed by merging one
level-(𝑖 − 1) fragment with some of its level-(𝑖 − 1) fragment children. Each of the roots of
these children fragments knows the total sum of its own fragment. They send these values to
their parents, in one round. At this point, we have all the values in nodes of the parent level-
(𝑖−1) fragment. Using a convergecast on the BFS of the shortcutted version of these parent
fragments, similar to the approach explained in the proof of Theorem 6.1.2, in 𝑂(𝐾 log 𝑛)

rounds, we can gather the summation of these values at the root of the parent level-(𝑖− 1)

fragment. Then, that parent adds the value of its own level-(𝑖 − 1) fragment to this sum
and remembers the result as the sum of its level-𝑖 fragment. After 𝑂(log 𝑛) repetitions of all
the 𝐿− 1 levels, each level 𝐿− 1 fragment root knows the total sum of its fragment. Hence,
as described above, each of these can report the value to its parent node, which is in the
parent level 𝐿−1 fragment, and then we are ready for the higher-level top-bottom recursion
to subset sum problems confined to level 𝐿− 1 fragments.

Notice that we are able to use low-congestion shortcuts throughout all of these recursions
because the parameters of the shortcuts do not depend on how many parts there are, and
only require that the parts are disjoint and each part induces a connected subgraph, and
these two properties are clearly satisfied for the fragments of each level. Hence, after 𝑂(log 𝑛)

levels of the top-bottom recursion as described above, each of which contains an 𝑂(log 𝑛)

level bottom-top recursion, each node 𝑣 knows its subtree sum 𝑦𝑣 =
∑︀

𝑢∈𝒯𝑣 𝑥𝑢.

7.6.3 Approximating Tree-Edge Induced Cuts

We are now ready to explain the approach we use for approximating the sizes of the cuts each
defined by removing one 𝒯 -edge 𝑒 from 𝒯 . This uses the subtree sum subroutine presented
in the previous subsubsection, and a small sketching type of idea.

Let us focus on just one of these cuts; as we will see later, the proposed solution solves
the problem for all these cuts simultaneously. Consider one 𝒯 -edge 𝑒 = (𝑣, 𝑢) and suppose
that 𝑢 is the parent of 𝑣. Let us say we want to see if the size of the cut (𝒯𝑣, 𝑉 ∖ 𝒯𝑣) is
larger than some threshold 𝜏 = (1 + 𝜀′)𝑘 or not, where 𝜀′ = 𝜀/3. Checking the cut versus the
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𝑂(1/𝜀) many thresholds of the form (1 + 𝜀′)𝑘 that are within a 2-factor of our estimate �̃� of
𝜆 will suffice to get a (1 + 𝜀′) approximation of the size of the cut.

To compare the cut (𝒯𝑣, 𝑉 ∖ 𝒯𝑣) versus threshold 𝜏 , what we do is based on repetitions
of a simple randomized experiment. Each experiment is as follows: Mark each 𝒢-edge as
active with probability 1−2− 1

𝜏
10, and as inactice otherwise. Now for each active edge 𝑒, this

edge contributes a ±1 to the value of its endpoints, as follows: randomly select one of the
endpoints of the active edge 𝑒, assign a +1 to this endpoint, and a −1 to the other endpoint.
Define the value 𝑥𝑤 of each node 𝑤 to be the summation of all the values contributed to 𝑤

by the active edges incident on 𝑤.
Now let us take a look at the subtree sum 𝑦𝑣 =

∑︀
𝑤∈𝒯𝑣 𝑥𝑤, where 𝑣 is the child in the

cut-defining 𝒯 -edge 𝑒 under consideration. Each 𝒢-edge that has both of its endpoints in
𝒯𝑣 does not contribute anything to 𝑦𝑣 as, either it is inactive, or the +1 and −1 values of
its contributions are both in the subtree 𝒯𝑣 and thus get canceled out. This is also clearly
true for edges with both their endpoints in 𝒯 ∖ 𝒯𝑣. Hence, the subtree sum 𝑦𝑣 is simply
the summation of the ±1 values coming from active edges with exactly one endpoint in 𝒯𝑣.
Our indicator random variable for comparing the cut-size (𝒯𝑣, 𝑉 ∖ 𝒯𝑣) versus threshold 𝜏 is
whether 𝑦𝑣 = 0 or not. If the number of 𝒢-edges in the cut (𝒯𝑣, 𝑉 ∖ 𝒯𝑣) is smaller than
𝜏(1 − 𝜀′), then we can see that, the probability that there is at least one active edge in
(𝒯𝑣, 𝑉 ∖ 𝒯𝑣) is at most 0.5 − 𝜀′/10. On the other hand, if the cut size is at least 𝜏(1 + 𝜀′),
then the same probability is at least 0.5 + 𝜀′/10.

The above is already the distinguisher that we desired; but we still need to work a bit
more. Note that even if the set of active edges across the cut is non-empty, it is still possible
that we get unlucky and the contributions of the (single) 𝒯𝑣-endpoints of these active cut-
edges sum up to 0. However, this is easy to fix. For each random experiment defined as
above, we repeat 𝑏 = Θ(log(1/𝜀)) sub-experiments: Throughout each experiment, which has
𝑏 sub-experiments, we keep the set of active edges the same, but in each sub-experiment,
we re-sample the ±1 contributions to the endpoints. That is, in each sub-experiment, using
fresh randomness, we determine which end of each active edge gets a +1 and which endpoint
gets a −1.

If the set of active cut-edges in an experiment is non-empty, in each of these sub-
experiments, 𝑦𝑣 ̸= 0 with probability at least 1/2. To see why, suppose we expose the
randomness of the ± contributions one by one and just consider the last cut active edge
that exposes its ±1 contribution. Regardless of the outcome of the previous such edges,
there is at least a 1/2 chance that because of the randomness of this last edge, the sum
becomes nonzero. We conclude that the probability that, even though the set of active
cut-edges in an experiment is nonempty, all of its sub-experiments show 𝑦𝑣 = 0 is at most
(1/2)𝑏 ≪ 𝜀′/20. Hence, overall, if 𝜏(1 + 𝜀′), the experiment will show 𝑦𝑣 ̸= 0, in at least one
of its sub-experiments, with probability at least 0.5 + 𝜀′/10− 𝜀′/20 ≥ 0.5 + 𝜀′/20.

Hence, by Hoeffding’s bound, we get that Θ( log𝑛
𝜀2

) iterations of this experiment suffice for

10We note that this is roughly equal to 1
𝜏 , but this special formula will simplify the calculations.
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a high probability distinguisher. More precisely, we simply repeat the above experiment for
Θ( log𝑛

𝜀2
) iterations, and check if the majority of the experiments are showing a nonzero 𝑦𝑣 (in

at least one of their sub-experiments) or not. This w.h.p distinguishes the case where the
cut size is greater than 𝜏(1 + 𝜀′) from the case that the cut size is less than 𝜏(1− 𝜀′). Doing
this for the 𝑂(1/𝜀) many thresholds of the form 𝜏 = (1 + 𝜀′)𝑘 that are within a 2-factor of
our guesstimate �̃� of 𝜆 suffices to get a (1 + 𝜀′) approximation of the cut.

Finally, notice that, to run the above process for all the cuts defined each by removing
a single 𝒯 -edge 𝑒, all that we need to do is as follows: sample the active edges and their
±1 endpoint contributions and then compute the subtree sums 𝑦𝑣 for all the nodes 𝑣 of 𝒯 .
The former can be done locally for each edge, say by the larger-ID endpoint of the edges
picking these random values, and for the latter part, we already saw how to compute subtree
sums for all nodes in �̃�(𝐾) rounds, using the low-congestion shortcuts. This concludes the
description of our �̃�(𝐾) round min-cut (1 + 𝜀)-approximation algorithm.

7.7 Lower Bounds

In this section, we present our lower bounds for minimum cut approximation, which can be
seen as strengthening and generalizing some of the lower bounds of Das Sarma et al. [DHK+12].

The lower bounds of [DHK+12] are based on an 𝑛-node graph 𝐺 with diameter 𝑂(log 𝑛)

and two distinct nodes 𝑠 and 𝑟. The proof deals with distributed protocols where node 𝑠

gets a 𝑏-bit input 𝑥, node 𝑟 gets a 𝑏-bit input 𝑦, and apart from 𝑥 and 𝑦, the initial states
of all nodes are globally known. Slightly simplified, the main technical result of [DHK+12]
(Simulation Theorem 3.1) states that if there is a randomized distributed protocol that
correctly computes the value 𝑓(𝑥, 𝑦) of a binary function 𝑓 : {0, 1}𝑏 × {0, 1}𝑏 → {0, 1} with
probability at least 1−𝜀 in time 𝑇 (for sufficiently small 𝑇 ), then there is also a randomized 𝜀-
error two-party protocol for computing 𝑓(𝑥, 𝑦) with communication complexity 𝑂(𝑇𝐵 log 𝑛).
For small enough 𝑇 and large enough 𝑏, this would be in contradiction to some known
two-party communication complexity lower bounds (mainly those of set-disjointness), thus
proving that there cannot be such a distributed algorithm.

For our lower bounds, we need to extend the simulation theorem of [DHK+12] to a larger
family of networks and to a slightly larger class of problems. In Section 7.7.1, we present this
generalized simulation theorem. Then, in Sections 7.7.2 and 7.7.3, we explain how to use
the generalized simulation theorem to prove our minimum cut approximation lower bounds,
in weighted and simple unweighted graphs, respectively.

7.7.1 Generalized Simulation Theorem

We start by presenting a number of definitions.
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Distributed Protocols: Given a weighted network graph 𝐺 = (𝑉,𝐸,𝑤) (∀𝑒 ∈ 𝐸 : 𝑤(𝑒) ≥
1), we consider distributed tasks for which each node 𝑣 ∈ 𝑉 gets some private input 𝑥(𝑣)

and every node 𝑣 ∈ 𝑉 has to compute an output 𝑦(𝑣) such that the collection of inputs and
outputs satisfies some given specification. To solve a given distributed task, the nodes of 𝐺
apply a distributed protocol. We assume that initially, each node 𝑣 ∈ 𝑉 knows its private
input 𝑥(𝑣), as well as the set of its neighbors in 𝐺. Time is divided into synchronous rounds
and in each round, every node can send at most 𝐵 ·𝑤(𝑒) bits over each of its incident edges
𝑒. We say that a given (randomized) distributed protocol solves a given distributed task
with error probability 𝜀 if the computed outputs satisfy the specification of the task with
probability at least 1− 𝜀.

Graph Family 𝒢(𝑛, 𝑘, 𝑐): For parameters 𝑛, 𝑘, and 𝑐, we define the family of graphs

𝒢(𝑛, 𝑘, 𝑐) as follows. A weighted graph 𝐺 = (𝑉,𝐸,𝑤) is in the family 𝒢(𝑛, 𝑘, 𝑐) iff 𝑉 =

{0, . . . , 𝑛− 1} and for all ℎ ∈ {0, . . . , 𝑛− 1}, the total weight of edges between nodes in
{0, . . . , ℎ} and nodes in {ℎ + 𝑘 + 1, . . . , 𝑛− 1} is at most 𝑐. For an integer 𝜂 ≥ 1, we define
𝐿𝜂 := {0, . . . , 𝜂 − 1} and 𝑅𝜂 := {𝑛− 𝜂, . . . , 𝑛− 1}.

Two-party 𝜂-solving: Given a parameter 𝜂 ≥ 1 and a network 𝐺 ∈ 𝒢(𝑛, 𝑘, 𝑐), we say
that a two-party protocol between Alice and Bob 𝜂-solves a given distributed task for 𝐺

with error probability 𝜀 if the following two conditions hold:

(a) initially Alice knows all inputs and initial states of nodes in 𝑉 ∖ 𝑅𝜂, and Bob knows
all inputs and initial states of nodes in 𝑉 ∖ 𝐿𝜂, and

(b) in the end, Alice outputs 𝑦(𝑣) for all 𝑣 ∈ 𝐿𝑛/2 and Bob outputs 𝑦(𝑣) for all 𝑣 ∈ 𝑅𝑛/2

such that with probability at least 1− 𝜀, these outputs satisfy the specification of the
given distributed task.

A two-party protocol is said to be public coin if Alice and Bob have access to a common
random string.

Theorem 7.7.1 (Generalized Simulation Theorem). Assume we are given positive integers

𝑛, 𝑘, and 𝜂, a parameter 𝑐 ≥ 1, as well as a subfamily 𝒢 ⊆ 𝒢(𝑛, 𝑘, 𝑐). Further assume that

for a given distributed task and graphs 𝐺 ∈ 𝒢, there is a randomized distributed protocol

with error probability 𝜀 that runs in 𝑇 ≤ (𝑛− 2𝜂)/(2𝑘) rounds. Then, there exists a public-

coin two-party protocol that 𝜂-solves the given distributed task on graphs 𝐺 ∈ 𝒢 with error

probability 𝜀 and communication complexity at most 2𝐵𝑐𝑇 .

Proof. We show that Alice and Bob can simulate an execution of the given distributed
protocol to obtain outputs that satisfy the specification of the given distributed task with
probability at least 1− 𝜀.
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We first argue that being able to simulate deterministic distributed algorithms is enough.
This is because a randomized distributed algorithm can be modeled as a deterministic algo-
rithm where at the beginning, each node 𝑣 receives a sufficiently large random string 𝑟(𝑣) as
additional input. Assume that 𝑅 is the concatenation of all the random strings 𝑟(𝑣). Then,
a randomized distributed protocol with error probability 𝜀 can be seen as a deterministic
protocol that computes outputs that satisfy the specification of the given task with proba-
bility at least 1 − 𝜀 over all possible choices of 𝑅. (A similar argument has also been used,
e.g., in [DHK+12]). Alice and Bob have access to a public coin giving them a common ran-
dom string of arbitrary length. As also the set of nodes 𝑉 = {0, . . . , 𝑛− 1} of 𝐺 is known,
Alice and Bob can use the common random string to model 𝑅 and to therefore consistently
simulate all the randomness used by all 𝑛 nodes in the distributed protocol. Given 𝑅, it
remains for Alice and Bob to simulate a deterministic protocol. If they can (deterministi-
cally) compute the outputs of some nodes of a given deterministic protocol, they can also
compute outputs for a randomized protocol with error probability 𝜀 such that the outputs
are consistent with the specification of the distributed task with probability at least 1− 𝜀.

Given a deterministic distributed protocol for graphs 𝐺 ∈ 𝒢 with time complexity 𝑇 ≤
(𝑛 − 2𝜂)/(2𝑘), we now describe a two-party protocol with communication complexity at
most 2𝐵𝑐𝑇 bits that 𝜂-solves the given distributed task on graphs 𝐺 ∈ 𝒢. Suppose that
initially, Alice knows the states of node 𝑉 ∖𝑅𝜂 and Bob knows the states of nodes 𝑉 ∖𝐿𝜂. We
show that the said two-party protocol satisfies the following two properties for each round
𝑟 ∈ {0, . . . , 𝑇}:

(I) Alice computes the states of all nodes 𝑖 < 𝑛− 𝜂 − 𝑟 · 𝑘 at the end of round 𝑟, and

(II) Bob computes the states of all nodes 𝑖 ≥ 𝜂 + 𝑟 · 𝑘 at the end of round 𝑟.

Because the output 𝑦(𝑢) of every node 𝑢 is determined by 𝑢’s state after 𝑇 rounds, and
since 𝑇 ≤ (𝑛 − 2𝜂)/(2𝑘), conditions (I) and (II) respectively imply that Alice can compute
the outputs of all nodes 𝑣 ∈ 𝑅𝑛/2 and Bob can compute the outputs of all nodes 𝑣 ∈
𝐿𝑛/2. Therefore, this two-party 𝜂-solves the distributed task solved by the given distributed
protocol. Hence, in order to prove the claim of the theorem, it remains to show that there
exists a deterministic two-party protocol with communication complexity at most 2𝐵𝑐𝑇

satisfying (I) and (II).
We prove conditions (I) and (II) by induction on 𝑟. The base of the induction is trivial

because conditions (I) and (II) are satisfied for 𝑟 = 0 by the assumption that initially, Alice
knows the initial states of all nodes 𝑉 ∖ 𝑅𝜂 = {0, . . . , 𝑛 − 1 − 𝜂} and Bob knows the initial
states of all nodes 𝑉 ∖ 𝐿𝜂 = {𝜂, . . . , 𝑛− 1}.

Next, we prove the inductive step. Assume that (I) and (II) hold for some 𝑟 = 𝑟′ ∈
{0, . . . , 𝑇 − 1}. Based on this, we show how to construct a protocol with communication
complexity at most 2𝐵𝑐 such that (I) and (II) hold for 𝑟 = 𝑟′ + 1. We formally show how,
based on assuming conditions (I) and (II) for 𝑟 = 𝑟′, Alice can compute the states of nodes
𝑖 < 𝑛 − 𝜂 − (𝑟′ + 1)𝑘 using only 𝐵𝑐 bits of communication. The argument for Bob can be
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done in a completely symmetric way so that we get a total communication complexity of
2𝐵𝑐.

Note that in a deterministic algorithm, the state of a node 𝑢 at the end of a round
𝑡—and thus at the beginning of round 𝑡 + 1—is completely determined by the state of
𝑢 at the beginning of round 𝑡 and by the messages node 𝑢 receives in round 𝑡 from its
neighbors. Thus, in order to compute the state of a node 𝑖 < 𝑛 − 𝜂 − (𝑟′ + 1)𝑘 at the
end of round 𝑟′ + 1, it is sufficient for Alice to know the state of node 𝑖 at the beginning
of round 𝑟′ + 1—i.e., at the end of round 𝑟′—and the message sent by each neighbor 𝑗 in
round 𝑟′ + 1. By induction hypothesis, Alice knows the state of 𝑖 at the beginning of round
𝑟′ and the messages of neighbors 𝑗 < 𝑛 − 𝜂 − 𝑟′𝑘. Thus, she is just missing the messages
from neighbors 𝑗 ≥ 𝑛− 𝜂− 𝑟′𝑘. On the other hand, by induction hypothesis for 𝑟 = 𝑟′, Bob
knows the states of all nodes 𝑗′ ≥ 𝜂 + 𝑟′𝑘. Since 𝑟′ ≤ 𝑇 and 𝑇 ≤ (𝑛 − 2𝜂)/(2𝑘), we get
that 𝜂 + 𝑟′𝑘 ≤ 𝑛− 𝜂 − 𝑟′𝑘. Hence, at the beginning of round 𝑟′, Bob knows the states of all
nodes 𝑗 ≥ 𝑛−𝜂−𝑟′𝑘. Furthermore, by the definition of the graph family 𝒢(𝑛, 𝑘, 𝑐), the total
weight of edges between nodes 𝑖 < 𝑛− 𝜂 − (𝑟′ + 1)𝑘 and nodes 𝑗 ≥ 𝑛− 𝜂 − 𝑟′𝑘 is at most 𝑐.
The number of bits sent over these edges in round 𝑟′ + 1 is therefore at most 𝑐𝐵. Therefore,
Bob can send these 𝑐𝐵 bits to Alice. With these, Alice can can compute the states of nodes
𝑖 < 𝑛− 𝜂 − (𝑟′ + 1)𝑘. This completes the induction proof.

7.7.2 Lower Bound for Approximating Minimum Cut: Weighted

Graphs

In this subsection, we prove a lower bound on approximating the minimum cut in weighted
graphs (or equivalently in unweighted multigraphs). The case of simple unweighted graphs
is addressed in the next subsection.

Let 𝑘 ≥ 1 be an integer parameter. We first define a fixed 𝑛-node graph 𝐻 = (𝑉,𝐸𝐻)

that we will use as the basis for our lower bound. The node set 𝑉 of 𝐻 is 𝑉 = {0, . . . , 𝑛− 1}.
For simplicity, we assume that 𝑛 is an integer multiple of 𝑘 and that ℓ := 𝑛/𝑘. The edge 𝐸𝐻

consists of three parts 𝐸𝐻,1, 𝐸𝐻,2, and 𝐸𝐻,3 such that 𝐸𝐻 = 𝐸𝐻,1 ∪ 𝐸𝐻,2 ∪ 𝐸𝐻,3. The three
sets are defined as follows.

𝐸𝐻,1 := {{𝑖, 𝑗} : 𝑖, 𝑗 ∈ {0, . . . , 𝑛− 1} and 𝑗 = 𝑖 + 𝑘} ,
𝐸𝐻,2 := {{𝑖, 𝑗} : 𝑖, 𝑗 ∈ {0, . . . , 𝑛− 1} and ∃𝑠 ∈ N s.t. 𝑖 ≡ 0 (mod 𝑘2𝑠) and 𝑗 = 𝑖 + 𝑘2𝑠} ,
𝐸𝐻,3 := {{𝑖, 𝑗} : 𝑖, 𝑗 ∈ {0, . . . , 𝑛− 1}, 𝑖 ≡ 0 (mod 𝑘), and 0 < 𝑗 − 𝑖 ≤ 𝑘 − 1} .

Figure 7-4 shows an example graph in this family. The edges 𝐸𝐻,1 connect the nodes 𝑉

of 𝐻 to 𝑘 disjoint paths of length ℓ − 1 (consisting of ℓ nodes), where for each integer
𝑥 ∈ {0, . . . , 𝑘 − 1}, the nodes 𝑖 ≡ 𝑥 (mod 𝑘) form on of the paths. In Figure 7-4, these are
the 𝑘 horizontal paths. Using the edges of 𝐸𝐻,2, the nodes of the first of these paths are
connected to a graph of small diameter. In Figure 7-4, these are the dotted shortcut links is
at the top of the graph. Finally, using the edges 𝐸𝐻,3 the paths are connected to each other
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in the following way. We can think of the 𝑛 nodes as consisting of groups of size 𝑘, where
corresponding nodes of each of the 𝑘 paths form a group (for each integer ℎ ≥ 0, nodes
ℎ𝑘, . . . , (ℎ+ 1)𝑘− 1 form a group). Using the edges of 𝐸𝐻,3 each such group is connected to
a star, where the node of the first path is the center of the star.

Based on graph 𝐻, we define a family ℋ(𝑛, 𝑘) of weighted graphs as follows. The family
ℋ(𝑛, 𝑘) contains all weighted versions of graph 𝐻, where the weights of all edges of 𝐸𝐻,2 are
1 and weights of all remaining edges are at least 1, but otherwise arbitrary. The following
lemma shows that ℋ(𝑛, 𝑘) is a subfamily of 𝒢(𝑛, 𝑘, 𝑐) for appropriate 𝑐 and that graphs in
ℋ(𝑛, 𝑘) have small diameter.

Lemma 7.7.2. We have ℋ(𝑛, 𝑘) ⊂ 𝒢(𝑛, 𝑘, 𝑐) for 𝑐 = log2(𝑛/𝑘). Further, each graph in

ℋ(𝑛, 𝑘) has diameter at most 𝑂(log(𝑛/𝑘)).

Proof. To show that ℋ(𝑛, 𝑘) ⊂ 𝒢(𝑛, 𝑘, 𝑐), we need to show that for each ℎ ∈ {0, . . . , 𝑛− 1},
the total weight of edges between nodes in {0, . . . , ℎ} and nodes in {ℎ + 𝑘 + 1, . . . , 𝑛− 1}
is at most 𝑐. All edges in 𝐸𝐻,1 and 𝐸𝐻,3 are between nodes 𝑖 and 𝑗 for which |𝑗 − 𝑖| ≤
𝑘, the only contribution to the weight of edges between nodes in {0, . . . , ℎ} and nodes in
{ℎ + 𝑘 + 1, . . . , 𝑛− 1} thus comes from edges 𝐸𝐻,2. For each ℎ ∈ {0, . . . , 𝑛− 1} and for
each 𝑠 ∈ N, there is at most one pair (𝑖, 𝑗) such that 𝑖 ≡ 𝑗 ≡ (mod 𝑘2𝑠) and such that
𝑖 ≤ ℎ and 𝑗 > ℎ + 𝑘. The number of edges between nodes in {0, . . . , ℎ} and nodes in
{ℎ + 𝑘 + 1, . . . , 𝑛− 1} therefor is at most log2(𝑛/𝑘) and the first claim of the lemma therefore
follows because edges in 𝐸𝐻,2 are required to have weight 1. The bound on the diameter
follows directly from the construction: With edges 𝐸𝐻,3, each node is directly connected to
a node of the first path and with edges 𝐸𝐻,2, the nodes of the first path are connected to a
graph of diameter 𝑂(log(𝑛/𝑘)).

Based on the graph family ℋ(𝑛, 𝑘) as defined above, we can now use the basic approach
of [DHK+12] to prove a lower bound for the distributed minimum cut approximation problem.

Theorem 7.7.3. In weighted graphs (and unweighted multi-graphs), for any 𝛼 ≥ 1, comput-

ing an 𝛼-approximation of the edge connectivity 𝜆 or computing an 𝛼-approximate minimum

cut (even if 𝜆 is known) requires at least Ω
(︀
𝐷 +

√︀
𝑛/(𝐵 log 𝑛)

)︀
rounds, even in graphs of

diameter 𝐷 = 𝑂(log 𝑛).

Proof. We prove the theorem by reducing from the two-party set disjointness problem [CP11,
KS92a,Raz92]. Assume that as input, Alice gets a set 𝑋 and Bob get a set 𝑌 such that the
elements of 𝑋 and 𝑌 are from a universe of size 𝑂(𝑝). It is known that in general, Alice
and Bob need to exchange at least Ω(𝑝) bits in order to determine whether 𝑋 and 𝑌 are
disjoint [KS92a,Raz92]. This lower bound holds even for public coin randomized protocols
with constant error probability and it also holds if Alice and Bob are given the promise that
if 𝑋 and 𝑌 intersect, they intersect in exactly one element [Raz92]. As a consequence, if
Alice and Bob receive sets 𝑋 and 𝑌 as inputs with the promise that |𝑋 ∩ 𝑌 | = 1, finding
the element in 𝑋 ∩ 𝑌 also requires them to exchange Ω(𝑝) bits.
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Figure 7-4: Illustration of the lower bound construction of Theorem 7.7.3 for parameters
𝑘 = 8 and ℓ = 8: Bold, solid edges have weight 𝛼ℓ+1, thin dotted edges have weight 1 .Each
of the seven rows 1–7 corresponds to one of the elements of the set disjointness universe.
Alice’ input 𝑋 = {2, 4, 5, 6} is encoded by using a heavy edge of weidth 𝛼ℓ + 1 to connect
the first nodes of the remaining paths {1, 3, 7} to the first node of the top path. Bob’s input
𝑌 = {1, 3, 4, 7} in encoded by using a heavy edge to connect the last nodes of the remaining
paths {2, 5, 6} to the last node of the top path. The graph induced by the edges of weight
𝛼ℓ + 1 is not connected if and only if 𝑋 ∩ 𝑌 ̸= ∅. In that case, the paths representing the
elements in 𝑋 ∩ 𝑌 correspond to the minimum cuts of weight ℓ. In the example, path 4
(marked in red) gives a minimum cut of the graph.

Assume that there is a protocol to find an 𝛼-minimum cut or to 𝛼-approximate the size of
a minimum cut in time 𝑇 with a constant error probability 𝜀. In both cases, if 𝑇 is sufficiently
small, we show that Alice and Bob can use this protocol to efficiently solve set disjointness
by simulating the distributed protocol on a special network from the family ℋ(𝑛, 𝑘).

We now describe the construction of this network 𝐺 ∈ ℋ(𝑛, 𝑘). We assume that the set
disjointness inputs 𝑋 and 𝑌 of Alice and Bob are both of size Θ(𝑘) and from a universe of
size 𝑘 − 1. The structure of 𝐺 is already given, the edge weights of edges in 𝐸𝐻,1 and 𝐸𝐻,3

are given as follows. First, all edges 𝐸𝐻,1 (the edges of the paths) have weight 𝛼ℓ+ 1 (recall
that ℓ = 𝑛/𝑘 is the number of nodes of the paths). We number the paths from 0 to 𝑘− 1 as
follows. Path 𝑝 ∈ {0, . . . , 𝑘 − 1} consists of all nodes 𝑖 for which 𝑖 ≡ 𝑝 (mod 𝑘). Note that
the first node of path 𝑝 is node 𝑝 and the last node of path 𝑝 is 𝑛 − 𝑘 + 𝑝. We encode the
set disjointness inputs 𝑋 and 𝑌 in the edge weights of the edges of 𝐸𝐻,3 as follows. For each
𝑥 ∈ {0, . . . , 𝑘 − 1} ∖𝑋, the edge between node 0 and node 𝑥 has weight 𝛼ℓ+ 1. Further, for
each 𝑦 ∈ {0, . . . , 𝑘 − 1} ∖ 𝑌 , the edge between 𝑛 − 𝑘 and 𝑛 − 𝑘 + 𝑦 has weight 𝛼ℓ + 1. All
other edges of 𝐸𝐻,3 have weight 1. The construction is also shown in Figure 7-4

Hence, the graph induced by the edges with large weight 𝛼ℓ + 1 (in the following called
heavy edges) looks as follows. It consists of the 𝑘 paths of length ℓ − 1. In addition for
each 𝑥 ̸∈ 𝑋, path 𝑥 is connected to node 0 and for each 𝑦 ̸∈ 𝑌 , path 𝑦 is connected to node
𝑛−𝑘. Assume that there is exactly one element 𝑧 ∈ 𝑋 ∩𝑌 . Path 𝑧 is not connected to path
0 through a heavy edge, all other paths are connected to each other by heavy edges. The
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minimum cut (𝑆, 𝑉 ∖ 𝑆) is defined by the nodes 𝑆 = {𝑖 ∈ {0, . . . , 𝑛− 1} : 𝑖 ≡ 𝑧 (mod 𝑘)}.
As each node on path 𝑧 is connected by a single weight 1 edge to a node on path 0, the size
of the cut (𝑆, 𝑉 ∖𝑆) is ℓ. There is at least one heavy edge crossing every other cut and thus,
every other cut has size at least 𝛼ℓ + 1. In order to find an 𝛼-approximate minimum cut, a
distributed algorithm therefore has to find path 𝑧 and thus the element 𝑧 ∈ 𝑋 ∩ 𝑌 .

Assume now that there is a distributed protocol that computes an 𝛼-approximate min-
imum cut in 𝑇 rounds, by using messages of at most 𝐵 bits. The described graph 𝐺 is
in ℋ(𝑛, 𝑘) and by Lemma 7.7.2, the graph therefore also is in 𝒢(𝑛, 𝑘, log(𝑛/𝑘)) and it has
diameter at most 𝑂(log 𝑛). We can therefore prove the claim of the theorem by providing
an appropriate lower bound on 𝑇 . We reduce the problem to the two-party set disjoint-
ness problem by describing how Alice and Bob can together simulate the given distributed
protocol.

Initially, only the nodes 0, . . . , 𝑘 − 1 depend on the input 𝑋 of Alice and only the nodes
𝑛 − 𝑘, . . . , 𝑛 − 1 depend on the input 𝑌 of Bob. The inputs of all other nodes are known.
Initially, Alice therefore knows the inputs of all nodes in {0, . . . , 𝑛− 𝑘 − 1} and Bob knows
the inputs of all nodes in {𝑘, . . . , 𝑛− 1}. Thus, by Theorem 7.7.1, for 𝑇 ≤ (𝑛 − 2𝑘)/(2𝑘),
there exists a 2𝐵𝑐𝑇 = 𝑂(𝑇𝐵 log 𝑛)-bit public coin two-party protocol between Alice and
Bob that 𝑘-solves the problem of finding an 𝛼-approximate minimum cut in 𝐺. However,
since at the end of such a protocol, Alice and Bob know the unique minimum cut (𝑆, 𝑉 ∖𝑆),
they can also use it to find the element 𝑧 ∈ 𝑋 ∩ 𝑌 . We have seen that this requires them
to exchange at least Ω(𝑘) bits and we thus get a lower bound of 𝑇 = Ω(𝑘/(𝐵 log 𝑛)) on 𝑇 .
Recall that we also need to guarantee that 𝑇 ≤ (𝑛−2𝑘)/(2𝑘). We choose 𝑘 = Θ(

√
𝑛𝐵 log 𝑛)

to obtain the lower bound claimed by the theorem statement. Note that the lower bound
even applies if the size ℓ of the minimum cut is known.

If the size of the minimum cut is now known and the task of an algorithm is to approxi-
mate the size of the minimum cut, we can apply exactly the same reduction. This time, we
do not use the promise that |𝑋∩𝑌 | = 1, but only that |𝑋∩𝑌 | ≤ 1. The size of the minimum
cut is ℓ if 𝑋 and 𝑌 intersect and it is at least 𝛼ℓ+ 1 if they are disjoint. Approximating the
minimum cut size therefore is exactly equivalent to solving set disjointness in this case.

7.7.3 Lower Bound for Approximating Minimum Cut: Simple Un-

weighted Graphs

We next present our lower bound for approximating the minimum cut problem in unweighted
simple graphs.

Theorem 7.7.4. In unweighted simple graphs, for any 𝛼 ≥ 1 and 𝜆 ≥ 1, computing an 𝛼-

approximation of 𝜆 or finding an 𝛼-approximate minimum cut (even if 𝜆 is known) requires

at least Ω
(︀
𝐷 +

√︀
𝑛/(𝐵𝛼𝜆 log 𝑛)

)︀
rounds, even in networks of diameter 𝐷 = 𝑂(log 𝑛 + 1

𝜆
·√︀

𝑛/(𝐵𝛼𝜆 log 𝑛)).
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Figure 7-5: Illustration of the lower bound construction of Theorem 7.7.3 for parameters
𝑘 = 7 and ℓ = 8: Nodes in the construction of Figure 7-4 are replaced by cliques of size
𝑐 = 𝛼𝜆 + 1. Connections marked by three lines mark complete bipartite subgraphs, thin
dotted connections correspond to single edges connecting the two cliques. Similarly to Figure
7-4, each of the six rows 1–6 corresponds to one of the elements of the set disjointness universe
and Alice’ and Bob’s inputs are encoded in the same way as before (replacing heavy edges
by complete bipartite subgraphs). Vertical connections to the top path are only done every
Θ(𝐷′) hops in order to keep the diameter at most 𝑂(𝐷′ +log 𝑛) and the size of the minimum
cut as small as possible.

Proof Sketch. The basic proof argument is the same as the proof of Theorem 7.7.3. We
therefore only describe the differences between the proofs. Because in a simple unweighted
graph, we cannot add edges with different weights and we cannot add multiple edges, we
have to adapt the construction. Assume that 𝛼 ≥ 1 and 𝜆 ≥ 1 are given. First note that
for 𝜆 = 𝑂(1), the statement of the theorem is trivial as Ω(𝐷) clearly is a lower bound
for approximating the edge connectivity or finding an approximate minimum cut. We can
therefore assume that 𝜆 is sufficiently large.

We adapt the construction of the network 𝐺 to get a simple graph 𝐺′ as follows. First,
every node of 𝐺 is replaced by a clique of size 𝛼𝜆+1. Recall that 𝑘 is the number of paths and
that each of these paths is of length ℓ−1. Instead of ℓ𝑘 nodes, the new graph 𝐺′ therefore has
ℓ𝑘(𝛼𝜆 + 1) nodes. All the “path” edges 𝑒 ∈ 𝐸𝐻,1 are replaced by complete bipartite graphs
between the cliques corresponding to the two nodes connected by 𝑒 in 𝐺. For each edge
𝑒 ∈ 𝐸𝐻,2—the edges that are used to reduce the diameter of the graph induced by the first
path—, we add a single edge between two nodes of the corresponding cliques. Adding only
one edge suffices to reduce the diameter of the graph induced by the cliques of the first path.
For the edges in 𝐸𝐻,3, the adaptation is slightly more complex. The edges among the first 𝑘
nodes and the last 𝑘 nodes of 𝐺 that are used to encode the set disjointness instance (𝑋, 𝑌 )

into the graph are adapted as follows. Each edge of weight 𝛼ℓ + 1 is replaced by a complete
bipartite subgraph, whereas each edge of weight 1 is replaced by a single edge connecting the
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corresponding cliques in 𝐺′. For the remaining edges, we introduce a parameter 𝐷′ = ℓ/𝜆.
Instead of vertically connecting each of the ℓ cliques of all paths to stars (with the center in a
node on path 0), we only add some of these vertical connections. We already connected the
first and the last clique of each path. In addition, we add such vertical connections (a single
edge between the clique on path 0 and each of the corresponding cliques on the other paths)
such that: a) between two vertically connected “columns” there is a distance of at most 2𝐷′

and b) in total, the number of vertically connected “columns” is at most 𝜆 (including the
first and the last column). Note that because the length of the paths is ℓ− 1, the choice of
𝐷′ allows to do so. We now get a graph 𝐺′ with the following properties. The construction
is also depicted in Figure 7-5.

∙ For each 𝑥 ∈ 𝑋 ∩ 𝑌 , all the vertical connections are single edges connecting path 𝑥

with path 0. The total number of edges connecting the cliques of path 𝑥 with other
nodes is at most 𝜆.

∙ For each 𝑥 ̸∈ 𝑋 ∩𝑌 , path 𝑥 is connected to path 0 through a complete bipartite graph
𝐾𝛼𝜆+1,𝛼𝜆+1.

∙ The diameter of 𝐺′ is 𝑂(𝐷′ + log 𝑛).

Let us consider the spanning subgraph 𝐺′′ of 𝐺′ induced by only the edges of all the complete
bipartite subgraphs𝐾𝛼𝜆+1,𝛼𝜆+1 of our construction. If𝑋∩𝑌 = ∅, 𝐺′′ is connected. Therefore,
in this case, the edge connectivity of 𝐺′′ (and thus also of 𝐺′) is at least 𝛼𝜆. If |𝑋 ∩ 𝑌 | = 1

and if we assume that 𝑧 is the element in 𝑋 ∩ 𝑌 , 𝐺′′ consists of two components. The
first component is formed by all the nodes (of the cliques) of path 𝑧, whereas the second
component consists of all the remaining nodes. By the above observation, the number
of edges in 𝐺′ between the two components of 𝐺′′ is at most 𝜆 and therefore the edge
connectivity of 𝐺′ is at most 𝜆. Also, every other edge cut of 𝐺′ has size at least 𝛼𝜆. Using
the same reduction as in Theorem 7.7.3, we therefore obtain the following results

∙ If the edge connectivity of the network graph is not known, approximating it by a
factor 𝛼 requires Ω

(︀
min {𝑘/(𝐵 log 𝑛), ℓ}

)︀
rounds.

∙ If the edge connectivity 𝜆 is known, then finding a cut of size at most 𝛼𝜆 requires at
least Ω

(︀
min {𝑘/(𝐵 log 𝑛), ℓ}

)︀
rounds.

The lower bound then follows by setting 𝑘/(𝐵 log 𝑛) = ℓ. Together with 𝑛 = 𝑘ℓ(𝛼𝜆+ 1), we
get ℓ = Θ(

√︀
𝑛/(𝐵𝛼𝜆 log 𝑛)).
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Chapter 8

Minimum-Weight Connected

Dominating Set

8.1 Introduction & Related Work

Connected dominating set (CDS) is one of the classical structures studied in graph op-
timization problems which also has deep roots in networked computation. For instance,
CDSs have been used rather extensively in distributed algorithms for wireless networks (see
e.g. [CL02,AWF02a,WGS01,CWD08,DB97,MDJ+06, BDTC05,CHL+03,AWF02b,DW04,
WAF02]), typically as a global-connectivity backbone.

In this chapter, we present distributed algorithms for approximating minimum-weight

connected dominating set (MCDS) in the CONGEST model. We first take a closer look at
the MCDS problem.

A Closeup of MCDS, in Contrast with MST: Given a graph 𝐺 = (𝑉,𝐸), a set 𝑆 ⊆ 𝑉

is called a dominating set if each node 𝑣 /∈ 𝑆 has a neighbor in 𝑆, and it is called a connected
dominating set (CDS) if the subgraph induced by 𝑆 is connected. Figure 8-1 shows an
example. In the minim-weight CDS (MCDS) problem, each node has a weight and the
objective is to find a CDS with the minimum total weight.

TheMCDS problem is often viewed as the node-weighted analogue of theminimum-weight

spanning tree (MST) problem. Here, we recap this connection. The natural interpretation of
the definition of CDS is that a CDS is a selection of nodes that provides global-connectivity—
that is, any two nodes of the graph are connected via a path that its internal nodes are in
the CDS. On the counterpart, a spanning tree is a (minimal) selection of edges that provides
global-connectivity. In both cases, the problem of interest is to minimize the total weight
needed for global-connectivity. In one case, each edge has a weight and the problem becomes
MST; in the other, each node has a weight and the problem becomes MCDS.

Despite the seemingly analogous nature of the two problems, MCDS turns out to be a
significantly harder problem: The MST problem can be computed sequentially in (almost)
𝑂(𝑚) time, where 𝑚 is the number of edges. On the other hand, MCDS is NP-hard [GJ90],
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Figure 8-1: The green nodes represent a connected dominating set (CDS) of the graph.

and in fact, unless P = NP, no polynomial time algorithm can find any approximation better
than Θ(log 𝑛)-factor for it (see [Fei96,RS97,AMS06]). Furthermore, the known sequential
algorithms for 𝑂(log 𝑛) approximation of MCDS (see [GK98,GK99]) have unspecified poly-
nomial time complexity, which are at least Θ(𝑛3).

The MST Problem in the Distributed Setting Given the aforementioned analogy
between MCDS and MST, it is relevant to briefly recall the state of the art for MST in
the distributed setting. A beautiful line of work shows that MST can be solved in 𝑂(𝐷 +√
𝑛 log* 𝑛) rounds [GKP93,KP95] and that this is (existentially) optimal modulo logarithmic

factors [DSHK+11, Elk04c, PR99], and a similar lower bound also applies to many other
distributed graph problems [DSHK+11]1. By now, achieving an �̃�(𝐷+

√
𝑛) round complexity

is viewed as sort of a golden standard for (global) network optimization problems in the
CONGEST model.

8.1.1 Result

Our contribution is to show that in the CONGEST model, MCDS can be solved—that is,
approximated optimally—in a time close to that of MST.

Theorem 8.1.1. There is a randomized distributed algorithm in the CONGEST model

that, with high probability, finds an 𝑂(log 𝑛) approximation of the minimum-weight con-

nected dominating set, using �̃�(𝐷 +
√
𝑛) rounds.

This algorithm is (near) optimal in both round complexity and approximation factor:
Using techniques of [DSHK+11], one can reduce the two-party set-disjointness communication

complexity problem on Θ(
√
𝑛)-bit inputs to MCDS, proving that the round complexity is

optimal, up to logarithmic factors, for any approximation (see Section 8.5). As mentioned
above, the 𝑂(log 𝑛) approximation factor is known to be optimal up to a constant factor,
unless P = NP, assuming that nodes can only perform polynomial-time computations. Note
that this assumption is usual, see e.g. [DMP+03,JRS01,KW03].

1For the reader interested in distributed (approximation) algorithms while considering congestion, the
author recommends reading [DSHK+11] and the prior work on that thread, e.g., [Elk04c,PR99].
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8.1.2 Other Related Work

To the best of our knowledge, no efficient algorithm was known before for MCDS in the
CONGEST model. Notice that in the LOCAL model, MCDS boils down to a triviality and is
thus never addressed in the literature: it is folklore2 that in this model, 𝐷 rounds is both
necessary and sufficient for any approximation of MCDS. However, a special case of MCDS is
interesting in the LOCAL model; the so-called “unweighted case" where all nodes have equal
weight. Although, the unweighted-case has a significantly different nature as it makes the
problem “ local": Dubhashi et al. [DMP+03] present a nice and simple 𝑂(log 𝑛) approximation
for the unweighted-case algorithm which uses 𝑂(log2 𝑛) rounds of the LOCAL model. To our
knowledge, the unweighted case has not been addressed in the CONGEST model. Another
problem which has a name resembling MCDS is the minimum-weight dominating set (MDS)
problem. However, MDS is also quite different from MCDS as the former is “ local", even in
the weighted case and the CONGEST model: an 𝑂(log 𝑛) factor approximation can be found
in 𝑂(log2 𝑛) rounds [JRS01,KW03].

8.2 Preliminaries

We assume that all nodes know an upper bound 𝑁 = poly(𝑛) on 𝑛. We assume each node
has a unique id with 𝑂(log 𝑛) bits, although this is not critical as each node simply picking a
random id in {0, 1}4 log𝑁 would ensure uniqueness of ids, with high probability. Also, recall
from Chapter 2 that we use the phrase with high probability (w.h.p.) to indicate a probability
being at least 1− 1

𝑛𝑐 , for a desirably large constant 𝑐 ≥ 2.

Notations and basic definitions We work with an undirected graph 𝐺 = (𝑉,𝐸), 𝑛 =

|𝑉 |, and for each vertex 𝑣 ∈ 𝑉 , 𝑐(𝑣) denotes the weight (i.e., cost) of node 𝑣. Throughout
the paper, we will use the words cost and weight interchangeably. For each subset 𝑇 ⊆ 𝑉 ,
we define cost(𝑇 ) =

∑︀
𝑣∈𝑇 𝑐(𝑣). We assume the weights are at most polynomial in 𝑛, so each

weight can fit in one message (such assumptions are usual, e.g. [GKP93]). We use notation
OPT to denote the CDS with the minimum cost. Also, for convenience and when it does not
lead to any ambiguity, we sometimes use OPT to refer to the cost of the optimal CDS.

Problem Statement Initially, each node 𝑣 knows only its own weight 𝑐(𝑣). The objective
is to find a set 𝑆 in a distributed fashion—that is, each node 𝑣 will need to output whether
𝑣 ∈ 𝑆 or not—such that cost(𝑆) = 𝑂(OPT · log 𝑛).

2On one hand, 𝐷 rounds is enough for learning the whole graph. On the other, 𝐷 rounds is necessary
for guaranteeing any approximation factor 𝛼. Consider a cycle with with 2𝐷 nodes where two nodes 𝑣 and
𝑢 are at distance 𝐷. For each of 𝑣 and 𝑢, assign a random weight in {𝑛2, 𝑛2𝛼+1} and give weight 1 to each
other node. For the CDS to 𝛼-factor optimal, the following should hold: if one of 𝑣 and 𝑢 has cost 𝑛2𝛼+ 1,
then before joining the CDS, it needs to make sure that the other does not have weight 𝑛2. This requires 𝐷
rounds.
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A Basic Tool (Thurimella’s algorithm) A basic tool that we frequently use in this
chapter is a connected component identification algorithm presented by Thurimella [Thu95],
which itself is a simple application of the MST algorithm of Kutten and Peleg [KP95]. Given
a subgraph 𝐻 = (𝑉,𝐸 ′) of the main network graph 𝐺 = (𝑉,𝐸), this algorithm identifies the
connected components of 𝐻 by giving a label ℓ(𝑣) to each 𝑣 such that ℓ(𝑣) = ℓ(𝑢) if an only
if 𝑣 and 𝑢 are in the same connected component of 𝐻. This algorithm uses 𝑂(𝐷+

√
𝑛 log* 𝑛)

rounds of the CONGEST model. It is easy to see that the same strategy can be adapted to
solve the following problems also in 𝑂(𝐷 +

√
𝑛 log* 𝑛) rounds. Suppose each node 𝑣 has an

input 𝑥(𝑣). For each node 𝑣, which is in a component 𝒞 of 𝐻, we can make ℓ(𝑣) be equal to:
(A) the maximum value 𝑥(𝑢) for nodes 𝑢 ∈ 𝒞 in the connected component of 𝑣, or (B) the
list of 𝑘 = 𝑂(1) largest values 𝑥(𝑢) for nodes 𝑢 ∈ 𝒞, or (C) the summation of values 𝑥(𝑢)

for nodes 𝑢 ∈ 𝒞.

8.3 The Algorithm for MCDS

8.3.1 The Outline

The top-level view of the approach is as follows: We start by using the 𝑂(log2 𝑛) rounds
algorithm of [JRS01] to find a dominating set 𝑆 with cost 𝑂(log 𝑛 · OPT). The challenge
is in adding enough nodes to connect the dominating set, while spending extra cost of
𝑂(log 𝑛 · OPT). We achieve connectivity in 𝑂(log 𝑛) phases. In each phase, we add some
nodes to set 𝑆 so that we reduce the number of connected components of 𝑆 by a constant
factor, while spending a cost of 𝑂(OPT). After 𝑂(log 𝑛) phases, the number of connected
components goes down to 1, meaning that we have achieved connectivity. Each phase uses
�̃�(𝐷+

√
𝑛) rounds of the CONGEST model. What remains is to explain how a phase works.

The reader might recall that such “component-growing" approaches are typical in the
MST algorithms, e.g., [KP95,GKP93]. While in MST, the choice of the edge to be added to
each component is clear (the lightest outgoing edge), the choice of the nodes to be added in
MCDS is not clear (and in fact can be shown to be an NP-hard problem, itself).

The problem addressed in one phase can be formally recapped as follows (the reader
might find the illustration in Figure 8-2 helpful here): We are given a dominating subset
𝑆 ⊆ 𝑉 and the objective is to find a subset 𝑆 ′ ⊆ 𝑉 ∖ 𝑆 with cost(𝑆 ′) = 𝑂(OPT) such that
the following condition is satisfied. Let ℱ be the set of subsets of 𝑆 such that each 𝒞 ∈ ℱ is
a connected component of 𝐺[𝑆]. Call a connected component 𝒞 ∈ ℱ satisfied if in 𝐺[𝑆 ∪𝑆 ′],
𝒞 is connected to at least one other component 𝒞 ′ ∈ ℱ . We want 𝑆 ′ to be such that at least
half of the connected components of 𝐺[𝑆] are satisfied. Note that if this happens, then the
number of connected components goes down by a 3/4 factor. To refer to the nodes easier,
we assume that all nodes that are in 𝑆 at the start of the phase are colored green and all
the other nodes are white, initially. During the phase, some white nodes will become gray
meaning that they joined 𝑆 ′.

Before moving on to the algorithm, we emphasize two key points:
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Figure 8-2: An example scenario at the start of a phase. Green nodes indicate those in 𝑆 and white nodes are 𝑉 ∖ 𝑆.

Unrelated nodes and edges are discarded from the picture.

(1) It is critical to seek satisfying only a constant fraction of the components of 𝐺[𝑆].
Using a simple reduction from the set cover problem, it can be shown that satisfying
all components might require a cost 𝑂(OPT log 𝑛) for a phase. Then, at least in the
straightforward analysis, the overall approximation factor would become 𝑂(log2 𝑛).

(2) In each phase, we freeze the set of components ℱ of 𝐺[𝑆]. That is, although we
continuously add nodes to the CDS and thus the components grow, we will not try to
satisfy the newly formed components. We keep track of whether a component 𝒞 ∈ ℱ
is satisfied and the satisfied ones become “inactive" for the rest of the phase, meaning
that we will not try to satisfy them again. However, satisfied components will be used
in satisfying the others.

8.3.2 A High-level View of the Algorithm for One Phase

1
1

1

 

 

 
 

1

 

1  

 
1

Figure 8-3: The naive approach

Note that since 𝑆 is a dominating set, 𝒞 ∈ ℱ is satisfied iff there
exist one or two nodes that connect 𝒞 to another component
𝒞 ′ ∈ ℱ . That is, either there is a node 𝑣 such that path 𝒞-
𝑣-𝒞 ′ connects component 𝒞 to component 𝒞 ′ or there are two
adjacent nodes 𝑣 and 𝑤 such that path 𝒞-𝑣-𝑤-𝒞 ′ does that.
Having this in mind, and motivated by the solution for the
unweighted case [DMP+03], a naive approach would be that,
for each component 𝒞, we pick one or two nodes—with smallest
total weight—that connect 𝒞 to another component, and we
do this for each component 𝒞 independently. However, in the
weighted case, this naive idea would perform terribly. To see
why, let us consider a simple example (see Figure 8-3): take a cycle with 𝑛− 1 nodes where
every other node has weight 1 and the others have weight

√
𝑛, and then add one additional

node at the center with weight 𝑛, which is connected to all weight-1 nodes. Clearly, the
set of weight-1 nodes gives us an optimal dominating set. However, naively connecting this
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a general star a basic star

Figure 8-4: A basic-star. The opaque components indicate those that are already satisfied and thus deactivated. Two legs

of the general star (colored red, on the left) are discarded in the basic-star (colored red, on the right), as each of them forms a

useful star, meaning that the leg itself can satisfy at least one active component.

dominating set following the above approach would make us include at least half of the
√
𝑛-

weight nodes, leading to overall weight of Θ(𝑛
√
𝑛). On the other hand, simply adding the

center node 𝑠 to the dominating set would provide us with a CDS of weight 𝑂(𝑛).
Inspired by this simple example, we view stars as the key elements of optimization

(instead of 2 or 3 hop paths). We next define what we mean by a star and outline how
we use it. We note that the concept is also similar to the notion of spiders used in [KR95]
for the node-weighted Steiner trees problem.

Definition 8.3.1. (Stars) A star 𝑋 is simply a set of white nodes with a center 𝑠 ∈ 𝑋

such that each non-center node in the star is connected to the center 𝑠. Naturally, we say

a star 𝑋 satisfies an active component 𝒞 ∈ ℱ if adding this star to 𝑆 ′—that is, coloring

its nodes gray—would connect 𝒞 to some other component and thus make it satisfied. Let

Φ(𝑋) be the set of unsatisfied components in ℱ that would be satisfied by 𝑋. We say a star

is useless if Φ(𝑋) = ∅. The cost of a star 𝑋 is cost(𝑋) =
∑︀

𝑤∈𝑋 𝑐(𝑤) and its efficiency is

𝜌(𝑋) = |Φ(𝑋)|
cost(𝑋)

. We say 𝑋 is 𝜌′-efficient if 𝜌(𝑋) ≥ 𝜌′.

In Figure 8-3, each white node is one star, the center has efficiency Θ(1) and every other
star has efficiency Θ(1/

√
𝑛). Notice that in general, different stars might intersect and even

a white node 𝑣 might be the center of up to 2Θ(𝑛) different stars.

The general plan (while ignoring some difficulties) We greedily3 add stars to the
gray nodes. That is, we pick a star that has the maximum efficiency and color its nodes
gray. It can be shown that this greedy idea would satisfy half of components using cost
only 𝒪(OPT). However, clearly adding stars one by one would be too slow. Instead we
adopt a nice and natural technique due to Berger et al. [BRS94] which by now has become a
standard trick for speeding up greedy approaches via parallelizing their steps. The key point
is, stars that have efficiency within a constant factor of the max-efficiency are essentially

3The greedy approaches are typically standard in solving MCDS or other problems similar in nature.
Furthermore, often the notion of efficiency as explained above or some variant of it is the base of picking
the next good move, in these greedy approaches. See e.g. [GK98,GK99,KR95,BRS94].
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as good as the max-efficient star and hence, we can add those as well. The only catch is,
one needs to make sure that adding many stars simultaneously does not lead to (too much)
double counting in the efficiency calculations. In other words, if there are many stars that
try to satisfy the same small set of components, even if each of these stars is very efficient,
adding all of them is not a good idea. The remedy is to probabilistically add stars while the
probabilities are chosen such that not too many selected stars try to satisfy one component.

While this general outline roughly explains what we will do, the plan faces a number of
critical issues. We next briefly hint at two of these challenges and present the definitions
that we use in handling them.

Challenge 1 The first step in the above outline is to compute (or approximate) the ef-
ficiency of the max-efficient star. Doing this for the general class of stars turns out the be
a hard problem in the CONGEST model. Note that for a white node 𝑣 to find (or approx-
imate) the most-efficient star centered on it, 𝑣 would need to know which components are
adjacent to each of its white neighbors. As each white node might be adjacent to many
components, this is like learning the 2-neighborhood of 𝑣 and appears to be intrinsically
slow in the CONGEST model. Instead, we will focus on a special form of stars, which we call
basic-stars and explain next. Figure 8-4 shows an example.

Definition 8.3.2. (Basic-Stars) Call a white node 𝑢 self-sufficient if 𝑢 is adjacent to two

or more components, at least one of which is not satisfied. A star 𝑋 is called basic if for

each non-center node 𝑤 ∈ 𝑋, 𝑤 is not self-sufficient. That is, the star 𝑋 ′ = {𝑤} is useless.

We argue later that, considering only the basic-stars will be sufficient for our purposes
(sacrificing only a constant factor in the approximation quality) and that we can indeed
evaluate the max-efficiency of the basic-stars.

Challenge 2 The other issue, which is a bit more subtle but in fact significantly more
problematic, is as follows: as we color some white nodes gray, some components grow and
thus, the efficiencies of the stars change. For instances, a useless star 𝑋 = {𝑣} might now
become useful–e.g., it gets connected to a satisfied component 𝒞 ′ via a node 𝑢 that just got
colored gray, and 𝑋 can now satisfy an adjacent unsatisfied component 𝒞 by connecting it
to 𝒞 ′. Another example, which is rooted also in the congestion related issues, is as follows:
During our algorithm, to be able to cope with communication issues, each white node 𝑣 will
work actively on only one max-efficient basic-star centered on 𝑣. But, 𝑣 might be the center
of many such stars and even if one of them looses the efficiency after this iteration, another
max-efficient star which existed before might be now considered actively by 𝑣.

We note that, if there were no such “new-stars" issues, we could use here standard
methods such as (a modification of) the LP relaxation based technique of Kuhn and Wat-
tenhofer [KW03]. However, these changes break that approach and it is not even clear how
to formulate the problem as an LP (or even a convex optimization problem, for that matter).
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If not controlled, these changes in the stars can slow down our plan significantly. For
example, if for a given almost-maximum efficiency 𝜌, in each iteration a small number of
𝜌-efficient new basic-stars are considered actively, we will have to spend some time on these
stars but as the result, we would satisfy only very few components, which would become
prohibitively slow. To remedy this, when coloring stars gray, we will do it for certain types
of 𝜌-efficient basic-stars, which we define next, and after that, we do some clean up work to
remove the new 𝜌-efficient basic-stars that would be considered actively later on.

Definition 8.3.3. (𝜌*-Augmented Basic-Stars) A 𝜌*-efficient basic-star 𝑋 centered on

node 𝑣 ∈ 𝑋 is called 𝜌*-minimal if for any other star 𝑋 ′ ⊂ 𝑋 centered on 𝑣, we have,

𝜌(𝑋 ′) < 𝜌*. For a 𝜌*-minimal basic-star 𝑋 centered on 𝑣, a good auxiliary-leg is a white

node 𝑢 /∈ 𝑋 that is adjacent to 𝑣 and furthermore, the following conditions are satisfied: 𝑢 is

adjacent to only one component 𝒞 ∈ ℱ , component 𝒞 is not satisfied and it is not adjacent to

𝑋, and we have cost(𝑢) ≤ 2/𝜌*. A 𝜌*-Augmented Basic-Star 𝑋 ′ is one that can be derived

by (one-by-one)4 adding to 𝜌*-minimal basic-star 𝑋 all good auxiliary-legs adjacent to its

center.

8

2
5

19

13

Figure 8-5: A 0.1-augmented basic-star

is indicated with the dashed lines; the red

part is a minimal 0.1-efficient basic-star and

the orange part is a good auxiliary leg.

An example is shown in Figure 8-5. The actual reason-
ing for why this definition is good is somewhat subtle to
be explained intuitively. A very rough version is as follows:
after coloring some 𝜌*-augmented basic-stars gray, by just
handling the nodes which each have cost at most 1/𝜌* (in a
step we call clean up), we will be able to remove any new 𝜌*-
augmented basic-star. The point should become clear after
seeing the algorithm (and Lemma 8.4.2 and Lemma 8.4.3).

Observation 8.3.4. Each 𝜌*-Augmented Basic-Star 𝑋 has

efficiency 𝜌(𝑋) ≥ 𝜌*

2
. Furthermore, if a 𝜌*-Augmented

Basic-Stars 𝑋 contains a white node 𝑤, then all unsatisfied

components adjacent to 𝑤 get satisfied by 𝑋.

8.3.3 The Algorithm For One Phase

The objective of the algorithm is to satisfy at least half of the components, using a cost
𝑂(OPT), and in 𝑂((𝐷 +

√
𝑛 log* 𝑛) log3 𝑛) rounds. Throughout the phase, each non-white

node will keep track of whether its component in ℱ is satisfied or not. Let 𝑁 = |ℱ| and
also, make all nodes know 𝑁 by running Thurimella’s connected component identification
at the start of the phase and then globally gathering the number of components.

While at least ⌊𝑁/2⌋ components in ℱ remain unsatisfied, we repeat the following iter-
ation, which has 8 steps—𝒮1 to 𝒮8—and each step uses 𝑂(𝐷 +

√
𝑛 log* 𝑛) rounds:

4This has to be done one-by-one as adding one good auxiliary leg might make the star adjacent to a
component 𝒞 and then, no other white node adjacent to 𝒞 can be a good auxiliary-leg.
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(𝒮1) We first use Thurimella’s algorithm (see Section 8.2) to identify the connected compo-
nents of non-white nodes and also to find out whether each component is satisfied (i.e.
if it contains a gray node). These take 𝑂(𝐷+

√
𝑛 log* 𝑛) rounds. Each non-white node

broadcasts its component id and whether its component is satisfied to all neighbors.
We also find the total number of unsatisfied connected components and if it is less than
𝑁/2, we call this phase finished and start the next phase.

(𝒮2) We now find the globally-maximum efficiency 𝜌* of the basic-stars.

They key part is to compute the efficiency of the most-efficient basic-star centered on
each white node. After that, the global-maximum can be found in 𝑂(𝐷) rounds easily.
We first use one round of message exchanges between the white nodes so that each
white node knows all the basic-stars it centers.

Each white node 𝑣 does as follows: if 𝑣 is adjacent to only one component (satisfied
or unsatisfied), it sends the id of this component, its satisfied/unsatisfied status and
𝑣𝑖𝑑 to its neighbors. If 𝑣 is adjacent to two or more components, but all of them
are satisfied, then 𝑣 sends a message to its neighbors containing 𝑣𝑖𝑑 and an indicator
message “all-satisfied". If 𝑣 is adjacent to two or more components, at least one of which
is unsatisfied, then 𝑣 does not send any message. This is because, by Definition 8.3.2,
node 𝑣 is self-sufficient and it thus can be only in basic-stars centered on 𝑣. At
the end of this round, each white node 𝑣 has received some messages from its white
neighbors. These messages contain all the information needed for forming all the basic-
stars centered on 𝑣 and calculating their efficiency. Node 𝑣 finds the most-efficient of
these basic-stars. It is easy to see that this can indeed be done in polynomial-time local
computation5. We emphasize that the basic-stars found in this step are not important
and the only thing that we want is to find the globally-maximum efficiency 𝜌*.

(𝒮3) Let 𝜌 = 2⌊log2 𝜌*⌋, i.e., 𝜌 is equal to 𝜌* rounded down to the closest power of 2. We pick
at most one 𝜌-augmented basic-star 𝑋 𝑖

𝑣 (see Definition 8.3.3) centered on each white
node 𝑣, where 𝑖 is the iteration number.

We reuse the messages exchanged in the previous step. First, each white node
𝑣 finds a minimal 𝜌-efficient basic-star centered on 𝑣, if there is one. Call this the
core-star of 𝑣. Then, 𝑣 adds to this core-star any good auxiliary-legs available (one by
one), to find its 𝜌*-augmented basic-star 𝑋 𝑖

𝑣. This is the only star centered on 𝑣 that
will be considered for the rest of this iteration. Thus, at most one star 𝑋 𝑖

𝑣 centered
on each white node 𝑣 remains active for the rest of iteration 𝑖. Note that all active
remaining stars are 𝜌/2-efficient.

5For that, node 𝑣 first adds itself to the basic-star. Then, it discards any adjacent white node 𝑢 for
which the only unsatisfied component adjacent to 𝑢 is also adjacent to 𝑣. Then, 𝑣 sorts all the remaining
white-neighbors 𝑢1, 𝑢2, ..., 𝑢ℓ—from which it received a message—by increasing cost order. It then adds 𝑢𝑖-s
one by one to its basic-star, as long as each new addition increases the efficiency. Since each white-neighbor
is adjacent to at most one unsatisfied component, it is easy to see that this indeed finds the maximum
efficiency.
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For each active-remaining star 𝑋 𝑖
𝑣 and each unsatisfied component 𝒞 it satisfies, the

center 𝑣 elects one of the white nodes of the star to be responsible for communicating6

with 𝒞. If 𝒞 has at least one non-center neighbor in 𝑋 𝑖
𝑣, then one such non-center node

𝑢 (selected arbitrarily) is called responsible for communicating with 𝒞. Otherwise, the
center 𝑣 is responsible7 for communicating with 𝒞.

(𝒮4) For each unsatisfied component 𝒞 ∈ ℱ , we find the number of active stars that satisfy 𝒞.
The objective is to find the maximum such number ∆*

𝜌, over all unsatisfied components.
First, each white node 𝑣 that centers an active star 𝑋 𝑖

𝑣 reports this star to each non-
center node 𝑢 of it, by just sending 𝑣𝑖𝑑, special message active-star, and the id of
the component 𝒞 for which 𝑢 is responsible for communicating with (if there is one).
Then, for each white node 𝑤 and each unsatisfied component 𝒞 that 𝑤 is responsible for
communicating with it in any star, node 𝑢 sends to one of the nodes of 𝒞 the number
of stars in which 𝑢 is responsible for communicating with 𝒞. These counts are summed
up in each component 𝒞 via Thurimella’s algorithm, and it is called the active-degree
of 𝒞. The maximum active-degree is found globally and called ∆*

𝜌.

(𝒮5) Next, some active stars propose to their adjacent unsatisfied components.

We mark each active star with probability 1
5Δ*

𝜌
, where the decision is made randomly

by the center of the star and sent to the other nodes of the star (if there is any).
Then, these marks are sent to the components that get satisfied by the marked stars,
as proposals, via the white nodes that are responsible for communicating with the
components. If 𝑣 is self-sufficient, it would need to send at most one proposal to each
adjacent component (it would be to those components for which 𝑣 is responsible for
communicating with them in 𝑋 𝑖

𝑣). However, if 𝑣 is not self-sufficient, then 𝑣 might
want to send many proposals to an unsatisfied component adjacent to it (there is at
most one such component). This is not feasible in the CONGEST model. Instead, 𝑣
selects at most 3 of these proposals (arbitrarily) and just submits these 3 proposals.

(𝒮6) Each component grants at most 3 of the proposals it receives. This is done via
Thurimella’s algorithm, where 3 proposals with largest center ids are granted. Finally
components report the granted proposals to the adjacent white nodes.

(𝒮7) Each marked star collects how many of its proposals are granted. If at least 1/3 of the
proposals of this star were granted, then all nodes of this marked star become gray.
After that, we use Thurimella’s algorithm again to identify the green nodes which their
component (in ℱ) is satisfied (by checking if their component has a gray node).

6Note that each star might have many nodes that are adjacent to an unsatisfied component 𝒞. As this
would be problematic for our communication purposes, we avoid this by making only one node in the star
responsible for each unsatisfied adjacent component.

7Since any white node 𝑢 that is not self-sufficient is adjacent to at most one unsatisfied component, in
any basic-star that contains 𝑢, node 𝑢 can be responsible only for this one unsatisfied adjacent component.
On the other hand, if 𝑣 is self-sufficient, it will be only in one star 𝑋𝑖

𝑣.
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(𝒮8) Finally, we have a clean up step, which removes the newly-formed 𝜌-augmented basic-
stars that if not removed now, might be active in the next iterations. Temporarily
(just for this clean up step) color each white node blue if its cost is at most 1/𝜌. For
each unsatisfied component 𝒞 ∈ ℱ that can be satisfied using only blue nodes, we find
one or two blue nodes that connect 𝒞 to some other component in ℱ and we color
these blue nodes gray, thus making 𝒞 satisfied. In the first round, for each blue node
𝑣, if 𝑣 is adjacent to only one component, it sends the id of this component and its
own id 𝑣𝑖𝑑. If 𝑣 is adjacent to two or more components, it just sends its own id with
an indicator symbol “two-or-more". In the second round, for each blue node 𝑢, if 𝑢 is
adjacent to an unsatisfied component 𝒞, node 𝑢 creates a proposal for 𝒞 as follows: if
𝑢 is adjacent to at least one other component 𝒞 ′ ∈ ℱ , then the proposal is simply the
id of 𝑢. If 𝑢 is not adjacent to any other component 𝒞 ′ but there is a blue neighbor
𝑤 of 𝑢 such that in the first round, 𝑤 sent the id of a component 𝒞 ′′ ̸= 𝒞 or 𝑤 sent
the “two-or-more" indicator symbol, then the proposal contains the ids of 𝑢 and 𝑣.
Otherwise, the proposal is empty. Each unsatisfied component picks one (nonempty)
proposal, if it receives any, and grants it. The granted proposal is reported to all nodes
adjacent to the component and if the proposal of 𝑢 is granted, it becomes gray and if
this granted proposal contained a blue neighbor 𝑤, then 𝑢 informs 𝑤 about the granted
proposal which means that 𝑤 also becomes gray.

A remark about the time complexity In the above algorithm, each phase takes
𝑂(log3 𝑛) iterations, w.h.p., which leads to 𝑂((𝐷 +

√
𝑛 log* 𝑛) log3 𝑛) rounds for each phase,

and thus 𝑂((𝐷 +
√
𝑛 log* 𝑛) log4 𝑛) rounds for the whole algorithm. One can remove one

logarithmic factor off of this complexity by (further) leveraging the fact that in each phase,
we need to satisfy only half of the components. To do that, if for a max-efficiency level 𝜌 and
the respective max-component-degree ∆*

𝜌, we have satisfied at least half of the components
with degree at least ∆*

𝜌/2, we can excuse the other half from needing to be satisfied in this
phase. This way, with constant probability, after just a constant number of iterations, we are
done with components of degree at least ∆*

𝜌/2. A standard concentration bound then shows
that w.h.p. 𝑂(log 𝑛) iterations are enough for all degree levels (with respect to efficiency 𝜌).
We leave formalizing the details of this log 𝑛 factor optimization to the interested reader.

8.4 Analysis

For the analysis, we need to establish two facts, (1) that the cost of each phase is𝑂(OPT), and
(2) that each phase takes only 𝑂(log3 𝑛) iterations, w.h.p. As each iteration is implemented
in 𝑂(𝐷 +

√
𝑛 log* 𝑛) rounds, these prove the desired properties of each phase.
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8.4.1 Cost Related Analysis

In each iteration, we color some white nodes gray and thus satisfy some components. This
is done in a way that the overall efficiency of the nodes added in this iteration is within a
constant factor of the best basic-star. That is, the number of components satisfied in this
iteration is Θ(𝜌*) times the total cost of the nodes colored gray in this iteration. As the
heart of cost analysis, we show that in each iteration, as long as at least 𝑁/2 unsatisfied
components exist, 𝜌* ≥ 𝑁

4OPT
. This will be done by showing that one can cover the (white

nodes of) OPT with basic-stars, such that each white node is in at most 2 basic-stars.

Lemma 8.4.1. In each phase, we spend a cost of at most 𝑂(OPT).

Proof. First note that, in steps 𝒮6 and 𝒮7, each active star has efficiency at least 𝜌/2, and
an active star becomes gray if at least 1/3 of its proposals are granted and each component
grants at most 3 proposals. Thus, the efficiency of the whole set of white nodes colored gray
in step 𝒮7 is Θ(𝜌). Moreover, in the clean up step (step 𝒮8), each component grants at most
one proposal and each proposal contains at most two blue nodes, each of which has weight
at most 1/𝜌. Hence, the efficiency in the clean up step is also Θ(𝜌).

Now as the key part of the proof, we claim that in each iteration in which at least 𝑁/2

unsatisfied components remain, there is at least one basic-star that has efficiency of at least
𝑁

4OPT
. This claim implies that in this iteration, 𝜌 ≥ 𝜌*/2 ≥ 𝑁

8OPT
. Over all iterations of this

phase, we satisfy at most 𝑁 components, always with an efficiency Θ(𝜌), which means that
we spend a cost of 𝑂(OPT) over the whole phase. Recall that if the number of the unsatisfied
components drops below 𝑁/2, we call the phase finished, and move to the next phase.

Now to prove the claim, consider one iteration and assume that at least 𝑁/2 unsatisfied
components remain. For the sake of contradiction, suppose that each basic-star has efficiency
strictly less than 𝑁

4OPT
. Consider the minimum-cost CDS OPT. Let 𝑇 be the set of white

nodes in OPT. We cover 𝑇 with a number of basic-stars 𝑋1, 𝑋2, . . . , 𝑋ℓ such that each node
of 𝑇 is in at most two of these basic-stars and each unsatisfied component can be satisfied by
at least one of these basic stars. Then, for each 𝑋𝑖, define 𝐶 ′(𝑋𝑖) = cost(𝑋𝑖)/2. Note that∑︀ℓ

𝑖=1 𝐶
′(𝑋𝑖) ≤

∑︀
𝑣∈𝑇 𝑐(𝑣) = OPT. Each basic-star 𝑋𝑖 splits cost 𝐶 ′(𝑋𝑖) equally between

the unsatisfied components Φ(𝑋) that get satisfied by 𝑋. That is, each such component
gets cost 𝐶′(𝑋𝑖)

|Φ(𝑋𝑖)| >
2OPT
𝑁

from star 𝑋𝑖. Hence, each unsatisfied component gets a cost strictly

greater than 2OPT
𝑁

and summed up over all the unsatisfied components—which are at least
𝑁/2 many—, we get that

∑︀ℓ
𝑖=1𝐶

′(𝑋𝑖) > OPT, which is a contradiction.

What is left is thus to show that we can cover 𝑇 with a number of basic-stars 𝑋1, 𝑋2,
. . . , 𝑋ℓ such that each node of 𝑇 is in at most two of these basic-stars and each unsatisfied
component can be satisfied by at least one of these basic stars. We give a simple sequential
procedure which produces such basic-stars. During this procedure, each node 𝑣 ∈ 𝑇 keeps
a Boolean variable ℎ𝑖𝑡𝑣 which is false initially. For each node 𝑣 ∈ 𝑇 , call 𝑣 lonely if it is
adjacent to exactly one component and that component is not satisfied.
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Sequentially, go over the nodes in 𝑇 one by one and for each 𝑣 ∈ 𝑇 , do as follows: consider
the star 𝑋𝑣 made of 𝑣 and all lonely neighbors 𝑤 of 𝑣 that are not hit so far, i.e., those such
that ℎ𝑖𝑡𝑤 = 𝑓𝑎𝑙𝑠𝑒. Add 𝑋𝑣 to the collection if it satisfies at least one component, and if this
happens, also for each 𝑤 ∈ 𝑋𝑣 ∖ {𝑣}, set ℎ𝑖𝑡𝑤 = 𝑡𝑟𝑢𝑒. Note that if a lonely node 𝑤 gets hit,
then the single unsatisfied component 𝒞 adjacent to 𝑤 gets satisfied by 𝑋𝑣.

Now note that in this algorithm, each node 𝑢 will be in at most two stars, one star 𝑋𝑢

that is centered on 𝑢, and one star 𝑋𝑣 that is centered on a neighbor 𝑣 of 𝑢 and such that
in the iteration in which we consider 𝑤, we set ℎ𝑖𝑡𝑢 = 𝑡𝑟𝑢𝑒.

On the other hand, consider an unsatisfied component 𝒞. We show that 𝒞 gets satisfied
by one of the basic-stars produced by the above algorithm. Note that OPT satisfies 𝒞.
Therefore, there is a white node 𝑣 ∈ 𝑇 that is adjacent to 𝒞 and either 𝑣 is adjacent to a
different component 𝒞 ′ ̸= 𝒞 or 𝑣 has another white neighbor 𝑤 ∈ 𝑇 and 𝑤 is adjacent to a
different component 𝒞 ′ ̸= 𝒞. Now if the node 𝑣 is not lonely, it is adjacent to at least two
components, and hence 𝑋𝑣 satisfies 𝒞 and we are done. Otherwise, suppose 𝑣 is lonely. Since
𝑣 is lonely, when we consider 𝑤 in the loop, either 𝑣 is already hit by some other basic-star
𝑋𝑤′ , or the basic-star 𝑋𝑤 hits 𝑣. In either case, 𝒞 gets satisfied. This finishes the proof.

8.4.2 Speed Related Analysis

The speed analysis has more subtle points. We show that after 𝑂(log3 𝑛) iterations, at least
half of the components would be satisfied and thus this phase ends. A critical point for
establishing this is to show that, thanks to the clean up step (analyzed in Lemma 8.4.2), for
each unsatisfied component, the number of active 𝜌-augmented basic-stars 𝑋 𝑖

𝑣 that satisfy
this component is monotonically non-increasing when viewed as a function of the iteration
number 𝑖. This part will be our main tool for managing the issue of “new stars" (discussed
in Challenge 2 above), and is proven in Lemma 8.4.3. Furthermore, in Lemma 8.4.4, we show
that with at least a constant probability, a constant fraction of the components that are now
each in at least ∆*

𝜌/2 active stars 𝑋 𝑖
𝑣 of iteration 𝑖 get satisfied. Hence, it will follow that in

iteration 𝑗 = 𝑖 + 𝑂(log 𝑛), there remains no unsatisfied component that can be satisfied by
at least ∆*

𝜌/2 many active stars 𝑋𝑗
𝑣 , w.h.p. Thus, in each 𝑂(log 𝑛) iterations, ∆*

𝜌 decreases
by a factor of 2, w.h.p. After 𝑂(log2 𝑛) iterations of the loop, there will be no 𝜌-augmented
basic-star, and hence, no basic-star with efficiency 𝜌. Then we move to the next efficiency
level, which is at most 𝜌/2. After 𝑂(log3 𝑛) iterations, more than half of the components
would be satisfied and we stop the phase.

Lemma 8.4.2. In the clean up step, if a unsatisfied component 𝒞 could have been satisfied

using only blue nodes, it indeed gets satisfied.

Proof. Suppose that unsatisfied component 𝒞 can be satisfied using only blue nodes. Then,
as green-or-gray nodes dominate the graph, there is a component 𝒞 ′ and either one blue node
𝑣 such that 𝒞-𝑣-𝒞 ′ connects 𝒞 to 𝒞 ′or two adjacent blue nodes 𝑣 and 𝑤 such that 𝒞-𝑣-𝑤-𝒞 ′ is
a path connecting 𝒞 to 𝒞 ′. In the former case, 𝑣 clearly proposes to 𝒞. In the latter case, 𝑣
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will receive either the id of 𝒞 ′ or the special symbol “two-or-more" from 𝑤. And thus again,
in either case, 𝑣 proposes to 𝒞. Therefore, component 𝒞 will receive at least one proposal.
Component 𝒞 will accept one proposal, and this will make it connect to one other component
𝒞 ′′ (which might be equal to 𝒞 ′) and hence satisfied.

Lemma 8.4.3. For each unsatisfied component 𝒞 ∈ ℱ and the almost-max-efficiency 𝜌, the

number of 𝜌-augmented basic-stars 𝑋 𝑖
𝑣 selected in step 𝒮3 that satisfy 𝒞 does not increase

from one iteration to the next.

Proof. Fix an iteration 𝑖 ≥ 2. We claim that if an unsatisfied component 𝒞 ∈ ℱ can be
satisfied by a 𝜌-augmented basic-star 𝑋 𝑖

𝑣 centered on 𝑣 that was selected in step 𝒮3 of
iteration 𝑖, then there was one 𝜌-augmented basic-star 𝑋 𝑖−1

𝑣 centered on 𝑣 that was selected
in step 𝒮3 of iteration 𝑖 − 1 and 𝒞 could be satisfied by 𝑋 𝑖−1

𝑣 as well. This then directly
leads to the lemma.

We first show that it cannot be the case that the core𝑋 ′′ of𝑋 𝑖
𝑣 (see step 𝒮3 and Definition

8.3.3 for definition of core) was a useless star in iteration 𝑖− 1. Having this established, we
then show that 𝑋 𝑖−1

𝑣 could satisfy 𝒞, as well.
First, for the sake of contradiction, suppose that the core basic-star 𝑋 ′′ ⊆ 𝑋 𝑖

𝑣 was useless
in iteration 𝑖 − 1. Suppose that 𝑋 ′′ could satisfy unsatisfied component 𝒞 ′ in iteration 𝑖.
Component 𝒞 ′ might be equal to 𝒞 or not. As 𝑋 ′′ is useful in iteration 𝑖 but not in iteration
𝑖 − 1, it means that there is a node 𝑢 that was white at the start of iteration 𝑖 − 1 and it
became gray at the end of that iteration and such that 𝑢 connects 𝑋 ′′ to a now satisfied
component 𝒞 ′′ ̸= 𝒞 ′. In iteration 𝑖, 𝑋 ′′ cannot be adjacent to two unsatisfied components as
then it would be useful in iteration 𝑖− 1. As in iteration 𝑖 basic-star 𝑋 ′′ is 𝜌-efficient and it
satisfies only one unsatisfied component, we get that the total cost of nodes in 𝑋 ′′ is at most
1
𝜌
. Hence, all nodes of 𝑋 ′′ were blue in the clean up step of iteration 𝑖− 1. Furthermore, 𝑢

was either gray at the start of the clean up step of iteration 𝑖 − 1 or it was a blue node in
that step and then it became gray. We know that 𝑢 is not adjacent to 𝒞 ′ (otherwise 𝒞 ′ would
be satisfied). But, we know that each node of 𝑋 ′′ must be adjacent to at least one green
node, and in iteration 𝑖− 1, 𝑋 ′′ could not have been adjacent to more than one component
(otherwise it would be useful for satisfying 𝒞 ′). Thus, we get that each node of 𝑋 ′′ is adjacent
to component 𝒞 ′. Therefore, 𝒞 ′ could have been satisfied using only one or two blue nodes:
either with one blue node of 𝑋 ′′ connecting it to 𝑢 which was gray then, or with one blue
node of 𝑋 ′′ and node 𝑢 which was blue then. Hence, Lemma 8.4.2 gives that 𝒞 ′ must have
been satisfied at the end of iteration 𝑖 − 1 (perhaps through a different path). This is in
contradiction with 𝑋 ′′ having 𝒞 ′ as its unsatisfied adjacent component in iteration 𝑖. Thus,
we conclude that the core basic-star 𝑋 ′′ was useful in iteration 𝑖− 1.

Note that if an unsatisfied component is adjacent to 𝑋 ′′ in iteration 𝑖, it was adjacent
to 𝑋 ′′ in iteration 𝑖 − 1 as well. Hence, the number of unsatisfied components that could
be satisfied by 𝑋 ′′ in iteration 𝑖 − 1 is at least as many as those that could be satisfied in
iteration 𝑖. This establishes that 𝑋 ′′ was at least 𝜌-efficient in iteration 𝑖− 1. Thus, indeed
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there was a 𝜌-augmented basic-star 𝑋 𝑖−1
𝑣 centered on 𝑣 and selected in step 𝒮3 of iteration

𝑖− 1. It remains to show that 𝑋 𝑖−1
𝑣 could satisfy 𝒞.

For the sake of contradiction, suppose that 𝑋 𝑖−1
𝑣 was not adjacent to 𝒞 (as otherwise we

would be done). It means that there is another white node 𝑤 ∈ 𝑋 𝑖
𝑣 ∖ 𝑋 𝑖−1

𝑣 that connects
𝒞 to 𝑣. Also, 𝒞 is the only component in ℱ that is adjacent to 𝑤 as otherwise, 𝑤 would
have been self-sufficient and hence it would not report 𝒞 to 𝑣 in iteration 𝑖 and thus it would
not be in 𝑋 𝑖

𝑣 (recall the definition of basic-star). Therefore, we know that in iteration 𝑖− 1,
{𝑤} could have potentially been a good auxiliary-leg for the core of 𝑋 𝑖−1

𝑣 . As {𝑤} was not
included in 𝑋 𝑖−1

𝑣 , we know {𝑤} was not a good auxiliary-leg. As 𝑋 𝑖−1
𝑣 is not adjacent to 𝒞,

from Definition 8.3.3 we can infer it must have been the case that cost(𝑤) > 2/𝜌. But now
in iteration 𝑖, basic-star 𝑋 𝑖

𝑣 which includes 𝑤 and thus has cost strictly greater than 2/𝜌

has efficiency 𝜌. So, 𝑋 𝑖
𝑣 must satisfy at least 3 components. But then, even if we discard

𝑤 from star 𝑋 𝑖
𝑣, we get a smaller 𝜌-efficient basic-star. Hence, 𝑤 was not included in the

core 𝑋 ′′ of 𝑋 𝑖
𝑣, which means that 𝑤 was included in 𝑋 𝑖

𝑣 as a good auxiliary-leg, showing
that cost(𝑤) ≤ 2/𝜌, which is a contradiction. Having arrived at the contradiction from
the assumption that 𝑋 𝑖−1

𝑣 was not adjacent to 𝒞, we get that 𝑋 𝑖−1
𝑣 must indeed have been

adjacent to 𝒞. That is, the 𝜌-augmented basic-star centered on 𝑣 in iteration 𝑖 − 1 could
have satisfied 𝒞. This completes the proof.

Lemma 8.4.4. In each iteration 𝑖, the set of grayed stars has efficiency within a constant

factor of the max-efficient basic-star. Furthermore, with at least a constant probability, a

constant fraction of the components that can be satisfied by at least ∆*
𝜌/2 many 𝜌-augmented

basic-stars 𝑋 𝑖
𝑣 get satisfied.

Proof. For the first part, note that a basic-star joins if it is almost max-efficient and at least
1/3 of its proposals are granted, and each component grants at most 3 proposals. Thus, the
set of grayed stars has efficiency within a constant factor of the max-efficient basic-star.

For the second part, first note that the probability that an almost-max-efficient star 𝑋 is
marked active and at least 1/3 of its proposals are accepted is Θ(1/∆*). This is because, 𝑋
is marked active with probability 1/(5∆*) and then, for each unsatisfied component 𝒞 that
gets satisfied by 𝑋, the probability that more than 3 stars satisfying 𝒞 are marked is at most(︀Δ*

𝜌

4

)︀
( 1
5Δ*

𝜌
)4 ≤ ( 𝑒

5
)4 < 1/10. Hence, the expected fraction of the unaccepted proposals of 𝑋 is

at most 1/10, which using Markov’s inequality means that the probability that more than
2/3 are unaccepted is at most 3/20. Therefore, the probability that 𝑋 is marked active and
at least 1/3 of its proposals are accepted is at least 0.03/∆*.

Call a component large-degree if it can be satisfied by at least ∆*
𝜌/2 many almost-max-

efficient star stars. We get that for each large-degree unsatisfied component 𝒞, the expected
number of stars that satisfy 𝒞 and get colored gray is at least 1/100. On the other hand,
the probability that there are 𝑧 stars that satisfy 𝒞 and are colored gray (which shows that
they are marked active) decays exponentially with 𝑧, as it is at most

(︀
Δ*

𝜌
𝑧

)︀
( 1
5Δ*

𝜌
)𝑧 ≤ ( 𝑒

5
)𝑧. It

follows that with at least a constant probability, one or more of stars that satisfy 𝒞 gets
colored gray. This is because otherwise, only an 𝜀 of the total probability mass is on 𝑧 ≥ 1,
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for a sub-constant 𝜀, which given the exponentially decaying tail, it would contradict with
the expectation being at least constant 1/100. Hence, we get that 𝒞 gets satisfied with at
least a constant probability.

It follows from Markov’s inequality that with at least a constant probability, at least a
constant fraction of large-degree components get satisfied, finishing the proof.

8.5 Round Complexity Lower Bound

Here, we mention the simple observation that the techniques of Das Sarma et al. [DSHK+11]
imply a Ω̃(𝐷 +

√
𝑛) rounds lower bound for any approximation of MCDS. For simplicity,

we only explain an Ω(
√
𝑛/ log 𝑛)-round lower bound for the case where 𝐷 = 𝑂(log 𝑛) and in

fact we will just sketch the changes. We encourage the interested reader to see [DSHK+11]
for the details and generalization to other diameter values.

Observation 8.5.1. For any polynomial 𝛼(𝑛), there is a constant 𝜀 > 0 such that any

𝛼(𝑛)-approximation algorithm for the minimum-weight connected dominating set that has

error-probability at most 𝜀 requires at least Ω(
√
𝑛/ log 𝑛) rounds of the CONGEST model, on

a graph that has diameter 𝐷 = 𝑂(log 𝑛).

The general approach (following [DSHK+11]) is that we present a graph and show that
one can encode instances of two-party set disjointness on

√
𝑛-bits in the node-weights of this

graph such that the following holds: if there is an 𝛼(𝑛)-approximation algorithm 𝒜 for the
minimum-weight connected dominating set problem that has error-probability at most 𝜀 and
uses 𝑇 ≤ Ω(

√
𝑛/ log 𝑛) rounds, then there is a randomized algorithm for two party set on

instances with
√
𝑛-bits inputs with error-probability at most 𝜀 that uses less than Θ(𝑇 log 𝑛)

communication rounds, which would be a contradiction. Without loss of generality, enhance
𝒜 so that each node knows the total weight of final CDS, note that this can be done in
additional 𝑂(𝐷) rounds and is thus without loss of generality.

Consider a graph made of three parts:
√
𝑛 aligned parallel paths of length

√
𝑛 each, a

tree of depth log 𝑛− 1 on top of these trees such that each of its leaves is aligned with one
column of the nodes of the paths, and finally, for each leaf of the tree, edges from this leaf
to all the nodes in the paths that are in the same column. Figure 8-6 shows an example.

Call the left-most leaf Alice and the rightmost leaf Bob and that they are given an
instance of set-disjointness, where Alice and Bob respectively get inputs 𝒳 and 𝒴 that are
subsets of {1, 2, . . . ,

√
𝑛}. We next describe how to encode these inputs in the weights of

the MCDS problem. Give a weight of 1 to each non-leaf node of the tree, the nodes held by
Alice and Bob, and also all nodes on the paths except the leftmost and the rightmost ones
on each path. These weight-1 nodes are indicated with a light green color in Figure 8-6.
Then, for each other leaf node, give a weight 𝑀 = 𝛼(𝑛) · 𝑛 + 1 (light red color). Finally, for
each 𝑖 ∈ {1, . . . ,

√
𝑛}, for the leftmost node of the 𝑖𝑡ℎ path, give a weight of 1 if 𝑖 /∈ 𝒳 (dark

green color) and give a weight 𝑀 if 𝑖 ∈ 𝒳 (dark red). Similarly, for the rightmost node of
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Figure 8-6: The round complexity lower bound graph

the 𝑖𝑡ℎ path, give a weight of 1 if 𝑖 /∈ 𝒴 and give a weight 𝑀 if 𝑖 ∈ 𝒴 . Note that Alice and
Bob can indeed put these weights as inputs to the MCDS problem in just one round, as all
the nodes know the fixed part of the weight, and the variable part which depends on the
set disjointness inputs is on the neighbors of Alice and Bob, and thus, they can lean their
weights in just one round.

Now notice that if 𝑖 ∈ 𝒳 ∩𝒴 , then any CDS must contain at least one node of weight 𝑀 .
On the other hand, if 𝒳 and 𝒴 are disjoint, then there is an CDS with weight (less than) 𝑛,
which includes all weight-1 nodes. Since 𝑀

𝑛
> 𝛼, and as 𝒜 finds an 𝛼(𝑛)-approximation of

MCDS, the weight output by 𝒜 lets the nodes distinguish the case where the sets are disjoint
from the case where they are not (with error-probability being the same as in 𝒜). The final
piece, which is the key technical part, is to show that Alice and Bob can indeed simulate
𝒜 being run over the whole graph, using only Θ(𝑇 log 𝑛) communication rounds between
themselves. This follows exactly from [DSHK+11, Simulation Theorem].

8.6 Open Problems and Future Work

We present a distributed 𝑂(log 𝑛) approximation algorithm for the MCDS problem in �̃�(𝐷+√
𝑛) rounds of the CONGEST model.
As mentioned before, MCDS is NP-hard and if one assumes that nodes can only perform

polynomial-time computations (which is a practically reasonable assumption and also a usual
one [DMP+03,JRS01,KW03]), the 𝑂(log 𝑛) approximation factor is optimal up to a constant
factor, unless P = NP. The author finds it quite an intriguing question to see if one can get
an 𝑜(log 𝑛) approximation in a non-trivial number of rounds, by relaxing this assumption
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about local computations. However, this question might be only of theoretical interest.
In the current presentation of the algorithm, we have not tried to optimize the constant in

the approximation factor. However, it is not clear how to get a (1+𝑜(1)) log 𝑛 approximation
and that is another interesting question.

The author started looking into the MCDS problem with the hope of solving it—i.e.,
finding an 𝑂(log 𝑛) approximation for it—in �̃�(𝐷 +

√
𝑛) rounds of CONGEST, which is a

more restricted version of the CONGEST model where in each round, each node can send one
𝑂(log 𝑛)-bits message to all of its neighbors. Notice that the same message has to be sent to
all neighbors. This model is called VCONGEST as the congestion is on vertices, rather than
on edges. Note that this restriction is natural in node-capacitated networks, and MCDS is
also more important in such settings. It would be interesting to see if an �̃�(𝐷+

√
𝑛)-rounds

𝑂(log 𝑛)-approximation for MCDS can be found in VCONGEST.
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Chapter 9

Distributed Connectivity Decomposition

9.1 Introduction & Related Work

In this chapter, we present our distributed constructions for the connectivity decompositions
that were introduced and proven to exist in Chapter 4. In particular, we present distributed
algorithms that construct edge and vertex connectivity decompositions, which are compara-
ble to their existential/centralized counterparts, while having near-optimal round complexity.

We note that, although our edge-connectivity decomposition builds on a number of stan-
dard techniques and known results, our vertex connectivity decomposition algorithm is the
main technical novelty of this chapter. In particular, it achieves near-optimal time complex-
ities in both distributed and centralized settings (Theorem 9.1.1 and Theorem 9.1.2), and it
leads to a number of interesting algorithmic implications in both of these settings.

Throughout, we assume a connected undirected network 𝐺 = (𝑉,𝐸) with 𝑛 = |𝑉 | nodes,
𝑚 = |𝐸| edges, and diameter 𝐷. Moreover, we use 𝑘 and 𝜆 to denote the vertex connectivity
and edge connectivity, respectively.

Theorem 9.1.1. There is an �̃�(min{𝐷+
√
𝑛, 𝑛

𝑘
})-rounds randomized distributed algorithm in

the V-CONGEST model that w.h.p. finds a fractional dominating tree packing of size Ω( 𝑘
log𝑛

),

where 𝑘 is the vertex connectivity of the graph. More specifically, this algorithm finds Ω(𝑘)

dominating trees, each of diameter �̃�(𝑛
𝑘
), such that each node is included in 𝑂(log 𝑛) trees.

Note that diameter Ω(𝑛/𝑘) for all except very few of the dominating trees is unavoidable,
even in graphs of diameter 2. Just consider a graph consisting of sequence of 𝑛/𝑘 cliques of
size 𝑘, where subsequent cliques are connected by matchings of size 𝑘. Adding a single node 𝑢
and connecting 𝑢 to all other nodes creates a graph with diameter 2 and vertex connectivity
𝑘 + 1, where any dominating tree that does not include 𝑢 needs to have diameter at least
𝑛/𝑘.

Theorem 9.1.2. There is an �̃�(𝑚) time randomized centralized algorithm that w.h.p. finds

a fractional dominating tree packing of size Ω( 𝑘
log𝑛

), where 𝑘 is the vertex connectivity of the
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graph. More specifically, this algorithm finds Ω(𝑘) dominating trees, each of diameter �̃�(𝑛
𝑘
),

such that each node is included in 𝑂(log 𝑛) trees.

Theorem 9.1.2 improves over the Ω(𝑛3) algorithms that can be obtained from the ap-
proach we explained in Chapter 4 (as presented in [CHGK14a]) and also on the polynomial
time method of [EKV13]. Regarding Theorem 9.1.1, we note that the algorithm of [EKV13]
does not appear to admit an efficient distributed implementation as it is based on a number
of centralized tools and techniques such as the ellipsoid method for linear programming,
the meta-rounding of [CV00], and the Min-Cost-CDS approximation result of [GK98]. The
algorithm of [CHGK14a], which we presented in Chapter 4 as a proof of existence, has a
similar problem which seems essential and unavoidable. See the last part of Section 9.3 for
an explanation of why the algorithm of [CHGK14a] does not extend to an efficient algorithm
in the distributed setting and for how it compares with the approach in this chapter.

Theorem 9.1.3. There is an �̃�(𝐷 +
√
𝜆𝑛)-rounds randomized distributed algorithm in the

E-CONGEST model that w.h.p. finds a fractional spanning tree packing of size ⌈𝜆−1
2
⌉(1− 𝜀),

where 𝜆 is the edge connectivity of the graph. Furthermore, each edge is included in at most

𝑂(log3 𝑛) trees.

Remark on Integral Tree Packings Both algorithms of Theorem 9.1.1 and Theo-
rem 9.1.2 can be adapted to produce a dominating tree packing of size Ω( 𝑘

log2 𝑛
), in similar

time-complexities, using the random layering technique of Section 4.4.
Moreover, we note that a considerably simpler variant of the algorithm of Theorem 9.1.3

can be adapted to produce an integral spanning tree packing of size Ω( 𝜆
log𝑛

), with a round

complexity of �̃�(𝐷 +
√
𝜆𝑛).

For information dissemination purposes, which comprise the primary application of our
decompositions, fractional packings usually are as useful as integral packings. We can typi-
cally timeshare each node or edge among the trees that use it (with a time share proportional
to the weights of the tree). Since our fractional packing results have better sizes, our main
focus will be on describing the fractional versions.

Lower Bounds While Ω(𝑚) is a trivial lower bound on the time complexity of the central-
ized decompositions, by extending results of [DHK+12], we show lower bounds of Ω̃(𝐷+

√︀
𝑛
𝑘
)

and Ω̃(𝐷+
√︀

𝑛
𝜆
) on the round complexities of the distributed decompositions of Theorem 9.1.1

and Theorem 9.1.3. See Section 9.10 for the formal statements and the proofs.

9.1.1 Applications

Information Dissemination

As their primary application, our decompositions provide time-efficient distributed construc-
tions for broadcast algorithms (based on routing, i.e., without using network coding) with
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existentially optimal throughput. See Section 9.8 for a simple example. Note that in the
V-CONGEST model, vertex cuts characterize the main limits on the information flow, and
𝑘 messages per round is the clear information-theoretic limit on the broadcast throughput
(even with network coding) in each graph with vertex connectivity 𝑘. Similarly, in the
E-CONGEST model, edge cuts characterize the main limits on the information flow, and 𝜆

messages per round is the information-theoretic limit on the broadcast throughput (even with
network coding) in each graph with edge connectivity 𝜆. Our optimal-throughput broadcast
algorithms are as follows:

Corollary 9.1.4. In the V-CONGEST model, using the �̃�(𝐷 +
√
𝑛)-rounds construction of

Theorem 9.1.1, and then broadcasting each message along a random tree, we get a broadcast

algorithm with throughput of Ω( 𝑘
log𝑛

) messages per round. [CHGK14a] shows this throughput

to be existentially optimal.

See Section 9.8 for an explanation and a simple example of how one can use dominating
tree packings to broadcast messages by routing them along different trees.

Corollary 9.1.5. In the E-CONGEST model, using the �̃�(𝐷+
√
𝜆𝑛)-rounds construction of

Theorem 9.1.3, and then broadcasting each message along a random tree, we get a broadcast

algorithm with throughput of ⌈𝜆−1
2
⌉(1− 𝜀) messages per round.

We emphasize that the above broadcast algorithms provide oblivious broadcast rout-

ing (see [Rac02]). In an oblivious routing algorithm, the path taken by each message is
determined (deterministically or probabilistically) independent of the current load on the
graph; that is, particularly independent of how many other messages exist in the graph
and how they are routed. Note that this is in stark contrast to adaptive algorithms which
can tailor the route of each message, while knowing the current (or future) load on the
graph, in order to minimize congestion. Oblivious routing algorithms appear to be a much
more restricted family and a priori, it is somewhat unclear whether they can have a per-
formance close to that of the optimal adaptive algorithms. Interestingly, a beautiful line
of work [Rac02, ACF+03, HHR03, BKR03, Rac08] shows this to be possible: These papers
present centralized oblivious routing algorithms with successively improved edge-congestion
competitiveness ratios. This line ends in the algorithm of Räcke [Rac08] which achieves
the optimal 𝑂(log 𝑛)-competitive edge-congestion. That is, in this algorithm, the expected
maximum congestion over all edges is at most 𝑂(log 𝑛) times the maximum congestion of the
offline optimal algorithm. The problem of designing distributed oblivious routing algorithms
achieving this performance remains open. Furthermore, it is known that no point-to-point

oblivious routing can have vertex-congestion competitiveness better than Θ(
√
𝑛) [HKRL07].

Our results address oblivious routing for broadcast :

Corollary 9.1.6. By routing each message along a random one of the trees generated by

Theorem 9.1.1 and Theorem 9.1.3, we get distributed oblivious routing broadcast algorithms

that respectively have vertex-congestion competitiveness of 𝑂(log 𝑛) and edge-congestion com-

petitiveness of 𝑂(1).
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Vertex Connectivity Approximation

Vertex connectivity is a central concept in graph theory and extensive attention has been
paid to developing algorithms that compute or approximate it. In 1974, Aho, Hopcraft
and Ulman [AHU74, Problem 5.30] conjectured that there should be an 𝑂(𝑚) time al-
gorithm for computing the vertex connectivity. Despite many interesting works in this
direction—e.g., [Tar74,Eve75,Gal80,Hen97,HRG96,Gab00]—finding 𝑂(𝑚) time algorithms
for vertex connectivity has yet to succeed. The current state of the art is an 𝑂(min{𝑛2𝑘 +

𝑛𝑘3.5, 𝑛2𝑘+𝑛1.75𝑘2}) time exact algorithm by Gabow [Gab00] and an 𝑂(min{𝑛2.5, 𝑛2𝑘}) time
2-approximation by Henzinger [Hen97]. The situation is considerably worse in distributed
settings and the problem of upper bounds has remained widely open, while we show in
Section 9.10 that an Ω(𝐷 +

√︀
𝑛
𝑘
) round complexity lower bound follows from techniques

of [DHK+12].
Since Theorem 9.1.1 and Theorem 9.1.2 work without a priori knowledge of vertex con-

nectivity and as the size of the achieved dominating trees packing is in the range [Ω( 𝑘
log𝑛

), 𝑘],
our dominating tree packing algorithm provides the following implication:

Corollary 9.1.7. We can compute an 𝑂(log 𝑛) approximation of vertex connectivity, cen-

tralized in �̃�(𝑚) time, and distributed in �̃�(𝐷 +
√
𝑛) rounds of the V-CONGEST model.

Note that it is widely known that in undirected graphs, vertex connectivity and vertex
cuts are significantly more complex than edge connectivity and edge cuts, for which currently
the following result are known: an �̃�(𝑚) time centralized exact algorithm [Kar96], an 𝑂(𝑚)

time centralized (1 + 𝜀)-approximation [Kar94b], and recent �̃�(𝐷 +
√
𝑛) rounds distributed

algorithms for (2 + 𝜀)-approximation [GK13] and (1 + 𝜀)-approximation [NS14].

9.1.2 Other Related Work

Vertex-Independent Trees

Dominating tree packings have some resemblance to vertex independent trees [ZI89,KS92b]
and are in fact a strictly stronger concept. In a graph 𝐺 = (𝑉,𝐸), 𝑘′ trees are called vertex

independent if they are spanning trees all rooted in a node 𝑟 ∈ 𝑉 and for each vertex 𝑣 ∈ 𝑉 ,
the paths between 𝑟 and 𝑣 in different trees are internally vertex-disjoint. We emphasize
that these trees are not vertex disjoint.

Zehavi and Itai conjectured in 1989 [ZI89] that each graph with vertex connectivity 𝑘

contains 𝑘 vertex independent trees. Finding such trees, if they exist, is also of interest. The
conjecture remains open and is confirmed only for cases 𝑘 ∈ {2, 3}. Itai and Rodeh [IR88]
present an 𝑂(𝑚) time centralized algorithm for finding 2 vertex independent trees, when the
graph is 2-vertex-connected and Cheriyan and Maheshvari [CM88] present an 𝑂(𝑛2) time
centralized algorithm for finding 3 vertex independent trees, when the graph is 3-vertex-
connected.
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Vertex disjoint dominating trees are a strictly stronger notion1: Given 𝑘′ vertex-disjoint
dominating trees, we get 𝑘′ vertex independent trees, for any root 𝑟 ∈ 𝑉 . This is by adding
all the other nodes to each dominating tree as leaves to make it spanning. Then, for each
vertex 𝑣 ∈ 𝑉 , the path from 𝑟 to 𝑣 in each (now spanning) tree uses only internal vertices
from the related dominating tree.

In this regard, one can view [CHGK14a, Theorem 1.2] as providing a poly-logarithmic
approximation of the Zehavi and Itai’s conjecture. Furthermore, the vertex connectivity
algorithm presented here (formally, its extension to integral dominating tree packing, men-
tioned in Section 4.1.1) makes this approximation algorithmic with near-optimal complexities
�̃�(𝑚) centralized and �̃�(𝐷 +

√
𝑛) distributed.

A Review of Centralized Connectivity Decompositions

Edge Connectivity Edge connectivity decompositions into spanning tree packings of
⌈𝜆−1

2
⌉ have been known due to results of Tutte [Tut61] and Nash-Williams [NW61] from

1960, and they have found many important applications: the best known centralized min-
imum edge cut algorithm [Kar96], the network coding advantage in edge-capactitated net-
works [LLL09], and tight analysis of the number of minimum cuts of a graph and random
edge-sampling [Kar96]. Centralized algorithms for finding such a spanning tree packing
include: an �̃�(min{𝑚𝑛, 𝑚2

√
𝑛
}) time algorithm for unweighted graphs by Gabow and West-

ermann [GW88], an �̃�(𝑚𝑛) time algorithm for weighted graphs by Barahona [Bar95], and
an �̃�(𝑚𝜆) time algorithm for a fractional packing via the general technique of Plotkin et
al. [PST91] (see [Kar96]).

Vertex Connectivity As mentioned before, vertex connectivity decompositions were in-
troduced only recently by Censor-Hillel, Ghaffari, and Kuhn [CHGK14a]. As discussed in
Chapter 4, the problem also has connections to analyzing vertex connectivity under vertex
sampling and also network coding gap in node-capacitated networks. Consequent to (a pre-
liminary version of) [CHGK14a], Ene et al. [EKV13] presented a nice alternative proof for
obtaining fractional dominating tree packing of size Ω( 𝑘

log𝑛
), which uses metarounding re-

sults of Carr and Vempala [CV00] and the Min-Cost-CDS approximation result of Guha and
Khuller [GK98]. That proof does not extend to integral packing. Even though the proofs
presented in [CHGK14a] and [EKV13] are based on polynomial time algorithms, neither
of the algorithms seems to admit a distributed implementation and even their centralized
complexities are at least Ω(𝑛3).

We also note that finding many dominating sets (particularly algorithmic inapproxima-
bility of it) was addressed in the beautiful work of Feige et al. [FHK00]. Although, as we

1The relation is strict as e.g., the following graph with vertex connectivity 3 does not admit more than
1 vertex-disjoint dominating trees while [CM88] implies that this graph has 3 vertex independent trees:
A graph with a clique of size 𝑛1/3, plus one additional node for each subset of three nodes of the clique,
connected exactly to those three clique nodes.
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will see in Section 9.3, from an algorithmic viewpoint, finding many dominating sets is sig-
nificantly simpler than finding many connected dominating sets, and in fact, getting just the
domination part in our results is rather a triviality (see Lemma 4.3.2).

9.2 Preliminaries

We here recall some of the basic notations and definitions and then explain the related
distributed representation aspects.

Given an undirected graph 𝐺 = (𝑉,𝐸) and a set 𝑆 ⊆ 𝑉 , we use the notation 𝐺[𝑆] to
indicate the subgraph of 𝐺 induced by 𝑆. A set 𝑆 ⊆ 𝑉 is called a connected dominating

set (CDS) iff 𝐺[𝑆] is connected and for each node 𝑢 ∈ 𝑉 ∖ 𝑆, 𝑢 has a neighbor 𝑣 ∈ 𝑆. A
subgraph 𝑇 = (𝑉𝑇 , 𝐸𝑇 ) of graph 𝐺 = (𝑉𝐺, 𝐸𝐺) is a dominating tree of graph 𝐺 if 𝑇 is a tree
and 𝑉𝑇 is a dominating subset of 𝑉𝐺.

Dominating Tree Packing Let 𝐷𝑇 (𝐺) be the set of all dominating trees of 𝐺. A 𝜅-size
dominating tree packing of 𝐺 is a collection of 𝜅 vertex-disjoint dominating trees in 𝐺. A
𝜅-size fractional dominating tree packing of 𝐺 assigns a weight 𝑥𝜏 ∈ [0, 1] to each 𝜏 ∈ 𝐷𝑇 (𝐺)

s.t.
∑︀

𝜏∈𝐷𝑇 (𝐺) 𝑥𝜏 = 𝜅 and ∀𝑣 ∈ 𝑉 ,
∑︀

𝜏,𝑣∈𝜏 𝑥𝜏 ≤ 1.

Spanning Tree Packing Let 𝑆𝑇 (𝐺) be the set of all spanning trees of 𝐺. A 𝜅-size
spanning tree packing of 𝐺 is a collection of 𝜅 edge-disjoint spanning trees in 𝐺. A 𝜅-size
fractional spanning tree packing of 𝐺 assigns a weight 𝑥𝜏 ∈ [0, 1] to each 𝜏 ∈ 𝑆𝑇 (𝐺) s.t.∑︀

𝜏∈𝑆𝑇 (𝐺) 𝑥𝜏 = 𝜅 and ∀𝑒 ∈ 𝐸,
∑︀

𝜏,𝑒∈𝜏 𝑥𝜏 ≤ 1.

Distributed Problem Requirements In the distributed versions of dominating or span-
ning tree packing problems, we consider each tree 𝜏 as one class with a unique identifier 𝐼𝐷𝜏

and a weight 𝑥𝜏 . In the spanning tree packing problem, for each node 𝑣 and each edge 𝑒

incident to 𝑣, for each spanning tree 𝜏 that contains 𝑒, node 𝑣 should know 𝐼𝐷𝜏 and 𝑥𝜏 .
In the dominating tree packing problem, for each node 𝑣 and each dominating tree 𝜏 that
contains 𝑣, node 𝑣 should know 𝐼𝐷𝜏 , 𝑥𝜏 , and the edges of 𝜏 incident to 𝑣.

Some Details of the Distributed Model See Chapter 2 for model definitions. Since our
focus is on randomized algorithms, nodes can generate random ids by each taking random
binary strings of 4 log 𝑛 bits and delivering it to their neighbors. We assume no initial
knowledge about the graph. By using a simple and standard BFS tree approach, nodes can
learn the number of nodes in the network 𝑛, and also a 2-approximation of the diameter of
the graph 𝐷, in 𝑂(𝐷) rounds. Our algorithms assume this knowledge to be ready for them.
Note that these 𝑂(𝐷) rounds do not affect the asymptotic bounds of our round complexities.
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9.3 Dominating Tree Packing Algorithm

In this section, we present the main technical contribution of the paper, which is introducing a
new algorithm for vertex connectivity decomposition that has near optimal time complexities
for both centralized and distributed implementations. In this decomposition, we construct
a collection of Ω(𝑘) classes, each of which is a dominating tree w.h.p., such that each vertex
is included in at most 𝑂(log 𝑛) classes. This gives a fractional dominating tree packing2

of size Ω( 𝑘
log𝑛

) and lets us achieve Theorems 9.1.1 and 9.1.2. The analysis is presented in
Section 9.4.

The Algorithm’s Outline For the construction, we first assume that we have a 2-
approximation of 𝑘, and then explain how to remove this assumption. We construct 𝑡 = Θ(𝑘)

connected dominating sets (CDS) such that each node is included in 𝑂(log 𝑛) CDSs. We
work with CDSs, since it is sufficient to determine their vertices. To get dominating trees,
at the end of the CDS packing algorithm, we remove the cycles in each CDS using a simple
application of a minimum spanning tree algorithm.

We transform the graph 𝐺 = (𝑉,𝐸) into a graph 𝒢 = (𝒱 , ℰ), which is called the virtual
graph 3, and is constructed as follows: Each node 𝑣 ∈ 𝑉 simulates Θ(log 𝑛) virtual nodes
𝜈1, 𝜈2, . . . , 𝜈Θ(log𝑛) ∈ 𝒱 and two virtual nodes are connected if they are simulated by the same
real node or by two 𝐺-adjacent real nodes. To get the promised CDS Packing, we partition
the virtual nodes 𝒱 into 𝑡 disjoint classes, each of which is a CDS of 𝒢, w.h.p. Each CDS 𝒮
on 𝒢 defines a CDS 𝑆 on 𝐺 in a natural way: 𝑆 includes all real nodes 𝑣 for which at least
one virtual node of 𝑣 is in 𝒮. Thus, the 𝑡 classes of virtual nodes w.h.p. give 𝑡 CDSs on 𝐺

and clearly each real node is included in 𝑂(log 𝑛) CDSs.
For the construction, we organize the virtual nodes by giving them two attributes: each

virtual node has a layer number in {1, 2, . . . , 𝐿}, where 𝐿 = Θ(log 𝑛), and a type number

in {1, 2, 3}. For each real node 𝑣 ∈ 𝑉 , the 3𝐿 = Θ(log 𝑛) virtual nodes simulated by 𝑣 are
divided such that, for each layer number in {1, 2, . . . , 𝐿} and each type number in {1, 2, 3},
there is exactly one virtual node. For the communication purposes in the distributed setting,
note that each communication round on 𝒢 can be simulated via Θ(log 𝑛) communication
rounds on 𝐺. Thus, to simplify discussions, we divide the rounds into groups of Θ(log 𝑛)

consecutive rounds and call each group one meta-round.
As explained, we assign each virtual node to a class. This class assignment is performed

in a recursive manner based on the layer numbers. First, with a jump-start, we assign

2The approach of this algorithm can be also used to get an Ω( 𝜅
log2 𝑛

) dominating tree packing, where 𝜅 is

the remaining vertex-connectivity when each node is sampled with probability 1/2. This is a Ω( 𝑘
log2 𝑛

)-szie

dominating tree packing, as [CGG+15] proves that 𝜅 = Ω(𝑘). See [CHGK14a, Section 4] for the simple
extension to dominating tree packing.

3The virtual graph 𝒢 is nothing but using Θ(log 𝑛) copies of 𝐺, or simply reusing each node of 𝐺 for
Θ(log 𝑛) times, Θ(1) times per layer (described later). We find it more formal to use 𝒢 instead of directly
talking about 𝐺.
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each virtual node of layers 1 to 𝐿/2 to a random class in classes 1 to 𝑡. This step gives
us that each class dominates 𝒢, w.h.p. The interesting and challenging part is to achieve
connectivity for all classes. For this purpose, we go over the layers one by one and for each
layer ℓ ∈ [𝐿/2, 𝐿−1], we assign class numbers to the virtual nodes of layer ℓ+1 based on the
assignments to the virtual nodes of layers 1 to ℓ. The goal is to connect the components of
each class such that the total number of connected components (summed up over all classes)
decreases (in expectation) by a constant factor, with the addition of each layer. This would
give us that after Θ(log 𝑛) layers, all classes are connected, w.h.p. We next explain the
outline of this step, after presenting some notations.

Let 𝒱 𝑖
ℓ be the set of virtual nodes of layers 1 to ℓ assigned to class 𝑖 (note that 𝒱 𝑖

ℓ ⊆ 𝒱 𝑖
ℓ+1).

Let 𝑁 𝑖
ℓ be the number of connected components of 𝒢[𝒱 𝑖

ℓ] and let 𝑀ℓ :=
∑︀𝑡

𝑖=1(𝑁
𝑖
ℓ − 1) be the

total number of excess components after considering layers 1, . . . , ℓ, compared to the ideal
case where each class is connected. Initially 𝑀1 ≤ 𝑛− 𝑡, and as soon as 𝑀ℓ = 0, each class
induces a connected subgraph.

Recursive Class Assignment Suppose that we are at the step of assigning classes to
virtual nodes of layer ℓ + 1. We call virtual nodes of layer ℓ + 1 new nodes and the virtual
nodes of layers 1 to ℓ are called old nodes. Also, in the sequel, our focus is on the virtual
nodes and thus, unless we specifically use the phrase “real node", we are talking about a
virtual node. First, each new node of type 1 or type 3 joins a random class. It then remains
to assign classes to type-2 new nodes, which is the key part of the algorithm. The outline of
this procedure is as follows:

Recursive Class Assignment Outline:

(1) Identify the connected components of old nodes , i.e., those of 𝒢[𝒱 𝑖
ℓ] for each

class 𝑖.

(2) Create the bridging graph , a bipartite graph between the connected components
of old nodes and type-2 new nodes, which is defined as follows: We view each
connected component of old nodes as one node on one side of the bipartite graph,
by assuming all its vertices are contracted into one node. Each type-2 new node
𝑣 is adjacent to a connected component 𝒞 of 𝒢[𝒱 𝑖

ℓ] if all the following conditions
hold: (a) 𝑣 has a neighbor in 𝒞, (b) 𝒞 does not have a type-1 new node neighbor
𝑢 such that 𝑢 joined class 𝑖 and that 𝑢 has a neighbor in a component 𝒞 ′ ̸= 𝒞 of
𝒢[𝒱 𝑖

ℓ], and (c) 𝑣 has a type-3 new node neighbor 𝑤 such that 𝑤 has joined class 𝑖
and 𝑤 has a neighbor in a connected component 𝒞 ′′ ̸= 𝒞 of 𝒢[𝒱 𝑖

ℓ].

(3) Find a maximal matching ℳ in the bridging graph , i.e., between compo-
nents and type-2 new nodes. For each type-2 new node 𝑣, if it is matched inℳ,
then it joins the class of its matched component and otherwise, it joins a random
class.
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type-1 new nodes  

type-2 new nodes 

type-3 new nodes 

Figure 9-1: Bridging graph edges are presented by dotted lines; each color is one class.

Intuitively, the rule described in step (2) means the following: 𝑣 is a neighbor of 𝒞 in the
bridging graph if component 𝒞 is not (already) connected to another component of 𝒢[𝒱 𝑖

ℓ] via
one type-1 new node, but if 𝑣 joins class 𝑖, then with the help of 𝑣 and 𝑤, the component 𝒞
will be merged with some other component 𝒞 ′′ ̸= 𝒞 of 𝒢[𝒱 𝑖

ℓ]. See Figure 9-1.
This recursive class assignment outline can be implemented in a distributed manner in

�̃�(min{𝐷+
√
𝑛, 𝑛

𝑘
}) rounds of the V-CONGEST model, and in a centralized manner in �̃�(𝑚)

steps, thus proving respectively Theorems 9.1.1 and 9.1.2. We present the details of the
distributed implementation in Section 9.5. The centralized implementation is presented in
Section 9.6.

We show in the analysis that the above algorithm indeed constructs 𝑘 CDSs, w.h.p., and
clearly each real node is contained in at most 𝑂(log 𝑛) CDSs, at most one for each of its
virtual nodes. To turn these CDSs into dominating trees, we simply remove some of the
edges of each class so as to make it a tree. We do this by an application of a MST algorithm
on the virtual graph 𝒢: We give weight of 0 to the edges between virtual nodes of the same
class and weight 1 to other edges. Then, the edges with weight 0 that are included in the
MST of 𝒢 form our dominating trees, exactly one for each CDS.

Remark 9.3.1. The assumption of knowing a 2-approximation of 𝑘 can be removed at the

cost of at most an 𝑂(log 𝑛) increase in the time complexities.

To remove the assumption, we use a classical try and error approach: we simply try expo-
nentially decreasing guesses about 𝑘, in the form 𝑛

2𝑗
, and we test the outcome of the dominat-

ing tree packing obtained for each guess (particularly its domination and connectivity) using a
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randomized testing algorithm , presented in Section 9.7, on the virtual graph 𝒢. For this case,
this test runs in a distributed setting in 𝑂(min{𝑛 log2 𝑛

𝑘
, (𝐷 +

√
𝑛 log 𝑛 log* 𝑛) log2 𝑛}) round

of the V-CONGEST model, and in a centralized setting with step complexity of 𝑂(𝑚 log3 𝑛).

An intuitive comparison with the approach of Chapter 4 We note that the approach
of the above algorithm is significantly different than that of our simpler existence proof in
Chapter 4, which was first presented in [CHGK14a]. Mainly, the key part in our existential
proof (Chapter 4) is that it finds short paths between connected components of the same class,
called connector paths. The high-level idea is that, by adding the nodes on the connector
paths of a class to this class, we can merge the connected components at the endpoints of
this path. However, unavoidably, each node of each path might be on connector paths of
many classes. Thus, the class assignment of this node is not clear. Our existential proof
carefully allocates the nodes on the connector paths to different classes so as to make sure
that the number of connected components goes down by a constant factor in each layer (in
expectation).

Finding the connector paths does not seem to admit an efficient distributed algorithm
and it is also slow in a centralized setting. The algorithm presented in this chapter does not
find connector paths or use them explicitly. However, it is designed such that it enjoys the
existence of connector paths and its performance gains implicitly from the abundance of the
connector paths. While this is the key part that allows us to make the algorithm distributed
and also makes it simpler and faster centralized, the analysis becomes more involved. The
main challenging part in the analysis is to show that the the size of the maximal matching
found in the bridging graph is large enough so that in each layer, the number of connected
components (summed up over all classes) goes down by a constant factor, with at least a
constant probability. This is addressed in Section 9.4.2.

9.4 Dominating Tree Packing Analysis

In this section, we present the analysis for the algorithm explained in Section 9.3. We note
that this analysis is regardless of whether we implement the algorithm in a distributed or a
centralized setting. In a first simple step, we show that each class is a dominating set. Then,
proving the connectivity of all classes, which is the core technical part, is divided into two
subsections: We first present the concept of connector paths in Section 9.4.1 and then use
this concept in Section 9.4.2 to achieve the key point of the connectivity analysis, i.e., the
Fast Merger Lemma (Lemma 9.4.4).

Lemma 9.4.1 (Domination Lemma). W.h.p., for each class 𝑖, 𝒱 𝑖
𝐿/2 is a dominating set.

Proof of Lemma 9.4.1. Each virtual node 𝑣 ∈ 𝒱 has in expectation 𝑘 log𝑛
2𝑡

= Ω(log 𝑛) virtual
neighbors in 𝒱 𝑖

𝐿/2. Choosing constants properly, the claim follows from a standard Chernoff
argument combined with a union bound over all choices of 𝑣 and over all classes.
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Since 𝒱 𝑖
ℓ ⊆ 𝒱 𝑖

ℓ′ for ℓ ≤ ℓ′, the domination of each class follows directly from this lemma.
For the rest of this section, we assume that for each class 𝑖, 𝒱 𝑖

𝐿/2 is a dominating set.

9.4.1 Connector Paths

The concept of connector paths is a simple toolbox that we developed in [CHGK14a]. For
completeness, we present a considerably simpler version here:

Consider a class 𝑖, suppose 𝑁 𝑖
ℓ ≥ 2, and consider a component 𝒞 of 𝒢[𝒱 𝑖

ℓ]. For each set of
virtual vertices 𝒲 ⊆ 𝒱 , define the projection Ψ(𝒲) of 𝒲 onto 𝐺 as the set 𝑊 ⊆ 𝑉 of real
vertices 𝑤, for which at least one virtual node of 𝑤 is in 𝒲 .

A path 𝑃 in the real graph 𝐺 is called a potential connector for 𝒞 if it satisfies the
following three conditions: (A) 𝑃 has one endpoint in Ψ(𝒞) and the other in Ψ(𝒱 𝑖

ℓ ∖ 𝒞), (B)
𝑃 has at most two internal vertices, (C) if 𝑃 has exactly two internal vertices and has the
form 𝑠, 𝑢, 𝑤, 𝑡 where 𝑠 ∈ Ψ(𝒞) and 𝑡 ∈ Ψ(𝒱 𝑖

ℓ ∖ 𝒞), then 𝑤 does not have a neighbor in Ψ(𝒞)
and 𝑢 does not have a neighbor in Ψ(𝒱 𝑖

ℓ ∖ 𝒞).
Intuitively, condition (C) requires minimality of each potential connector path. That is,

there is no potential connector path connecting Ψ(𝒞) to another component of Ψ(𝒱 𝑖
ℓ) via

only 𝑢 or only 𝑤.
From a potential connector path 𝑃 on graph 𝐺, we derive a connector path 𝒫 on virtual

graph 𝒢 by determining the types of the related internal virtual vertices as follows: (D) If
𝑃 has one internal real vertex 𝑤, then for 𝒫 we choose the virtual vertex of 𝑤 in layer ℓ + 1

in 𝒢 with type 1. (E) If 𝑃 has two internal real vertices 𝑤1 and 𝑤2, where 𝑤1 is adjacent to
Ψ(𝒞) and 𝑤2 is adjacent to Ψ(𝒱 𝑖

ℓ ∖ 𝒞), then for 𝒫 we choose the virtual vertices of 𝑤1 and 𝑤2

in layer ℓ+ 1 with types 2 and 3, respectively. Finally, for each endpoint 𝑤 of 𝑃 we add the
copy of 𝑤 in 𝒱 𝑖

ℓ to 𝒫 . We call a connector path that has one internal vertex a short connector
path, whereas a connector path with two internal vertices is called a long connector path.

Figure 9-2, demonstrates an example of potential connector paths for a component 𝒞1 ∈
𝒢[𝒱 𝑖

ℓ] (see Section 9.4.1). The figure on the left shows the graph 𝐺, where the projection
Ψ(𝒱 𝑖

ℓ) is indicated via green vertices, and the green paths are potential connector paths of
Ψ(𝒞1). On the right side, the same potential connector paths are shown, where the type
of the related internal vertices are determined according to rules (D) and (E) above, and
vertices of different types are distinguished via different shapes (for clarity, virtual vertices
of other types are omitted).

Because of condition (C), and rules (D) and (E) above, we get the following fact:

Proposition 9.4.2. For each class 𝑖, each type-2 virtual vertex 𝑢 of layer ℓ+1 is on connector

paths of at most one connected component of 𝒢[𝒱 𝑖
ℓ].

We next show that each component that is not single in its class has 𝑘 connector paths.

Lemma 9.4.3 (Connector Abundance Lemma). Consider a layer ℓ ≥ 𝐿/2 + 1 and a

class 𝑖 such that 𝒱 𝑖
𝐿/2 ⊆ 𝒱 𝑖

ℓ is a dominating set of 𝒢 and 𝑁 𝑖
ℓ ≥ 2. Further consider an
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Figure 9-2: Connector Paths for component 𝒞1 in layer ℓ + 1 copies of 𝐺

arbitrary connected component 𝒞 of 𝒢[𝒱 𝑖
ℓ]. Then, 𝒞 has at least 𝑘 internally vertex-disjoint

connector paths.

The proof is based on a simple application of Menger’s theorem [BM08, Theorem 9.1]
and crucially uses the domination of each class, Lemma 9.4.1. The proof can also be viewed
as a simplified version of that of [CHGK14a, Lemma 3.4].

Proof of Lemma 9.4.3. Fix a layer ℓ ∈ [𝐿/2, 𝐿 − 1]. Fix 𝒱 𝑖
ℓ and suppose it is a dominating

set of 𝒢.
Consider the projection Ψ(𝒱 𝑖

ℓ) onto 𝐺 and recall Menger’s theorem: Between any pair
(𝑢, 𝑣) of non-adjacent nodes of a 𝑘-vertex connected graph, there are 𝑘 internally vertex-
disjoint paths connecting 𝑢 and 𝑣. Applying Menger’s theorem to a node in Ψ(𝒞) and a
node in Ψ(𝒱 𝑖

ℓ ∖ 𝒞), we obtain at least 𝑘 internally vertex-disjoint paths between Ψ(𝒞) and
Ψ(𝒱 𝑖

ℓ ∖ 𝒞) in 𝐺.
We first show that these paths can be shortened so that they satisfy conditions (B) and

(C) of potential connector paths, stated in Section 9.4.1.
Pick an arbitrary one of these 𝑘 paths and denote it 𝑃 = 𝑣1, 𝑣2, ..., 𝑣𝑟, where 𝑣1 ∈ Ψ(𝒞) and

𝑣𝑟 ∈ Ψ(𝒱 𝑖
ℓ ∖𝒞). By the assumption that 𝒱 𝑖

ℓ dominates 𝒢, since 𝑣1 ∈ Ψ(𝒞) and 𝑣𝑟 ∈ Ψ(𝒮 𝑖
ℓ ∖𝒞),

either there is a node 𝑣𝑖 along 𝑃 that is connected to both Ψ(𝒞) and Ψ(𝒱 𝑖
ℓ ∖𝒞), or there must

exist two consecutive nodes 𝑣𝑖, 𝑣𝑖+1 along 𝑃 , such that one of them is connected to Ψ(𝒞) and
the other is connected to Ψ(𝒱 𝑖

ℓ ∖ 𝒞). In either case, we can derive a new path 𝑃 ′ which has
at most 2 internal nodes, i.e., satisfies (B), is internally vertex-disjoint from the other 𝑘 − 1

paths since its internal nodes are a subset of the internal nodes of 𝑃 and are not in Ψ(𝒱 𝑖
ℓ).

If in this path with length 2, the node closer to 𝒞 has a neighbor in Ψ(𝒱 𝑖
ℓ ∖ 𝒞), or if the

node closer to the Ψ(𝒱 𝑖
ℓ ∖ 𝒞) side has a neighbor in 𝒞, then we can further shorten the path

and get a path with only 1 internal node. Note that this path would still remain internally
vertex-disjoint from the other 𝑘−1 paths since its internal nodes are a subset of the internal
nodes of 𝑃 and are not in Ψ(𝒱 𝑖

ℓ).
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After shortening all the 𝑘 internally vertex-disjoint paths, we get 𝑘 internally vertex-
disjoint paths in graph 𝐺 that satisfy conditions (A), (B), and (C).

Now using rules (D) and (E) in Section 9.4.1, we can transform these 𝑘 internally vertex-
disjoint potential connector paths in 𝐺 into 𝑘 internally vertex-disjoint connector paths on
the virtual nodes of layer 𝑙 + 1. It is clear that during the transition from the real nodes to
the virtual nodes, the connector paths remain internally vertex-disjoint.

9.4.2 The Fast Merger Lemma

We next show that the described algorithms will make the number of connected components
go down by a constant factor in each layer. The formal statement is as follows:

Lemma 9.4.4 (Fast Merger Lemma). For each layer ℓ ∈ [𝐿
2
, 𝐿 − 1], 𝑀ℓ+1 ≤ 𝑀ℓ, and

moreover, there are constants 𝛿, 𝜌 > 0 such that Pr[𝑀ℓ+1 ≤ (1−𝛿)·𝑀ℓ] ≥ 𝜌 with independence

between layers.

Proof. Let ℓ be a layer in [𝐿
2
, 𝐿 − 1]. For the first part note that since from Lemma 9.4.1

we know that 𝒱 𝑖
𝐿/2 is a dominating, and as 𝒱 𝑖

ℓ ⊆ 𝒱 𝑖
ℓ′ for ℓ ≤ ℓ′, each new node of layer ℓ + 1

that is added to class 𝑖 has a neighbor in the old components of this class and thus, the new
nodes do not increase the number of connected components.

For the second part, let 𝑖 be a class for which 𝑁 𝑖
ℓ ≥ 2 and consider a component 𝒞 of

𝒢[𝒱 𝑖
ℓ]. We say that 𝒞 is good if one of the following two conditions is satisfied: (I) There is

a type-1 new node 𝑣 that has a neighbor in 𝒞 and a neighbor in a component 𝒞 ′ ̸= 𝒞 of 𝐺𝑖
ℓ

and 𝑣 joins class 𝑖. (II) There are two neighboring new nodes, 𝑤 and 𝑢, with types 2 and
3, respectively, such that 𝑤 has a neighbor in 𝒞, 𝑢 has a neighbor in a component 𝒞 ′ ̸= 𝒞
of 𝒢[𝒱 𝑖

ℓ], and both 𝑢 and 𝑤 join class 𝑖. Otherwise, we say that 𝒞 is bad. By definition, if a
connected component of old nodes is good, then at the next layer it is merged with another
component of its class.

Let 𝑋 𝑖
ℓ be the number of bad connected components of class 𝑖 if 𝑁 𝑖

ℓ ≥ 2 and 𝑋 𝑖
ℓ = 0

otherwise. Also, define 𝑌ℓ =
∑︀𝑡

𝑖=1𝑋
𝑖
ℓ, which gives 𝑀ℓ+1 ≤ 𝑀ℓ−𝑌ℓ

2
+ 𝑌ℓ. To prove the lemma,

we show that E[𝑌ℓ] ≤ (1−3𝛿) ·𝑀ℓ for some constant 𝛿 > 0. Then, using Markov’s inequality
we get that Pr[𝑌ℓ ≤ (1−2𝛿) ·𝑀ℓ] ≥ 1− 1−3𝛿

1−2𝛿
and therefore Pr [𝑀ℓ+1 ≤ (1− 𝛿)𝑀ℓ] ≥ 1− 1−3𝛿

1−2𝛿

and thus the lemma follows.
Hence, it remains to prove that E[𝑌ℓ] ≤ (1− 3𝛿) ·𝑀ℓ for some 𝛿 > 0. For this, we divide

the connected components of old nodes into two groups of fast and slow components, as
follows: Consider a class 𝑖 such that 𝑁 𝑖

ℓ ≥ 2. A connected component 𝒞 of 𝒢[𝒱 𝑖
ℓ] is called fast

if it has at least Ω(𝑘) short connector paths, and slow otherwise. Note that by Lemma 9.4.3,
w.h.p., each slow component has at least Ω(𝑘) long connector paths.

Let𝑀𝐹
ℓ and𝑀𝑆

ℓ be the total number of fast and slow connected components, respectively,
of graphs 𝒢[𝒱 𝑖

ℓ] as 𝑖 ranges over all classes. Note that 𝑀
𝐹
ℓ + 𝑀𝑆

ℓ = 𝑀ℓ. We say that a short
connector path 𝑝 for 𝒞 is good if its internal node is in the same class as 𝒞. Let 𝑌 𝐹

ℓ be
the total number of fast connected components for which none of the short paths is good.
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Because every type-1 new node picks its class number randomly, each of the Ω(𝑘) short paths
(independently) has probability at least 1/𝑘 to be in the right class. The expected number
of short paths in the right class is therefore constant and hence, there exists a constant 𝛿 > 0

such that E[𝑌 𝐹
ℓ ] ≤ (1− 3𝛿) ·𝑀𝐹

ℓ .
Moreover, let 𝒦 be set of the slow connected components of the graphs 𝒢[𝒱 𝑖

ℓ] (for all
classes 𝑖 ∈ [1, 𝑡]) for which none of the short paths is good and let 𝐾 := |𝒦|. Letℳ be the
maximal matching the algorithm computes for the bridging graph. In order to complete the
proof, we show that the expected size ofℳ is at least 3𝛿 ·𝐾 for some 𝛿 > 0. Given this, we
get that

E[𝑌ℓ] = E[𝑌 𝐹
ℓ ] +

(︀
E[𝐾]− E[|ℳ|]

)︀
≤ (1− 3𝛿) · (𝑀𝐹

ℓ + 𝐾)

≤ (1− 3𝛿) · (𝑀𝐹
ℓ + 𝑀𝑆

ℓ ) = (1− 3𝛿) ·𝑀ℓ,

which would complete the proof.
To show that the expected size of the maximal matching is at least 3𝛿 ·𝐾 for some 𝛿 > 0,

it is sufficient to prove that the expected size of a maximum matching is at least Ω(𝐾). It is
easy to see that the size of any maximal matching is at least half of the size of a maximum
matching. Hence, we just need to show that the expected size of the maximum matching is
at least Ω(𝐾). We do this in Lemma 9.4.5.

Lemma 9.4.5. The expected size of the maximum matching in the bridging graph is at least

Ω(𝐾).

This lemma is the key part of the analysis. Roughly speaking, the bridging graph might
have a complex structure and thus, we do not know how to work with it directly. However, the
saving grace is that we know more about the connector paths, thanks to Lemma 9.4.3. Using
long connector paths, we algorithmically identify a (random) subgraph ℋ of the bridging
graph and show that just this subgraph ℋ contains a matching of size Ω(𝐾). The analysis
of this algorithm uses a simple probability tail bound inequality that we develop for our
specific problem.

Proof of Lemma 9.4.5. In order to prove that the expected size of the maximum matching
is at least Ω(𝐾), we focus on a special sub-graph ℋ of the bridging graph (to be described
next). We show that in expectation, ℋ has a matching of size Ω(𝐾). Since ℋ is a sub-graph
of the bridging graph, this proves that the expected size of the maximum matching in the
bridging graph is at least Ω(𝐾) and thus completes the proof of Lemma 9.4.4.

Subgraph ℋ This graph is obtained from the connector paths of components in 𝒦. First,
discard each new node of type 3 with probability 1/2. This is done for cleaner dependency
arguments. For each type-2 new node 𝑣, we determine components that are neighbors of 𝑣 in
ℋ as follows: Consider all the long connector paths for components in 𝒦 that go through 𝑣.
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Pick an arbitrary one of these long connector paths and assume that it belongs to component
𝒞 ∈ 𝒦 of 𝒢[𝒱 𝑖

ℓ]. Suppose that the path goes from 𝒞 to 𝑣, then to a type-3 node 𝑢, and then
finally to a component 𝒞 ′ ̸= 𝒞 of the graph 𝒢[𝒱 𝑖

ℓ]. Mark component 𝒞 as a potential neighbor
for 𝑣 in ℋ if and only if 𝑤 is not discarded and 𝑤 has joined class 𝑖. Go over all long
connector paths of 𝑣 and mark the related potential component neighbors of 𝑣 accordingly.
If at the end, 𝑣 has exactly one potential component neighbor, then we include that one as
the neighbor of 𝑣 in ℋ. Otherwise, 𝑣 does not have any neighbor in ℋ.

It is easy to see see that ℋ is a sub-graph of the bridging graph. Moreover, the degree
of each type-2 new node in ℋ is at most 1. However, we remark that it is possible that a
component has degree greater than one in ℋ. Thus, ℋ is not necessarily a matching.

To complete the proof, in the following, we show that the expected size of the maximum
matching of ℋ is at least Ω(𝐾).

More specifically, we show that there is a constant 𝛿 > 0 such that for each component 𝒞
in 𝒦, with probability at least 𝛿, 𝒞 has at least one long connector path 𝑝 that satisfies the
following condition:

(⋆) The long connector path 𝑝 has internal type-2 new node 𝑣, and in ℋ, node 𝑣 has 𝒞 as
its only neighbor.

If a component 𝒞 has at least one long connector path that satisfies (⋆), then we pick exactly
one such long connector path and we match the type-2 node of that path to 𝒞.

Once we show that each component 𝒞 in 𝒦 with probability at least 𝛿 has a long connector
path satisfying (⋆), then the proof can be completed by linearity of expectation since the
number of components in 𝒦 is 𝐾 and each components in 𝒦 gets matched with probability
at least 𝛿.

We first study each long connector path 𝑝 of 𝒞 separately and show that 𝑝 satisfies (⋆)
with probability at least 1

4𝑡
. Moreover, we show that regardless of what happens for other

long connector paths of 𝒞, the probability that 𝑝 satisfies (⋆) is at most 1
2𝑡
.

Suppose that 𝑝 is composed of type-2 new node 𝑣 and type-3 new node 𝑤. Suppose that
other than class 𝑖, 𝑣 is also on long connector paths of classes 𝑖′1, 𝑖

′
2, . . . , 𝑖

′
𝑧 where 𝑧 < 𝑡. By

Proposition 9.4.2, for each other class 𝑖′𝑗, 𝑣 is on a connector path of at most one component
of class 𝑖′𝑗. Let 𝑢1 to 𝑢𝑧′ be the type-3 nodes on the long connector paths related to these
classes. Note that 𝑧′ might be smaller than 𝑧 as it is possible that the long connector paths
of the 𝑧 classes share some of the type 3 nodes. Path 𝑝 satisfies condition (⋆) if and only
if the following two conditions hold: (a) 𝑤 is not discarded and it joins class 𝑖, (b) for each
class 𝑖′𝑗, the type-3 node on the long connector path related to class 𝑖′𝑗 that goes through 𝑣 is
either discarded or it does not join class 𝑖′𝑗. The probability that (a) is satisfied is exactly 1

2𝑡
.

On the other hand, since different classes might have common type-3 nodes on their paths,
the events of different classes 𝑖′𝑗 satisfying the condition (b) are not independent. However,
for each type-3 new node 𝑢𝑗′ , suppose that 𝑥𝑗′ is the number of classes other than 𝑖 which
have long connector paths through 𝑢𝑗′ . Then, the probability that 𝑢𝑗′ is discarded or that it
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does not join any of these 𝑥𝑗′ classes is 1− 𝑥𝑗′

2𝑡
≥ 4−

𝑥𝑗′
2𝑡 , where the inequality follows because

𝑥𝑗′

2𝑡
≤ 1

2
. The probability that the above condition is satisfied for all choices of 𝑢𝑗′ is at least

4−
∑︀𝑧

𝑗′=1

𝑥𝑗′
2𝑡 . Since

∑︀𝑧′

𝑗′=1 𝑥𝑗′ = 𝑧 ≤ 𝑡, we get that the probability that (b) holds is at least

4− 1
2 = 1

2
. Hence, the probability that both (a) and (b) happen is at least 1

4𝑡
. This proves

that 𝑝 satisfies (⋆) with probability at least 1
4𝑡
. To show that this probability is at most 1

2𝑡
,

regardless of what happens with other paths, it is sufficient to notice that 𝑤 satisfies (a)
with probability at most 1

2𝑡
.

We now look over all long connector paths of component 𝒞 together. Let 𝑍 be the number
of long connector paths of 𝒞 which satisfy condition (⋆). To conclude the proof, we need to
show that Pr[𝑍 ≥ 1] ≥ 𝛿 for some constant 𝛿 > 0. Note that the events of satisfying this
condition for different long connector paths are not independent. In fact, they are positively
correlated and thus we can not use standard concentration bounds like a Chernoff bound.
Markov’s inequality does not give a sufficiently strong result either. To prove the claim, we
use an approach which has a spirit similar to the proof of Markov’s inequality but is tailored
to this particular case.

We know that w.h.p., 𝒞 has at least 𝑘′ = Ω(𝑘) long connector paths. Let us assume that
this holds. Using linearity of expectation, we have E[𝑍] ≥ 𝑘′

4𝑡
. Since 𝑡 = Θ(𝑘), by choosing

a small enough constant in definition of 𝑡 = Θ(𝑘), we get that E[𝑍] ≥ 𝑘′

4𝑡
= 𝑧0 for some

constant 𝑧0 > 1. Given this, we want to show that Pr[𝑍 ≥ 1] ≥ 𝛿 for some constant 𝛿 > 0.

Because of the upper bound on the probability for a path 𝑝 to satisfy condition (⋆) which
holds independently of what happens for other connector paths, we have

Pr[𝑍 = 𝜁] ≤
(︂
𝑘′

𝜁

)︂
(

1

2𝑡
)𝜁 ≤

(︂
2𝑒𝑘′

2𝑡𝜁

)︂𝜁

=

(︂
4𝑒𝑧0
𝜁

)︂𝜁

.

Following the above equation, intuitively, for some constant threshold 𝜁0 and a variable
𝜁 ≥ 𝜁0, Pr[𝑍 = 𝜁] decreases exponentially. This happens for example if we set 𝜁0 = 20𝑧0.
Hence, the contribution of the part where 𝑍 > 𝜁0 to the expectation E[𝑍] is very small and
essentially negligible. This means that to have E[𝑍] ≥ 𝑧0, a constant part of the probability
mass should be on values 𝑍 ∈ [1, 𝜁0], which completes the proof.

Having this intuition, the formal argument is as follows. Let 𝛽 = Pr[𝑍 ≥ 1]. Then we
have

𝑧0 ≤ E[𝑍] =
∞∑︁
𝜁=0

𝜁 Pr[𝑍 = 𝜁] =

𝜁0∑︁
𝜁=1

𝜁 Pr[𝑍 = 𝜁] +
∞∑︁

𝜁=𝜁0+1

𝜁 Pr[𝑍 = 𝜁]

≤ 𝛽 · 𝜁0 +
∞∑︁

𝜁=𝜁0+1

𝜁

(︂
𝑘′

𝜁

)︂(︂
1

2𝑡

)︂𝜁

≤ 𝛽 · 𝜁0 +
∞∑︁

𝜁=𝜁0+1

𝜁

(︂
2𝑒𝑘′

2𝑡𝜁

)︂𝜁

≤ 𝛽 · 𝜁0 +
∞∑︁

𝜁=𝜁0+1

𝜁

(︂
4𝑒𝑧0
𝜁

)︂𝜁

< 𝜁0(𝛽 +
1

210
),
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where the last inequality holds if constant 𝜁0 is chosen sufficiently large—e.g. 𝜁0 = 20𝑧0. We
get that 𝛽 = Pr[𝑍 ≥ 1] ≥ 1

20
− 1

210
. This shows that Pr[𝑍 ≥ 1] ≥ 𝛿 for some constant 𝛿 > 0

and thus completes the proof.

Lemma 9.4.6. W.h.p., for each 𝑖, the number of virtual nodes in class 𝑖 is 𝑂(𝑛 log𝑛
𝑘

).

proof of Lemma 9.4.6. Consider an arbitrary virtual node 𝑣. Either (a) 𝑣 chooses its class
number randomly, or (b) 𝑣 is a type-2 node and it chooses its class number based on the
maximal matching. Using a Chernoff bound, the total number of virtual nodes that join class
𝑖 randomly—following condition (a)—is 𝑂(𝑛 log𝑛

𝑡
) = 𝑂(𝑛 log𝑛

𝑘
) w.h.p. The number of virtual

nodes that join class 𝑖 following condition (b) is at most equal to the number of connected
components of 𝐺𝑖

𝐿/2. Since virtual nodes of layers 1 to 𝐿/2 choose their classes following
condition (a), we get that the number of virtual nodes that join class 𝑖 following condition
(b) is also 𝑂(𝑛 log𝑛

𝑘
) w.h.p.

9.5 Distributed Dominating Tree Packing

Here we present the distributed implementation of the outline of Section 9.3:

Theorem 9.5.1. There is distributed implementation of the fractional dominating tree pack-

ing algorithm of Section 9.3 in 𝑂(min{𝑛 log𝑛
𝑘

, 𝐷 +
√
𝑛 log 𝑛 log* 𝑛} log3 𝑛) rounds of the V-

CONGEST model.

Throughout the implementation, we make frequent use of the following protocol, which is
an easy extension of the connected component identification algorithm of Thurimella [Thu95,
Algorithm 5]. Recalled that we used this algorithm as a subroutine also in the previous two
chapters. For simplicity, we recall the functionality provided by this subroutine.

Theorem 9.5.2. 4Suppose that we are given a connected network 𝐺 = (𝑉,𝐸) with 𝑛 nodes

and diameter 𝐷 and a subgraph 𝐺𝑠𝑢𝑏 = (𝑉,𝐸 ′) where 𝐸 ′ ⊆ 𝐸 and each network node knows

the edges incident on 𝑣 in graphs 𝐺 and 𝐺𝑠𝑢𝑏. Moreover, suppose that each network node has

a value 𝑥𝑣 ∈ {0, 1}𝑂(log𝑛). There is a distributed algorithm in the V-CONGEST model with

round complexity of 𝑂(min{𝐷′, 𝐷+
√
𝑛 log* 𝑛}) which lets each node 𝑣 know the smallest (or

largest) 𝑥𝑢 for nodes 𝑢 that are in the connected component of 𝐺𝑠𝑢𝑏 that contains 𝑣. Here,

𝐷′ is the largest strong diameter among connected components of 𝐺𝑠𝑢𝑏.

4We note that the MST algorithm of [KP95] and the component identification algorithm of [Thu95] were
originally expressed in the CONGEST model but it is easy to check that the algorithms actually work in the
more restricted V-CONGEST model. In particular, [Thu95, Algorithm 5] finds the smallest preorder rank 𝑥𝑣

(for node 𝑣) in the connected component of each node 𝑢 but the same scheme works with any other inputs
𝑦𝑣 ∈ {0, 1}𝑂(log𝑛) such that 𝑦𝑣 ̸= 𝑦𝑢 for 𝑣 ̸= 𝑢. To satisfy this condition, we simply set 𝑦𝑣 = (𝑥𝑣, 𝑖𝑑𝑣), that
is, we append the id of each node to its variable. As a side note, we remark that computing a preorder in
the V-CONGEST model requires Ω(𝑛) rounds but we never use that.
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9.5.1 Identifying the Connected Components of Old Nodes

To identify connected components of old nodes, each old node—i.e., those in layers 1 to
ℓ—sends a message to all its 𝒢-neighbors declaring its class number. We put each 𝒢-edge
that connects two virtual nodes of the same class in a subgraph 𝒢𝑜𝑙𝑑. Moreover, each virtual
node 𝜈 sets it id 𝐼𝐷𝜈 = (𝐼𝐷𝑣, 𝑙𝑎𝑦𝑒𝑟𝜈 , 𝑡𝑦𝑝𝑒𝜈) where 𝑣 is the real node that contains 𝜈. Then,
using Theorem 9.5.2, each virtual old node learns the smallest ID in its 𝒢𝑜𝑙𝑑-component and
remembers this id as its 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐼𝐷𝜈 . Running the algorithm of Theorem 9.5.2 takes
𝑂(min{𝑛 log𝑛

𝑘
, 𝐷 +

√
𝑛 log 𝑛 log* 𝑛}) meta-rounds as the diameter of 𝒢 is 𝐷 = 𝑑𝑖𝑎𝑚(𝐺) and

since each component of 𝒢𝑜𝑙𝑑 contains at most 𝑂(𝑛 log𝑛
𝑘

) nodes (Lemma 9.4.6) and thus has
strong diameter 𝑂(𝑛 log𝑛

𝑘
).

9.5.2 Creating the Bridging Graph

In the bridging graph, a type-2 new node 𝑣 is connected to a connected component 𝒞 of 𝒢[𝒱 𝑖
ℓ]

if and only if the following condition holds: if 𝑣 joins class 𝑖, then component 𝒞 becomes
connected to some other component 𝒞 ′ of 𝒢[𝒱 𝑖

ℓ] through a type-3 new node, and 𝒞 is not
already connected to another component by type-1 new nodes.

We first deactivate the components of old nodes that are connected to another component
of the same class by type-1 new nodes which chose the same class. This is because in this
layer we do not need to spend a type-2 new node to connect these components to other
components of their class. To find components that are already connected through type-
1 new nodes, first, every old node 𝑣 sends its class number and componentID𝜈 to all its
neighbors. Let 𝑢 be a type-1 new node that has joined class 𝑖. If 𝑢 receives component IDs
of two or more components of class 𝑖, then 𝑢 sends a message containing 𝑖 and a special
connector symbol “connector” to its neighbors. Each component of class 𝑖 that receives
a message from a type-1 new node containing class 𝑖 and the special connector symbol
gets deactivates, that is, the node sets it local variable 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑓𝑎𝑙𝑠𝑒. This deactivation
decision can be disseminated inside components of 𝒢𝑜𝑙𝑑 in 𝑂(min{𝑛 log𝑛

𝑘
, 𝐷+

√
𝑛 log 𝑛 log* 𝑛})

meta-rounds using Theorem 9.5.2.

Now, we start forming the bridging graph. Each old node 𝑣 (even if 𝑣 is in a deactivated
component) sends its componentID𝑣 and its 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 status to all neighbors. For a type-3
new node 𝑤, let 𝐶𝑤 be the set of component IDs 𝑤 receives in this meta-round. Assume
that 𝑤 joined class 𝑖. The node 𝑤 creates a message 𝑚𝑤 using the following rule: If 𝐶𝑤 does
not contain the component ID of a component of class 𝑖, then the message 𝑚𝑤 is empty. If
𝐶𝑤 contains exactly one component ID of class 𝑖, 𝑚𝑤 contains the class number 𝑖 and this
component ID. Finally, if 𝐶𝑤 contains at least two component IDs of class 𝑖, 𝑚𝑤 contains the
class number 𝑖 and a special indicator symbol “connector” . We use this symbol instead
of the full list of component IDs, due to message size considerations. Each type-3 new node
𝑤 sends 𝑚𝑤 to all its neighbors.

To form the bridging graph, each type-2 new node 𝑣 creates a neighbors list List𝑣 of active
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components which are its neighbors in the bridging graph, as follows: Consider a component
𝒞 ∈ 𝒢[𝒱 𝑖

ℓ]. Node 𝑣 adds 𝒞 to List𝑣 if 𝑣 has a neighbor in active component 𝒞 and 𝑣 received
a message 𝑚𝑤 from a type-3 new neighbor such that 𝑚𝑤 is for class number 𝑖 and 𝑚𝑤 either
contains the ID of a component 𝒞 ′ ̸= 𝒞 of 𝒢[𝒱 𝑖

ℓ], or 𝑚𝑤 contains the special “connector”
symbol.

9.5.3 Maximal Matching in the Bridging Graph

To select a maximal matching in the bridging graph, we simulate Luby’s well-known dis-
tributed maximal independent set algorithm [Lub86]. Applied to computing a maximal
matching of a graph 𝐻, the variant of the algorithm we use works as follows: The algo-
rithm runs in 𝑂(log |𝐻|) phases. Initially all edges of 𝐻 are active. In each phase, each
edge picks a random number from a large enough domain such that the numbers picked by
edges are distinct with at least a constant probability. An edge that picks a number larger
than all adjacent edges joins the matching. Then, matching edges and their adjacent edges
become inactive. It follows from [Lub86] that this algorithm produces a maximal matching
in 𝑂(log |𝐻|) phases, with high probability.

We adapt this approach to our case as follows. We have 𝑂(log 𝑛) stages, one for each
phase of Luby’s algorithm. Throughout these stages, each type-2 new node 𝑣 that is still
unmatched keeps track of the active components that are still available for being matched to
it. This can be done by updating the neighbors list List𝑣 to the remaining matching options.
In each stage, each unmatched type-2 new node 𝑣 chooses a random value of Θ(log 𝑛) bits for
each component in List𝑣. Then, 𝑣 picks the component 𝒞 ∈ List𝑣 with the largest random
value and proposes a matching to 𝒞 by sending a proposal message 𝑚𝑣 that contains (a) the
ID of 𝑣, (b) the component ID of 𝒞 and (c) the random value chosen for 𝒞 by 𝑣.

Nodes inside an active connected component may receive a number of proposals and their
goal is to select the type-2 new node which proposed the largest random value to any node of
this component. Each old node 𝑢 has a variable named acceptedProposal𝑢, which is initialized
to the proposal received by 𝑢 with the largest random value (if any). We use algorithm of
Theorem 9.5.2 with subgraph 𝒢𝑜𝑙𝑑 (described in Section 9.5.2) and with initial value 𝑥𝑢 of
each node 𝑢 being its 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑢. Hence, in 𝑂(min{𝑛 log𝑛

𝑘
, 𝐷+

√
𝑛 log 𝑛 log* 𝑛) meta-

rounds, each old node 𝑢 learns the largest 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑣 amongst nodes 𝑣 which are
in the same 𝒢𝑜𝑙𝑑component as 𝑢. Then, 𝑢 sets its 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑢 equal to this largest
proposal and also sends this acceptedProposal𝑢 to all its neighbors. If a type-2 new node 𝑣

has its proposal accepted, then 𝑣 joins the class of that component. Otherwise, 𝑣 remains
unmatched at this stage and updates its neighbors list List𝑣 by removing the components
in List𝑣 that accepted proposals of other type-2 new nodes (those from which 𝑣 received an
acceptedProposal message). This process is repeated for 𝑂(log 𝑛) stages. Each type-2 new
node that remains unmatched after these stages joins a random class.
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9.5.4 Wrap Up

Now that we have explained the implementation details of each of the steps of the recursive
class assignment, we get back to concluding the proof of Theorem 9.5.1.

Proof of Theorem 9.5.1. Since in the matching part of the algorithm each component accepts
at most one proposal from a type-2 new node, the described algorithm computes a matching
between type-2 new nodes and components. From the analysis of Luby’s algorithm [ABI86,
Lub85], it follows that after 𝑂(log 𝑛) stages, the selected matching is maximal w.h.p. Note
that in some cases, the described algorithm might match a type-2 node 𝑣 and a component
𝒞 even if the corresponding edge in the bridging graph does not get the maximal random
value among all the edges of 𝑣 and 𝒞 in the bridging graph. However, it is straightforward
to see in the analysis of [ABI86,Lub85] that this can only speed up the process.

Regarding the time complexity, for each layer, the identification of the connected com-
ponents on the old nodes and also creating the bridging graph take 𝑂(min{𝑛 log𝑛

𝑘
, 𝐷 +√

𝑛 log* 𝑛}) meta-rounds. Then, for each layer we have 𝑂(log 𝑛) stages and each stage is
implemented in 𝑂(min{𝑛 log𝑛

𝑘
, 𝐷+

√
𝑛 log 𝑛 log* 𝑛}) meta-rounds. Thus, the time complexity

for the each layer is 𝑂(min{𝑛 log𝑛
𝑘

, 𝐷 +
√
𝑛 log 𝑛 log* 𝑛} log2 𝑛) rounds, which accumulates to

𝑂(min{𝑛 log𝑛
𝑘

, 𝐷 +
√
𝑛 log 𝑛 log* 𝑛} log3 𝑛) rounds over 𝐿 = Θ(log 𝑛) layers.

Furthermore, at the end of the CDS packing construction, in order to turn the CDSs into
dominating trees, we simply use a linear time minimum spanning tree algorithm of Kutten
and Peleg [KP95] on virtual graph 𝒢 with weight 0 for edges between nodes of the same
class and weight 1 for other edges. Then, the 0-weight edges included in the MST identify
our dominating trees. Running the MST algorithm of [KP95] on virtual graph 𝒢 takes at
most 𝑂(𝐷 +

√
𝑛 log 𝑛 log* 𝑛) meta-rounds, or simply 𝑂((𝐷 +

√
𝑛 log 𝑛 log* 𝑛) log 𝑛) rounds.

This MST can be performed also in 𝑂(𝑛 log𝑛
𝑘

) meta-rounds just by solving the problem of
each class inside its own graph, which has diameter at most 𝑂(𝑛 log𝑛

𝑘
). In either case, both

of these time complexities are subsumed by the other parts.

9.6 Centralized Dominating Tree Packing

In this section, we explain the details of a centralized implementation of the CDS-Packing
algorithm presented in Section 9.3.

Theorem 9.6.1. There is centralized implementation of the fractional dominating tree pack-

ing algorithm of Section 9.3 with time complexity of 𝑂(𝑚 log2 𝑛).

Proof. We use disjoint-set data structures for keeping track of the connected components
of the graphs of different classes. Initially, we have one set for each virtual node, and as
the algorithm continues, we union some of these sets. We use a simple version of this data
structure that takes 𝑂(1) steps for find operations and 𝑂(𝜂 log 𝜂) steps for union, where 𝜂 is
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the number of elements. Moreover, for each layer ℓ and each type 𝑟, we have one linked list
which keeps the list of virtual nodes of layer ℓ and type 𝑟.

We start with going over real nodes and choosing the layer numbers and type numbers
of their virtual nodes. Simultaneously, we also add these virtual nodes to their respective
linked list, the linked list related to their layer number and type. This part takes 𝑂(𝑛 log 𝑛)

time in total over all virtual nodes.
To keep the union-set data structures up to date, at the end of the class assignment of each

layer ℓ, we go over the edges of virtual nodes of this layer—by going over the virtual nodes
of the related linked lists, and their edges—and we update the disjoint-set data structures.
That is, for each virtual node 𝑣 in these linked lists, we check all the edges of 𝑣. If the other
end of the edge, say 𝑢, has the same class as 𝑣, then we union the disjoint-set data structures
of 𝑣 and 𝑢. Since throughout these steps over all layers, each edge of the virtual graph
is checked for union at most twice—once from each side—there are at most 𝑂(𝑚 log2 𝑛)

checking steps for union operations. Moreover, the cost of all union operations summed up
over all layers is at most 𝑂(𝑛 log2 𝑛). Since 𝑚 ≥ 𝑛𝑘

2
and 𝑘 = Ω(log 𝑛), the cost of unions is

dominated by the 𝑂(𝑚 log2 𝑛) cost of checking.
Now we study the recursive class assignment process and its step complexity. For the

base case of layers 1 to 𝐿/2, we go over the linked lists related to layers 1 to 𝐿/2, one by
one, and set the class number for each virtual node in these lists randomly.

In the recursive step, for each layer 𝑗 + 1 we do as follows: We first go over the linked list
of type-1 virtual nodes of layer 𝑗 + 1 and the linked list of type-3 virtual nodes of layer 𝑗 + 1

and for each node 𝑣 in these lists, we select the class number of 𝑣 randomly. Over all layers,
these operations take time 𝑂(𝑛 log 𝑛). Now we get to the more interesting part, choosing the
class numbers of type-2 nodes of layer 𝑗 + 1. Recall that this is done via finding a maximal
matching in the bridging graph.

We first go over the linked list of type-1 virtual nodes of layer 𝑗 + 1 and for each node
𝑣 in this list, we do as follows. Suppose that 𝑣 has joined class 𝑖. We go over edges of 𝑣
and find the number of connected components of class 𝑖 that are adjacent to 𝑣. Then if this
number is greater than or equal to two, we go over those connected components and mark
them as deactivated for matching.

Next, for each type-2 virtual node of layer 𝑗 + 1, we have one array of size 𝐿, called
potential-matches array. Each entry of this array keeps a linked list of component ids. We
moreover assume that we can read the size of this linked list in 𝑂(1) time. Note that this
can be easily implemented by having a length variable for each linked list.

Now we begin the matching process. For this, we start by going over the linked list of
type-3 virtual nodes of layer 𝑗 + 1. For each virtual node 𝑢 in this list, we go over the edges
of 𝑢 and do as follows: if there is a neighbor 𝑤 of 𝑢 which is in a layer in [1, 𝑗] and is in the
same class as 𝑢, then 𝑢 remembers the component id of 𝑤. This component id is obtained
by performing a find operation on the disjoint-set data structure of 𝑤. After going over all
edges, 𝑢 has a list of neighboring connected component ids of the same class as 𝑢. Let us
call these suitable components for 𝑢. Then, we go over all the edge of 𝑢 for one more time
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and for each type-2 virtual neighbor 𝑣 of 𝑢 that is in layer 𝑗 + 1, we add the list of suitable
components of 𝑢 into the entry of the potential-matches array of 𝑣 which is related to the
class of 𝑢.

After doing as above for the whole linked list of type-3 virtual nodes of layer 𝑗 + 1, we
now find the maximal matching. For this purpose, for each component of nodes of layers
1 to 𝑗, we have one Boolean flag variable which keeps track of whether this component is
matched or not in layer 𝑗 + 1. We go over the linked list of type-2 virtual nodes of layer
𝑗 + 1 and for each virtual node 𝑣 in this list, we go over the edges of 𝑣 and do as follows
(until 𝑣 gets its class number): for each virtual neighbor 𝑤′ of 𝑣, if 𝑤′ is in a layer in [1, 𝑗],
we check the component of 𝑤′. If this component is unmatched and is not deactivated for
matching, we check for possibility of matching 𝑣 to this component. Let 𝑖′ be the class of
this component and let 𝐶𝐼𝐷𝑤′ be the component id of 𝑤′. Note that we find 𝐶𝐼𝐷𝑤′ using
a find operation on the disjoint-set data structure of 𝑤′. We look in the potential-matches
array of 𝑣 in the entry related to class 𝑖′. If this linked list has length greater than 1, or if it
has length exactly 1 and the component id in it is different from 𝐶𝐼𝐷𝑤′ , then node 𝑣 chooses
class 𝑖′. In that case, we also set the matched flag of component of 𝑤′ to indicate that it is
matched now. If 𝑣 is matched, we are done with 𝑣 and we go to the next type-2 node in the
linked list. However, if 𝑣 does not get matched after checking all of its neighbors, then we
choose a random class number for 𝑣.

It is clear that in the above steps, each edge of the virtual graph that has at least one
endpoint in layer 𝑗 + 1 is worked on for 𝑂(1) times. In each such time, we access 𝑂(1)

variables and we perform at most one find operation on a disjoint-set data structure. Since
each find operation costs 𝑂(1) time, the overall cost of these class assignment steps over all
the layers becomes 𝑂(𝑚 log2 𝑛).

At the end of the CDS packing construction, in order to turn the CDSs into dominating
trees, we simply use a linear time minimum spanning tree algorithm, e.g., [FW90], which on
the virtual graph takes 𝑂(𝑚 log2 𝑛) steps.

9.7 Testing A Dominating Tree Packing

Lemma 9.7.1. A dominating tree packing of a connected undirected graph 𝒢 = (𝒱 , ℰ) can

be tested, using a distributed algorithm in �̃�(min{𝑑′, 𝑑𝑖𝑎𝑚(𝒢) +
√︀
|𝒱|}) rounds of the V-

CONGEST model, where 𝑑′ is an upper bound on the diameter of each dominating tree, or

using a centralized algorithm in �̃�(ℰ) steps,

More specifically, the lemma states the following: Suppose that we are given a partition
of vertices 𝒱 into disjoint classes 𝑉1, 𝑉2, . . . , 𝑉𝑡 where each node knows its class number and
the value of 𝑡. We can simultaneously test whether it is true for all classes 𝑖 ∈ [1, 𝑡] that 𝒢[𝑉𝑖]

is a CDS, or not. If each class is a CDS, then the test passes and otherwise—i.e., if there is
even one class that is not a CDS—then the test fails with high probability. Moreover, the
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outputs of all nodes are consistent in that either all the nodes declare a failure or the test
passes in all the nodes.

Proof. We first explain the distributed algorithm. The centralized algorithm is a simpler
variant of the same approach. The general idea is to first check connectivity of all classes,
and then check whether there is any disconnected class or not. Let 𝐷 = 𝑑𝑖𝑎𝑚(𝒢), 𝑛′ = |𝒱|,
and 𝑚′ = |ℰ|.

Distributed Domination Test We first check if each class is a dominating set. For
this, each node sends its class number to its neighbors. If a node 𝑣 is not dominated by a
class 𝑖, that is if 𝑣 does not receive any message from a node in class 𝑖, then 𝑣 initiates a
‘domination-failure’ message and sends it to its neighbors. We use Θ(𝐷) rounds to propagate
these ‘domination-failure’ messages: in each round, each node sends the ‘domination-failure’

message to its neighbors if it received ‘domination-failure’ message in one of the previous
rounds. After these Θ(𝐷) rounds, if the domination part of the test passes, we check for
connectivity.

Distributed Connectivity Test We first use 𝑂(min{𝑑′, 𝐷𝑖𝑎𝑚(𝒢) +
√
𝑛′ log* 𝑛}) rounds

to identify the connected components of each class, using Theorem 9.5.2 where each node 𝑣
starts with its own id as its variable 𝑥𝑣 and only edges between the nodes of the same class
are included in the subgraph 𝒢𝑠𝑢𝑏. Hence, at the end of this part, each connected component
has a leader and every node 𝑢 knows the id of the leader of its connected component, which
is recorded as the component id of 𝑢.

Given these component ids, to test connectivity, we check if there exist two nodes in the
same class with different component ids. Suppose that there exists a nonempty set of classes
𝐼 which each have two or more connected components. We show a protocol such that w.h.p.,
at least one node 𝑣 receives two different component ids related to a class in 𝑖 ∈ 𝐼. We
call this a “disconnect detection" as it indicates that class 𝑖 is disconnected. If this happens,
then 𝑣 initiates a ‘connectivity-failure’ message. Θ(𝐷) rounds are used to propagate these
‘connectivity-failure’ messages.

In the first round of the connectivity test, each node sends its class number and its
component id to all of its neighbors. Since each class is dominating (already tested), each
node receives at least one component id for each class. If a disconnect is detected at this
point, we are done. Suppose that this is not the case. Note that this is possible because
connected components of each class 𝑖 ∈ 𝐼 can be at distance more than 1 from each other.

However, using Menger’s theorem along with vertex connectivity 𝑘 of the graph and since
the domination part of the test has passed, with an argument as in the proof of Lemma 9.4.3,
we get that for each class 𝑖 ∈ 𝐼 and each component 𝒞 of class 𝑖, there are 𝑘 internally vertex-
disjoint paths of length exactly 3 connecting 𝒞 with other components of class 𝑖. Note that
the length is exactly 3 because length-2 would lead to detection of inconsistency in the first
part of the connectivity test. Let us call these detector paths of class 𝑖.
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The algorithm is as follows: in each round, each node 𝑣 chooses a random class 𝑖′ and
sends the component ID related to class 𝑖′ (the component ID related to class 𝑖′ that 𝑣 has
heard so far). In order for the inconsistency to be detected, it is enough that one of the
internal nodes on the (at least) 𝑘 detector paths related to a class 𝑖 ∈ 𝐼 sends the component
ID of class 𝑖 that it knows. This is because, if that happens, then the other internal node on
that path would detect the disconnect.

For each node 𝑣, let 𝑥𝑣 be the number of disconnected classes 𝑖 for which 𝑣 is an internal
node on one of the detector paths of class 𝑖. Then, in each round, with probability 𝑥𝑣

𝑡
, node

𝑣 sends a component ID which leads to disconnect detection. Hence, for each round, the
probability that no such ID is sent is

∏︁
𝑣∈𝑉

(︁
1− 𝑥𝑣

𝑡

)︁
≤ 𝑒−

∑︀
𝑣∈𝑉

𝑥𝑣
𝑡

(†)
≤ 𝑒−

2𝑘·|𝐼|
𝑡

(*)
≤ 𝑒−

2𝑘 ·max{1,𝑡−𝑘}
𝑡 < 𝑒−

1
2 .

Here, Inequality (†) holds because there are |𝐼| disconnected classes and each disconnected
class has at least 2𝑘 internal nodes on its detector paths. Inequality (*) holds because a
graph with vertex connectivity 𝑘 can have at most 𝑘 vertex-disjoint CDS sets and thus
|𝐼| ≥ 𝑡 − 𝑘, and we have assumed that 𝐼 ̸= ∅. Since in each round there is a constant
probability for disconnect detection, after Θ(log 𝑛′) rounds, at least one node will detect it
with high probability, and thus after additional Θ(𝐷) rounds, all nodes know that at least
one class is not connected. If no such disconnect is detected in initial Θ(log 𝑛′) rounds (thus
not reported by the end of Θ(𝐷+ log 𝑛′) rounds), the connectivity test also passes and thus,
the complete CDS partition test passes claiming that w.h.p., each class is a CDS.

The Centralized Tests Now we turn to explaining the centralized counterpart of the
above algorithm: Testing domination in 𝑂(𝑚′) time is easy: we go over the nodes one by
one, for each node, we read the class number of its neighbors and record which classes are
dominating this node. After that, if there is any class left out, we have found ‘domination-
failure’. This way, we work on each edge at most twice, once from each side, and thus
the whole domination testing finishes in 𝑂(𝑚′) steps. For testing connectivity, the general
approach remains the same as in the distributed setting, but we change the component
identification part. Note that in the centralized setting, one can identify the connected
components of a subgraph of the graph 𝒢 in 𝑂(𝑚′) rounds, using disjoint-set data structures
(see Section 9.6). After identifying the components, we can deliver the component id of each
node to its neighbors in a total of 𝑂(𝑚′) rounds. Then, we simply run the Θ(log 𝑛′) rounds of
the distributed algorithm where each node sends the id of a random class to its neighbors in
a centralized manner. Each round can be clearly simulated in 𝑂(𝑚′) steps of the centralized
setting. Hence, 𝑂(log 𝑛′) rounds can be simulated in 𝑂(𝑚′ log 𝑛′) rounds and after that, if
there is any disconnected class, with high probability a disconnect detection has happened.
This concludes the centralized test.
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9.8 A Simple Application Example: Gossiping

Here, we explain a simple and crisp example which shows how our connectivity decompo-
sitions can be used in information dissemination. We study the classical gossiping problem
(aka all-to-all broadcast): Each node of the network has one 𝑂(log 𝑛)-bit message and the
goal is for each node to receive all the messages. In the following, we study this problem in
the V-CONGEST model. To make the discussion more intuitive, we first explain the approach
for a particular value of connectivity and then state how it extends to other connectivity
values.

If the network is merely connected, solving the gossiping problem in 𝑂(𝑛) rounds is
trivial. Now suppose that the network has in fact a vertex connectivity of

√
𝑛. Despite this

extremely good connectivity, prior to this work, the aforementioned 𝑂(𝑛) rounds solution
remained the best known bound. The main difficulty is that, even though we know that
each vertex cut of the network admits a flow of

√
𝑛 messages per round, it is not clear

how to organize the transmissions such that a flow of Ω(
√
𝑛) (distinct) messages per round

passes through each cut. As a side note, it is worth mentioning that a graph with vertex
connectivity 𝑘 can have up to Θ(2𝑘 · (𝑛

𝑘
)2) vertex-cuts of size 𝑘 [Kan90].

Our vertex connectivity decomposition, claimed in Theorem 9.1.1, runs in �̃�(
√
𝑛) rounds

in this example. Note that in a graph with vertex connectivity 𝑘, the diameter is at most
𝑂(𝑛/𝑘) and thus here we have 𝐷 = 𝑂(

√
𝑛). This construction generates 𝑂(

√
𝑛) dominating

trees, each of diameter �̃�(
√
𝑛), where each node is contained in 𝑂(log 𝑛) trees. Then, to

use this decomposition for gossiping, we do as follows: first each node gives its message to
(one node in) a random one of the trees. Note that this is easy as each node has neighbors
in all of the trees and it can easily learn the ids of those trees in just one round. Then,
w.h.p, we have 𝑂(

√
𝑛) messages in each tree, ready to be broadcast. We can broadcast all

the messages just inside the dominating trees in �̃�(
√
𝑛) rounds. Furthermore, by a small

change, we can make sure that each node transmits the messages assigned to its dominating
trees and thus, each node in the network receives all the messages (because of domination).
Overall, this method solves the problem in �̃�(

√
𝑛) rounds.

We now state how this bound generalizes:

Corollary 9.8.1. Suppose that there are 𝑁 messages in arbitrary nodes of the network such

that each node has at most 𝜂 messages. Using our vertex connectivity decomposition, we can

broadcast all messages to all nodes in �̃�(𝜂 + 𝑁+𝑛
𝑘

) rounds of the V-CONGEST model.

Proof Sketch. This approach is exactly as explained above. Each node gives its messages to
random dominating trees of the decomposition and then we broadcast each message only
using the nodes in its designated dominating tree. The vertex connectivity decomposition
runs in �̃�(min{𝐷 +

√
𝑛, 𝑛

𝑘
}). Then, delivering messages to the trees takes at most 𝜂 rounds.

Finally, broadcasting messages using their designated trees takes �̃�(𝑛
𝑘

+ 𝑁
𝑘

) rounds because
the diameter of each tree is 𝑂(𝑛 log𝑛

𝑘
) and each tree w.h.p is responsible for broadcasting at

most 𝑂(𝑁
𝑘

+ log 𝑛) messages.
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Note that the bound in Corollary 9.8.1 is optimal, modulo logarithmic factors, because,
(1) 𝑁

𝑘
is a clear information theoretic lower bound as per round only 𝑂(𝑘 log 𝑛) bits can cross

each vertex cut of size 𝑘, (2) similarly, if a node has 𝜂 messages, it takes at least 𝜂 rounds to
send them, (3) in graphs with vertex connectivity 𝑘, the diameter can be up to 𝑛

𝑘
. In fact,

the diameter of the original graph is a measure that is rather irrelevant because even if the
diameter is smaller, achieving a flow of size Θ̃(𝑘) messages per round unavoidably requires
routing messages along routes that are longer than the shortest path (for any algorithm).
See Section 9.10 for more discussion about this last point.

9.9 Distributed Fractional Spanning-Tree Packing

Recall that the celebrated results of Tutte [Tut61] and Nash-Williams [NW61] show that each
graph with edge connectivity 𝜆 contains ⌈𝜆−1

2
⌉ edge-disjoint spanning trees. In this section,

we prove Theorem 9.1.3 which achieves a fractional spanning tree packing with almost the
same size. In Section 9.9.1, we explain the algorithm for the case where 𝜆 = 𝑂(log 𝑛). We
later explain in Section 9.9.2 how to extend this algorithm to the general case.

9.9.1 Fractional Spanning Tree Packing for Small Edge Connectiv-

ity

We follow a classical and generic approach (see e.g. [PST91, SM90,KPST94,Kar96]) which
can be viewed as an adaptation of the Lagrangian relaxation method of optimization theory.
Tailored to our problem, this approach means we always maintain a collection of weighted
trees which might have a large weight going through one edge, but we iteratively improve
this collection by penalizing the edges with large load, which incentivizes the collection to
take some weight away from the edges with larger load and distribute it over the edges with
smaller loads. We next present the formal realization of this idea.

Algorithm Outline We will always maintain a collection 𝑇 of weighted trees—where each
tree 𝜏 ∈ 𝑇 has weight 𝑤𝜏 ∈ [0, 1]—such that the total weight of the trees in the collection is
1. That is

∑︀
𝜏∈𝑇 𝑤𝜏 = 1. We start with a collection containing only one (arbitrary) tree with

initial weight 1 and iteratively improve this collection for Θ(log3 𝑛) iterations: During each
iteration, for each edge 𝑒 ∈ 𝐸, let 𝑥𝑒 be the weighted load on edge 𝑒, that is 𝑥𝑒 =

∑︀
𝜏,𝑒∈𝜏 𝑤𝜏

and also, let 𝑧𝑒 = 𝑥𝑒⌈𝜆−1
2
⌉. Our goal is that at the end, we have max𝑒∈𝐸 𝑧𝑒 ≤ 1 + 𝑂(𝜀).

In each iteration, for each edge 𝑒, we define a cost 𝑐𝑒 = 𝑒𝑥𝑝(𝛼 · 𝑧𝑒), where 𝛼 = Θ(log 𝑛).
Then, we find the Minimum Spanning Tree (MST) with respect to these costs. If 𝐶𝑜𝑠𝑡(𝑀𝑆𝑇 ) =∑︀

𝑒∈𝑀𝑆𝑇 𝑐𝑒 > (1 − 𝜀)
∑︀

𝑒∈𝐸 𝑐𝑒 · 𝑥𝑒, then the algorithm terminates. On the other hand, if
𝐶𝑜𝑠𝑡(𝑀𝑆𝑇 ) =

∑︀
𝑒∈𝑀𝑆𝑇 𝑐𝑒 ≤ (1 − 𝜀)

∑︀
𝑒∈𝐸 𝑐𝑒 · 𝑥𝑒, then we add this MST to our weighted

tree collection 𝑇 , with weight 𝛽 = Θ( 1
𝛼 log𝑛

), and to maintain condition
∑︀

𝜏∈𝑇 𝑤𝜏 = 1, we
multiplying the weight of the old trees in 𝑇 by 1− 𝛽.
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Analysis for the Algorithm of Section 9.9.1 First, in Lemma 9.9.1 we show that if
in some iteration we stop because of the condition

∑︀
𝑒∈𝑀𝑆𝑇 𝑐𝑒 > (1 − 𝜀)

∑︀
𝑒∈𝐸 𝑐𝑒 · 𝑥𝑒, then

max𝑒∈𝐸 𝑧𝑒 ≤ 1 + 𝜀. Then, in Lemma 9.9.2, we show that if throughout Θ(log3 𝑛) iterations,
the condition

∑︀
𝑒∈𝑀𝑆𝑇 𝑐𝑒 > (1− 𝜀)

∑︀
𝑒∈𝐸 𝑐𝑒 ·𝑥𝑒 is never satisfied, then the collection attained

at the end of Θ(log3 𝑛) iterations has the property that max𝑒∈𝐸 𝑧𝑒 ≤ 1 + 𝜀.

Lemma 9.9.1. If in some iteration
∑︀

𝑒∈𝑀𝑆𝑇 𝑐𝑒 > (1−𝜀)
∑︀

𝑒∈𝐸 𝑐𝑒·𝑥𝑒, then max𝑒∈𝐸 𝑧𝑒 ≤ 1+6𝜀.

Proof. Let 𝑍 = max𝑒∈𝐸 𝑧𝑒. First note that∑︁
𝑒∈𝐸 𝑎𝑛𝑑 𝑧𝑒≤(1−𝜀)𝑍

𝑐𝑒 ≤
∑︁
𝑒∈𝐸

𝑒𝑥𝑝(𝛼(1− 𝜀)𝑍)

≤ 𝑚 · 𝑒𝑥𝑝(−𝛼𝜀𝑍) · 𝑒𝑥𝑝(𝛼𝑍) ≤ 𝑚 · 𝑒𝑥𝑝(−𝛼𝜀𝑍)
∑︁
𝑒∈𝐸

𝑐𝑒 ≤ (𝜀/2) ·
∑︁
𝑒∈𝐸

𝑐𝑒.

Thus, we have∑︁
𝑒∈𝐸

𝑐𝑒 · 𝑥𝑒 ≥
∑︁

𝑒∈𝐸 𝑎𝑛𝑑 𝑧𝑒≥(1−𝜀)𝑍

𝑐𝑒 · 𝑥𝑒 ≥ (1− 𝜀)
𝑍

⌈𝜆−1
2
⌉

∑︁
𝑒∈𝐸 𝑎𝑛𝑑 𝑧𝑒≥(1−𝜀)𝑍

𝑐𝑒 ≥ (1− 𝜀)2
𝑍

⌈𝜆−1
2
⌉
∑︁
𝑒∈𝐸

𝑐𝑒,

and hence∑︁
𝑒∈𝑀𝑆𝑇

𝑐𝑒 > (1− 𝜀)
∑︁
𝑒∈𝐸

𝑐𝑒 · 𝑥𝑒 > (1− 𝜀)3
𝑍

⌈𝜆−1
2
⌉
∑︁
𝑒∈𝐸

𝑐𝑒 ≥ (1− 𝜀)3𝑍
∑︁

𝑒∈𝑀𝑆𝑇

𝑐𝑒,

where the last inequality follows from the results of Tutte and NashWillams, which show
that 𝐸 contains at least ⌈𝜆−1

2
⌉ edge-disjoint spanning trees and clearly each of these trees

has cost at least equal to that of the MST. Comparing the two sides of the above inequality,
we get 𝑍 ≤ (1− 𝜀)−3 ≤ 1 + 6𝜀.

Lemma 9.9.2. If the condition
∑︀

𝑒∈𝑀𝑆𝑇 𝑐𝑒 > (1−𝜀)
∑︀

𝑒∈𝐸 𝑐𝑒·𝑥𝑒 is never satisfied in Θ(log3 𝑛)

iterations of the algorithm, then for the collection attained at the end of Θ(log3 𝑛) iterations,

we have max𝑒∈𝐸 𝑧𝑒 ≤ 1 + 𝜀.

Proof. Consider the potential function Φ =
∑︀

𝑒∈𝐸 𝑐𝑒 =
∑︀

𝑒∈𝐸 𝑒𝑥𝑝(𝛼𝑧𝑒). We first show that,
if in an iteration we have

∑︀
𝑒∈𝑀𝑆𝑇 𝑐𝑒 ≤ (1 − 𝜀)

∑︀
𝑒∈𝐸 𝑐𝑒 · 𝑥𝑒, then with the update of this
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iteration, the potential function decreases at least by a factor of 1−Θ(𝜀/ log 𝑛).

∆Φ = Φ𝑜𝑙𝑑 − Φ𝑛𝑒𝑤

=
∑︁
𝑒∈𝐸

𝑒𝑥𝑝(𝛼𝑧𝑜𝑙𝑑𝑒 )− 𝑒𝑥𝑝(𝛼𝑧𝑛𝑒𝑤𝑒 ) =
∑︁
𝑒∈𝐸

𝑒𝑥𝑝(𝛼𝑧𝑜𝑙𝑑𝑒 ) · (1− 𝑒𝑥𝑝(𝛼𝛽⌈𝜆− 1

2
⌉ · (1𝑀𝑆𝑇

𝑒 − 𝑥𝑜𝑙𝑑
𝑒 )))

≥ 𝛼𝛽⌈𝜆− 1

2
⌉
∑︁
𝑒∈𝐸

𝑒𝑥𝑝(𝛼𝑧𝑜𝑙𝑑𝑒 ) · (𝑥𝑜𝑙𝑑
𝑒 − 1𝑀𝑆𝑇

𝑒 ) = 𝛼𝛽⌈𝜆− 1

2
⌉(
∑︁
𝑒∈𝐸

𝑐𝑒 · 𝑥𝑒 −
∑︁

𝑒∈𝑀𝑆𝑇

𝑐𝑒)

≥ 𝛼𝛽⌈𝜆− 1

2
⌉𝜀
∑︁
𝑒∈𝐸

𝑐𝑒 · 𝑥𝑒 ≥ 𝛼𝛽⌈𝜆− 1

2
⌉𝜀

∑︁
𝑒∈𝐸 𝑎𝑛𝑑 𝑧𝑒≥(1−𝜀)𝑍

𝑐𝑒 · 𝑥𝑒

≥ 𝛼𝛽𝜀(1− 𝜀) · 𝑍
∑︁

𝑒∈𝐸 𝑎𝑛𝑑 𝑧𝑒≥(1−𝜀)𝑍

𝑐𝑒 ≥ 𝛼𝛽𝜀(1− 𝜀)2𝑍
∑︁
𝑒∈𝐸

𝑐𝑒 ≥ Θ(
𝜀

log 𝑛
)Φ𝑜𝑙𝑑.

Now note that the starting potential is at most 𝑚 ·𝑒𝑥𝑝(𝛼⌈𝜆−1
2
⌉). When the potential falls

below 𝑒𝑥𝑝(𝛼(1+𝜀)), all edges have 𝑧𝑒 ≤ 1+𝜀 which means we have found the desired packing.
Since in each iteration that condition

∑︀
𝑒∈𝑀𝑆𝑇 𝑐𝑒 ≤ (1− 𝜀)

∑︀
𝑒∈𝐸 𝑐𝑒 · 𝑥𝑒 holds, the potential

decreases by a factor of 1 − Θ(𝜀/ log 𝑛), we get that after at most Θ( log𝑛
𝜀
· (𝛼𝜆 + log𝑚))

iterations, it falls below 𝑒𝑥𝑝(𝛼(1+𝜀)). Noting that 𝛼 = 𝑂(log 𝑛), 𝜆 = 𝑂(log 𝑛) and 𝜀 = Θ(1),
we can infer that this happens after at most Θ(log3 𝑛) iterations.

Distributed Implementation Using the distributed minimum spanning tree algorithm
of Kutten and Peleg [KP95], we can perform one iteration in 𝑂(𝐷 +

√
𝑛 log* 𝑛) rounds of

the V-CONGEST model 5. Hence, the Θ(log3 𝑛) iterations of the above algorithm can be
performed in 𝑂((𝐷 +

√
𝑛 log* 𝑛) log3 𝑛) rounds. Note that in these iterations, each node

𝑣 simply needs to know the weight on edges incident on 𝑣 and whether another iteration
will be used or not. The latter decision can be made centrally—in a leader node, e.g., the
node with the largest id—by gathering the total cost of the minimum spanning tree over a
breadth first search tree rooted at this leader and then propagating the decision of whether
to continue to next iteration or not to all nodes.

9.9.2 Generalized Fractional Spanning Tree Packing

The key idea for addressing the general case of 𝜆—specially when 𝜆 = Ω(log 𝑛)—is that we
randomly decompose the graph into spanning subgraphs each with connectivity min{𝜆,Θ(log 𝑛/𝜀2)}
using random edge-sampling and then we run the edge-connectivity decomposition in each
subgraph.

5For communication purposes, [KP95] assumes that the weight of each edge can be described in 𝑂(log 𝑛)
bits. In our algorithm, the weight of each edge 𝑒 is in the form 𝑐𝑒 = 𝑒𝑥𝑝(𝛼 · 𝑧𝑒) and can be potentially
super-polynomial, which means the naive way of sending it would require 𝜔(log 𝑛) bits. However, it simply
is enough to send 𝑧𝑒 instead of 𝑐𝑒 as then the receiving side can compute 𝑐𝑒. Fortunately, the maximum
value that 𝑧𝑒 can obtain is Θ(log3 𝑛) and we can always round it to multiples of e.g. Θ( 1𝑛 ) with negligible
𝑜(1) effect on the collection’s final load on each edge.
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The famous random edge-sampling technique of Karger [Kar94a, Theorem 2.1] gives us
that, if we randomly put each edge of the graph in one of 𝜂 subgraphs 𝐻1 to 𝐻𝜂, where 𝜂 is
such that 𝜆

𝜂
≥ 10 log𝑛

𝜀2
, then each subgraph has edge-connectivity in [𝜆

𝜂
(1−𝜀), 𝜆

𝜂
(1+𝜀)] with high

probability. Having this, we first find a 3-approximation �̃� of 𝜆 using the distributed mini-
mum edge cut presented in the previous section in 𝑂((𝐷+

√
𝑛 log* 𝑛) log2 𝑛 log log 𝑛) rounds.

Then, using �̃�, we choose 𝜂 such that we are sure that 𝜆
𝜂
∈ [20 log𝑛

𝜀2
, 60 log𝑛

𝜀2
] and then put each

edge in a random subgraph 𝐻1 to 𝐻𝜂. This way, each subgraph has edge-connectivity in the
range [10 log𝑛

𝜀2
, 100 log𝑛

𝜀2
], which as 𝜀 is a constant, fits the setting of Section 9.9.1. On the other

hand, the summation of the edge-connectivities 𝜆1 to 𝜆𝜂 of subgraphs 𝐻1 to 𝐻𝜂 is at least
𝜆(1− 𝜀).

The remaining problem is to solve the spanning tree packing problem in each subgraph
𝐻𝑖, all in parallel. Recall that the algorithm explained in Section 9.9.1 for the case of 𝑂(log 𝑛)

edge connectivity, requires solving 𝑂(log3 𝑛) minimum spanning tree problems. Hence, if we
solve the MSTs of different subgraphs naively with repetitive black-box usage of the MST
algorithm of Kutten and Peleg [KP95], this would take 𝑂((𝐷 +

√
𝑛 log* 𝑛)𝜆 log2 𝑛) rounds.

To obtain the round complexity �̃�(𝐷 +
√
𝑛𝜆), instead of a simple black-box usage, we do a

few simple modifications.

Lemma 9.9.3. The fractional spanning tree packing of all subgraphs can be implemented

simultaneously, all in 𝑂((𝐷 +
√︁

𝑛𝜆
log𝑛

log* 𝑛) log3 𝑛) rounds of the E-CONGEST model.

Proof of Lemma 9.9.3. We first briefly review the the general approach of [KP95]. Their
algorithm uses 𝑂(𝑑 log*) rounds to get a 𝑑-dominating set 𝑇 with size at most 𝑂(𝑛

𝑑
) and

a partition of the graph into clusters of radius at most 𝑑 around each node of 𝑇 , where
also each of these clusters is spanned by a fragment of the minimum spanning tree. Thus,
the part of the minimum spanning tree that is completely inside one fragment is already
determined. It then remains to determine the MST edges between different fragments. This
part is performed by a pipe-lined upcast of the inter-fragment edges on a breadth first search
and it is shown that this upcast takes at most 𝑂(𝐷 + 𝑛

𝑑
) rounds, where 𝑂(𝑛

𝑑
) is the number

of the inter-fragment edges in the MST. At the end, 𝑂(𝑛
𝑑
) inter-fragment edges are broadcast

to all nodes. Choosing 𝑑 =
√
𝑛 then leads to time complexity of [KP95].

In our problem, we solve 𝜂 MSTs of subgraphs 𝐻1 to 𝐻𝜂 in parallel. The first part of
creating the local fragments of MST is done in each subgraph independently, as they are
edge-disjoint, in 𝑂(𝑑 log* 𝑛) rounds. However, we must not do the upcasts on the BFS trees
of subgraphs 𝐻1 to 𝐻𝜂 as each of these subgraphs might have a large diameter. Instead,
we perform all the upcasts on the same BFS tree of the whole graph. It is easy to see that
we can pipe-line the inter-fragment edges of different MSTs so that they all arrive at the
root of this BFS after at most 𝑂(𝐷 + 𝜂 𝑛

𝑑
) rounds. Choosing 𝑑 =

√
𝑛𝜂 gives us that we can

simultaneously run one iteration of the fractional spanning tree packing of each subgraph,
all together in time 𝑂(𝐷 +

√
𝑛𝜂 log* 𝑛). Since we have at most Θ(log3 𝑛) iterations in the

fractional spanning tree packing, and as 𝜂 = Θ( 𝜆
log𝑛

), the total round complexity becomes
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at most 𝑂((𝐷 +
√︁

𝑛𝜆
log𝑛

log* 𝑛) log3 𝑛).

9.10 Lower Bounds

In this section, we present the distributed lower bounds on finding fractional dominating tree
packings or fractional spanning tree packings with size approximately equal to connectivity.
Formally, we give lower bounds on approximating the value of the vertex or edge connec-
tivity of a graph. The lower bounds about tree packings are then obtained because given a
(fractional) dominating tree or spanning tree packing of a certain size—which is promised to
be an approximation of connectivity—all nodes can immediately obtain an approximation
of vertex or edge connectivity.

The lower bound for approximating the edge connectivity of a graph in the E-CONGEST
model was presented in Section 7.7.2. We just restate it here together with the implication
on computing (fractional) spanning tree packings.

Theorem 9.10.1. [Rephrasing of Theorem 7.7.4] For any 𝛼 > 1 and 𝜆 ≥ 1, even for

diameter 𝐷 = 𝑂
(︀

1
𝜆 log𝑛

·
√︀

𝑛
𝛼𝜆

)︀
, distinguishing networks with edge connectivity at most 𝜆

from networks with edge connectivity at least 𝛼𝜆 requires at least Ω
(︀
𝐷+ 1

log𝑛

√︀
𝑛
𝛼𝜆

)︀
rounds in

the E-CONGEST model. The same lower bound applies to computing (fractional) spanning

tree packings of size larger than 𝑛/(𝛼𝜆), where 𝜆 is the edge connectivity of the network.

For vertex connectivity, we even get the following stronger lower bound.

Theorem 9.10.2. For any 𝛼 > 1 and 𝑘 ≥ 4, even in networks of diameter 3, distinguishing

networks with vertex connectivity at most 𝑘 from networks with vertex connectivity at least 𝛼𝑘

requires at least Ω
(︀√︀

𝑛/(𝛼𝑘 log 𝑛)
)︀
rounds in the V-CONGEST model. The same lower bound

also applies to computing (fraction) dominating tree packings of size larger than 𝑛/(𝑘𝛼) or

for finding a vertex cut of size at most min
{︁
𝛿 ·
√︀

𝑛/(𝛼𝑘 log 𝑛), 𝛼 · 𝑘
}︁
, for some constant

𝛿 > 0 and where 𝑘 is the vertex connectivity of the network.

In the remainder of the section, we prove Theorem 9.10.2. Both lower bounds (Theorems
9.10.1 and 9.10.2) are based on the approach used in [DHK+12]. However, since all the lower
bounds in [DHK+12] are for the E-CONGEST model, in order to get the slightly stronger
bound of Theorem 9.10.2, we need to adapt to the node capacitated V-CONGEST model.

The lower bound is proven by a reduction from the 2-party set disjointness problem.
Assume that two players Alice and Bob get two sets 𝑋 and 𝑌 as inputs. If the elements
of sets are from a universe of size 𝑁 , it is well known that determining whether 𝑋 and
𝑌 are disjoint requires Alice and Bob to exchange Ω(𝑁) bits [KS92a, Raz92]. This lower
bound even holds if Alice and Bob are promised that |𝑋 ∩ 𝑌 | ≤ 1 [Raz92], it even holds for
randomized protocols with constant error probability and also if Alice and Bob only have
access to public randomness (i.e., to a common random source). Note that this immediately
also implies an Ω(𝑁) lower bound on the problem of finding 𝑋 ∩ 𝑌 , even if Alice and Bob
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know that 𝑋 and 𝑌 intersect in exactly one element. In fact, if Alice and Bob even need to
exchange Ω(𝑁) bits in order to solve the following problem. Alice is given a set 𝑋 as her
input and Bob is given a set 𝑌 as his input, with the promise that |𝑋 ∩ 𝑌 | = 1. Alice needs
to output a set 𝑋 ′ ⊆ 𝑋 and Bob needs to output a set 𝑌 ′ ⊆ 𝑌 such that 𝑋 ∩ 𝑌 ⊆ 𝑋 ′ ∪ 𝑌 ′

and such that |𝑋 ′ ∪ 𝑌 ′| ≤ 𝑐𝑁/ log2 𝑛 for an appropriate constant 𝑐 > 0. Given such sets 𝑋 ′

and 𝑌 ′, Alice can just send 𝑋 ′ to Bob using |𝑋 ′| · log2𝑁 ≤ 𝑐𝑁 bits. For a sufficiently small
constant 𝑐 > 0, that is at most a constant fraction of the bits that are needed to find 𝑋 ∩𝑌 .

9.10.1 Lower Bound Construction

We next describe the construction of a family 𝒢 of networks that we use for our reductions
from the above variants of the set disjointness problem. Instead of directly defining 𝒢, it
is slightly easier to first introduce a construction ℋ for weighted graphs. Eventually, nodes
of weight 𝑤 ≥ 1 will be replaced by cliques of size 2 and edges are replaced by complete
bipartite subgraphs. The weighted graph family ℋ is based on two integer parameters ℎ ≥ 2

and ℓ ≥ 1 and a positive (integer) weight 𝑤 > 1. The family contains a graph 𝐻(𝑋, 𝑌 ) ∈ ℋ
for every set 𝑋 ⊆ [ℎ] and for every 𝑌 ⊆ [ℎ] (i.e., for every possible set disjointness input for
sets over the universe [ℎ]). The node set 𝑉𝐻(𝑋, 𝑌 ) of 𝐻(𝑋, 𝑌 ) is defined as

𝑉𝐻(𝑋, 𝑌 ) := {0, . . . , ℎ} × [2ℓ] ∪ {𝑎, 𝑏} ∪ 𝑉𝑋 ∪ 𝑉𝑌 ,

where 𝑉𝑋 := {𝑢𝑥 : 𝑥 ∈ 𝑋} and 𝑉𝑌 := {𝑣𝑦 : 𝑦 ∈ 𝑌 }. Hence, 𝑉𝐻(𝑋, 𝑌 ) contains a node (𝑝, 𝑞)

for every 𝑞 ∈ {0, . . . , ℎ} and every 𝑝 ∈ [2ℓ], a node 𝑢𝑥 for each 𝑥 ∈ 𝑋, a node 𝑣𝑦 for each
𝑦 ∈ 𝑌 , and two additional nodes 𝑎 and 𝑏. All the nodes (𝑝, 𝑞) (for (𝑝, 𝑞) ∈ {0, . . . , ℎ} × [2ℓ])
have weight 𝑤, all other nodes have weight 1. The edges of 𝐻(𝑋, 𝑌 ) are defined as follows.
First, the “heavy” nodes (𝑝, 𝑞) are connected to ℎ+1 disjoint paths by adding an edge between
(𝑝, 𝑞) and (𝑝, 𝑞 + 1) for each 𝑝 ∈ {0, . . . , ℎ} and each 𝑞 ∈ {1, . . . , 2ℓ− 1}. The nodes 𝑢𝑥 and
𝑣𝑦 are used to encode a set disjointness instance (𝑋, 𝑌 ) into the graph 𝐻(𝑋, 𝑌 ). For every
𝑥 ∈ 𝑋, node 𝑢𝑥 is connected to node (0, 1) (the first node of path 0) and to node (𝑥, 1) (the
first node of path 𝑥). In addition, for all 𝑥′ ̸∈ 𝑋, node (0, 1) is directly connected to node
(𝑥′, 1) (the first node of path 𝑥′). We proceed similarly with the nodes 𝑣𝑦 ∈ 𝑉𝑌 . For every
𝑦 ∈ 𝑌 , node 𝑢𝑦 is connected to node (0, 2ℓ) (the last node of path 0) and to node (𝑦, 2ℓ) (the
last node of path 𝑦). In addition, for all 𝑦′ ̸∈ 𝑌 , node (0, 2ℓ) is directly connected to node
(𝑦′, 1) (the last node of path 𝑦′). Finally, we use the nodes 𝑎 and 𝑏 in order to get a graph
with small diameter. The two nodes are connected by an edge and every other node of the
graph is either connected to 𝑎 or to 𝑏. Basically, the left half of the graph is connected to
node 𝑎 and the right half of the graph is connected to 𝑏. Formally, all nodes 𝑢𝑥 ∈ 𝑉𝑋 and all
nodes (𝑝, 𝑞) for all 𝑞 ≤ ℓ are connected to node 𝑎. Symmetrically, all nodes 𝑣𝑦 ∈ 𝑉𝑌 and all
nodes (𝑝, 𝑞) for 𝑞 > ℓ are connected to node 𝑏. An illustration of 𝐻(𝑋, 𝑌 ) is given in Figure
9-3.

We first state an important structural property of graph 𝐻(𝑋, 𝑌 ). In the following, the
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𝑎 𝑏

2ℓ

ℎ + 1

Figure 9-3: Lower bound construction: Nodes depicted by large circles have weight 𝑤 (heavy
nodes), nodes depicted by small circles have weight 1 (light nodes). The graph consists of
ℎ + 1 paths, each consisting of 2ℓ heavy nodes (ℎ = ℓ = 6 in the example). Assuming that
paths are numbered from 0 to ℎ from top to down. Then, the left-most node on path 0 is
directly connected to the left-most node of path 𝑥 for every 𝑥 ̸∈ 𝑋. For 𝑥 ∈ 𝑋, the left-most
node of path 0 is connected to the left-most node of path 𝑥 through an intermediate node of
weight 1. The right-most nodes are connected in the same way by using the set 𝑌 . In the
figure, we have 𝑋 = {2, 3, 5, 6} and 𝑌 = {1, 4, 5}. The node corresponding to element 5 in
the intersection is marked in grey. In addition, nodes 𝑎 and 𝑏 are used to obtain a network
with small diameter.

size of a vertex cut 𝑆 of the weighted graph 𝐻(𝑋, 𝑌 ) is the total weight of the nodes in 𝑆.

Lemma 9.10.3. Consider the graph 𝐻(𝑋, 𝑌 ) and assume that |𝑋 ∩ 𝑌 | ≤ 1. Then, if 𝑋

and 𝑌 are disjoint, every vertex cut of graph 𝐻(𝑋, 𝑌 ) contains a node of weight 𝑤 (and thus

has size at least 𝑤) and if 𝑋 ∩𝑌 = {𝑧} for some 𝑧 ∈ [ℎ], the smallest vertex cut of 𝐻(𝑋, 𝑌 )

has size 4 and it consists of the nodes 𝑎, 𝑏, 𝑢𝑧, and 𝑣𝑧. In addition, in the second case, every

vertex cut of 𝐻(𝑋, 𝑌 ) that does not contain 𝑎, 𝑏, 𝑢𝑧, and 𝑣𝑧 contains a node of weight 𝑤.

Further, the diameter of 𝐻(𝑋, 𝑌 ) is at most 3.

Proof. Let us first consider the case 𝑋 ∩ 𝑌 = ∅. In that case, for every 𝑧 ∈ [ℎ], we either
have 𝑧 ̸∈ 𝑋 or 𝑧 ̸∈ 𝑌 . If 𝑧 ̸∈ 𝑋, node (0, 1) is directly connected to node (𝑧, 1), if 𝑧 ̸∈ 𝑌 ,
node (0, 2ℓ) is directly connected to node (𝑧, 2ℓ). In both cases the path consisting of the
nodes (𝑧, 𝑝) for 𝑝 ∈ [2ℓ] is directly connected to the top path. As this is the case for every
𝑧 ∈ [ℎ], all ℎ + 1 paths are directly connected to each other and therefore all the nodes of
weight 𝑤 induce a connected subgraph. As all other nodes are connected to some node of
weight 𝑤, every vertex cut has to contain at least one node of weight 𝑤 and thus, the claim

194



for the case where 𝑋 and 𝑌 are disjoint follows.
For the case, where 𝑋 and 𝑌 intersect in a single element 𝑧, let us consider the path

consisting of the nodes (𝑧, 𝑝) for 𝑝 ∈ [2ℓ]. All the nodes of the path are either connected to
node 𝑎 or to node 𝑏. In addition to this, only the first node (𝑧, 1) and the last node (𝑧, 2ℓ) of
the path are connected to additional nodes. As 𝑧 ∈ 𝑋 and 𝑧 ∈ 𝑌 , node (𝑧, 1) is connected
to (0, 1) through node 𝑢𝑧 and node (𝑧, 2ℓ) is connected to node (0, 2ℓ) through node 𝑣𝑧.
Consequently, by removing nodes 𝑎, 𝑏, 𝑢𝑧, and 𝑣𝑧, path 𝑧 (consisting of the nodes (𝑧, 𝑝)) is
disconnected from the rest of the graph. The four nodes therefore form a vertex cut of size
4.

Now, let us consider any other vertex cut 𝑆 ⊆ 𝑉𝐻(𝑋, 𝑌 ) that does not contain all of
these four nodes. We want to show that 𝑆 needs to contain at least one node of weight
𝑤. For contradiction, assume that 𝑆 contains only nodes of weight 1. Because for every
𝑧′ ∈ [ℎ] ∖ {𝑧}, 𝑧′ ̸∈ 𝑋 or 𝑧′ ̸∈ 𝑌 , the same argument as in the 𝑋 ∩ 𝑌 = ∅ case shows that
every path 𝑧′ ∈ [ℎ] ∖ {𝑧} is directly connected to path 0. As by assumption also one of the
nodes 𝑎, 𝑏, 𝑢𝑧, or 𝑣𝑧 is not in 𝑆, also path 𝑧 is still connected to the other paths. Again
since all weight 1 nodes are directly connected to a weight 𝑤 node, this implies that the
nodes 𝑉𝐻(𝑋, 𝑌 ) ∖ 𝑆 induce a connected subgraph, a contradiction to the assumption that 𝑆
contains only nodes of weight 1.

It remains to show that the diameter of 𝐻(𝑋, 𝑌 ) is 3. This follows because every node
is either directly connected to node 𝑎 or to node 𝑏 and there also is an edge between nodes
𝑎 and 𝑏.

We conclude the discussion on the lower bound construction by finally also introducing
a family 𝒢 of unweighted graphs. Given the three integer parameters ℎ, ℓ, and 𝑤, there is
a one-to-one correspondence between the graphs of ℋ and 𝒢. Also in 𝒢, there is a graph
𝐺(𝑋, 𝑌 ) for every possible set disjointness input (𝑋, 𝑌 ) ∈ [ℎ]2. Given 𝐻(𝑋, 𝑌 ), 𝐺(𝑋, 𝑌 ) is
obtained by using the following transformation:

1. Each node of weight 𝑤 in 𝐻(𝑋, 𝑌 ) is replaced by a clique of size 𝑤.

2. Each edge of 𝐻(𝑋, 𝑌 ) is replaced by a complete bipartite subgraph.6

Note that while graphs in ℋ have Θ(ℎℓ) nodes, graphs in 𝒢 have Θ(ℎℓ𝑤) nodes. The
statements of Lemma 9.10.3 hold in exactly the same way for graphs of 𝒢.

Lemma 9.10.4. Consider the graph 𝐺(𝑋, 𝑌 ) and assume that |𝑋 ∩𝑌 | ≤ 1. Then, if 𝑋 and

𝑌 are disjoint, every vertex cut of graph 𝐺(𝑋, 𝑌 ) has size at least 𝑤 and if 𝑋 ∩ 𝑌 = {𝑧}
for some 𝑧 ∈ [ℎ], the smallest vertex cut of 𝐺(𝑋, 𝑌 ) has size 4 and it consists of the nodes

𝑎, 𝑏, 𝑢𝑧, and 𝑣𝑧. In addition, in the second case, every vertex cut of 𝐺(𝑋, 𝑌 ) that does not

contain 𝑎, 𝑏, 𝑢𝑧, and 𝑣𝑧 has size at least 𝑤. Further, the diameter of 𝐺(𝑋, 𝑌 ) is at most 3.

6Hence, edges between two nodes of weight 𝑤 are replaced by a subgraph isomorphic to 𝐾𝑤,𝑤 and edges
between a node of weight 1 and a node of weight 𝑤 are replaced by a subgraph isomorphic to 𝐾1,𝑤.
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Proof. Let 𝑉 (𝑋, 𝑌 ) be the set of nodes of 𝐺(𝑋, 𝑌 ) and consider a vertex cut 𝑆 ⊆ 𝑉 (𝑋, 𝑌 )

of 𝐺(𝑋, 𝑌 ). Hence, removing the nodes of 𝑆 disconnects the remainder of 𝐺(𝑋, 𝑌 ) into at
least 2 components. Let 𝐴 ⊆ 𝑉 (𝑋, 𝑌 ) be the 𝑤 nodes of a clique of size 𝑤 corresponding
to one of the weight 𝑤 nodes in 𝐻(𝑋, 𝑌 ) and assume that |𝑆 ∩ 𝐴| ∈ {1, . . . , 𝑤 − 1} (i.e., 𝑆
contains some, but not all the nodes of 𝐴). We first observe that if 𝑆 is a vertex cut, the set
𝑆 ∖ 𝐴 is also a vertex cut. Because all edges of 𝐻(𝑋, 𝑌 ) are replaced by complete bipartite
subgraphs in 𝐺(𝑋, 𝑌 ), a single node of 𝐴 connects the same nodes to each other as all the
nodes of 𝐴 do. Given a vertex cut 𝑆 of 𝐺(𝑋, 𝑌 ), we can therefore always find a vertex cut
𝑆 ′ ⊆ 𝑆 of 𝐺(𝑋, 𝑌 ) such that 𝑆 ′ contains either none or all the nodes of each of the cliques of
size 𝑤 corresponding to the weight 𝑤 nodes of 𝐻(𝑋, 𝑌 ). Let us call such a vertex cut 𝑆 ′, a
reduced vertex cut. Note that there is a one-to-one correspondence between the vertex cuts
of 𝐻(𝑋, 𝑌 ) and the reduced vertex cuts of 𝐺(𝑋, 𝑌 ).

The first part of Lemma 9.10.3 therefore implies that if 𝑋 ∩ 𝑌 = ∅, every reduced vertex
cut of 𝐺(𝑋, 𝑌 ) contains at least one complete clique of size 𝑤 and it therefore has size at
least 𝑤. Hence, using the above observation, we also get that every vertex cut of 𝐺(𝑋, 𝑌 )

has size at least 𝑤.
If 𝑋 and 𝑌 intersect in a single element 𝑧 ∈ [ℎ], Lemma 9.10.3 implies that nodes 𝑎, 𝑏,

𝑢𝑧, and 𝑣𝑧 form a (reduced) vertex cut of size 4 (note that the four nodes all have weight 1

in 𝐻(𝑋, 𝑌 )). Also, if a reduced vertex cut 𝑆 of 𝐺(𝑋, 𝑌 ) does not contain all the four nodes,
Lemma 9.10.3 implies that contains at least one complete clique of size 𝑤 and thus every
vertex cut that does not contain all the four nodes has size at least 𝑤.

Finally, we get that graph 𝐺(𝑋, 𝑌 ) has diameter 3 by using exactly the same argument
as for 𝐻(𝑋, 𝑌 ).

9.10.2 Reduction

We next show how an efficient distributed algorithm to approximate the vertex connectivity
or find a small vertex cut in networks of the family 𝒢 can be used to get a two-party
set disjointness protocol with low communication complexity. We first show that for 𝑇 <

ℓ, any 𝑇 -round distributed protocol on a graph 𝐺(𝑋, 𝑌 ) ∈ 𝒢 can be simulated in a low
communication public-coin two-party protocol by Alice and Bob, assuming that Alice knows
the inputs of all except the right-most nodes of 𝐺(𝑋, 𝑌 ) and Bob knows the inputs of all
except the left-most nodes of 𝐺(𝑋, 𝑌 ). Because only these nodes are used to encode the set
disjointness instance (𝑋, 𝑌 ) into 𝐺(𝑋, 𝑌 ), together with Lemma 9.10.4, this allows to derive
a lower bound on the time to approximate the vertex connectivity or finding small vertex
cuts. For convenience, we again first state the simulation result for graphs 𝐻(𝑋, 𝑌 ) ∈ ℋ.
The proof of the following lemma is done in a similar way as the corresponding simulation
in [DHK+12]. For all 𝑟 ∈ {0, . . . , ℓ− 1}, we define set 𝑉𝐴(𝑟) and 𝑉𝐵(𝑟) as follows.

𝑉𝐴(𝑟) := {𝑎} ∪ 𝑉𝑋 ∪ {(𝑝, 𝑞) ∈ {0, . . . , ℎ} × [2ℓ] : 𝑞 < 2ℓ− 𝑟} ,
𝑉𝐵(𝑟) := {𝑏} ∪ 𝑉𝑌 ∪ {(𝑝, 𝑞) ∈ {0, . . . , ℎ} × [2ℓ] : 𝑞 > 𝑟 + 1} .
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Lemma 9.10.5. Let 𝑇 ≤ ℓ be an integer and let 𝒜 be a 𝑇 -round randomized distributed

algorithm on graphs 𝐻(𝑋, 𝑌 ) ∈ ℋ. Assume that in each round, nodes 𝑎 and 𝑏 locally

broadcast a message of at most 𝐵 bits to their neighbors (other nodes are not restricted).

Further, assume that Alice knows the initial states of nodes 𝑉𝐴(0) and Bob knows the initial

states of nodes 𝑉𝐵(0). Then, Alice and Bob can simulate 𝒜 using a randomized public-coin

protocol such that:

1. At the end, Alice knows the states of nodes 𝑉𝐴(𝑇 ) and Bob knows the states of nodes

𝑉𝐵(𝑇 )

2. Alice and Bob need to exchange at most 2𝐵 · 𝑇 bits.

Proof. First note that we can use the public randomness to model the randomness used
by all the nodes of 𝐻(𝑋, 𝑌 ). Hence, the random bits used by the nodes in the distributed
protocol 𝒜 is publicly known. We next describe a two-party protocol in which Alice and Bob
simulate 𝒜 in a round-by-round manner such that for all rounds 0 ≤ 𝑟 < ℓ, after simulating
round 𝑟 (or initially for 𝑟 = 0),

(I) Alice knows the states of nodes in 𝑉𝐴(𝑟).

(II) Bob knows the states of nodes in 𝑉𝐵(𝑟).

(III) Alice and Bob have exchanged at most 2𝐵 · 𝑟 bits.

We prove (I), (II), and (III) by induction on 𝑟.

Induction Base For 𝑟 = 0, statements (I)–(III) follow directly from the assumptions
about the initial knowledge of Alice and Bob.

Induction Step For 𝑟 ≥ 1, assume that (I)–(III) hold for 𝑟 < 𝑟′, where 𝑟′ ∈ {0, . . . , 𝑇 − 1}
so that we need to show that it also holds for 𝑟 = 𝑟′. We need to show how Alice an Bob
can simulate round 𝑟. In order for (III) to hold, Alice an Bob can exchange at most 2𝐵 bits
for the simulation of round 𝑟. In order to satisfy (I), observe the following. We need to show
that after the simulation of round 𝑟, Alice knows the states of all nodes in 𝑉𝐴(𝑟). By the
induction hypothesis, we know that Alice knows the states of the nodes 𝑉𝐴(𝑟 − 1) ⊃ 𝑉𝐴(𝑟)

after round 𝑟− 1. Hence, in addition, in order to be able to compute the states of the nodes
𝑉𝐴(𝑟) after round 𝑟, Alice needs to know all the messages that nodes in 𝑉𝐴(𝑟) receive in
round 𝑟. She therefore needs to know all the messages that are sent by neighbors of nodes in
𝑉𝐴(𝑟) in round 𝑟. The set of neighbors of nodes in 𝑉𝐴(𝑟) consists of the nodes 𝑉𝐴(𝑟− 1) and
of node 𝑏. Note that in particular, because 𝑇 ≤ ℓ, 𝑉𝐴(𝑟 − 1) also contains all the neighbors
of node 𝑎 ∈ 𝑉𝐴(𝑟). Except for node 𝑏, Alice thus knows the state of all neighbors of node in
𝑉𝐴(𝑟) at the beginning of round 𝑟 and she therefore also knows the messages sent by these
nodes in round 𝑟. In order complete her simulation of round 𝑟, she therefore only needs to
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learn the message (of at most 𝐵 bits) sent by node 𝑏 in round 𝑟. By the induction hypothesis,
Bob knows the content of this message and can send it to Alice. Similarly, Bob can also
compute the states of all nodes in 𝑉𝐵(𝑟) at the end of round 𝑟 if Alice sends the round 𝑟

message of node 𝑎 to Bob. This completes the proof of the induction step and thus also the
proof of the lemma.

An analogous lemma can also be shown for graphs 𝐺(𝑋, 𝑌 ) ∈ 𝒢. Here, we define 𝑉 ′
𝐴(𝑟)

and 𝑉 ′
𝐵(𝑟) to be the node sets corresponding to 𝑉𝐴(𝑟) and 𝑉𝐵(𝑟). That is, 𝑉 ′

𝐴(𝑟) contains
all weight 1 nodes of 𝑉𝐴(𝑟) and all the 𝑤 nodes of each clique of size 𝑤 corresponding to a
weight 𝑤 node in 𝑉𝐴(𝑟). The set 𝑉 ′

𝐵(𝑟) is defined analogously. Based on the argument for
ℋ, we then directly obtain the following statement for graphs in 𝒢.

Lemma 9.10.6. Let 𝑇 ≤ ℓ be an integer and let 𝒜 be a 𝑇 -round randomized distributed

algorithm on graphs 𝐺(𝑋, 𝑌 ) ∈ 𝒢. Assume that in each round, nodes 𝑎 and 𝑏 locally broadcast

a message of at most 𝐵 bits to their neighbors (other nodes are not restricted). Further,

assume that Alice knows the initial states of nodes 𝑉 ′
𝐴(0) and Bob knows the initial states of

nodes 𝑉 ′
𝐵(0). Then, Alice and Bob can simulate 𝒜 using a randomized public-coin protocol

such that:

1. At the end, Alice knows the states of nodes 𝑉 ′
𝐴(𝑇 ) and Bob knows the states of nodes

𝑉 ′
𝐵(𝑇 )

2. Alice and Bob need to exchange at most 2𝐵 · 𝑇 bits.

Proof. The proof is done in the same way as for Lemma 9.10.5.

We are now ready to prove the lower bound Theorem 9.10.2.

Proof of Theorem 9.10.2. Let us first assume that there is a randomized 𝑇 -round V-
CONGEST model protocol 𝒜 that allows distinguish graphs of vertex connectivity at most
𝑘 from graphs of vertex connectivity at least 𝑘𝛼. Alice and Bob can use protocol 𝒜 to solve
the set disjointness problem as follows. Assume that Alice and Bob are given inputs 𝑋 ⊆ [ℎ]

and 𝑌 ⊆ [ℎ] for some positive integer ℎ with the promise that 𝑋 and 𝑌 intersect in at most
1 value. We pick ℓ = ℎ/ log 𝑛 and 𝑤 = 𝛼𝑘 + 1 and we consider the graph 𝐺(𝑋, 𝑌 ) with
parameters ℎ, ℓ, and 𝑤. Assume that 𝑇 < ℓ. Note that except for the very first cliques of
each of the paths of 𝐺(𝑋, 𝑌 ) and the very last cliques of each of the paths of 𝐺(𝑋, 𝑌 ), the
graph 𝐺(𝑋, 𝑌 ) does not depend on 𝑋 and 𝑌 . Hence, Alice knows the initial states of all
nodes in 𝑉 ′

𝐴(0) and Bob knows the initial states of all nodes in 𝑉 ′
𝐵(0). Using Lemma 9.10.6,

Alice and Bob can therefore simulate the 𝑇 rounds of 𝒜 by exchanging at most 2𝐵𝑇 bits
such that in the end for all nodes 𝑣 of 𝐺(𝑋, 𝑌 ), either Alice or Bob knows the final state
of 𝑣. Alice and Bob therefore definitely learn the approximation of the vertex connectivity
computed by 𝒜. By Lemma 9.10.4, if 𝑋 ∩ 𝑌 = ∅, the vertex connectivity of 𝐺(𝑋, 𝑌 ) is
at least 𝑤 ≥ 𝛼𝑘 + 1 and if 𝑋 ∩ 𝑌 ̸= ∅, the vertex connectivity of 𝐺(𝑋, 𝑌 ) = 4 ≤ 𝑘. An
𝛼-approximation of the vertex connectivity therefore allows Alice and Bob to solve the set
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disjointness instance (𝑋, 𝑌 ). As by the set disjointness lower bound of [Raz92], solving
set disjointness of sets from the universe [ℎ] requires Alice and Bob to exchange at least
Ω(ℎ) bits, we get that 2𝑇𝐵 = Ω(ℎ) and thus 𝑇 = Ω(ℎ/𝐵) = Ω(ℎ/ log 𝑛). Together with
𝑛 = Θ(ℎℓ𝛼𝑘), the claimed lower bound follows.

We directly also get a lower bound on computing a fractional dominating tree packing
(or a fractional connected dominating set packing) of size at least 𝑘/𝛼 because the size of
such a packing leads to the corresponding approximation of the vertex connectivity.

To prove the lower bound on finding small vertex cuts, we consider instances (𝑋, 𝑌 ) for
which |𝑋 ∩ 𝑌 | = 1. Let the element in the intersection 𝑋 ∩ 𝑌 be 𝑧. Note that by Lemma
9.10.4, in that case the vertex connectivity of 𝐺(𝑋, 𝑌 ) is 4 and every vertex cut of size at
most 𝛼𝑘 < 𝑤 needs to contain the nodes 𝑢𝑧, 𝑣𝑧, 𝑎, and 𝑏. Hence, an algorithm that outputs

a vertex cut of size 𝑠 ≤ min
{︁
𝛿
√︀
𝑛/(𝛼𝑘 log 𝑛), 𝛼𝑘

}︁
has to output a node set 𝑆 of size 𝑠 such

that in particular 𝑢𝑧, 𝑣𝑧 ∈ 𝑆. Since 𝑆 contains at most 𝑠−2 other nodes 𝑢𝑥 ∈ 𝑉𝑋 or 𝑣𝑦 ∈ 𝑉𝑌 ,
the same reduction as above allows Alice and Bob to output a set of at most 𝑠− 1 elements
from [ℎ] such that 𝑧 is contained in this set. For a sufficiently small constant 𝛿 > 0, we have
seen that for this, Alice and Bob also need to exchange at least Ω(ℎ) bits.

199



Part IV

Congestion—Scheduling Distributed

Protocols

200



Chapter 10

Scheduling Distributed Protocols

10.1 Introduction & Related Work

10.1.1 General Motivation and Background

Computer networks are constantly running many applications at the same time and because
of the bandwidth limitations, each application gets slowed down due to the activities of
the others. Despite that, for the vast majority of the distributed protocols introduced in
theoretical distributed computing, the initial design and analysis have been carried out with
the assumption that each protocol uses the network alone. In this chapter, we investigate
the issue of what happens when many distributed protocols are to be run together.

Specifically, we study the questions of how to run these distributed protocols simultane-

ously as fast as possible and what are the limitations on how fast that can be done. While
being arguably a fundamental issue, to the best of our knowledge, these questions have not
been investigated in their full generality. However, we describe a number of special cases that
have been studied in the past. Let us first make these questions somewhat more concrete by
fixing the model and the problem statement.

Model Throughout this chapter, we work with the CONGEST model [Pel00], as explained
in Chapter 2. Recall that CONGEST is a standard distributed model that takes bandwidth
limitations into account. The communication network is represented by an undirected graph
𝐺 = (𝑉,𝐸) where |𝑉 | = 𝑛. Communications occur in synchronous rounds and in each round
each node can send one 𝐵-bit message to each of its neighbors, where 𝐵 = 𝑂(log 𝑛). In this
context, we use the term protocol to refer to any distributed algorithm in the CONGEST

model. For instance, a distributed algorithm that computes a Breadth First Search tree
(rooted in a given node) is a protocol.

Scheduling Distributed Protocols In an informal sense, the general scenario that we
consider is as follows: We want to run many independent distributed protocols 𝒫1, 𝒫2, . . . ,
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𝒫𝑘 together. However, we do not know what problem is being solved by each protocol.
Hence, we must run each protocol essentially in a black-box manner without altering the
content of its messages, except for potentially adding a small amount of auxiliary information
to each message.

As mentioned before, we are not aware of a prior work that studied this problem of
scheduling distributed protocols in its full generality. However, we now mention some prior
work that can be viewed as studying (very) special cases of this scheduling problem:

(I) The first example is broadcasting 𝑘 messages from different sources, each to the ℎ-hop
neighborhood of its source. We can naturally view this as 𝑘 simultaneous problems,
each of which requires sending a given message from its source to the ℎ-hop neigh-
borhood of the source. Classical analysis [Top85] shows that the natural method in
which at each round each node sends one message that it has not sent before (and has
traveled less than ℎ hops so far) solves the problem in 𝑂(𝑘+ℎ) rounds. The significant
aspect in this bound is the additive appearance of 𝑘. This in a sense implies a perfect
pipelining between the 𝑘 broadcast protocols.

(II) The second example is running breadth-first search protocols from different sources.
Holzer and Wattenhofer [HW12] show that one can run 𝑛 BFSs starting in different
nodes all together in 𝑂(𝑛) rounds. This is done by delaying BFSs carefully in a way
that they do not interfere (once started). More generally, Lenzen and Peleg [LP13]
show that 𝑘 many ℎ-hop BFSs from different sources can be performed in 𝑂(𝑘 + ℎ)

rounds. This is in a sense a strengthening of the broadcast result of [Top85], as it shows
that in fact each BFS-token (or equivalently, broadcast message) will be delivered to
each related destination along a shortest path.

(III) The third example is routing many packets, each from a source to a destination, along
a given path. This problem has received the most attention [LMR94, Rot13, Sch98,
LMR99,BG99,Wie11,RT96,OR97,AdHV99,PW11] among these special cases. Viewing
our distributed protocol scheduling problem as a generalization of this packet routing
problem, we adopt a terminology close to the terminology introduced for packet routing
in [LMR94]. We discuss some known results for packet routing after introducing this
(generalized) terminology.

10.1.2 A Zoomed-In View of Scheduling and Our Terminology

Recall from above that we are primarily interested in running distributed protocols 𝒫1, 𝒫2,
. . . , 𝒫𝑘 concurrently. Having seen the above examples, we are now ready to investigate
this in more depth. In particular, we now discuss simple lower bounds on the schedule

length, which informally means how long it takes to run all the protocols together 1. In the
course of this discussion, we fix some terminology, which is an immediate generalization of

1See Section 10.2.1 for the formal definitions.
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some terminology of Leighton, Maggs, and Rao [LMR94], and will be in use throughout the
chapter. We note that the definitions presented here are informal and are presented mainly
for introductory purposes. See Section 10.2.1 for the formal definitions.

Dilation: If one of the protocols 𝒫1, 𝒫2, . . . , 𝒫𝑘 that are to be run together takes 𝑑 rounds,
running all of them together will clearly require at least 𝑑 rounds. We refer to the maximum
running time of the protocols as dilation. Note that dilation is thus a trivial lower bound on
the length of schedule that runs all the protocols.

Congestion: There is another lower bound due to the bandwidth limitations. For each
edge 𝑒, let 𝑐𝑖(𝑒) be the number of rounds in which protocol 𝒫𝑖 sends a message over 𝑒.
Then, running all the protocols together requires at least congestion = max𝑒∈𝐸 congestion(𝑒)

rounds where congestion(𝑒) =
∑︀𝑘

𝑖=1 𝑐𝑖(𝑒). Thus, congestion is another trivial lower bound on
the length of schedule that runs all the protocols.

From the above discussions, we can conclude that

Observation 10.1.1. Any schedule for running protocols 𝒫1, 𝒫2, . . . , 𝒫𝑘 together requires

at least max{congestion, dilation} ≥ (congestion + dilation)/2 rounds.

In light of this simple observation, the key question of interest is:

Question: Can we always find a schedule that has a length close to the aforementioned
Ω(congestion + dilation) lower bound?

A simple yet quite powerful technique that proves helpful in this regard is random delays.
This technique was first introduced by Leighton, Maggs, and Rao [LMR94] in the context
of the packet routing problem. In packet routing, dilation is the length of longest path
and congestion is the maximum number of paths that go through an edge. The random
delays method achieves an upper bound within an 𝑂(log 𝑛) factor of the lower bound; more
precisely, a schedule of size 𝑂(congestion + dilation · log 𝑛). Improving this simple 𝑂(log 𝑛)-
approximation to an 𝑂(1)-approximation received quite an extensive amount of attention and
by now there are many existence proofs and also algorithmic constructions that give schedules
of length 𝑂(congestion+dilation) for packet routing. That is, schedules within an 𝑂(1) factor
from the trivial lower bound. See for instance [LMR94,Rot13,Sch98,LMR99,BG99,Wie11,
RT96,OR97]. The classical method [LMR94] is based on log* 𝑛 levels of recursively applying
the Lovasz’s Local Lemma2, each time reducing the parameter congestion + dilation of the
new problem to a polylogarithmic function of the same parameter in the problem of the
previous level.

Going back to the question of scheduling general distributed protocols, the random delays
technique proves useful here as well. If nodes have access to shared randomness, the same
simple random delays technique as in [LMR94] provides a schedule for general distributed

2In fact, the packet routing problem and this LLL-based method of it are typically covered in courses on
randomized algorithms for introducing the Lovasz’s Local Lemma, see for instance [Sin,Raja,Rajb,Kar].
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protocols that is within an 𝑂(log 𝑛) factor of the trivial lower bound. Here the shared
randomness is helpful because for each distributed protocol, there can be many (potentially
distant) nodes that start it and delaying the protocol by a (controlled) random delay requires
all nodes to do so in a consistent manner.

Theorem 10.1.2 (Informal3, and Extension of [LMR94]). Given shared randomness,

one can distributedly run all the distributed protocols in 𝑂(congestion+dilation · log 𝑛) round,

with high probability.

Proof Sketch. We note that the description provided here is meant to just provide an informal
sketch of the approach. See the proof of Theorem 10.4.1 for a formal proof of existence of
the schedule.

We break time into phases, each consisting of Θ(log 𝑛) consecutive rounds. Then, we
treat each phase as one round, meaning that we make each distributed protocol perform
its communications at the speed one protocol-round per phase. We delay the start of each
protocol by a uniform random delay in [𝑂(congestion/ log 𝑛)] phases. Then, for each edge
𝑒 and each phase, each particular message that goes through 𝑒 in one of the protocols has
probability at most 𝑂(log 𝑛/congestion) to be scheduled to traverse 𝑒 in this particular phase.
Thus, the expected number of messages that are scheduled to traverse each edge in a given
phase is 𝑂(log 𝑛). Then, a Chernoff bound4 shows that with high probability, for each edge
and each phase, 𝑂(log 𝑛) messages are scheduled to traverse this edge in this phase. Since
the phase has Θ(log 𝑛) rounds, there is enough time to deliver all the scheduled messages.
Hence, with high probability, all protocols run concurrently and each will is done after
𝑂(congestion/ log 𝑛) + dilation phases, that is, 𝑂(congestion + dilation · log 𝑛) rounds.

The above theorem leaves us with two main questions:

Questions:

1. Can one remove the log 𝑛 factor and get an 𝑂(congestion+dilation) round schedule
for general distributed protocols, perhaps using ideas similar to [LMR94, Rot13,
Sch98,LMR99,BG99,Wie11,RT96,OR97]?

2. What can we do with only private randomness, that is, without assuming that
nodes have access to shared randomness?

10.1.3 Our Technical Contributions

We provide two results, which provide answers for the above two questions, respectively.

3See Theorem 10.4.1 for a formalized existential version.
4Although we do not have independence between these random events, we can apply the Chernoff bound

as we have negative independence. See the proof of Theorem 10.4.1.
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First Result Regarding the first question, we show that interestingly, and unlike in packet
routing, when scheduling general distributed protocols, the lower bound can be improved to
essentially match the simple upper bound. Concretely, using the probabilistic method [AS04],
we prove the existence of a hard instance of the scheduling problem which shows that:

Theorem 10.1.3 (Informal). There are instances of the distributed protocol scheduling

problem for which any schedule needs Ω(congestion + dilation · log 𝑛/ log log 𝑛) rounds.

Second Result As for the second question, that is shared randomness, we face two rather
orthogonal issues: One is about the amount of randomness to be shared and the other is
how (and where) to share randomness. We note that the second question is somewhat or-
thogonal to the first question and it is relevant even if we want to share just one bit. While
the first issue is simple, the second is deeper and requires considerably more work. For the
first issue, the saving grace is that for the proof of Theorem 10.1.2, Θ(log 𝑛)-wise indepen-
dence between the values of random delays is enough5 and thus, thanks to the standard
bounded-independence randomness constructions (e.g., via Reed-Solomon codes), sharing
simply 𝑂(log2 𝑛) random bits is sufficient. As for the second issue, clearly one can elect a
leader to pick the required “shared” randomness and broadcast it to all nodes. However,
this, and moreover any such global sharing procedure, will need at least Ω(𝐷) rounds, for
𝐷 being the network diameter, which is not desirable. We explain how to solve the problem
with private randomness in a time close to the case with shared randomness.

Theorem 10.1.4 (Informal). There is a distributed algorithm that uses only private

randomness and for any instance of the distributed protocol scheduling problem, computes

a schedule of length 𝑂(congestion+dilation·log 𝑛), in 𝑂(congestion+dilation log2 𝑛) rounds,

with high probability.

Roughly speaking, the approach is to break each protocol into sparsely overlapping sub-
protocols that each span only small areas of the network. In particular, each of these sub-
protocols will span an area of (weak) diameter 𝑂(dilation log 𝑛) hops. Then, we share random
bits only inside these smaller areas and show how to run these sub-protocols in a way that
they simulate the main protocols.

We also explain that our approach is in fact more general and it can be used to remove
the assumption of having shared randomness in a broad family of randomized distributed
protocols, at the cost of an 𝑂(log2 𝑛) factor increase in their running time. Roughly speak-
ing, the family that this result applies to is those protocols in which each node outputs one
(canonical) output in the majority of the executions of the protocol (with the given input),
that is, protocols where the randomness does not affect the output (significantly) and is used

5See [SSS95, Theorem 5] for a Chernoff bound for 𝑘-wise independent random variables.

205



only to speed up the computation. We note that recently this class was termed Bellagio algo-

rithms [Gol12,GG11] as a subclass of randomized algorithms with some pseudo-deterministic
behavior. This generalization is presented in Section 10.5.

10.2 Preliminaries

In this section, we present the notions and the definitions that we use throughout this chapter.
In particular, in Section 10.2.1, we define the concept of communication pattern and describe
various related notions, especially the simulations of communication patterns. These are key
elements in formalizing our study of the scheduling problem. Then, in Section 10.2.2, we
present the formal definition of the scheduling problem, in the context of the definitions
provided in Section 10.2.1.

10.2.1 Communication Patterns and their Simulations

Time-Expanded Graph Given a network graph 𝐺 = (𝑉,𝐸), we define its 𝑇 -round time-

expanded graph 𝐺× [𝑇 ] as follows: We have 𝑇 + 1 copies of 𝑉 , denoted by 𝑉0, 𝑉1, 𝑉2, . . . , 𝑉𝑇 ,
and 𝑇 copies of 𝐸, denoted 𝐸1, 𝐸2, . . . , 𝐸𝑇 , where 𝐸𝑖 defines the set of edges between 𝑉𝑖−1

and 𝑉𝑖. We refer to the copy of node 𝑣 ∈ 𝑉 that is in 𝑉𝑖 as 𝑣𝑖. For each 𝑖 ∈ [1, 𝑇 ], 𝑣𝑖 ∈ 𝑉𝑖

is connected with a direct edge to 𝑢𝑖+1 ∈ 𝑉𝑖+1, that is (𝑣𝑖, 𝑢𝑖+1) ∈ 𝐸𝑖+1, if and only if
(𝑣, 𝑢) ∈ 𝐸. We use the notations 𝑉 (𝐺× [𝑇 ]) and 𝐸(𝐺× [𝑇 ]) to refer to, 𝑉0∪𝑉1∪𝑉2 · · · ∪𝑉𝑇

and 𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑇 , respectively.

Communication Pattern To talk about running many distributed protocols simultane-
ously, we focus on the communication patterns [Lyn96, Page 143] of the protocols. In an
informal sense, the communication pattern of (one execution of) a protocol records in which
rounds and over which edges messages get sent in that (execution of the) protocol. Formally,
the definition is as follows.

Fix an execution 𝛼 of a protocol 𝒫 and suppose that it has 𝑇 rounds. The communications
of this execution on network 𝐺 correspond naturally to a subset of edges 𝑃 ⊆ 𝐸(𝐺× [𝑇 ]), in
the following manner: For 𝑣 ∈ 𝑉𝑖 and 𝑢 ∈ 𝑉𝑖+1, we include the edge (𝑣𝑖, 𝑢𝑖+1) in the subset
𝑃 if and only if in the execution 𝛼, node 𝑣 sends a message to node 𝑢 in round 𝑖+ 1. We call
this subset 𝑃 the communication pattern of 𝛼. Note that a communication pattern does not
represent the content of the messages. We refer to 𝑇 as the length of this communication
pattern, and use the notation 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ) = 𝑇 to refer to it. We also sometimes say that 𝑃
is a 𝑇 -round communication pattern. Figure 10-1 shows an example.

As explained above, the communication pattern is defined for one execution 𝛼 of a pro-
tocol 𝒫 . However, each protocol might have many executions and thus also many communi-
cation patterns. These executions and communication patterns are determined as a function
of the inputs to the nodes and also their randomness. Our goal is to address running a
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Figure 10-1: A simple graph, its 3 round time-expanded version, and a communication pattern on

it. In round 1, nodes 2 and 3 send messages respectively to nodes 4 and 1; in round 2, node 1 sends

a message to node 4; in round 3, node 4 sends a message to node 5.

collection of protocols 𝒫1, 𝒫2, . . . , 𝒫𝑘 concurrently. To formalize this, we would like to have
one communication pattern for each protocol 𝒫𝑖. For that, we fix one execution for each
protocol 𝒫𝑖 in this collection, by fixing two things at the beginning of the execution: (1)
the input to the nodes, (2) the random bits used by the nodes throughout the execution
of 𝒫𝑖. Once these two are fixed, the execution of the protocol 𝒫𝑖 is uniquely determined.
This execution determines also a unique communication pattern 𝑃𝑖 for protocol 𝒫𝑖. Thus,
we now have a collection of fixed communication patterns 𝑃1, 𝑃2, . . . , 𝑃𝑘, corresponding
respectively to protocols 𝒫1, 𝒫2, . . . , 𝒫𝑘. In the following, our focus will be on this collection
of communication patterns 𝑃1, 𝑃2, . . . , 𝑃𝑘.

Congestion and Dilation for a Collection of Communication Patterns Given a
collection of 𝑘 communication patterns 𝑃1 to 𝑃𝑘, the dilation of this collection is the maximum
length among 𝑃1 to 𝑃𝑘. That is, dilation =max𝑖∈[1,𝑘] 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑖). Moreover, the congestion

of this collection is the maximum over network edge 𝑒 of the total number of messages
that are sent through edge 𝑒 over all 𝑃1 to 𝑃𝑘. More precisely, for each edge 𝑒, let 𝑐𝑖(𝑒)

be the number of messages sent over 𝑒 in communication pattern 𝑃𝑖. Then, we define
congestion = max𝑒∈𝐸 congestion(𝑒) where congestion(𝑒) =

∑︀𝑘
𝑖=1 𝑐𝑖(𝑒).

Causal Precedence in a Communication Pattern We first define causal precedence

between nodes of 𝐺 × [𝑇 ] with respect to a given communication pattern 𝑃 ⊆ 𝐸(𝐺 × [𝑇 ]).
Consider the following two basic precedence relations: (1) for each 𝑖 ∈ [0, 𝑇 − 1], each node
𝑣𝑖 ∈ 𝑉𝑖 causally precedes 𝑣𝑖+1 ∈ 𝑉𝑖+1, and (2) node 𝑣𝑖 ∈ 𝑉𝑖 causally precedes node 𝑢𝑖+1 ∈ 𝑉𝑖+1

if (𝑣𝑖, 𝑢𝑖+1) ∈ 𝑃 . We define causal precedence by taking the reflexive transitive closure of
these basic precedence relations. In other words, a node 𝑣𝑖 ∈ 𝑉𝑖 causally precedes 𝑢𝑗 ∈ 𝑉𝑗 if
𝑣𝑖 = 𝑢𝑗 or if there is a sequence of basic precedence relations which start at 𝑣𝑖 and end in 𝑢𝑗.
Moreover, we say edge (𝑣𝑖, 𝑢𝑖+1) causally precedes edge (𝑣′𝑗, 𝑢

′
𝑗+1) if 𝑢𝑖+1 causally precedes 𝑣′𝑗.

Local Equivalence of Two Communication Patterns We say two communication
patterns 𝑃1, 𝑃2 ⊆ 𝐸(𝐺× [𝑇 ]) are locally equivalent for a node 𝑢𝑖 ∈ 𝑉𝑖, where 𝑖 ∈ [0, 𝑇 ], if the
two sets of the edges that causally precede 𝑢𝑖 in 𝑃1 and 𝑃2 are equal. Moreover, if 𝑃1 and
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𝑃2 are locally equivalent for 𝑢𝑇 , we also say that 𝑃1 and 𝑃2 are locally equivalent for node
𝑢 ∈ 𝐺.

Simulation of One Communication Pattern If 𝑃 ⊆ 𝐸(𝐺× [𝑇 ]) is a 𝑇 -round commu-
nication pattern and 𝑃 ′ ⊆ 𝐸(𝐺× [𝑇 ′]) is a 𝑇 ′-round communication pattern for 𝑇 ′ ≥ 𝑇 , then
we define a simulation of 𝑃 by 𝑃 ′ to be a bijective mapping 𝑓 from 𝑃 to 𝑃 ′ that preserves
pairwise causal precedences. More precisely, 𝑓 maps each edge (𝑣𝑖, 𝑢𝑖+1) of communication
pattern 𝑃 to an edge 𝑓((𝑣𝑖, 𝑢𝑖+1)) in the communication pattern 𝑃 ′ in a way that preserves
the causal precedence: that is, if edge (𝑣𝑖, 𝑢𝑖+1) causally precedes edge (𝑣′𝑗, 𝑢

′
𝑗+1) in 𝑃 , then

edge 𝑓((𝑣𝑖, 𝑢𝑖+1)) causally precedes edge 𝑓((𝑣′𝑗, 𝑢
′
𝑗+1)) in 𝑃 ′. We use the notation 𝑃 ≤

sim

𝑃 ′ to

denote that there exists a simulation of 𝑃 by 𝑃 ′, we also sometimes say that 𝑃 ′ simulates 𝑃

if such a simulation exists.

Local Simulation of One Communication Pattern for a Node For a communication
pattern 𝑃 , we say that a communication pattern 𝑃 ′ locally simulates 𝑃 for a node 𝑣 ∈ 𝐺

if there exists a communication pattern 𝑃 ′′ such that 𝑃 ≤
sim

𝑃 ′′ and 𝑃 ′ and 𝑃 ′′ are locally

equivalent for node 𝑣. If that case, we also write 𝑃 ≤
sim@v

𝑃 ′.

Simulation of Many Communication Patterns For a collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘}
of communication patterns where each 𝑃𝑖 ⊆ 𝐸(𝐺× [𝑇 ]), we define a simultaneous simulation

of P—or simply just a simulation of it—by a communication pattern 𝑃 ′ ⊆ 𝐸(𝐺 × [𝑇 ′])

to be a set F = {𝑓1, 𝑓2, . . . , 𝑓𝑘} of mappings, where each 𝑓𝑖 is a simulation from 𝑃𝑖 to some
communication pattern 𝑃 ′

𝑖 ⊆ 𝑃 ′ such that 𝑃 ′
1, 𝑃

′
2, . . . , 𝑃

′
𝑘 are mutually disjoint and 𝑃 ′ = ∪𝑖𝑃

′
𝑖 .

Local Simulation of Many Communication Patterns for a Node For a collection
P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication patterns where each 𝑃𝑖 ⊆ 𝐸(𝐺 × [𝑇 ]), we say that
communication pattern 𝑃 ′ ⊆ 𝐸(𝐺× [𝑇 ′]) locally simulates P for node 𝑣 if there is a partition
of 𝑃 ′ into disjoint communication patterns 𝑃 ′

1, 𝑃
′
2, . . . , 𝑃

′
𝑘 such that for each 𝑖, we have

𝑃𝑖 ≤
sim@v

𝑃 ′
𝑖 .

10.2.2 The Distributed Protocol Scheduling Problem

Recall that our objective is to investigate running a collection 𝒫1 to 𝒫𝑘 of protocols con-
currently. To formalize this, we consider communication pattens 𝑃1 to 𝑃𝑘, one for each of
the protocols. Each communication pattern 𝑃𝑖 is determined by fixing the input and the
randomness in all nodes in the protocol 𝒫𝑖, which defines one unique execution 𝛼𝑖 for that
protocol 𝒫𝑖, and then letting 𝑃𝑖 be the communication pattern of 𝛼𝑖. Our main goal is
for each node 𝑣 to learn its output in execution 𝛼𝑖 for each protocol 𝒫𝑖. An ideal formal
specification of this would be to construct an execution such that its communication pattern
is a simultaneous simulation of 𝑃1 to 𝑃𝑘. However, this goal turns out to be unnecessarily
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restrictive and it is unclear to us if it can be performed efficiently. Since our ultimate objec-
tive is that each node learns its output in execution 𝛼𝑖, for each protocol 𝒫𝑖, it suffices for
us to seek local simulations for each of the nodes. In this regard, we define the scheduling
problem using local simulations, as follows.

Scheduling for Many Communication Patterns For a collection of communication
patterns 𝑃1, 𝑃2, . . . , 𝑃𝑘 ⊆ 𝐸(𝐺× [𝑇 ]), we call a communication pattern 𝑃 ′ ⊆ 𝐸(𝐺× [𝑇 ′]) a
scheduling of 𝑃1, 𝑃2, . . . , 𝑃𝑘 if and only if the following condition is satisfied: for each node
𝑣 ∈ 𝐺, communication pattern 𝑃 ′ contains a simultaneous local simulation of 𝑃1, 𝑃2, . . . ,
𝑃𝑘. We define the length of this schedule to be 𝑇 ′, and we sometimes say that this is a 𝑇 ′-

round scheduling of 𝑃1, 𝑃2, . . . , 𝑃𝑘. We emphasize that the definition of the scheduling does
not restrict how the local simulations of each communication pattern 𝑃𝑖 in different nodes
𝑣, 𝑣′ ∈ 𝐺 relate with each other. We note that this will not cause any problem, because the
local simulations of 𝑃𝑖 in different nodes enable them to compute outputs that are the same
as the outputs that would be generated with the complete communication pattern 𝑃𝑖.

The Distributed Protocol Scheduling (DPS) Problem Given a collection 𝒫1 to 𝒫𝑘

of protocols, and their fixed communication patterns 𝑃1 to 𝑃𝑘, one for each, we define the
problem of scheduling distributed protocols to be constructing an execution such that the
corresponding communication pattern is a scheduling of communication patterns 𝑃1 to 𝑃𝑘.

We next discuss a number of remarks about our results on the DPS problem.

Remarks About Our Lower Bounds Our lower bound, which is explained in Sec-
tion 10.3, is existential and it applies even if the scheduling problem is solved using central-
ized computation. This means that everything—particularly the whole network topology
and also the communication patterns of all the protocols—is known to the centralized sched-
uler, and the lower bound simply says that there is no “short” schedule. Notice that this is
much stronger than saying that a “short” schedule cannot be computed (distributedly).

Remarks About Our Upper Bounds For the purpose of our algorithm that sched-
ules distributed protocols (formally their corresponding fixed communication patterns), and
which is presented in Section 10.4, we assume that the distributed protocols 𝒫1 to 𝒫𝑘 are
given in the following format: For each protocol 𝒫𝑖, when this protocol is run alone, in each
round each node knows what to send in the next round. This clearly depends on the node’s
input and also what messages the node has received up to, and including, that round.

Moreover, we remark that protocols 𝒫1 to 𝒫𝑘 might be randomized. To make the task
of the simulation precise, as mentioned before, we consider the randomness used by each
protocol 𝒫𝑖 as a part of the input to the node. That is, at the start of the execution, each
node samples all of its bits of randomness, and thus fixes them. For the remainder of the
execution of the protocol 𝒫𝑖, the node uses only these fixed bits, similarly to the way it uses
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its fixed input. Hence, aside from using this input string of random bits, the protocol 𝒫𝑖

behaves as a deterministic algorithm and has a unique execution 𝛼𝑖, as mentioned before,
and thus also a unique communication pattern 𝑃𝑖. Even if we repeat the protocol many
times, which we do in our algorithms, the protocol will use the same fixed string of random
bits and the same inputs.

We emphasize that we cannot assume that the communication pattern 𝑃𝑖 is known to
the nodes before the start of the execution. This is because, often, the communication
pattern conveys information about the things that the protocol is supposed to compute.
Therefore, nodes cannot know this communication pattern before running the protocol.
Even throughout the execution, a node 𝑣 might not know which of its neighbors will send a
message to 𝑣 in the next round. A simple example to stress the significance of this issue is
the case of Breadth First Search computation: before running the BFS protocol, node 𝑣 does
not know at which round and from which neighbors it will receive a message6 during the
execution of the protocol. In fact, the first message that it receives and the round in which
it receives that first message determine the node’s parent in the BFS tree and its distance
to the root, respectively, and these are exactly what the protocol is designed to compute.
Because of these, we do not assume that the nodes know the correct communication pattern
a priori. In fact, if for some reason the schedule is mixed up and the node does not receive
one of the messages that it is supposed to receive in the execution of protocol 𝒫𝑖, the node
might not realize this and it can proceed with executing the protocol, although generating
a wrong execution. Our algorithms ensure that this does not happen.

Finally, we note that for our algorithmic result, we assume that nodes know upper bounds
on congestion and dilation which are within a constant factor of them.

10.3 Lower Bound

In this section, we prove Theorem 10.1.3 (restated below). The main take-home message
of this result is that the log 𝑛 factor in Theorem 10.1.2—formalized in Theorem 10.1.4—is
essentially unavoidable. That is, in a sharp contrast to the packet routing result of Leighton,
Maggs, and Rao [LMR94], general distributed protocols do not always admit 𝑂(congestion+

dilation) round schedules. Concretely, the theorem statement is as follows.

Theorem 10.1.3 There is an instance of the distributed protocol scheduling problem for

which any schedule needs Ω(congestion + dilation · log 𝑛/ log log 𝑛) rounds.

To prove this theorem about scheduling, we prove Theorem 10.3.1 which shows the ex-
istence of a collection of communication patterns that cannot be simulated by any short
communication pattern. At the end of the section, in the proof of Theorem 10.1.3, we
explain how Theorem 10.3.1 proves Theorem 10.1.3.

6Clearly one can add dummy messages to BFS to fix its communication pattern. However, this will
increase the load on edges (i.e., congestion), which is undesirable.
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Theorem 10.3.1. There exists a collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication pat-

terns such that any communication pattern 𝑃 ′ that simultaneously simulates P must have

𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ′) = Ω(congestion + dilation · log 𝑛/ log log 𝑛).

Proof Outline From A Bird’s-Eye View: We use the probabilistic method [AS04]
to show the existence of such a “hard ” problem instance. In particular, we present a
probability distribution for a collection of communication patterns and show that, with
a nonzero probability (and in fact with probability almost 1), for a random collection
P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} taken from this distribution, no communication pattern 𝑃 ′ of length
𝑜(congestion + dilation · log 𝑛/ log log 𝑛) exists that simultaneously simulates P. For that, we
study each fixed communication pattern 𝑃 ′ of length 𝑜(congestion+ dilation · log 𝑛/ log log 𝑛)

against a random collection P, and we show that this one communication pattern7 𝑃 ′ has
an extremely small probability to simulate the sampled collection P. This probability is so
small that, even after we take a union bound over all possible communication patterns 𝑃 ′, the
probability that one of them simulates the sampled collection of communication patterns is
strictly less than 1, and in fact close to 0. Hence, we conclude that there exists a collection P

of communication patterns which does not admit any 𝑜(congestion+dilation · log 𝑛/ log log 𝑛)

round communication pattern 𝑃 ′ that simulates them.

The Probability Distribution of the Communication Patterns: We start by describ-
ing the probability distribution of the communication patterns 𝑃1 to 𝑃𝑘. We set 𝑘 = 𝑛0.2.
The network 𝐺 = (𝑉,𝐸) is as follows: 𝑉 = {𝑣0, 𝑣1, . . . , 𝑣𝐿} ∪ 𝑈1 ∪ 𝑈2 ∪ · · · ∪ 𝑈𝐿, where
𝐿 = 𝑛0.1. Each set 𝑈 𝑖 contains 𝜂 = 𝑛0.9 nodes, and each node 𝑢 ∈ 𝑈 𝑖 is connected to 𝑣𝑖−1

and to 𝑣𝑖. Figure 10-2 illustrates the structure of this network. We refer to the connections
from 𝑣𝑖−1 to 𝑈 𝑖 and those from 𝑈 𝑖 to 𝑣𝑖 as the connections of layer 𝑖, or simply layer 𝑖.

The general format of each communication pattern 𝑃𝑖 is as follows: in round 1, node
𝑣0 sends a message to a subset 𝑆1 ⊂ 𝑈1. The choice of 𝑆1 and more generally 𝑆𝑖 will be
described shortly. In round 2, each of the nodes in 𝑆1 sends a message to 𝑣1. In round 3, node
𝑣1 sends a message to a subset 𝑆2 ⊂ 𝑈2. In round 4, each of the nodes in 𝑆2 sends a message
to 𝑣2. The communication pattern proceeds similarly over the next layers, continuing with
a speed of one hop progress per round.

In a random collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication patterns, for each commu-
nication pattern 𝑃𝑖, each set 𝑆𝑗 is determined randomly where each node 𝑢 ∈ 𝑈 𝑗 is added
to 𝑆𝑗 with probability 𝑛−0.1, and the choices are independent between different nodes of the
same layer, different layers, and different communication patterns. Figure 10-2 shows an
example.

7Actually, this sentence and the two after it are not accurate. Instead of studying each fixed simulating
communication pattern 𝑃 ′, as we will see shortly, we will study a closely related structure, which we call
crossing pattern. For now, before defining the concept of crossing patterns—which is somewhat detailed—it
is convenient to imagine that the argument investigates each simulating communication pattern 𝑃 ′ directly.
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v0 v1 v2 v3 vLvL-1vL-2

U1 U2 U3 UL-1 UL

Layer 3

Figure 10-2: The figure depicts the network in the hard distribution and it also shows the com-

munications of a sample communication pattern. We note that this is the base graph 𝐺 and not

its time-expansion, and thus, the communications are indicated on the base graph rather than on

the time-expanded graph, as we did for illustrating communication patterns in Section 10.2.1. The

orange dotted lines present all the edges of the base network. The green arrows indicate all the

edges used by one sampled communication pattern. In particular, a green arrow from a node 𝑣𝑖 to a

node 𝑢 ∈ 𝑈 𝑖+1 indicates that a message is sent from node 𝑣𝑖 to node 𝑢 in round 2𝑖+1, and similarly,

a green arrow from a node 𝑢 ∈ 𝑈 𝑖 to a node 𝑣𝑖+1 indicates a message sent from node 𝑢 to node

𝑣𝑖+1 in round 2𝑖. In this illustration, the communications move through the network synchronously

from left to right, that is from 𝑣0 towards 𝑣𝐿, at a speed of one hop per round.

Having this probability distribution, we are now ready to start proving Theorem 10.3.1.
The proof is composed of two lemmas, Lemma 10.3.2 and Lemma 10.3.3, which establish two
properties for a random collection P of communication patterns in the distribution mentioned
above:

(A) Lemma 10.3.2 shows that a random collection P has congestion = 𝑂(𝑛0.1) and dilation =

2𝑛0.1, with high probability.

(B) Lemma 10.3.3 shows that for a random collection P, with high probability, there is no
short communication pattern 𝑃 ′ that simultaneously simulates collection P. We call a
communication pattern 𝑃 ′ short if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ′) ≤ 𝑛0.1 log𝑛

1000 log log𝑛
.

Proving property (B) will be the main technical part of the proof. At the end, we put the
two lemmas, Lemma 10.3.2 and Lemma 10.3.3, together to prove Theorem 10.3.1.

Lemma 10.3.2. For a randomly sampled collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication

patterns in the distribution mentioned above, with high probability, we have dilation = 2𝑛0.1

and congestion = 𝑂(𝑛0.1).

Proof. Notice that in any instance of the distributed scheduling problem in the above setting,
we have dilation = 2𝑛0.1. We now argue that we also have congestion = 𝑂(𝑛0.1), with high
probability. Since we have 𝑘 = 𝑛0.2 communication patterns, E[congestion] = 𝑘𝑛−0.1 =
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𝑛0.2𝑛−0.1 = 𝑛0.1. Because of the independence between the communication patterns, we
know that Pr[congestion ≥ 2𝑛−0.1] ≤ 𝑒−Θ(𝑛0.1).

Lemma 10.3.3. For a random collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication patterns

in the distribution mentioned above, with high probability, there is no short communication

pattern 𝑃 ′ that simultaneously simulates collection P.

As mentioned before, proving Lemma 10.3.3 is the most technical part of the result.
We next present our plan for proving Lemma 10.3.3. In particular, we specify the steps
required for the proof. Then, we present the lemmas formalizing each of the steps of this
plan, and finally we conclude with putting these lemmas together and presenting the proof
of Lemma 10.3.3.

Proof Plan for Lemma 10.3.3. Our plan for proving the lemma is as follows. We want to
prove that for a randomly sampled collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication pat-
terns, there is no short simulating communication pattern 𝑃 ′, with high probability. For that,
we first define a concept of crossing pattern. This definition is such that the existence of a
short communication pattern 𝑃 ′ that simulates collection P implies the existence of a cross-
ing pattern with certain conditions (as formalized in Claim 10.3.6). We first upper bound
the number of possible crossing patterns with these condition, in Lemma 10.3.4. We then
study each possible crossing pattern with those conditions individually and in Lemma 10.3.7,
we prove that each such individual crossing pattern has an extremely low probability to be
good—clarified shortly—for a random collection P. This probability is so small that it allows
us to union bound over all possible crossing patterns and conclude that with high probability,
no crossing pattern is good for a random collection P. Then, we infer that for a random col-
lection P, with high probability, there is no short communication pattern 𝑃 ′ that simulates
the collection P.

We first present the abstract definition of the concept of crossing patterns, and a few
related notions and helper lemmas. Then, we explain the interpretation of this abstract
definition and how it connects to simulations of a collection P of communication patterns.

Defining Crossing Patterns: We break the time into 0.1𝑛0.1 phases, each made of
log𝑛

100 log log𝑛
consecutive rounds. Then, a crossing pattern Φ : [𝑘] × [𝑛0.1] → [0.1𝑛0.1] ∪ {⊥}

is simply a mapping from communication pattern index 𝑖 ∈ {1, 2, . . . , 𝑘} and layer num-
ber 𝑗 ∈ {1, 2, . . . , 𝑛0.1} to a phase number 𝑡 ∈ {1, 2, . . . , 0.1𝑛0.1} or to ⊥ (which indicates
undefined).

Notations Related to Crossing Patterns Consider an arbitrary crossing pattern Φ.
For each layer 𝑗 ∈ [𝑛0.1] and each phase 𝑡 ∈ [0.1𝑛0.1], let 𝐼(𝑗, 𝑡) be the set of communication
pattern indices 𝑖 ∈ [𝑘] such that Φ(𝑖, 𝑗) = 𝑡, that is, 𝐼(𝑗, 𝑡) = {𝑖 |Φ(𝑖, 𝑗) = 𝑡}. Define the load
𝐿(𝑗, 𝑡) in layer 𝑗 at phase 𝑡 by 𝐿(𝑗, 𝑡) = |𝐼(𝑗, 𝑡)|. That is, 𝐿(𝑗, 𝑡) denotes the total number
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of communication pattern indices 𝑖 that cross layer 𝑗 during phase 𝑡. We call a pair of layer
number 𝑗 and phase number 𝑡 heavy if 𝐿(𝑗, 𝑡) > 0.9𝑛0.1.

Semi-Full Crossing Patterns: We say a crossing pattern Φ is semi-full if for each 𝑖 ∈
[1, 𝑘], we have |{𝑗 |Φ(𝑖, 𝑗) = ⊥}| ≤ 𝑛0.1

10
. That is, if for each communication pattern index 𝑖,

strictly greater than 9/10 of the layers have a defined crossing phase number.

We next argue that the number of possible semi-full crossing patterns is moderately small.

Lemma 10.3.4. The number of semi-full crossing patterns is at most 𝑒Θ(𝑛0.3).

Proof. We argue that for each communication pattern 𝑃𝑖, there are at most 𝑒𝑂(𝑛0.1) different
ways to specify the crossing pattern part for 𝑃𝑖 in a semi-full crossing pattern. To specify
that, we need to specify at most 0.1𝑛0.1 layers that are not crossed during a phase, and also
specify the crossing phase number for the rest of the layers. For the layers that are not crossed
during a phase, there are

(︀
𝑛0.1

0.1𝑛0.1

)︀
= 𝑒𝑂(𝑛0.1) options. To assign increasing phase numbers in

range [𝑛0.1] to the remaining 0.9𝑛0.1 layers, there are
(︀
1.9𝑛0.1−1
0.9𝑛0.1

)︀
= 𝑒𝑂(𝑛0.1) options8. Hence,

the total number of options for the crossing pattern of a single communication pattern 𝑃𝑖

is at most 𝑒Θ(𝑛0.1). Therefore, over all the 𝑘 = 𝑛0.2 communication patterns 𝑃1 to 𝑃𝑘, the
number of all possible crossing patterns is at most 𝑒Θ(𝑛0.3).

Claim 10.3.5. Each semi-full crossing pattern has at least one heavy layer-phase pair (𝑗, 𝑡)

for 𝑗 ∈ [𝑛0.1] and 𝑡 ∈ [0.1𝑛0.1].

Proof. We argue that there is at least one pair of layer number 𝑗 and phase number 𝑡 such
that 𝐿(𝑗, 𝑡) > 0.9𝑛0.1. The argument is as follows. There are 𝑘 = 𝑛0.2 communication
patterns indices 𝑖 ∈ [𝑘]. For each 𝑖 ∈ [𝑘], at least 0.9𝑛0.1 of the layers is crossed during a
phase, because the crossing pattern is semi-full. Thus, we have∑︁

𝑗,𝑡

𝐿(𝑗, 𝑡) > 𝑛0.2 · 0.9𝑛0.1 = 0.9𝑛0.3.

On the other hand, there are 0.1𝑛0.2 choices for pair (𝑗, 𝑡). Hence, the average load over
these pairs is at least 0.9𝑛0.1. Therefore, there exists at least one pair (𝑗, 𝑡) such that
𝐿(𝑗, 𝑡) ≥ 0.9𝑛0.1.

We next connect crossing patterns to simulations of communication patterns.

8Recall that this is essentially a case of the so-called stars and bars problem: phases are the stars and
layers are the bars, and how many stars there are before a bar indicates the phase in which the related layer
is crossed.
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The Crossing Pattern Corresponding to a Simulation 𝐹 of a collection P by

a Communication Pattern 𝑃 ′: Fix a simulation 𝐹 of a collection P of communication
patterns by a commutation pattern 𝑃 ′. We say that 𝐹 has crossing pattern Φ if the following
condition holds: For any 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑛0.1], we have Φ(𝑖, 𝑗) = 𝑡 if and only if in the
simulation 𝑓𝑖 ∈ 𝐹 of 𝑃𝑖 in 𝑃 ′, two conditions are satisfied: (1) all the messages from 𝑣𝑗−1 to
𝑆𝑗 are sent in phase 𝑡, and (2) all the messages of nodes of 𝑆𝑗 to node 𝑣𝑗 are sent in phase
𝑡. If no 𝑡 satisfies these conditions, we have Φ(𝑖, 𝑗) = ⊥.

We emphasize that Φ does not depend on the collection P, and it only maps indices
𝑖 ∈ [𝑘] and the respective layer numbers to phase numbers. Also, although each simulation
𝐹 defines one crossing pattern Φ, different simulations 𝐹1 and 𝐹2 might have the same
crossing pattern.

Good Crossing Pattern For a Collection P of Communication Patterns: Consider
a crossing pattern Φ : [𝑘] × [𝑛0.1] → [0.1𝑛0.1] ∪ {⊥}. Recall the notation 𝐼(𝑗, 𝑡) which
denotes the set of communication pattern indices 𝑖 ∈ [𝑘] such that Φ(𝑖, 𝑗) = 𝑡, that is,
𝐼(𝑗, 𝑡) = {𝑖|Φ(𝑖, 𝑗) = 𝑡}. Fix an edge 𝑒 ∈ 𝐺 that is in layer 𝑗. Fix a collection P =

{𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication patterns and let 𝐼𝑒(𝑡) be the subset of indices 𝑖 ∈ 𝐼(𝑗, 𝑡)

such that communication pattern 𝑃𝑖 contains a time-copy of edge 𝑒, that is, 𝑃𝑖 sends a
message along edge 𝑒 at some point in time. We say edge 𝑒 is overloaded in phase 𝑡 if
|𝐼𝑒(𝑡)| > log𝑛

100 log log𝑛
. We say that Φ is good for P if there is no overloaded edge in any phase.

We next connect the existence of a short simulating communication pattern 𝑃 ′ to the
existence of a good semi-full crossing pattern Φ. In particular, we prove the following claim:

Claim 10.3.6. If there is a short communication pattern 𝑃 ′ that simulates a collection

P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication patterns in our distribution, then there is a semi-full

crossing pattern Φ that is good for P.

Proof. Fix an arbitrary collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication patterns in our
distribution. Suppose that there is a short communication pattern 𝑃 ′ that simulates collec-
tion P. We first generate a crossing pattern Φ by examining the simulation 𝐹 of 𝑃 ′ for the
collection P. Then, we argue that Φ must be (1) semi-full and (2) good for P.

The rule for generating Φ is the same as the definition presented earlier when discussing
the crossing pattern corresponding to a simulation. For simplicity, we repeat it here. For a
communication pattern index 𝑖 and layer 𝑗, set Φ(𝑖, 𝑗) = 𝑡 if in the simulation 𝑓𝑖 ∈ 𝐹 of 𝑃𝑖

in 𝑃 ′, two conditions are satisfied: (1) all the messages from 𝑣𝑗−1 to 𝑆𝑗 are sent in phase 𝑡,
and (2) all the messages of nodes of 𝑆𝑗 to node 𝑣𝑗 are sent in phase 𝑡. If no phase number 𝑡
satisfies these two conditions, set Φ(𝑖, 𝑗) = ⊥.

We now argue that Φ must be semi-full. Fix one 𝑃𝑖 ∈ P. If strictly more than 𝑛0.1

10

layers of 𝑃𝑖 do not have defined crossing phases, that is if |{𝑗|Φ(𝑖, 𝑗) = ⊥}| > 𝑛0.1

10
, then the

length of the simulation of 𝑃𝑖 would be more than 𝑛0.1

10
· log𝑛
100 log log𝑛

= 𝑛0.1 log𝑛
1000 log log𝑛

rounds. This

would be in contradiction with 𝑃 ′ being short. Thus, in 𝑃 ′, at most 𝑛0.1

10
layers of 𝑃𝑖 have an
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undefined crossing phase and are mapped to ⊥. As this holds for each 𝑖 ∈ [𝑘], we get that
the crossing pattern Φ is semi-full.

We next argue that Φ must be good for the collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘}. Fix an
arbitrary layer number 𝑗 ∈ [𝑛0.1] and a phase number 𝑡 ∈ [0.1𝑛0.1]. Recall from above
that 𝐼(𝑗, 𝑡) = {𝑖|Φ(𝑖, 𝑗) = 𝑡} and for each edge 𝑒 of layer 𝑗, we use 𝐼𝑒(𝑡) to denote the
subset of indices 𝑖 ∈ [𝑘] such that communication pattern 𝑃𝑖 uses a time-copy of edge 𝑒,
that is, 𝑃𝑖 sends a message along edge 𝑒 at some point in time. Since 𝑃 ′ is a simulation of
P = {𝑃1, 𝑃2, . . . , 𝑃𝑘}, it delivers the messages of all communication patterns with indices in
𝐼𝑒(𝑡) in phase 𝑡, in distinct rounds of the phase. On the other hand, each phase has only

log𝑛
100 log log𝑛

rounds. Therefore, it must be the case that |𝐼𝑒(𝑡)| ≤ log𝑛
100 log log𝑛

. That is, edge 𝑒 is
not overloaded in phase 𝑡. As this holds for any phase 𝑡 and any edge 𝑒, crossing pattern Φ

is good for the collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘}.

We next investigate each semi-full crossing pattern and we argue that it has an extremely
small probability to be good for a random collection P.

Lemma 10.3.7. For each fixed semi-full crossing pattern, the probability that it is good for

a random collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘} of communication patterns is at most 𝑒−𝑛0.7
.

Proof. Fix an arbitrary semi-full crossing pattern Φ, and a heavy layer-phase (𝑗, 𝑡) of it, which
is established to exist by Claim 10.3.5. Recall from above that 𝐼(𝑗, 𝑡) = {𝑖|Φ(𝑖, 𝑗) = 𝑡}. To
upper bound the probability of Φ being good for P, we upper bound the probability that
in phase 𝑡 there is no overloaded edge 𝑒 of layer 𝑗. We will examine only edges 𝑒 of layer 𝑗
that connect from 𝑣𝑗−1 to a node in 𝑈 𝑗. Recall that for each edge 𝑒 of layer 𝑗, we use 𝐼𝑒(𝑡)

to denote the subset of indices 𝑖 ∈ [𝑘] such that communication pattern 𝑃𝑖 uses a time-copy
of edge 𝑒, that is, 𝑃𝑖 sends a message along edge 𝑒 at some point in time. We upper bound
the probability that no such edge 𝑒 has |𝐼𝑒(𝑡)| > log𝑛

100 log log𝑛
. Recall that if there exists such

an overloaded edge 𝑒, then Φ is not good for P.
Consider each edge 𝑒 of layer 𝑗. It is easy to see that E[|𝐼𝑒(𝑡)|] ≥ 0.9. That is, the expected

number of communication pattern indices 𝑖 ∈ 𝐼(𝑗, 𝑡) such that 𝑃𝑖 includes a time-copy of 𝑒 is
at least 0.9𝑛0.1·𝑛−0.1 = 0.9. The reason is as follows: We have 𝐿(𝑗, 𝑡) = |𝐼(𝑗, 𝑡)| ≥ 0.9𝑛0.1, and
each of the communication patterns 𝑃𝑖 for 𝑖 ∈ 𝐼(𝑗, 𝑡) includes edge 𝑒 with probability 𝑛−0.1.
Notice that this bound on the expectation is rather small expectation, and in particular,
far lower than our threshold log𝑛

100 log log𝑛
for the edge being overloaded. We next argue that

there is a non-negligible probability that the load |𝐼𝑒(𝑡)| of at least one such edge 𝑒 deviates
significantly from this lower bound on its expectation and 𝑒 is overloaded in phase 𝑡. In
particular, for each edge 𝑒 of layer 𝑗, we have

𝑃𝑟[|𝐼𝑒(𝑡)| ≥
log 𝑛

100 log log 𝑛
] ≥

0.9𝑛0.1∑︁
ℓ= log𝑛

100 log log𝑛

(︂
0.9𝑛0.1

ℓ

)︂
(𝑛−0.1)ℓ(1− 𝑛−0.1)0.9𝑛

0.1−ℓ ≥ 𝑛−0.2.

On the other hand, for each communication pattern 𝑃𝑖, the choices of different edges of
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layer 𝑗 (which each connect from 𝑣𝑗−1 to a node in 𝑈 𝑗) being in 𝑃𝑖 are independent. Thus,
the events of different edges 𝑒 being overloaded are independent. Therefore, the probability
that no edge 𝑒 of layer 𝑗 is overloaded in phase 𝑡 is at most (1 − 𝑛−0.2)𝑛

0.9 ≤ 𝑒−𝑛0.7
. That

is, the probability that the fixed crossing pattern Φ is good for a random collection P of
communication patterns is at most 𝑒−𝑛0.7

.

Proof of Lemma 10.3.3. Now, we wrap up the proof using a union bound over all semi-full
crossing patterns. Lemma 10.3.4 shows that the number of all possible semi-full crossing
patterns is at most 𝑒Θ(𝑛0.3). Lemma 10.3.7 shows that the probability of each semi-full
crossing pattern Φ being good for a random collection P of communication patterns is at most
𝑒−𝑛0.7

. Thus, a union bound over all the possible crossing patterns tells us that the probability
that there is a semi-full crossing pattern that is good for the randomly sampled collection P

of communication patterns is at most 𝑒−𝑛0.7 · 𝑒Θ(𝑛0.3) ≪ 1. Thus, for a random collection P,
with high probability, there is no crossing pattern that is good for it. Claim 10.3.6 shows that
if there is a short communication pattern 𝑃 ′ that simulates a collection P = {𝑃1, 𝑃2, . . . , 𝑃𝑘}
of communication patterns in our distribution, then there is a semi-full crossing pattern Φ

that is good for that collection P. Hence, we can conclude that for a random collection P,
there is no short communication pattern 𝑃 ′ that simulates P.

Finally, we put Lemma 10.3.2 and Lemma 10.3.3 together and prove Theorem 10.1.3.

Proof of Theorem 10.3.1. Lemma 10.3.2 shows that collection P has congestion = 𝑂(𝑛0.1)

and dilation = 2𝑛0.1, with high probability. Lemma 10.3.3 shows that a random collection P

has no short simulating communication pattern 𝑃 ′, with high probability. A union bound
over these two shows that the random collection P satisfies the two properties together, with
high probability: (1) congestion = 𝑂(𝑛0.1) and dilation = 2𝑛0.1, and (2) there is no short
communication pattern 𝑃 ′ that simultaneously simulates this collection P.

We now finish this section by explaining how the above results, and in particular The-
orem 10.3.1, prove the main theorem of this section, Theorem 10.1.3. For simplicity, let us
recall the statement.

Theorem 10.1.3 There is an instance of the distributed protocol scheduling problem for

which any schedule needs Ω(congestion + dilation · log 𝑛/ log log 𝑛) rounds.

Proof of Theorem 10.1.3. The hard instance claimed in Theorem 10.1.3 is simply a set of
protocols where each protocol 𝒫𝑖 has a communication pattern 𝑃𝑖 in the collection P =

{𝑃1, 𝑃2, . . . , 𝑃𝑘} proven to exist by Theorem 10.3.1. Notice that for these communication
patterns, any local simulation for node 𝑣𝐿 is indeed a simulation for the whole commu-
nication pattern, simply because all the communications in each 𝑃𝑖 causally influence 𝑣𝐿.
Therefore, any schedule for protocols 𝒫1 to 𝒫𝑘 would imply the existence of a simulation
for communication patterns 𝑃1 to 𝑃𝑘 with the same length. Theorem 10.3.1 establishes that
any such simulation must have length Ω(congestion+ dilation · log 𝑛/ log log 𝑛) rounds. Thus,
any schedule for 𝒫1 to 𝒫𝑘 also needs Ω(congestion + dilation · log 𝑛/ log log 𝑛) rounds.
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10.4 Upper Bound

In this section, we present our algorithmic result on distributed protocol scheduling, which
allows us to run protocols 𝒫1 to 𝒫𝑘 concurrently, in a short span of time.

To formally discuss running a collection 𝒫1 to 𝒫𝑘 of protocols concurrently, we fix their
inputs and randomness at the beginning of the execution. More concretely, for each 𝑖 ∈ [𝑘],
we assume that (1) the input of protocol 𝒫𝑖 for each node 𝑣 gets fixed at the beginning of
the execution (provided to node 𝑣 as its input in 𝒫𝑖), and moreover, (2) each node 𝑣 fixes
the randomness that it will use when executing protocol 𝒫𝑖. Once these two are fixed in
all nodes, we have a unique execution 𝛼𝑖 for each protocol 𝒫𝑖 (when 𝒫𝑖 is run alone). In
particular, this unique execution leads to a unique output 𝑜𝑢𝑡𝑖(𝑣) for each node 𝑣. Our
general goal in running the collection 𝒫1 to 𝒫𝑘 concurrently is to make each node node learn
𝑜𝑢𝑡𝑖(𝑣) for all 𝑖 ∈ [1, 𝑘]. The core issue in doing that is to arrange the communications of
different protocols in the shortest possible span of time. To discuss these communications,
for each protocol 𝒫𝑖, we use 𝑃𝑖 to denote the communication pattern of the fixed execution
𝛼𝑖 of 𝒫𝑖. In the remainder of this section, our focus will be mainly on scheduling these
fixed communication patterns 𝑃1 to 𝑃𝑘. We present a distributed algorithm that computes
a schedule of optimal length for these communication patterns 𝑃1 to 𝑃𝑘. Moreover, this
algorithm will allow the nodes to also learn their outputs, that is, each node 𝑣 learns 𝑜𝑢𝑡𝑖(𝑣)

for all 𝑖 ∈ [1, 𝑘].

Roadmap We start in Section 10.4.1 by presenting a formalized proof of the existential
part of Theorem 10.1.2, which serves as a warm-up for the discussions in the rest of this
section. Then, in Section 10.4.2, we give an intuitive explanation of the challenge in schedul-
ing distributed protocols and a high level description of the ideas we use to overcome this
challenge. Finally, in Section 10.4.3, we describe the algorithm and its analysis.

10.4.1 Warm-Up: Existence Proof for a Short Schedule

As a warm-up for our algorithm for distributed protocol scheduling, we first explain a formal-
ization of the existential9 aspect of the result claimed in Theorem 10.1.2. This result shows
the existence of schedules with a length nearly matching the lower bound of Theorem 10.1.3.

Theorem 10.4.1 (Extension of [LMR94]). Given a collection of 𝑘 communication pat-

terns 𝑃1 to 𝑃𝑘, there exists a communication pattern 𝑃 ′ that is a simultaneous simulation of

𝑃1 to 𝑃𝑘 and has length 𝑂(congestion + dilation · log 𝑛) rounds.

Proof. We construct 𝑃 ′ randomly and prove that with high probability, it is a simultaneous
simulation of 𝑃1 to 𝑃𝑘.

9We note that this randomized construction can be turned into a randomized distributed algorithm for
scheduling, if nodes have access to shared randomness. For simplicity, we forgo describing the formal details
of the setting with shared randomness.
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The randomized construction of 𝑃 ′ is as follows: Divide time into phases, each consisting
of 𝑅 = 𝑐 log 𝑛 consecutive rounds, for a sufficiently large constant 𝑐 ≥ 100. More formally,
this means grouping each Θ(log 𝑛) consecutive layers of the time-expanded graph into one
group, to which we refer as a phase. We later discuss how many phases are used in the
construction of 𝑃 ′. We construct 𝑃 ′ phase by phase, as follows: pick a random delay 𝛿𝑖 for
each communication pattern 𝑃𝑖, where 𝛿𝑖 is chosen according to a uniform distribution on
integers [0, congestion/ log 𝑛]. The simulation of communication pattern 𝛿𝑖 starts in phase 𝑖

and it proceeds in simulating 𝑃𝑖 but at a slower speed, by simulating each round of 𝑃𝑖 in one
phase of 𝑃 ′.

We now argue that if we follow this rule, with high probability, we have the follow-
ing property: for each edge 𝑒 in the network, and each given phase, there are at most
𝑂(log 𝑛) messages that need to be sent during this phase over edge 𝑒. Notice that the
expected number of messages that will need to traverse edge 𝑒 in this phase is at most
congestion(𝑒)/(congestion/ log 𝑛) = log 𝑛 ≤ 𝑅/100. We have independence between the mes-
sages of different communication patterns as their random delays are independent. On the
other hand, for each communication pattern and for the messages that it sends through an
edge 𝑒, the events of these different messages falling on the fixed phase under consideration
are negatively correlated. This is because, if one message is scheduled to go through 𝑒 in this
particular phase, none of the other messages of that communication pattern that need to
go through 𝑒 can be in that phase. Note that a Chernoff bound is applicable for negatively
correlated random variables (see e.g. [DP09, DR96]). Therefore, using a Chernoff bound,
we get that with high probability, for each edge and each phase, at most 𝑅/10 messages
are scheduled to traverse this edge in this phase. Since the phase has 𝑅 rounds, there is
enough time to deliver all these messages. Hence, with high probability, all the communi-
cation patterns are simulated in 𝑃 ′ and the simulations are edge-disjoint, hence providing a
simultaneous simulation of collection P = {𝑃1, . . . , 𝑃𝑘}.

We now argue that 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ′) = 𝑂(congestion+dilation · log 𝑛). The reason is as follows:
for each communication pattern 𝑃𝑖, the maximum random delay is at most congestion/ log 𝑛

phases, and thus each communication pattern’s simulation starts after at most congestion/ log 𝑛

phases. Furthermore, each communication pattern’s simulation takes at most dilation phases,
once started. Thus, 𝑃 ′ has 𝑂(congestion/ log 𝑛) + dilation phases. Since each phase has
𝑅 = 𝑂(log 𝑛) rounds, this means that 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 ′) = 𝑂(congestion + dilation · log 𝑛).

10.4.2 The Main Challenge and the Outline of Our Approach

The discussions in this subsection are informal, and intend to merely provide some intuition
about the challenge and how we tackle it. The formal approach is presented in Section 10.4.3.

A Challenge The key insight in the random delays strategy of Leighton, Maggs, and
Rao [LMR94], explained above and used in the proof of Theorem 10.4.1, is that randomly
delaying messages spreads them over time in such a way that the number of packets scheduled
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to go through an edge per unit time is small. When working with distributed protocols,
implementing this random delay strategy is not straightforward: we cannot have the same
randomly chosen delay value for a given protocol over the whole network. This is because
having the same random value over the whole network would require spending at least
𝐷 rounds, where 𝐷 denotes the network diameter. Note that adding 𝐷 rounds to the
complexity would usually be considered an undesirable overhead, especially in the case of
local distributed algorithms.

One piece of good news is that we actually do not need to have the same delay value
over the whole network. Let us focus on one node 𝑣. In each of the protocols 𝒫𝑖, node 𝑣

is influenced by only the actions of nodes within its dilation-neighborhood. This is because
protocol 𝒫𝑖 has round complexity at most dilation. Events outside the dilation-neighborhood
of 𝑣 cannot affect 𝑣 in less than dilation rounds. Hence, for node 𝑣, it would be sufficient if we
apply (an appropriate version of) the random delay strategy only among the nodes within
the dilation-neighborhood of 𝑣. That is, we can imagine that we have carved out a ball
of radius dilation hops around 𝑣 and we apply the random delay technique only inside this
ball. That would suffice for node 𝑣 to learn its output 𝑜𝑢𝑡𝑖(𝑣) in each protocol 𝒫𝑖. However,
actually leveraging this insight is non-trivial, because we need to perform something of this
kind for each of the nodes, all at the same time. In particular, each edge 𝑒 can be in the
dilation-neighborhood balls of a large number of nodes. Hence, separately executing protocols
in each of these balls would require an undesirably large running time.

Our Approach in a Nutshell To overcome the above challenge, our algorithm makes use
of a generic method of graph partitioning [LN05,CKR05,Bar04,FRT04], colloquially referred
to as ball carving. In particular, the closest to what we do is the approach that Bartal [Bar98]
used for probabilistically approximating arbitrary metric spaces with tree-metrics. The end
result of the graph partitioning part will be a number of clusters—that is subset of the
vertices of the graph— that are grouped into 𝐿 = Θ(log 𝑛) layers, with the following three
properties: (1) the clusters in each layer are vertex-disjoint. This implies that each edge
is in at most 𝐿 = 𝑂(log 𝑛) clusters, at most one per layer. (2) Each cluster has diameter
𝑂(dilation · log 𝑛). (3) For each node 𝑣, there are at least 𝐿/100 = Θ(log 𝑛) layers in each of
which the whole dilation-neighborhood of node 𝑣 is fully contained in one cluster.

In Section 10.4.3, we explain an efficient distributed method for computing this graph
partitioning in the CONGEST model. This method mostly follows the approach of Bar-
tal [Bar98]. But it also involves a number of smaller new ideas for implementing the ap-
proach in the CONGEST model. We believe these new ideas might be useful also in other
distributed graph partitioning algorithms in the CONGEST model.

Once we have the aforementioned partitioning of the graph, we share random bits in
each of the clusters. More concretely, we make one node of the cluster choose a sequence
of random bits locally, and then broadcast this sequence to all the nodes of the cluster.
These random sequences are fed into a Θ(log 𝑛)-wise-independent pseudo-random generator,
which receives these bits and generates a much larger sequence of random values that are
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Θ(log 𝑛)-wise independent. We then use these values as the locally-shared random delay
values in scheduling distributed protocols, via locally simulating each distributed protocol
𝒫𝑖 (formally, its fixed communication pattern 𝑃𝑖) in each cluster. That is, each cluster runs a
copy of each protocol. The simulations of different clusters do not depend on each other. We
show how using the aforementioned locally-shared random delay values, we can run all the
distributed protocols in all the clusters in 𝑂(congestion+ dilation · log 𝑛) rounds. This allows
us to produce a schedule of length 𝑂(congestion+dilation·log 𝑛) rounds for the corresponding
communication patterns.

There is one more issue to discuss: recall that the final goal from running all the protocols
concurrently was to let each node 𝑣 learn its outputs 𝑜𝑢𝑡𝑖(𝑣) for all protocols 𝒫𝑖. However,
now in each clustering layer, each node 𝑣 runs one copy of each protocol 𝒫𝑖. Hence, node
𝑣 is involved in many copies of the protocol, each spanning a local area of the network.
Node 𝑣 needs to pick its output according to one of these. We explain how each node 𝑣

can find a correct local simulation of each communication pattern 𝑃𝑖, thus allowing 𝑣 to
learn its output 𝑜𝑢𝑡𝑖(𝑣). For that, node 𝑣 needs to find a clustering layer in which the whole
dilation-neighborhood of the node 𝑣 is contained in the cluster of 𝑣. In the simulation of
each such layer, we are guaranteed that the output of node 𝑣 is the same as its output
𝑜𝑢𝑡𝑖(𝑣) in the fixed execution 𝛼𝑖 of 𝒫𝑖. This is because the simulation in any such layer is
indistinguishable for 𝑣 from a complete global simulation. Recall that the graph partitioning
algorithm guarantees that there are at least 𝐿/100 such clustering layers for each node 𝑣.

10.4.3 Scheduling Distributed Protocols via Locally Sharing Ran-

domness

Here, we describe our algorithm for scheduling distributed protocols. This algorithm follows
the outline discussed above and achieves the following result:

Theorem 10.1.4 There is a distributed algorithm that uses only private randomness and

for any instance of the distributed protocol scheduling problem, computes a schedule of length

𝑂(congestion+dilation · log 𝑛), in 𝑂(congestion+dilation log2 𝑛) rounds, with high probability.

In particular, given a collection 𝒫1 to 𝒫𝑘 of protocols, and the corresponding fixed executions

𝛼1 to 𝛼𝑘 as discussed above, this algorithm allows each node 𝑣 to learn its output 𝑜𝑢𝑡𝑖(𝑣) in

execution 𝛼𝑖 for each 𝑖 ∈ [1, 𝑘].

The algorithm has three parts, as follows:

∙ (Part I) We first describe the aforementioned graph partitioning algorithm.

∙ (Part II) We then explain how to share randomness in each of the clusters of this
graph partition.

∙ (Part III) Finally, we conclude with how to concurrently run the distributed protocols—
formally scheduling the corresponding communication patterns—using these locally
shared random sequences.

221



We next proceed to explaining each of these parts.

Part I — Graph Partitioning

Recall from above that a key ingredient is the graph partitioning method. We use this
to break each communication pattern into smaller communication patterns, each of which
has communications that span only a small local area of the network. We first present the
guarantees provided by the algorithm, formalized in Lemma 10.4.2. We then present the
algorithm and afterwards its analysis, in the proof of Lemma 10.4.2. The graph partitioning
algorithm is abstracted by the following guarantee:

Lemma 10.4.2. [The Graph Partitioning Lemma] There is a distributed algorithm,

which we call the Graph Partitioning Algorithm (GPA), that runs in 𝑂(dilation log2 𝑛) rounds

and creates 𝐿 = Θ(log 𝑛) layers of clustering of the graph such that: (1) in each layer, the

clusters are node-disjoint, (2) each cluster has weak diameter 𝑂(dilation·log 𝑛), (3) w.h.p, for

each node 𝑣, there are at least 𝐿/100 = Θ(log 𝑛) layers such that the dilation-neighborhood

of 𝑣 is fully contained in one of the clusters of this layer, and

We next present the outline of the algorithm, which is partially based on Bartal’s algo-
rithm [Bar98, Section 3]. Afterwards, we explain the details of the distributed implementa-
tion of this algorithm in the CONGEST model.

The Overall Plan of the Graph Partitioning Algorithm (GPA) We have 𝐿 =

Θ(log 𝑛) layers of clustering, each obtained from an independent repetition of the following
scheme: each node 𝑢 picks a random radius 𝑟(𝑢) from a truncated exponential probability
where Pr[𝑟(𝑢) = 𝑧] = ( 𝑛

𝑛−1
) 1
𝑅
𝑒−𝑧/𝑅 for 𝑅 = Θ(dilation). Node 𝑢 also picks a random label

ℓ(𝑢) ∈ {0, 1}4 log𝑛. Note that w.h.p., for each two nodes 𝑢 ̸= 𝑢, ℓ(𝑢) ̸= ℓ(𝑢′). The radius
𝑟(𝑢) defines a ball of radius 𝑟(𝑢) centered at 𝑢, which we denote 𝐵(𝑢). Each node 𝑣 joins
the cluster centered at node 𝑤* where 𝑤* is defined as the node that has the smallest label
ℓ(𝑤*) among the labels of nodes 𝑤 such that 𝑣 ∈ 𝐵(𝑤).

Distributed Implementation of the Graph Partitioning Algorithm We now dis-
cuss the distributed implementation details of GPA. We run the layers of clustering sepa-
rately, each in 𝑂(dilation log 𝑛) rounds. Thus, overall this graph partitioning algorithm takes
𝑂(dilation log2 𝑛) rounds.

For each layer of clustering, we do as follows: each node 𝑢 draws a random radius 𝑟(𝑢)

from the truncated exponential distribution explained above, as well as a random label
ℓ(𝑢) ∈ {0, 1}4 log𝑛 where each bit is uniformly distributed in {0, 1}. Then the output for each
node 𝑣 is the node ID of the node 𝑤* = argmin𝑤 s.t. 𝑑𝑖𝑠𝑡(𝑣,𝑤)≤𝑟(𝑤)ℓ(𝑤). In this case, 𝑤* is the
center of the cluster of 𝑣 and this cluster is defined by the set of nodes that have the same
cluster center.
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To compute these outputs, the distributed algorithm is as follows: Each node 𝑢 initiates
a message 𝑚𝑢 containing its ID and label ℓ(𝑢), and an initial “hop-count" which is set to
𝐻−𝑟(𝑢), where 𝐻 = Θ(dilation log 𝑛). This hop-count mimics the scenario that the message
𝑚𝑢 has already traveled 𝑟(𝑢) hops by the time it reached 𝑢. We increment the hop-count
with every hop that the message traverses, and we allow the message’s hop-count to reach
only 𝐻; beyond that point, the message is not forwarded anymore. Hence, given the initial
hop-count, the message can traverse at most 𝑟(𝑢) hops. That is, the message 𝑚𝑢 can reach
only nodes that are within 𝑟(𝑢) hops of 𝑢.

The message forwarding procedure is as follows: in each round 𝑖 ∈ [1, 𝐻], each node 𝑣

forwards the message with hop-count 𝑖 that has the smallest label among the messages of hop-
count 𝑖 or less that have reached 𝑣. Each received message gets its hop-count incremented
by 1. At the end, for each node 𝑣, the smallest label ℓ(𝑤*) that has reached 𝑣 indicates that
cluster center of node 𝑣 is node 𝑤*.

Proof of Lemma 10.4.2. Properties (1) and (2) follow immediately from the definition, and
the property (3) follows from the analysis of Bartal [Bar98, Section 3] which shows that in
each layer, each dilation-neighborhood is fully contained in one of the clusters with constant
probability.

We next argue that the distributed implementation presented above indeed implements
the plan. In particular, we first argue that each message 𝑚𝑢 can reach only nodes that are
in 𝐵(𝑢). Then, we argue that each node 𝑣 will indeed receive the message 𝑚𝑢 of the node 𝑢
that is supposed to be the cluster center of node 𝑣 according to the overall plan. Finally, we
argue that node 𝑣 will not receive a message from a node 𝑢′ with a smaller label ℓ(𝑢′) than
the label of this supposed the cluster center 𝑢 of node 𝑣. We next explain these steps.

First, we argue that each message 𝑚𝑢 can reach only nodes that are in 𝐵(𝑢), that is, it
cannot reach nodes outside 𝐵(𝑢). This is because of the initial hop-count of 𝑚𝑢, which is
set to 𝐻 − 𝑟(𝑢), which implies that 𝑚𝑢 can travel 𝑟(𝑢) hops from the origin until it reaches
the threshold hop-count of 𝐻 and thus does not get forwarded afterward.

Second, we argue that for any node 𝑣, if ℓ(𝑢) is the smallest label among the labels of
balls that contain 𝑣, then 𝑚𝑢 will indeed reach 𝑣. This is because of the following: if 𝑚𝑢

does not reach 𝑣, it must be that in a round 𝑖, there is a node 𝑤 on the shortest path from
𝑢 to 𝑣 that has received 𝑚𝑢 but does not forward 𝑚𝑢 because it instead forwards (or has
forwarded) 𝑚𝑣′ for a node 𝑣′ such that ℓ(𝑣′) < ℓ(𝑣) and at 𝑤, the hop count of 𝑚𝑣′ was
less than or equal to that of 𝑚𝑣. But this implies that 𝑢 is in fact in 𝐵(𝑣′), which is in
contradiction with 𝑣 having the smallest label among the balls that contain 𝑢.

Third, ℓ(𝑢) will clearly be the smallest label that 𝑣 hears, and thus 𝑣 will join the cluster
centered at 𝑢.

Covered Radii For our algorithms, we need the nodes to know one more thing: In each
layer ℓ, each node 𝑣 should know what is the maximum radius around 𝑣 that is fully contained
in the same cluster of layer ℓ that contains node 𝑣. We call this the covered radius of node
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𝑣 in layer ℓ. We next explain a simple distributed algorithm that allows us to inform nodes
about their covered radii, in 𝑂(dilation log2 𝑛) rounds.

The Algorithm for Learning Covered Radii (LCR) We perform the following pro-
cedure for each layer ℓ in 𝑂(dilation log 𝑛) rounds. Performing it one by one for all the layers
takes 𝑂(dilation log2 𝑛) rounds. First, each node 𝑣 sends its cluster label—i.e. the label of its
cluster center—ℓ(𝑤*) to each of its neighbors. Then, if node 𝑣 receives a cluster label from its
neighbors that is different than its own cluster label, then 𝑣 marks itself as a cluster boundary
node. In the next 𝑂(dilation log 𝑛) rounds, we perform a boundary message propagation as
follows: each boundary node sends a special ‘boundary’ message, and each other node that
has received such a message forwards it to its neighbors in the next rounds. The output for
each node 𝑣 is a number 𝑖− 1 where 𝑖 is such that 𝑣 sent the ‘boundary’ message for the
first time in round 𝑖.

Lemma 10.4.3. After executing the LCR algorithm, each node 𝑣 learns its covered radii,

that is, node 𝑣 learns what radius around 𝑣 is fully contained in the cluster of 𝑣 in each layer.

Proof. Let us focus on one layer. It is easy to see that each node that is 𝑘 hops away from
boundaries will send boundary for the first time in round 𝑘 + 1, and thus it will set its
output to be 𝑘. Hence, if ℎ′ neighborhood of a node 𝑣 is the maximum neighborhood that
is fully contained in the cluster of node 𝑣, then node 𝑣 will set its covered radius to be ℎ′.
Thus, node 𝑣 learns what radius around it is fully contained in its own cluster.

To summarize, at this point, we have a partitioning of the graph in layers, which is known
in the following format: each node knows its cluster—via knowing the ID of the cluster
center—in each layer of the graph partitioning. Moreover, each node knows its covered radii
in each layer of the clustering.

Part II — Randomness Sharing in the Clusters of the Graph Partition

Given the graph partitioning provided by Lemma 10.4.2, we now explain how to share (a
sufficient amount of) randomness in the clusters of this partition.

We note that if we had to share Θ(log 𝑛) random bits in each cluster, then each cluster
center node would simply pick this randomness and append it to its initial message. However,
we actually need to share Θ(log2 𝑛) bits per cluster. The reason for this amount becomes
clear later in the proof of Lemma 10.4.5, where we turn these bits of randomness into much
longer sequences of random values. Sharing Θ(log2 𝑛) bits requires sending 𝑂(log 𝑛) messages
by the cluster center, because each message can carry only 𝑂(log 𝑛) rounds. Thus, a naive
extension of the message forwarding approach used in proving Lemma 10.4.2 would become
𝑂(dilation log2 𝑛) rounds per layer, that is, 𝑂(dilation log3 𝑛) in total, which is more than
our promised round complexity of 𝑂(dilation log2 𝑛). We next explain how to achieve this
randomness sharing in 𝑂(dilation log2 𝑛) rounds.
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Randomness Sharing Algorithm (RSA) in the Clusters of One Layer We broad-
cast randomness in clusters of one layer in 𝑂(dilation log 𝑛) rounds. Repeating this scheme
Θ(log 𝑛) times, once for each clustering layer, solves the problem in𝑂(dilation log2 𝑛) rounds10.
For each clustering layer, we do as follows: each cluster center 𝑣 creates Θ(log 𝑛) messages,
each containing Θ(log 𝑛) random bits. Each of these messages 𝑚 carries three header in-
formation, aside from its payload of random bits: (1) an initial hop-count, (2) the label
ℓ(𝑣) = 𝐼𝐷(𝑣) of node 𝑣, and (3) an additional counter ℓ′(𝑚) from {1, 2,Θ(log 𝑛)} to dis-
tinguish between these Θ(log 𝑛) messages of node 𝑣. The initial hop-count is set as in
Lemma 10.4.2 for all these messages, that is, it is set equal to 𝐻 − 𝑟(𝑣) where 𝑟(𝑣) is the
radius of the cluster of 𝑣 (chosen by 𝑣 randomly in the graph partitioning algorithm). Then,
for 𝐻 + Θ(log 𝑛) = 𝑂(dilation log 𝑛) rounds, in each round, each node forwards the message
with lexicographically smallest (hop-count, ℓ(𝑣), ℓ′(𝑚)) that it has not sent before.

Lemma 10.4.4. In 𝑂(dilation log2 𝑛) rounds, the RSA algorithm shares Θ(log2 𝑛) random

bits in each of the clusters created by the GPA algorithm, as abstracted in Lemma 10.4.2.

Proof Sketch. The pipelining analysis of Lenzen [LP13] shows that after 𝐻 + Θ(log 𝑛) =

𝑂(dilation log 𝑛) rounds of the message forwarding process explained above, each node 𝑣

receives the smallest Θ(log 𝑛) messages starting in the 𝐻 neighborhood of 𝑣. Here, smallest
is with respect to the lexicographical ordering of (ℓ(𝑣), ℓ′(𝑣)). Because of the initial hop-
count settings, this 𝐻-neighborhood translates to all centers that could potentially reach 𝑣,
and particularly means node 𝑣 will receive all the Θ(log 𝑛) messages coming from the center
𝑢 of the cluster that contains 𝑣.

The Θ(log2 𝑛) bits of randomness shared in each cluster are not (directly) sufficient for
determining all the random delay values. We next explain how to expand this sequence of
randomness, while maintaining a sufficient degree of independence. We note for this part,
we simply apply a standard method in generating pseudo-random numbers, see e.g. [AS04,
Theorem 15.2.1] or [DvM, Section 3].

Lemma 10.4.5. Using deterministic local computations, each node 𝑣 can transform the

Θ(log2 𝑛) fully-independent random bits shared in each cluster that contains 𝑣 into poly(𝑛)

many Θ(log 𝑛)-bit random values that are Θ(log 𝑛)-wise independent.

Proof. Each node 𝑣 feeds the Θ(log2 𝑛) random bits of each cluster that contains 𝑣 into the
classical 𝑘-wise independent pseudo-randomness construction via Reed-Solomon codes, for
𝑘 = Θ(log 𝑛). See for instance [DvM, Section 3] and also [AS04, Theorem 15.2.1]11 for the

10The author believes that one might be able to get to a bound of 𝑂(dilation log 𝑛 + log3 𝑛) rounds, but
this is an issue to be worked out for the journal version of the paper.

11We note that [AS04, Theorem 15.2.1] describes only the construction on the field GF(2) which yields
binary random values that are 𝑘-wise independent. But, as also described in [DvM, Section 3], the construc-
tion readily extends to any 𝐺𝐹 (𝑝), for any prime number 𝑝 ∈ poly(𝑛). Furthermore, when desiring random
delays in range [Θ(𝑅)] for a given 𝑅, pick them from a range {1, . . . , 𝑝} for a prime 𝑝 ∈ Θ(𝑅). Note that
by Bertrand’s postulate, there are many such primes, as there is at least one between 𝑎 and 2𝑎− 2, for any
integer 𝑎 ≥ 4.
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explanations of this pseudo-randomness construction. This transforms the randomness to
poly(𝑛) many Θ(log 𝑛)-bit random values that are Θ(log 𝑛)-wise independent.

The random values generated by the transformation of the above lemma will be used to
determine the random delays of different communication patterns in each of the clusters. In
particular, we assume that each communication pattern 𝑃𝑖 for 𝑖 ∈ 𝑘 has a unique protocol

identifier PID(𝑖) in a range of size 𝐾 = poly(𝑛). We divide the generated random values
into 𝐾 buckets, each containing poly(𝑛) random values. The communication pattern 𝑃𝑖 will
choose its random delays based on the random values in bucket PID(𝑖).

To summarize, at this point, what nodes have learned throughout the algorithms of
the past two parts is as follows: (1) We have a partitioning of the graph in layers, which is
known in the following format: each node knows its cluster—via knowing the ID of the cluster
center—in each layer of the graph partitioning. Moreover, each node knows its covered radii
in each layer of the clustering. (2) We have shared randomness and we have expanded it via
Lemma 10.4.5. At the end, all nodes of each cluster have shared randomness in the following
format: for each protocol index 𝑖 ∈ 𝑘, there are poly(𝑛) random values, which are known to
all nodes of the cluster, and are stored in each node in an array identified by PID(𝑖). The
random sequences of different clusters are independent.

Part III — Locally Simulating the Communication Patterns using the Locally

Shared Randomness

Now, we explain how to use the randomness shared in the clusters to derive a schedule of
length 𝑂(congestion + dilation · log 𝑛) rounds for the communication patterns. In particular,
this will also allow each node 𝑣 to learn its output 𝑜𝑢𝑡𝑖(𝑣) for each protocol 𝒫𝑖. Using this,
at the end of this section, we prove Theorem 10.1.4.

We first explain a simpler algorithm that leads to a schedule of length 𝑂(congestion ·
log 𝑛 + dilation · log 𝑛). Then, we explain how to improve this to the near-optimal schedule
length of 𝑂(congestion + dilation · log 𝑛) rounds, using a careful choice of a non-uniform
distribution of random delays.

Basic Scheduling Algorithm (BSA) We run an instance of each protocol in each cluster.
Before explaining how we run these protocols simultaneously, we need to explain how we
run each instance only within each cluster. Since we have partitioned the graph into clusters
and we want to run each protocol instance only inside these clusters, we need to be careful
about something: consider a node 𝑣 such that the dilation-neighborhood is fully contained
in its own cluster. We should run the protocol instance in the cluster of 𝑣 such that it is
indistinguishable for 𝑣 from running the full protocol over the whole network. Consider a
communication pattern 𝑃𝑖 and a clustering layer ℓ. Recall that the covered radius of each
node 𝑣 in layer ℓ is the maximum neighborhood radius ℎ′ such that the ℎ′-neighborhood of
𝑣 is contained in the cluster of 𝑣 in layer ℓ. If in layer ℓ, the covered radius of a node 𝑣 is ℎ′,
then 𝑣 will execute only the first ℎ′ rounds of 𝑃𝑖. It will discard the messages that it would
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be sending in the later rounds. This change does not affect the execution from the viewpoint
of the nodes that their dilation-neighborhood is fully contained in a cluster. This is because,
if dilation-neighborhood of node 𝑤 is fully contained in its cluster, all the messages that can
influence 𝑤 will still be sent.

We divide time into big-rounds, each of which consists of Θ(log 𝑛) consecutive rounds.
For each cluster, for each communication pattern 𝑃𝑖, the start of 𝑃𝑖 is delayed by a random
delay of 𝛿 big-rounds, where 𝛿 is a random value uniformly distributed in [1, congestion].
This random value is chosen using the randomness shared in the cluster, from the bucket
PID(𝑖) of random values explained above. Then, each communication pattern proceeds in a
synchronous manner at a rate of one communication pattern round per big-round, but only
inside each cluster. The execution finishes after dilation + congestion big-rounds. Later in
the analysis, presented as the proof of Claim 10.4.6, we will argue that, w.h.p., the number
of the messages that need to go through each edge in each big-round is at most 𝑂(log 𝑛).
This means that the big-round has enough time to deliver all of these messages.

At the end, we determine the outputs. Each node 𝑣 picks its output 𝑜𝑢𝑡𝑖(𝑣) for each
protocol 𝒫𝑖 based from the instance of protocol 𝒫𝑖 in a layer ℓ such that the covered radius
of 𝑣 in layer ℓ is at least dilation, that is, dilation-neighborhood of 𝑣 is contained in the cluster
of 𝑣. Recall from property (3) of the graph partitioning lemma (Lemma 10.4.2) that there
are many such layers ℓ. Also, notice that as node 𝑣 knows its covered radius in each layer
(as shown by Lemma 10.4.3), node 𝑣 knows which of the layers satisfy this condition.

Claim 10.4.6. Given the local randomness sharing as done in Lemma 10.4.4, the BSA

algorithm schedules the communication patterns 𝑃1 to 𝑃𝑘 in 𝑂(congestion · log 𝑛 + dilation ·
log 𝑛) rounds. Furthermore, each node 𝑣 learns its output 𝑜𝑢𝑡𝑖(𝑣) for each protocol 𝒫𝑖.

Proof. We can see that the expected number of messages that will need to go through each
edge is at most 𝑂(log 𝑛) per big-round. The reason is as follows: for each edge 𝑒, there are
at most 𝑂(congestion · log 𝑛) many messages that need to be sent through edge 𝑒. This is
because for each communication pattern 𝑃𝑖 that contains (a time-copy of) 𝑒, there can be
up to Θ(log 𝑛) copies of each of the messages that 𝑃𝑖 sends over 𝑒, at most one per layer.
Hence, the number of messages that need to go through 𝑒 can increase from congestion to at
most 𝑂(congestion · log 𝑛). Now, we have a random delay in the range [congestion] for each of
these messages. Hence, the probability that each message needs to go through 𝑒 in a given
big-round is 1/congestion. We conclude that the expected number of messages that need
to go through 𝑒 in a given big-round is at most 𝑂(congestion · log 𝑛)/congestion = 𝑂(log 𝑛).
Furthermore, we have Θ(log 𝑛)-wise independence between the random delays of different
protocols. This allows us to apply a Chernoff bound (see e.g. [SSS95, Theorem 2]) and infer
that, with high probability, at most 𝑂(log 𝑛) messages need to go through each edge per
big-round. This means that the big-round has enough time to deliver all the messages that
need to go through edge 𝑒 in that big-round.

Because of the above, we are able to run all the copies of the protocols in the clusters,
in 𝑂(congestion + dilation) big-rounds. This is 𝑂(congestion · log 𝑛 + dilation · log 𝑛) rounds.
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We next argue that this is indeed a scheduling of the related communication patterns 𝑃1 to
𝑃𝑘 and at the end, each node 𝑣 knows its output 𝑜𝑢𝑡𝑖(𝑣) in each protocol 𝒫𝑖.

In particular, we argue that for each node 𝑣, if the dilation-neighborhood of 𝑣 is contained
in a cluster completely, then the run of each protocol 𝒫𝑖 in this cluster will be indistinguish-
able from running the protocol over the whole network. Notice that by property (3) of the
graph partitioning lemma (Lemma 10.4.2), there are many such layers. Also note that since
node 𝑣 knows its covered radius in each layer (as shown by Lemma 10.4.3), node 𝑣 knows
which of the layers satisfy this condition. For each node 𝑤 in the dilation-neighborhood of 𝑣,
in each communication pattern 𝑃𝑖, node 𝑣 causally depends only on the actions of 𝑤 in the
first ℎ′ = dilation− 𝑑𝑖𝑠𝑡(𝑣, 𝑤) rounds. Since the dilation-neighborhood of 𝑣 is fully contained
in the cluster, also the ℎ′-neighborhood of 𝑤 is fully contained in that cluster. Hence, 𝑤 will
not discard its messages in those rounds that can influence 𝑣. Moreover, it is easy to see that,
for any message in the communication pattern that it is not discarded, none of the previous
messages in the same communication pattern that can causally affect it is discarded. Hence,
when we run the protocol 𝒫𝑖 only in this cluster, we generate a communication pattern that
locally simulates communication pattern 𝑃𝑖 for node 𝑣. Indeed, this run of the protocol 𝒫𝑖 is
indistinguishable for 𝑣 from running the protocol over the whole network and thus, 𝑣 learns
its output 𝑜𝑢𝑡𝑖(𝑣).

Improved Scheduling Algorithm We now explain how to improve the schedule length
to the near-optimal bound of 𝑂(congestion+dilation·log 𝑛) rounds. The key point we leverage
is the fact that we need only one copy of each message, instead of all the potentially up to
𝑂(log 𝑛) copies in the basic solution, one per layer. The main ingredient in our approach for
utilizing this point is a well-crafted nonuniform distribution of the random delays. We next
describe this distribution, and then explain how it affects the schedule.

The probability mass function of the random delay is as follows: We have a parameter
𝐵 = Θ( congestion

log𝑛
). The distribution is over positive integers in the range [1,Θ( congestion

log𝑛
)]. The

support of the distribution is divided to 𝛽 = Θ(log 𝑛) blocks, each being a set of consecutive
positive integers. The total probability mass given to each block is 1/𝛽. The 𝑖𝑡ℎ block con-
tains 𝐵𝛼𝑖−1 integers, and the distribution of the probability mass inside the block is uniform,
that is, each number in the 𝑖𝑡ℎ block has probability 1/𝛽

𝐵𝛼𝑖−1 . Here, 𝛼 is a positive constant
slightly less than 1, which we fix later. Note that the total support of the distribution has∑︀Θ(log𝑛)

𝑖=1 𝐵𝛼𝑖−1 ≤ 𝐵
1−𝛼

= Θ( congestion
log𝑛

) numbers.
Above, we described the probability distribution for the initial delay in each communica-

tion pattern. Once a communication pattern starts, it proceeds synchronously at the speed
of one communication pattern round per each big-round, similar to the basic algorithm.
However, there is one more change: this time, if there is a message scheduled to be sent over
𝑒 and a copy of it has been sent before, this message gets dropped. On the other hand, when
a node is about to create a message when simulating a round 𝑗 of a communication pattern,
it takes into account all the messages that it has received in the past about rounds up to
𝑗 − 1 of the simulations of the same communication pattern, and uses them to create this

228



message for simulating round 𝑗.

Lemma 10.4.7. Given the local randomness sharing as done in Lemma 10.4.4, the ISA

algorithm schedules the communication patterns 𝑃1 to 𝑃𝑘 in 𝑂(congestion + dilation · log 𝑛)

rounds. Furthermore, at the end of this algorithm, each node 𝑣 learns its output 𝑜𝑢𝑡𝑖(𝑣) for

each protocol 𝒫𝑖.

Proof of Lemma 10.4.7. The argument showing that the above procedure produces a schedul-
ing of the communication patterns 𝑃1 to 𝑃𝑘, and that is allows each node 𝑣 to learn its output
𝑜𝑢𝑡𝑖(𝑣) in each protocol 𝒫𝑖, is similar to the analogous argument in the claim above about
the basic algorithm.

What is left to show is that with the new distribution of delays, w.h.p., for each big-
round, there are at most Θ(log 𝑛) messages that need to go through an edge 𝑒. Note that
a message must go through 𝑒 in a given big-round if no copy of it has done so in the past,
that is, if among the Θ(log 𝑛) copies of the simulations of the corresponding communication
pattern, this is the first execution scheduled. For a copy of a communication pattern to be
the first scheduled, all the Θ(log 𝑛) copies must be scheduled afterward. We show that for
each big-round and each edge, the probability that the first copy of a message is scheduled
to go through this edge in that big-round is at most Θ( log𝑛

congestion
).

The above claim is trivially true for delays in the first block of distribution of the delays
as the probability for each of those delays is 1

𝐵𝛽
. For the second block, the probability that

none of the Θ(log 𝑛) copies of the communication pattern have a delay in the first block is
(1 − 1

𝛽
)Θ(log𝑛) which is a constant, say 𝛾 < 1. It is sufficient to pick the constant 𝛼 equal

to this constant 𝛾. Then, the probability that a delay that is in the second block is chosen
and is the first among the delays is at most 𝛾/𝛽

𝐵𝛼
≤ 1

𝐵𝛽
. Generally, for a delay value in the 𝑖𝑡ℎ

block for 𝑖 ≥ 2, the probability that this value is the first is at most (1− 1
𝛽
)(𝑖−1)Θ(log𝑛) ≤ 𝛾𝑖−1,

and hence, the probability that it is chosen and is the first among the related delays is at
most 𝛾𝑖−1/𝛽

𝐵𝛼𝑖−1 ≤ 1
𝐵𝛽

= Θ( log𝑛
congestion

). Hence, we conclude that the total number of messages
to be sent over each edge per big-round is at most Θ(log 𝑛), with high probability. Since
each big-round is made of Θ(log 𝑛) rounds, there is enough time to send all these messages
across the edge in that big-round. Note that the range of the initial delays is Θ( congestion

log𝑛
)

big-rounds, and that each communication pattern runs for only dilation big-rounds. Hence,
the whole schedule has a length 𝑂(congestion + dilation · log 𝑛) rounds, thus completing the
proof of the lemma.

Finally, we point out that Theorem 10.1.4 follows from putting the three algorithmic
parts explained above together:

Theorem 10.1.4 There is a distributed algorithm that uses only private randomness and

for any instance of the distributed protocol scheduling problem, computes a schedule of length

𝑂(congestion+dilation · log 𝑛), in 𝑂(congestion+dilation log2 𝑛) rounds, with high probability.

In particular, given a collection 𝒫1 to 𝒫𝑘 of protocols, and the corresponding fixed executions
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𝛼1 to 𝛼𝑘 as discussed above, this algorithm allows each node 𝑣 to learn its output 𝑜𝑢𝑡𝑖(𝑣) in

execution 𝛼𝑖 for each 𝑖 ∈ [1, 𝑘].

Proof. First, we use the GPA algorithm to partition the graph. We then run the LCR
algorithm to make each node learn its covered radii. As Lemma 10.4.2 and Lemma 10.4.3
show, these two steps take 𝑂(dilation log2 𝑛) rounds, each.

Then, we run the RSA algorithm to broadcast randomness in each of the clusters of the
graph partitioning. As Lemma 10.4.4 shows, this takes 𝑂(dilation log2 𝑛) additional rounds.
Then, we use Lemma 10.4.5 to transform these shared bits of randomness into poly(𝑛)-length
sequences of randomness. Notice that this step is a local computation and does not incur
any round complexity.

Finally, we apply the ISA algorithm to use these shared randomness sequences to run
all protocols 𝒫1 to 𝒫𝑘 concurrently. As Lemma 10.4.7 shows, this algorithm schedules the
communication patterns 𝑃1 to 𝑃𝑘 in 𝑂(congestion + dilation · log 𝑛) rounds. Furthermore, at
the end, each node 𝑣 learns its output 𝑜𝑢𝑡𝑖(𝑣) for each protocol 𝒫𝑖.

Taking all these steps into account, the overall round complexity of this algorithm is
𝑂(congestion + dilation log2 𝑛) rounds.

10.5 A Recipe for Removing Shared Randomness in Bel-

lagio Distributed Algorithms

In this section, we sketch out how to use the general approach of the previous section
to remove the assumption of having shared randomness in a broad range of distributed
protocols, at the cost of a small slow-down factor.

Generally, having shared randomness among all nodes of the network is a far stronger
assumption than assuming that each node has its own private randomness. Thus, it is
more ideal to have distributed algorithms that do not to rely on such the assumption of
having shared randomness. Here, we present an informal sketch that explains to remove
the assumption of having shared randomness in a large class of randomized distributed
algorithms, by using the approach that we presented in Section 10.4. We note that to
maintain the generality of the approach, we present only an informal sketch. This should be
regarded more as a suggestive general recipe, rather than a precise and detailed algorithm for
each case. Applying this general recipe to each concrete algorithm might require adjustments
in the details.

The class of the algorithm that our approach applies to is what Goldwasser recently
named Bellagio algorithms [Gol12]. We note that although the name is new, a wide range
of classical and old randomized algorithms fall into this category. The definition, translated
to distributed algorithms, is as follows: for each fixed set of inputs to the nodes, each
node must have a canonical output value and it should output this value in at least 2/3
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of the executions, that is, with probability at least 2/3. Note that in many problems, the
correct output for each node is unique. In such cases, any randomized algorithm will indeed
be a Bellagio algorithm. In a few other problems, although a priori there is no unique
correct output, the problem can be changed slightly, by adding certain restrictions, to make
the output unique without affecting the problem’s complexity significantly. Again, in such
cases, the randomized algorithms would be necessarily Bellagio and thus our scheme would
be applicable.

On the other hand, we note that there are classical distributed graph problems for which it
is not clear how to obtain an efficient Bellagio algorithm. For instance, obtaining a poly log 𝑛-
round Bellagio algorithm for computing a Maximal Independent Set remains open12.

The reason that our approach applies only to Bellagio algorithms is as follows: we try to
simulate the algorithm with shared randomness by only locally sharing randomness, as we
did in Section 10.4. Thus, we will have many partial executions of the algorithm, each cut
to a small local area. The Bellagio property allows us to paste these together and make sure
that the outputs of these locally-cut executions are consistent.

Meta-Theorem 10.5.1. For any problem that has a 𝑇 -round Bellagio randomized dis-

tributed algorithm which uses 𝑅 bits of shared randomness and where each node outputs a

canonical solution with probability at least 2/3, there is a randomized algorithm with round

complexity 𝑂(𝑇 log2 𝑛 + 𝑅) that uses only private randomness and w.h.p. each node out-

puts its canonical output. Furthermore, if the input given to each node can be described

using poly(𝑛) bits, a different technique can be used to reduce 𝑅 to 𝑂(log 𝑛), thus giving an

𝑂(𝑇 log2 𝑛) round algorithm.

Since this is cast as a meta-theorem rather than a concrete and precise theorem, in
the following, we explain a general recipe for it, instead of providing a formal proof. This
explanation uses a few examples to make some points concrete.

We first use an example to explain the first part of the meta-theorem for removing shared
randomness and running the algorithm in 𝑂(𝑇 log2 𝑛 + 𝑅) rounds. Then, we describe the
general approach for the second part which reduces the amount of the shared randomness
in the original shared-randomness Bellagio algorithm to 𝑂(log 𝑛), in most cases of interest,
while keeping it Bellagio. Simulating this new algorithm via our techniques in Lemmas
10.4.2, 10.4.4, and 10.4.7, leads to the claimed round complexity of 𝑂(𝑇 log2 𝑛) round.

An example for removing shared randomness One of the key multi-party computa-
tion operations in which shared randomness gets used frequently is hashing. Many variants
of hashing are used in different algorithms, but typically the hash function is constructed via
a randomness seed that comes from shared randomness. We now explain how this shared
randomness assumption can be removed. To have a concrete example, we discuss a very

12It is not hard to see that a Bellagio randomized distributed algorithm with round complexity poly log 𝑛
for computing an MIS can be transformed to a deterministic distributed algorithm for MIS with round
complexity poly log 𝑛. Obtaining the latter remains among the most well-known open problems of the area.
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simple case of dimensionality reduction via hashing. We present only a rough sketch which
illustrates the main idea without getting caught up in the details of this particular example.

Suppose each node 𝑣 ∈ 𝑉 receives as input a string 𝑠𝑣 ∈ {0, 1}𝐿 for 𝐿 = poly(𝑛), and
the objective is for each node 𝑣 to know the number of distinct strings within 𝑑-hops of 𝑣,
to within a (1 + 𝜀) factor, for a small 𝜀 > 0. Note that even two neighbors exchanging their
strings would require 𝐿 = poly(𝑛) rounds, so intuitively a first natural step is to reduce the
dimension 𝐿of the problem, and this we do via a simple hashing.

Using shared randomness, nodes can pick a random hash function ℎ : {0, 1}𝐿 → {0, 1}Θ(log𝑛)

at random, which would give the property that among the at most 𝑛 strings in the graph,
w.h.p., there is no hash-collision. This dimension reduction to 𝑂(log 𝑛) already captures the
usage of shared randomness that we wanted to illustrate and it opens the road for computing
the number of distinct elements via standard algorithm. Later, we will talk more about the
details of how to actually solve this approximate distinct elements problem, but let us here
focus more on the heart of the story, that is, how to mimic the shared randomness via only
local sharing

To keep the hash function collision free w.h.p., pairwise independence is enough. This
implies that sharing 𝑂(log 𝑛) bits of randomness is sufficient in this example. Now, this
solution relies on that for each node 𝑣, all nodes within its ℎ-neighborhood have picked the
same hash function, that is, the same Θ(log 𝑛) bits of hashing seed. Obviously we cannot
have the same seed of randomness in all nodes in 𝑜(𝐷) rounds. We use the method based
on graph partitioning here.

Using the graph partitioning algorithm explained above and abstracted by Lemma 10.4.2,
we can carve Θ(log 𝑛) layers of clustering, where each cluster has radius Θ(𝑑 log 𝑛), and such
that each node’s ℎ-neighborhood is fully contained in Θ(log 𝑛) of such balls. This takes
Θ(𝑑 log2 𝑛) rounds. Then, we share Θ(log 𝑛) bits of the randomness in each cluster picked
by the center, similar to Lemma 10.4.4, in Θ(𝑑 log 𝑛) rounds. In fact here, in this simple
example where we want Θ(log 𝑛) bits, this sharing can be done at the same time as we are
carving the clusters. But in general when 𝑅 = 𝜔(log 𝑛), we would this randomness sharing
after the graph paritioning algorithm, similar to what we did above in Lemma 10.4.4. This
would take 𝑂(𝑑 log 𝑛 + 𝑅) rounds. Finally, we can simulate the hash functions locally for
each of the clusters. Hence, the hash function construction part takes 𝑂(ℎ log2 𝑛+𝑅) rounds.

Note that each node will be in Θ(log 𝑛) clusters and thus will have Θ(log 𝑛) hash functions,
one for each cluster layer. Hence, given an algorithm 𝒫 that uses the hash-functions to solve
the problem, we still need to simulate 𝒫 for each of these cluster layers, as we did in Lemma
10.4.7. But if 𝒫 takes 𝑇 rounds, we can similarly simulate 𝒫 also in local clustering areas,
each of diameter at most 𝑂(𝑇 log 𝑛), in total in 𝑂(𝑇 log2 𝑛) time.

Before going to the issue of reducing shared randomness, since we have started the dis-
cussion about the problem of distinct elements, let us first finish this discussion. We explain
how to approximate it to within 1 + 𝜀, in 𝑂(𝑑 log 𝑛/𝜀3) rounds, and just present a rough
sketch: Consider a threshold 𝑘 = (1 + 𝜀)𝑗. We can compare the number of distinct elements
in each node’s ℎ-hop neighborhood with this threshold 𝑘 as follows: Use a hash function
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ℎ′
1 = {0, 1}Θ(log𝑛) → {0, 1} where for each 𝑠 ∈ {0, 1}Θ(log𝑛), Pr[∀𝑠 ∈ ℎ′

1(𝑠) = 1] = 1−2−1/𝑘 ≈
1/𝑘, and these events are independent among different 𝑘. Then, in 𝑑 rounds, each node
𝑣 can know whether there is a node 𝑢 in its 𝑑-hop neighborhood for which ℎ′

1(ℎ(𝑠𝑢)) = 1.
One can see that if the number of distinct elements in the 𝑑-hop neighborhood of 𝑣 is at
least (1 + 𝜀/2)𝑘, then the probability that there is at least one node node 𝑢 in its 𝑑-hop
neighborhood for which ℎ′

1(ℎ(𝑠𝑢)) = 1 is at least 0.5 + Θ(𝜀). Furthermore, if the number is
at most 𝑘/(1 + 𝜀/2), then the probability is at most 0.5 − Θ(𝜀). This Θ(𝜀) gap is the key
distinguishing element. If we repeat this process for Θ(log 𝑛/𝜀2) iterations (different binary
hash functions ℎ′

𝑖), Hoeffding’s bound tells us that at the end, w.h.p, each node 𝑣 knows
whether the number of distinct elements in its 𝑑-neighborhood is above (1 + 𝜀/2)𝑘 or below
𝑘/(1 + 𝜀/2), as indicated by the majority of the experiments. Repeating this for all the
Θ(log 𝑛/𝜀) different thresholds—that is, different values of 𝑗 ∈ {1, . . . ,Θ(log 𝑛/𝜀)})—node
𝑣 can know the number of distinct elements in its neighborhood to within 1 + 𝜀 factor. In
fact, each Θ(log 𝑛) iterations can be bundled together because the CONGEST model admits
𝑂(log 𝑛) bit messages, with the adjustment that now a bit-wise OR of the received message
is forwarded. This gets us to the bound 𝑂(𝑑 log 𝑛/𝜀3).

Reducing the Shared Randomness Now we explain a distributed generalization of a
classical observation of Newman [New91] for two-party protocols, which shows that 𝑂(log 𝑛)

bits of shared randomness is sufficient if in the problem, there are at most 2poly(𝑛) possibilities
for the input given to each node, that is, if each node’s input can be described in poly(𝑛) bits.
Note that almost all problems of interest in theoretical distributed computing fall within this
category. For instance, the edges of a node, which are typically a key part of the input, can
be described in at most 𝑛 log 𝑛 bits.

An algorithm with 𝑅 bits of shared randomness is simply a collection ℱ of 2𝑅 determin-
istic algorithms. We know that for each fixed set of inputs, in 2/3 or more of the algorithms,
node 𝑣 is outputting the same canonical output. We claim that we can find a smaller col-
lection ℱ ′ of these deterministic algorithms, with size poly(𝑛), such that for each set of
fixed input, each node outputs the same canonical output with probability say at least 3/5.
The argument is by an application of the probabilistic method: simply pick poly(𝑛) many
of the deterministic algorithms in ℱ at random and define the resulting collection to be
a candidate for being collection ℱ ′. Regarding one fixed set of inputs, using the Chernoff
bound, we know that the probability that node 𝑣 outputs the correct canonical value in
at least 3/5 of the algorithms in the candidate collection is at least 1 − 2−Θ(poly(𝑛)). Now,
there are 2poly(𝑛) sets of possible inputs to all nodes, 𝑛 nodes, and furthermore at most 2𝑂(𝑛2)

possible graphs between the nodes. We can union bound over all of these possibilities and
say that the probability that the candidate ℱ ′ collection is good for all these choices is at
least 1 − 2−Θ(poly(𝑛)) × 2poly(𝑛) ≥ 1 − 2−Θ(poly(𝑛)). That is, with very high probability, the
candidate collection is good. Hence, in fact there exists such a good smaller collection ℱ ′

with |ℱ ′| = poly(𝑛). Now, note that to pick one of the algorithms in collection ℱ ′ only takes
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𝑂(log 𝑛) bits.
We note that this argument is simply existential in the sense that it proves that there

exists a good collection ℱ ′, and thus an algorithm which uses 𝑂(log 𝑛) bits of shared random-
ness. The argument does not provide a fast (centralized) method for finding this algorithm.
However, if we ignore the local computations, which is standard in the area of distributed
computing [Pel00], nodes can deterministically search through the space of all collections,
using a simple deterministic brute force, each running it on its own, and consistently find
the first good collection ℱ ′. Here, “first” is with respect to the deterministic search order.

10.6 Concluding Remarks and Future Work

This chapter is centered around the issue of running many independent distributed protocol
together, and we presented an existential schedule length lower bound of Ω(congestion +

dilation log 𝑛/ log log) as well as an algorithm that produces a schedule with a length almost
matching this lower bound, that is, 𝑂(congestion+dilation log 𝑛) rounds, after𝑂(dilation log2 𝑛)

rounds of pre-computation.
We believe that this is merely a starting point, as there are many seemingly fundamental

aspects that are not addressed here. Next, we first discuss some detailed technical questions
about the bound, and then, we discuss some more speculative and conceptually deeper issues.

Detailed Questions

One particular question is rooted in the fact that the lower bound we presented is existential
and shows the existence of some hard instances for the scheduling problem in which one
cannot obtain 𝑂(congestion + dilation) round schedules. Is it possible to provide a necessary
and sufficient classification of special cases of distributed protocol scheduling problems for
which 𝑂(congestion + dilation) round schedules are admissible? Alternatively, can we get
at least a sufficient condition that covers a broad range of problems of interest? If yes, for
those, can we also find these schedules distributedly?

Another question is regarding Theorem 10.1.4. Recall that this theorem provides a sched-
ule of length 𝑂(congestion+dilation log 𝑛), which is nearly optimal as Theorem 10.1.3 implies,
but it uses 𝑂(dilation log2 𝑛) rounds of pre-computation to find this schedule. Can we improve
the latter bound, ideally to 𝑂(dilation log 𝑛) rounds? Such an improvement would mean that
the whole pre-computation and scheduling is done in 𝑂(congestion + dilation log 𝑛) rounds?

Broader and More Speculative Questions

Throughout the chapter, we worked under the assumption that the protocols 𝒫1 to 𝒫𝑘 are
fixed, and we just want to run them. However, one can imagine a different viewpoint, when
considering a higher-level picture: The end goal that we have is to solve the problems that
𝒫1 to 𝒫𝑘 were designed to solve, which means we are allowed to change these protocols to
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make them fit with each other better, so long as they solve the same problems. In other
words, roughly speaking, this coincides with the question of, given 𝑘 problems, what is the
best collection of protocols 𝒫1 to 𝒫𝑘 that produce the minimum congestion and dilation. To
make the objective single-measure, one might consider congestion + dilation · log 𝑛 as one
possibly good objective function to be minimized. In fact, once we design a set of protocols
optimizing this measure, then we can use the algorithms presented in this chapter to run
these protocols essentially optimally, which would be a near-optimal method overall. Hence,
one can say that our algorithmic results provide the following corollary: they essentially (and
approximately) reduce the general question of how to solve 𝑘 problems together to that of
designing a set of 𝑘 protocols that minimize the measure congestion + dilation · log 𝑛.

This design question seems rather broad and it is not completely clear how to tackle
such a question for general choice of 𝑘 problems. A special but also cleaner case, which
might provide us with valuable insights, is the setting where the 𝑘 problems are independent
instances of the same problem. Here, the problem statement becomes cleaner in the sense
that, we have 𝑘 independent shots of a single problem, and we want to solve all of them.
We note that this question loosely resembles the well-studied parallel repetitions problem
(see e.g. [Raz98]) in the complexity theory which, roughly speaking, asks can one solve 𝑘

independent shots of a given problem using “resources” less than 𝑘 times that of the single-
shot version. However, the author believes that this is rather a superficial similarity and the
connection is not strong, mainly because our focus is on the distributed round complexity
and we clearly know that pipelining often allows us to solve 𝑘 shots faster than 𝑘 times
the round complexity of solving a single shot. Although, there might be other less-direct
connections between the two areas; one possible direction is via using direct product or direct
sum theorems in communication complexity to derive distributed round complexity lower
bounds for 𝑘 shots of a given problem.

Going back to the distributed 𝑘-shot question, let us use a classical (single-shot) problem
as an example. Consider the 𝑘-shot version of the MST problem: For the network graph
𝐺 = (𝑉,𝐸), we are given 𝑘 different weight functions 𝑤1 to 𝑤𝑘, each 𝑤𝑖 : 𝐸 → R, and we
want to find the 𝑘 Minimum Spanning Trees corresponding to these weight functions. One
can see that for this setting, naively running the best single-shot protocol 𝑘 times, even when
allowing the best possible pipelining of these 𝑘 protocols, is not the optimal. Generally, one
can easily see that, the best protocol that is to be run 𝑘 times for the 𝑘-shot problem (run
in parallel) is not the same as the best single-shot protocol. The core of the matter is that,
the single-shot protocol is designed to minimize its running time—that is, dilation in our
terminology—but it typically does not lead to the best congestion.

To make the discussion concrete, let us consider the MST problem again. For MST, the
almost a century-old protocol of Boruvka [NMN01], which has the same outline as the one
used by Gallager, Humblet, and Spira [GHS83], has dilation �̃�(𝑛) rounds and running it once
gives a very low congestion of 𝑂(log 𝑛). On the other hand, an alternative near-linear time
protocol can be achieved by filtering edges—discarding heaviest edge in each cycle—while
they are being upcast on a tree towards the root, which leads to dilation and congestion
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both being �̃�(𝑛). Furthermore, the newer protocol of Kutten and Peleg [KP95], has an
almost optimal running time of dilation = �̃�(𝐷 +

√
𝑛) rounds, but at the cost of having

congestion = Θ(
√
𝑛). This is a simple example showing that the protocols designed to have

optimal dilation do not necessarily have good congestion. For the case of the MST, we can
actually understand the tradeoff between these two parameters quite well. Using constructs
similar to those of Das Sarma et al. [DSHK+11], one can see that there is indeed an inevitable
tradeoff and an MST protocol that has congestion at most 𝐿 will require a dilation of at least
�̃�(𝑛/𝐿) rounds. Interestingly, one can algorithmically match this

congestion = 𝐿, dilation = �̃�(𝐷 + 𝑛/𝐿)

tradeoff by a simple parameter tuning in the protocol of Kutten and Peleg [KP95]. For the
𝑘-shot version, the aforementioned lower bound can be combined with a strong direct sum

theorem for communication complexity of 𝑘 independent shots of set disjointness [Kla10], and
some parameter tuning, to show that solving 𝑘-shots of MST requires at least Ω(𝐷 +

√
𝑘𝑛)

rounds. Again, this can be matched: we use the parameter-optimized protocol of Kutten
and Peleg, with the optimal choice 𝐿 =

√︀
𝑛/𝑘, as our single-shot protocol, and we run 𝑘

copies of it in parallel using our 𝑂(congestion + dilation log 𝑛) round schedule. As a result,
we get a protocol that solves 𝑘 independent instances of MST in �̃�(𝐷 +

√
𝑛𝑘) rounds, thus

essentially matching the lower bound.
Perhaps it is simply a coincidence that in the case of MST, we already know how to solve

𝑘-shots of it optimally, simply by doing some parameter tuning in the single-shot protocol
and running 𝑘 copies of it in parallel. Can we achieve such a result for a broader family of
protocols (hopefully, ones which have a different “nature” compared to that of MST 13)?

To summarize this point, we believe that when designing distributed protocols, it is
valuable to keep track of both dilation and congestion, as opposed to merely dilation which
is the standard objective in the recent years of theoretical distributed computing. This is
because, when the protocol is not run alone, congestion is one parameter that gives us a
sense of what will happen when we run this protocol along with others. It would be ideal
if one can also have a protocol with a controllable tradeoff between the two parameters, as
we saw above for the MST problem. Furthermore, this tradeoff deserves a study from a
lower bound viewpoint, and even congestion deserves a study of its own; given a problem,
can we solve it with a congestion below the given threshold? We note that, a measure that
received more attention in the old days of theoretical distributed computing was message

complexity. In fact message complexity has some correlation with congestion; however, it
is quite easy to see that there is no tight relation and small message complexity does not
necessarily imply a small congestion. For instance, a protocol with message complexity 𝑂(𝑚)

can have congestion anywhere between 𝑂(1) to 𝑂(𝑚).

13For instance, a 𝑘-shot version of minimum cut approximation can also be computed in Ω(𝐷 +
√
𝑘𝑛)

rounds, by extending [GK13]. This bound is also is optimal due to essentially the same lower bound con-
structions. However, this is not really a novel addition but merely an extension of the same tradeoff.
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