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Abstract

This paper studies the question of how to run many distributed algorithms, solving indepen-
dent problems, together as fast as possible.

Suppose that we want to run distributed algorithms A1,A2 . . . ,Ak in the CONGEST model,
each taking at most dilation rounds, and where for each network edge, at most congestion messages
need to go through it, in total over all these algorithms. A celebrated work of Leighton, Maggs,
and Rao [22] shows that in the special case where each of these algorithms is simply a packet
routing—that is, sending a message from a source to a destination along a given path—there is
an O(congestion + dilation) round schedule. Note that this bound is trivially optimal.

Generalizing the framework of LMR [22], we study scheduling general distributed algorithms
and present two results: (a) an existential schedule-length lower bound of Ω(congestion +dilation ·

logn
log logn ) rounds, (b) a distributed algorithm that produces a near-optimal O(congestion+dilation·
log n) round schedule, after O(dilation · log2 n) rounds of pre-computation.

A key challenge in the latter result is to solve the problem with only private randomness, as
globally-shared randomness simplifies it significantly. The technique we use for this problem is
in fact more general, and it can be used to remove the assumption of having shared randomness
from a broad range of distributed algorithms, at the cost of a slow down factor of O(log2 n).
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1 Introduction and Related Work

Computer networks are constantly running many applications at the same time and because of
the bandwidth limitations, each application gets slowed down due to the activities of the others.
Despite that, for the vast majority of the distributed algorithms introduced in the area of theoretical
distributed computing, the initial design and analysis have been carried out with the assumption
that each algorithm uses the network alone. In this paper, we investigate the issue of what happens
when many distributed algorithms are to be run together.

Specifically, we study the questions of how to run these distributed algorithms simultaneously as
fast as possible and what are the limitations on how fast this can be done. While being arguably a
fundamental issue, to the best of our knowledge, these questions have not been investigated in their
full generality. Although, we describe a number of special cases that were studied in the past.

Throughout the paper, we work with the CONGEST model [30], which is a standard distributed
model that takes bandwidth limitations into account. The communication network is represented
by an undirected graph G = (V,E) where |V | = n. Communications occur in synchronous rounds
and in each round each node can send one O(log n)-bit message to each of its neighbors.

The general scenario we consider is as follows: We want to run independent distributed algo-
rithmsA1, A2, . . . , Ak together, but we do not know what problem is being solved by each algorithm.
Hence, we must run each algorithm essentially in a black-box manner without altering the content
of its messages, except for potentially adding a small amount of information to its header. We now
mention some special cases of this problem that have been studied in the past:

(I) Broadcasting k messages from different sources, each to the h-hop neighborhood of its source.
Note that this can be viewed as running k single-message broadcast algorithms together.
Classical analysis [36] shows that the natural algorithm in which at each round each node
sends one message that it has not sent before (and has traveled less than h hops so far) solves
the problem in O(k+ h) rounds. The significant aspect is the additive appearance of k which
in a sense implies a perfect pipelining between the k broadcast algorithms.

(II) Running breadth-first search algorithms from different sources. Holzer and Wattenhofer [18]
show that one can run n BFSs starting in different nodes all together in O(n) rounds. This
is done by delaying BFSs carefully in a way that they do not interfere (once started). More
generally, Lenzen and Peleg [24] show that k many h-hop BFSs from different sources can
be performed in O(k + h) rounds. This is in a sense a strengthening of the broadcast result
of [36], as it shows that in fact each BFS-token (or equivalently, broadcast message) will be
delivered to each related destination along a shortest path.

(III) Routing many packets, each from a source to a destination, along a given path. This problem
has received the most attention [7, 10, 22, 23, 28, 29, 31, 33, 34, 37] among these special cases.
Viewing our distributed algorithm scheduling problem as a generalization of this packet routing
problem, we adopt a terminology close to that introduced for packet routing in [22]. We discuss
some known results for packet routing after introducing this (generalized) terminology.

Generally, if one of the algorithms A1, A2, . . . , Ak that are to be run together takes d rounds,
running all of them together will clearly require at least d rounds. We refer to the maximum running
time of the algorithms as dilation. Furthermore, there is another simple lower bound due to the
bandwidth limitations. Consider a particular edge e of the graph. Let ci(e) be the number of rounds
in which algorithm Ai sends a message over e. Then, running all the algorithms together will also
require at least congestion = maxe∈E congestion(e) rounds where congestion(e) =

∑k
i=1 ci(e). Hence,

we can conclude that running all algorithms together will need at least max{congestion, dilation} ≥
(congestion + dilation)/2 rounds. The key question of interest is:
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Question: Can we always find a schedule close to the Ω(congestion + dilation) lower bound?

A simple yet powerful technique that proves helpful in this regard is random delays [22], which was
first introduced in the context of packet routing — the problem we described in item (III) above.
In packet routing, dilation is the length of longest path and congestion is the maximum number of
paths that go through an edge. The random delays method achieves an upper bound within an
O(log n) factor of the lower bound; more precisely, a schedule of size O(congestion+ dilation · log n).
Improving this simple O(log n)-approximation to an O(1)-approximation received quite an extensive
amount of attention and by now there are many existence proofs and also algorithmic constructions
that give schedules of length O(congestion + dilation) for packet routing. That is, schedules within
an O(1) factor from the trivial lower bound. See e.g. [10, 22, 23, 28, 31, 33, 34, 37]. The classical
method [22] is based on log∗ n levels of recursively applying the Lovasz’s local lemma1, each time
reducing the parameter congestion + dilation of the new problem to a polylogarithmic function of
the same parameter in the problem of the previous level.

Going back to the question of scheduling general distributed algorithms, the random delays
technique proves useful here as well. If nodes have access to shared randomness, the same simple
random delays trick as in [22] provides a schedule for general distributed algorithms that is within
an O(log n) factor of the trivial lower bound. Here the shared randomness is helpful because for
each distributed algorithm, there can be many (potentially faraway) nodes that start it and delaying
the algorithm by a random delay (with a controlled probability distribution) requires all nodes to
do so in a consistent manner.

Theorem 1.1 (Simple extension of [22]). Given shared randomness, one can distributedly find
a schedule that runs all the distributed algorithms in O(congestion+ dilation · log n) round, with high
probability.

Proof Sketch. Break time into phases, each having Θ(log n) rounds. We treat each phase as one
round in the sense that the communications of each round of each algorithm will be executed during
one phase. We delay the start of each algorithm by a uniform random delay in [O(congestion/ log n)]
phases. Chernoff bound shows that w.h.p., for each edge and each phase, O(log n) messages are
scheduled to traverse this edge in this phase. Hence, all algorithms will run along each other with
no interference, and each will be done after at most O(congestion/ log n) + dilation phases.

The above theorem leaves us with two main questions:

Questions:

1. Can one remove the log n factor in the bound of Theorem 1.1 and get an O(congestion +
dilation) round schedule for general distributed algorithms, perhaps using ideas similar
to [10,22,23,28,31,33,34,37]?

2. What can we do with only private randomness, i.e., without any shared randomness?

Technical Contributions: Regarding the first question, we show that interestingly, unlike in
packet routing, when scheduling general distributed algorithms, the lower bound is the one that
can be improved to essentially match the simple upper bound. Concretely, using the probabilistic
method [6], we construct a hard instance of the scheduling problem which shows that:

1In fact, the packet routing problem and this LLL-baed method of it is now one of the material typically covered
in courses on (or around) randomized algorithms for introducing the Lovasz’s Local Lemma, see e.g. [1, 2, 4, 5].
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Theorem 1.2. There are instances of distributed algorithm scheduling for which any schedule,
even when constructed centralized, requires Ω(congestion + dilation · log n/ log log n) rounds.

As for the second question, that is shared randomness, we face two rather orthogonal issues: One
is about the amount of randomness to be shared and the other is how (and where) to share even a
single bit of randomness. While the first issue is simple, the second requires more work. For the first
issue, the saving grace is that for the proof of Theorem 1.1, Θ(log n)-wise independence between
the values of random delays is enough2 and thus, thanks to the standard bounded-independence
randomness constructions (e.g., via Reed-Solomon codes), sharing simply O(log2 n) bits of random-
ness is sufficient. As for the second issue, clearly one can elect a leader to pick the required initial
“shared” randomness and broadcast it to all nodes. However, this, and moreover any such global
sharing procedure, will need at least Ω(D) rounds, for D being the network diameter, which is not
desirable. We explain how to solve the problem with private randomness in a time close to the case
with shared randomness.

Theorem 1.3. For any instance of distributed algorithm scheduling, there is a randomized dis-
tributed algorithm using only private randomness that, with high probability, produces a schedule
that runs all the algorithms in O(congestion + dilation · log n) rounds, after O(dilation log2 n)
rounds of pre-computation.

Roughly speaking, the approach is to break each algorithm into sparsely overlapping sub-
algorithms that each span only small areas of the network. Particularly, each of these sub-algorithms
will span an area of (weak) diameter O(dilation log n) hops. Then, we only share randomness inside
these smaller areas and show how to run these sub-algorithms in a way that they simulate the main
algorithms.

This approach is in fact more general and it can be used to remove the assumption of hav-
ing shared randomness in a broad family of randomized distributed algorithms, at the cost of an
O(log2 n) factor increase in their running time. Roughly speaking, the family that this result applies
to is those algorithms in which each node outputs one (canonical) output in the majority of the
executions of the algorithm (for each given input). That is, algorithms where the randomness does
not effect the output (significantly) and is used only to speed up the computation. We note that
recently this class was termed Bellagio algorithms [15, 17] as a subclass of randomized algorithms
with some desirable pseudo-deterministic behavior. Due the space limitations, the explanation of
this generalization is deferred to Appendix A.

2 Preliminaries

To talk about running many distributed algorithms, we need to be precise about how we view each
algorithm. Particularly, the aspect that we will focus on is their communication pattern [25, Page
143], that is, in which rounds and over which edges does each algorithm send messages.

Communication Pattern: We define the T -round time-expanded graph G × [T ] of a network
G = (V,E) as follows: We have T + 1 copies of V , denoted by V0, V1, . . . , VT , and T copies of
E, denoted E1, E2, . . . , ET , where Ei defines the set of edges between Vi−1 and Vi. For ease of
reference, we will refer to the copy of node v ∈ V that is in Vi as vi. For each i ∈ [1, T ], vi ∈ Vi
is connected with a direct edge to ui+1 ∈ Vi+1, that is (vi, ui+1) ∈ Ei+1, if and only if (v, u) ∈ E.

2See [35, Theorem 5] for a Chernoff bound for k-wise independent random variables.
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Figure 1: A simple graph, its 3 round time-expanded version, and a communication pattern on it.
In round 1, nodes 2 and 3 send messages respectively to nodes 4 and 1; in round 2, node 1 sends a
message to node 4; in round 3, node 4 sends a message to node 5.

The communications of a T -round algorithm A on network G correspond naturally to a subgraph
of G × [T ]: For v ∈ Vi and u ∈ Vi+1, we have (vi, ui+1) ∈ A if and only if algorithm A sends a
message from v to u in round i. We call this subgraph the communication pattern of A. Figure
1 shows a simple example. Note that the communication pattern of an algorithm simply captures
the footprint of its communications and does not consider the content of the messages sent by the
algorithm.

Generally, the communication pattern of an algorithm is non-deterministic and can depend on
the inputs to the nodes and also on their randomness. Hence, it is vital that we do not assume it to
be known a priori. Often the communication pattern itself already conveys significant information
about the things that the algorithm is supposed to compute, which means that nodes cannot know
it in advance, i.e., before running the algorithm. Even throughout the execution, a node v might
not know which of its neighbors will send a message to v in the next round. A simple example to
stress the vitality of this issue is the case of breadth first search: before running the BFS, node v
does not know at which round and from which neighbors it will receive a message3.

Simulation: Formally, we describe a simulation of a T -round algorithm A in a larger time-span
T ′ ≥ T to be a mapping f from A to a sub-graph B ⊆ G × [T ′]. More precisely, function f maps
the edges (vi, ui+1) of algorithm A ⊆ G× [T ], i.e., its communications, to edges in G× [T ′] in a way
that preserves the causal precedence: that is, if in algorithm A, edge (vi, ui+1) causally precedes
edge (v′j , u

′
j+1), then in B, edge f((vi, ui+1)) causally precedes edge f((v′k` , u

′
j+1)). Here, causal

precedence is formalized as follows: In an algorithm A, we say edge (vi, ui+1) causally precedes
(v′j , u

′
j+1) if there is chain of edges e1 = (vi, ui+1) , (uk1 , wk1+1), . . . , (wk` , v

′
k`+1), (v′j , u

′
j+1) that are

all in A and we have i+ 1 ≤ k1 ≤ · · · ≤ k` ≤ k` + 1 ≤ j.
The Distributed Algorithm Scheduling (DAS) Problem: We are given k algorithms A1 to
Ak, and we should produce an execution so that for each algorithm, each node outputs the same
value as if that algorithm was run alone.

Our lower bounds are strong in the sense that they apply to centralized scheduling, which means
that everything—particularly the whole network topology and also the communication patterns of
all the algorithms—is known to the scheduler, and the lower bound simply says that there is no
“short” schedule, rather than saying that a “short” schedule cannot be computed (distributedly).

For the purpose of our distributed scheduling algorithm (i.e., upper bound), we assume that the
distributed algorithms A1 to Ak are given in the following format: For each algorithm Ai, when this
algorithm is run alone, in each round each node knows what to send in the next round. This clearly

3One can add dummy messages to BFS to fix its communication pattern. However, this will significantly increase
the load on edges, i.e., congestion, which is undesirable.
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depends on the node’s input and also what messages the node has received up to, and including, that
round. We stress that, we do not assume that the nodes know the correct communication pattern a
priori, and in fact, if for some reason the schedule is mixed up and the node does not receive one of
the messages that it is supposed to receive in the alone execution of Ai, the node might not notice
this and it can proceed with executing the algorithm, although generating a wrong execution. Our
algorithms are designed such that they ensure that this does not happen. As for the randomness
used by the algorithms A1 to Ak, we consider it as a part of the input to the node, that is, at the
start of the execution, each node samples its bits of randomness, thus fixing them, and it uses these
bits throughout the execution, similar to the way it uses its input.

In our algorithms, we will have (a number of) executions of the algorithm Ai that globally might
look different than a simulation of the algorithm Ai, but from the viewpoint of some nodes, they are
exactly as if the whole simulation is run. To capture this formally, we define a partial simulation of
algorithm A for node v to be an execution in which, all the communications that causally influence
v are identical to those in a (full) simulation of A.

For our upper bound result, we assume that nodes know constant-factor approximations of
congestion and dilation; although both of these assumptions can be removed using standard doubling
techniques. We defer the explanation of these steps to the full version of this paper.

3 Lower Bound

Here we show that the log n factor in Theorem 1.1 is essentially unavoidable. That is, unlike packet
routing [22], general distributed algorithms do not always admit a schedule of length O(congestion+
dilation).

Theorem 3.1. There is a distributed algorithm scheduling problem instance for which any schedule,
even those computed centralized, requires at least Ω(congestion + dilation · log n/ log log n) rounds.

Proof. We first explain the general outline of the proof. We use the probabilistic method [6] to show
the existence of such a “hard” problem instance. Particularly, we present a probability distribution
space for distributed algorithm scheduling problems and show that, for a sample instance taken
from this distribution, with a nonzero probability (in fact with probability almost 1), no schedule
of length o(congestion + dilation · log n/ log logn) exists.

For that, roughly speaking, we study each fixed schedule of length o(congestion + dilation ·
log n/ log log n) against a random sample from the scheduling problem distribution, and we show
that this one schedule has an extremely small probability to be good for the sample scheduling
problem. This probability will be so small that, even after we take a union bound over all possible
schedules, the probability that there exists one of these schedules that is good for the sample
scheduling problem is strictly less than 1, and in fact close to 0. Hence, we conclude that there exists
one problem instance of distributed algorithm scheduling which does not admit any o(congestion +
dilation · log n/ log log n) round schedule. We next explain how we realize this outline.

We start with describing the probability distribution of the algorithms A1 to Ak that are sup-
posed to be scheduled. The network G = (V,E) is as follows: V = {v0, v1, . . . , vL}∪U1∪U2∪· · ·∪UL,
where L = n0.1. Each set Ui contains η = n0.9 nodes, and each node u ∈ Ui is connected to vi−1 and
to vi. Figure 2 illustrates the structure of this network (and also the edges in the communication pat-
tern of one sample algorithm, which will be discussed soon). The general format of each algorithm
Ai is as follows: in round 1, node v0 sends a message to a subset S1 ⊂ U1, where |S1| = Θ(n0.9), the
choice of S1 will be described. Then in round 2, these nodes S1 each send a message to v1. In round
3, node v1 sends a message to a subset S2 ⊂ U2, and in round 4 these nodes send messages to v2.
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v0 v1 v2 v3 vLvL-1vL-2

U1 U2 U3 UL-1 UL

Layer 3

Figure 2: A sample algorithm in the hard distribution. The green links indicate all the edges used
by one sampled algorithm (i.e., roughly speaking those in its communication pattern), while the
orange dotted lines present all the possible edges that the algorithms in the distribution can use.

The algorithm proceeds similarly over the next blocks, continuing with a speed of one hop progress
per round, and containing an arbitrary subset Si ⊂ Ui where |Si| = Θ(n0.9). In a random sample
DAS problem from our distribution, for each algorithm Ai, each Sj is determined randomly where
each node u ∈ Uj is added to Sj with probability n−0.1, and the choices are independent between
different nodes of the same layer, different layers, and different algorithms. Note that if we have
k = n0.2 algorithms, then E[congestion] = kn−0.1 = n0.1, and thanks to the independence, we know
that

Pr[congestion ≥ 2n−0.1] ≤ e−Θ(n0.1).

We claim that there is a sample DAS problem in this distribution where congestion = O(n0.1),

dilation = 2n0.1, and for which there is no schedule of length at most n0.1 logn
1000 log logn .

To prove this claim, we break the time into 0.1n0.1 phases of logn
100 log logn rounds each. Furthermore,

in the schedule, we say algorithm Ai crosses layer j in a given phase if the message of vj−1 is sent
in this phase and vj receives the responses of all the related nodes in Uj during this phase. Even
though it is possible that crossing a layer does not fully fall into one phase, it must be true that
for at least 9

10 of the layers, they are each crossed in a phase. This is because otherwise the length

of the schedule would be more than n0.1

10 ·
logn

100 log logn = n0.1 logn
1000 log logn . For each of the algorithms, we

define its crossing pattering to be the (partial) assignment of layers to phases which indicates that
layer j ∈ [n0.1] is crossed during phase t ∈ [0.1n0.1], and at most 0.1 fraction of the layers do not
have a phase number assigned to them. For each layer j ∈ [n0.1] and each phase t ∈ [0.1n0.1], the
load L(j, t) in layer j at phase t is defined to be total number of algorithms that are scheduled to
cross layer j during phase t. Since there are k = n0.2 algorithms and each of them should cross at
least 0.9n0.1 layers during phases, we have∑

j,t

L(j, t) ≥ n0.2 · 0.9n0.1 = 0.9n0.3.

Now there are 0.1n0.2 choices for pair (j, t). Hence, the average load over these pairs is at least
0.9n0.1, which means that there is at least one pair with such a “semi-large” load of at least 0.9n0.1.
We next focus on this layer-phase pair.

When we are studying this heavily loaded layer-phase in a fixed schedule against the randomly
chosen set of algorithms, we get that on average, in this phase, the expected number of messages
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that have to go through an edge is at least 0.9n0.1 ·n−0.1 = 0.9. This is because, each algorithm uses
each edge with probability n−0.1 and by the choice of this layer-phase, there are 0.9n0.1 algorithms
that cross this layer in this phase. We next use a simple anti-concentration type of argument to say
that there is a non-negligible chance that a given edge gets considerably more than this expected
load (in this phase). Note that if more than logn

100 log logn algorithms are supposed to cross a single

edge during one phase, then the schedule fails simply because the phase has only logn
100 log logn rounds.

The probability that the number of algorithms that have to use a given fixed edge is more than
logn

100 log logn is at least

0.9n0.1∑
`= logn

100 log logn

(
0.9n0.1

`

)
(n−0.1)`(1− n−0.1)0.9n0.1−` ≥ n−0.2.

Let us now zoom in on one side of the layer, e.g., the side from Uj to node vj . Note that for each
algorithm Ai, the choices of different nodes being in Sj—whether different edges of this side of a
layer j are used in Ai—are independent. Thus, the load on different edges of this side of layer j are
independent. This means that the probability that there is no such heavily loaded edge is at most
(1 − n−0.2)n

0.9 ≤ 1 − e−n0.7
. That is, the probability that the one fixed crossing pattern we were

studying is good for the given random instance of the distributed algorithm scheduling is extremely
small, at most e−n

0.7
.

Given that one crossing pattern is very unlikely to succeed, we now explain why none of them
is likely to succeed, using a union bound. The number of all possible crossing patterns for all
algorithms is at most eΘ(n0.3). This is because, for a single algorithm, to define a possible crossing
patterns, we need to specify at most 0.1n0.1 layers that are not crossed during a phase, and also
specify the crossing phase for the rest of the layers. For the layers that are not crossed during a

phase, there are
(
n0.1

0.1n0.1

)
= eO(n0.1) options. To assign increasing phase numbers in range [n0.1] to

the remaining 0.9n0.1 layers, there are
(

1.9n0.1−1
0.9n0.1

)
= eO(n0.1) options4. Hence, the total number of

possible crossing patterns for a single algorithm is at most eΘ(n0.1), which means that over all the
k = n0.2 algorithms, the number of all possible crossing patterns is at most eΘ(n0.3).

Now, a union bound over all crossing patterns tells us that the probability that there is one of
the crossing patterns that does not fail for the sampled DAS problem is at most e−n

0.7 · eΘ(n0.3) � 1.
Therefore, there is one DAS problem in the described family for which there is no (short) crossing

pattern, and hence, also no schedule of length at most n0.1 logn
1000 log logn rounds.

Remark: We note that the schedule length bound that appears in the proof of the above theorem
is indeed tight up to a constant factor for the described setting. This is because, using some small
parameter tuning in Theorem 1.1, we can generate a schedule of length Ω((congestion + dilation) ·
log n/ log logn), which matches the bound in the proof as there congestion = Θ(dilation). To get this
schedule, we use phases of Θ(log n/ log log n) rounds and delay each algorithm by a random number
of phases uniformly distributed in [Θ(congestion)]. Thus, the expected number of messages to be sent
across an edge per phase is O(1) which means w.h.p., this number will not exceed O(log n/ log logn).

4 Upper Bound

We start by giving an intuitive explanation of the challenge in scheduling distributed algorithms
and a high level description of the ideas we use. We then go on to describe the details.

4Recall that this is essentially a case of the stars and bars problem: phases are the stars and layers are the bars,
and how many stars there are before a bar indicates the phase in which the related layer is crossed.

8



In Appendix A, we sketch out how to use this approach to remove the assumption of having
shared randomness in a broad range of distributed algorithms, at the cost of a slow down factor of
O(log2 n).

4.1 The Challenge, and the Outline of Our Approach

The key insight in the random delays trick of [22], explained in Section 1, is that this random per-
algorithm delay spreads different algorithms over time such that the number of packets scheduled to
go through an edge per time goes down. When working with distributed algorithms, implementing
such a random delay (with a controlled probability distribution) might become a non-trivial task.
This is mainly because of the local nature of distributed algorithms: typically, while the algorithm
is being run over the whole network, each node is influenced only by a small neighborhood around
itself, particularly a ball of radius dilation-hops, in our terminology. If we are to keep the running
time small, there cannot be any causal dependency between nodes that are far from each other.
Hence, particularly, unless we have access to shared randomness, we cannot have a randomly chosen
delay for a given algorithm in a way that the delay is “consistent” over the whole network.

The good news however is that we actually do not need such a consistency over the whole
network; it is sufficient if we have a consistently delayed execution in each dilation-neighborhood.
This is because each node actually sees only a dilation-neighborhood of itself. However, leveraging
this positive point is non-trivial, mainly because each edge can be in the dilation-neighborhoods of
a large number of nodes, and executing algorithms in each of these neighborhoods separately will
need an undesirably large running time.

The solution we use is based on a generic method of graph partitioning [9,11,13,21], colloquially
referred to as ball carving. Particularly, the closest to what we do is the approach Bartal [8] used
for probabilistically approximating arbitrary metric spaces with tree-metrics. The end result of
the graph partitioning part will be a number of clusters of weak radius O(dilation · log n) such
that each dilation-neighborhood is covered completely in at least one, and in fact Θ(logn), of the
clusters and moreover, each edge is in at most O(log n) clusters. To efficiently implement this idea
in the CONGEST, we also use a number of small tricks, which we believe might be useful in other
distributed graph partitioning algorithms for the CONGEST model.

Once we have the aforementioned partitioning, we share a sufficient amount of randomness in
each of these clusters (efficiently); these randomness are to be fed to a Θ(log n)-wise independent
pseudo-random generator. We then show how to use these locally shared randomness bits to simu-
late all the distributed algorithms in all the clusters in O(congestion + dilation · log n) rounds, i.e.,
producing a schedule of length O(congestion + dilation · log n) rounds. We also explain how to let
each node pick the right execution for each of the algorithms, from among all the simulations in
different clustering layers the node is involved in.

4.2 Scheduling Distributed Algorithms via Locally Sharing Randomness

Here, we describe the algorithm that realizes the above outline and achieves the following result:

Theorem 4.1. There is a DAS algorithm with only private randomness with O(dilation log2 n)
rounds of pre-computation that simulates all the algorithms in O(congestion+dilation · log n) rounds.

For the graph partitioning mentioned above, which effectively breaks each algorithm into sub-
algorithms in local areas, we present the following lemma:

Lemma 4.2. There is a distributed algorithm that runs in O(dilation log2 n) rounds and creates
Θ(log n) layers of clustering of the graph such that: (1) in each layer, the clusters are node-disjoint,
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(2) each cluster has weak diameter O(dilation · log n), (3) w.h.p, for each node v, there are Θ(log n)
layers such that the dilation-neighborhood of v is fully contained in one of the clusters of this layer,
and (4) in each layer, each node knows what is the maximum radius around it that is fully contained
in a cluster.

Proof. What we do in the Θ(log n) layers of clustering is independent repetitions of the following
scheme: each node u picks a random radius r(u) distributed according to a truncated exponential
distribution, where Pr[r(u) = z] = ( n

n−1) 1
Re
−z/R for R = Θ(dilation). Node u also picks a random

label `(u) ∈ {0, 1}4 logn. Note that w.h.p., for each two nodes u 6= u, `(u) 6= `(u′). The radius r(u)
defines a ball of radius r(u) centered at u, which we denote B(u). Each node v joins the cluster
centered at node w∗ where w∗ is defined as the node that has the smallest label `(w∗) among the
labels of nodes w such that v ∈ B(w). Properties (1) and (2) follow immediately from the definition
and the property (3) follows from the analysis of Bartal [8, Section 3] which shows that in each
layer, each dilation-neighborhood is fully contained in one of the clusters with constant probability.

What is left to discuss is the distributed implementation and its time complexity, and achieving
property (4). We run the layers of clustering separately, each in O(dilation log n) rounds, thus all
together in O(dilation log2 n) rounds. To save time in the distributed implementation, we will add
a small trick. Interestingly, once we move to Lemma 4.3, this simple change will end up saving us
two logarithmic factors in the running time. Each node u initiates a message mu containing its id
and label, and an initial hop-count H − r(u), where H = Θ(dilation log n). Note that w.h.p., for
each node u, we have ru < H. This (fake) initial hop-count virtually implies that the message mv

is coming from a different node and it has already traveled H − r(u) hops by now and it can only
travel r(u) more hops, as we allow each message to travel H hops in total.

Then in each round i ∈ [1, H], each node v forwards the message with hop-count i that has the
smallest label among the messages of hop-count i or smaller that have reached v. Each received
message gets its hop-count incremented by 1. Due to the initial hop-counts, the message mu can
reach only nodes that are in B(u). Furthermore, for any node v, if `(u) is the smallest label among
the labels of balls that contain v, then mu will indeed reach v. The reason is as follows: if mu does
not reach v, it must be that in a round i, there is a node w on the shortest path from u to v that
has received mu but does not forward mu because it instead forwards (or has forwarded) mv′ for a
node v′ such that `(v′) < `(v) and at w, the hop count of mv′ was less than or equal to that of mv.
But this implies that u is in fact in B(v′), which is in contradiction with v having the smallest label
among the balls that contain u. Finally, `(u) will be the smallest label that v hears, and thus v will
join the cluster centered at u.

To achieve property (4), that is each node knowing what radius of it is fully contained in a
cluster, we do as follows for each layer: First, each node sends its cluster label to each neighbor.
Then, if a node sees a different label in that round, it marks itself as cluster boundary. In the
next dilation rounds, each boundary node sends a message declaring it is boundary and for the next
O(dilation log n) rounds, if a node hears a boundary message, it forwards it to its neighbors (if it
has not done so in the past). Hence, if h′ neighborhood of node v is the maximum neighborhood
fully contained in a cluster, v will receive the boundary message after h′ rounds, thus letting node
v learn the value of h′.

Lemma 4.3. We can share Θ(log2 n) bits of randomness in each cluster, all together in O(dilation log2 n)
rounds. Furthermore, via local computations, this can be turned to poly(n) many Θ(log n)-bit ran-
dom values that are Θ(log n)-wise independent.

Proof of Lemma 4.3. If we had to share Θ(log n) bits of randomness in each cluster, then each cluster
center node would simply pick this randomness and append it to its initial message. Sharing the
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Θ(log2 n) bits requires sending O(log n) messages from each cluster center. Thus, a naive extension of
the approach in Lemma 4.2 would become O(dilation log2 n) rounds per layer, i.e., O(dilation log3 n)
in total.

We can do the spreading in each layer in O(dilation log n) rounds as follows: make Θ(log n)
messages from each source v, each containing Θ(log n) bits of randomness, all with the same label
`(v), and an additional smaller label `′(v) picked from {1, 2,Θ(log n)} to distinguish these messages.
The initial hop-count is set as in Lemma 4.2 for all these messages. Then, in each round, each
node forwards the message with lexicographically smallest (hop-count, `(v), `′(v)) that it has not
sent before. The pipelining analysis of Lenzen [24] shows that after H + Θ(log n) = O(dilation log n)
rounds of this protocol, each node v will receive the smallest Θ(log n) messages starting in the H
neighborhood of v, where smallest is with respect to the lexicographical ordering of (`(v), `′(v)).
Because of the initial hop-count settings, this H-neighborhood translates to all centers that could
potentially reach v, and particularly means node v will receive all the Θ(log n) messages coming
from the center u of the cluster that contains v. Repeating this scheme Θ(log n) times, once for
each clustering layer, solves the local randomness sharing and gets us to O(dilation log2 n) rounds5.

We now talk about increasing the “size” of randomness as theO(log2 n) bits of randomness shared
in each cluster is not (directly) sufficient for determining the random delays of all the algorithms.
Each node v feeds the Θ(log2 n) bits of shared randomness of each cluster that contains v into
the classical k-wise independent pseudo-randomness construction via Reed-Solomon codes, for k =
Θ(log n), (see e.g., [3, Section 3] and also [6, Theorem 15.2.1]6). This transforms the randomness to
poly(n) many Θ(log n)-bit random values that are Θ(log n)-wise independent. These random values
will be used to determine the random delays of different algorithms in a way that is consistent in
each cluster and for each set of up to Θ(log n) algorithms, their random delays are independent.
Particularly, we assume each algorithm Ai has a unique algorithm identifier AID(i) in a range of
K = poly(n) size, say [n10], and we divide the generated random values into K buckets, each
containing poly(n) random values, and the algorithm Ai will pick its random delays based on the
random values in bucket AID(i).

We next explain how, given this shared randomness, we derive a schedule of length O(congestion+
dilation · log n) rounds that simulates all the algorithms.

Lemma 4.4. After the local randomness sharing as done in Lemma 4.3, we can run all the dis-
tributed algorithms in all the cluster, altogether in O(congestion + dilation · log n) rounds.

Proof. We first explain a simpler solution that leads to a schedule of length O(congestion · log n +
dilation·log n) and then explain how to improve this to the near-optimal schedule lengthO(congestion+
dilation · log n) using a nonuniform distribution of random delays.

We run a copy of each algorithm in each cluster. Hence, for each edge e, for each algorithm that
uses e, there can be up to Θ(log n) copies of each of the messages that are to be sent over e, at most
one per layer. Thus, we potentially have increased the load on edges to O(congestion · log n).

Since we have partitioned algorithms into smaller clusters, we need to be careful that from the
viewpoint of the nodes that their dilation-neighborhood is fully contained in a cluster, the behavior
of the locally-cut execution of the algorithm stays the same as in the full algorithm. Consider an

5We note that, it sounds plausible that one might get a bound of O(dilation logn + log3 n) rounds for this part.
6We note that [6, Theorem 15.2.1] only describes the construction on the field GF(2) which yields binary random

values that are k-wise independent. But, as also described in [3, Section 3], the construction readily extends to GF (p),
for any prime number p ∈ poly(n). Furthermore, when desiring random delays in range [Θ(R)] for a given R, we can
pick them from a range {1, . . . , p} for a prime p ∈ Θ(R). Note that by Bertrand’s postulate, there are many such
primes; there is at least one in [a, 2a], for any a ≥ 1.
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algorithm Ai and a clustering layer. If for a node v, only h′-neighborhood of v is fully contained
in a cluster of this layer, then v will execute only the first h′ rounds of the algorithm and will
discard the messages that it would be sending in the later rounds. This change does not effect the
execution from the viewpoint of the nodes that their dilation-neighborhood is fully contained in a
cluster. This is because, if dilation-neighborhood of node w is fully contained in a cluster, this partial
execution will still contain all the messages that can effect w. More concretely, for each node v in
the dilation-neighborhood of w, in the algorithm, w causally depends only on the actions of v in the
first h′ = dilation − dist(v, w) rounds, and since dilation-neighborhood of w is fully contained in a
cluster, so is the h′-neighborhood of v. Moreover, it is easy to see that generally, for any message
in the algorithm that it is not discarded, none of the previous messages in the same algorithm that
can causally effect it is discarded.

For each cluster, for each algorithm, the start of that algorithm is delayed by a random delay of
δ ∈ [congestion] big-rounds, where each big-round is Θ(log n) rounds. Then, each algorithm proceeds
in a synchronous manner at a rate of one algorithm-round per each big-round. The execution finishes
after dilation + congestion big-rounds. W.h.p., the number of the messages scheduled per big-round
per edge is Θ(log n), thanks to the Θ(log n)-independence of the random delays. Then, each node
v picks its output for each algorithm based on one of the clustering layers that fully contains the
dilation-neighborhood of v in a cluster.

We now explain how to improve this schedule length, to the near-optimal bound of O(congestion+
dilation · log n) rounds. The key point we leverage is the fact that we only need one copy of each
message, instead of all the potentially up to O(log n) copies (one in each layer). However, the
challenge is to keep the executions synchronous (roughly speaking). The main ingredient we use
is a nonuniform distribution of the random delays, suited to our setting. We next describe this
distribution, and then explain how it affects the schedule.

The probability mass function of the random delay is as follows: We have a parameter L =
Θ( congestionlogn ). The support of the distribution is divided to β = Θ(log n) blocks. The total probability

mass given to each block is 1/β. The ith block contains Lαi−1 points, and the distribution of the

probability mass inside the block is uniform, i.e., each point of the ith block has probability 1/β
Lαi−1 .

Here, α is a positive constant slightly less than 1, which we fix later. Note that the total support of

the distribution has
∑Θ(logn)

i=1 Lαi−1 ≤ L
1−α = Θ( congestionlogn ) points.

The above describes the distribution for the initial delay in each algorithm. Once started, the
algorithms will again proceed synchronously one algorithm-round per each big-round. However,
this time, if there is a message scheduled to be sent over e and a copy of it has been sent before,
this message gets dropped. On the other hand, when a node is about to create a message when
simulating a round j of algorithm, it takes into account all the messages that it has received in the
past about rounds up to j − 1 of the simulations of the same algorithm.

What is left is to show that with the new distribution of delays, w.h.p., for each big-round, there
will be at most Θ(log n) messages that actually need to go through an edge e. Note that a message
must go through e in a given big-round if no copy of it has done so in the past, i.e., if among
the Θ(log n) copies of the simulations of the corresponding algorithm, this is the first execution
scheduled. For a copy of an algorithm to be the first scheduled, all the Θ(log n) copies must be
scheduled afterward. We show that for each big-round and each edge, the probability that the first
copy of a message is scheduled to go through this edge in that round is at most Θ( logn

congestion). This
is trivially true for delays in the first block of distribution of the delays as the probability for each
of those delays is 1

Lβ . For the second block, the probability that none of the Θ(log n) copies of the

algorithm have a delay in the first block is (1− 1
β )Θ(logn) which is a constant, say γ < 1. It is sufficient

to pick the constant α equal to this constant γ. Then, the probability that a delay that is in the
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second block is picked and is the first among the delays is at most γ/β
Lα ≤

1
Lβ . Generally, for a delay

in the ith block, the probability that it is the first of delays is at most (1 − 1
β )(i−1)Θ(logn) ≤ γi−1,

and hence, the probability that it is picked and is the first among the related delays is at most
γi−1/β
Lαi−1 ≤ 1

Lβ = Θ( logn
congestion). Hence, we conclude that the total number of messages to be actually

sent over each edge per big-round is at most Θ(log n), with high probability. Since each big-round is
made of Θ(log n) rounds, we can afford to send all these messages across the edge in that big-round.
Note that the range of the initial delays is Θ( congestionlogn ) big-rounds and each algorithm runs for only
dilation big-rounds. Hence, the whole schedule has a length O(congestion + dilation · log n) rounds,
thus completing the proof of the lemma.

5 Concluding Remarks and Future Work

This paper is centered around the issue of running many independent distributed algorithms con-
currently. We presented an existential Ω(congestion+ dilation log n/ log log n) round schedule length
lower bound and an algorithm that produces a schedule of length O(congestion + dilation log n)
rounds, after O(dilation log2 n) rounds of pre-computation.

We believe that this paper is merely a starting point, as there are many seemingly fundamental
aspects that are not addressed here. We next discuss some of these issue, which are conceptually
deeper and perhaps somewhat less clear, as well as some other more detailed technical questions.

Broader Questions: Throughout the paper, we worked under the assumption that the algorithms
A1 to Ak are fixed, and we just want to run them. However, one can imagine a different viewpoint,
when considering a higher-level picture: The end goal that we have is to solve the problems that
A1 to Ak were designed to solve, which means we are allowed to change these algorithms to make
them fit with each other better, so long as they solve the same problems. In other words, given k
problems, what is the best collection of algorithms A1 to Ak solving these problems that can be run
together in the shortest possible span of time. This roughly coincides with, what is the collection
of algorithms A1 to Ak solving these problems that leads to the smallest possible congestion and
dilation. To unify these two measures and make the problem well-defined, one might consider
congestion + dilation · log n as the objective that is to be minimized. In fact, once we design a set of
algorithms optimizing this measure, then we can use the algorithms presented in this paper to run
A1 to Ak together essentially optimally, which would be a near-optimal method overall. Hence, one
can say that, the algorithmic results in this paper essentially (and approximately) reduce the general
question of how to solve k problems together fast to that of designing algorithms that minimize the
measure congestion + dilation · log n.

Now this latter design question still seems rather broad and it is not clear how to tackle such
a question for the general choice of k problems. A clean special case which might provide us with
valuable insights is the setting where the k problems are independent instances of the same problem.
That is, the setting where we have k independent shots of a single problem, and we want to solve
all of them.

We note that this question loosely resembles the well-studied parallel repetitions problem (see
e.g. [32]) in the complexity theory which, roughly speaking, asks can one solve k independent shots
of a given problem using “resources” less than k times that of the single-shot version. However, the
author believes that this is rather a superficial similarity and the connection is not strong, mainly
because our focus is on the distributed round complexity and we clearly know that pipelining often
allows us to solve k shots faster than k times the round complexity of solving a single shot. Although,
other less-direct connections between the two areas are plausible. For instance, one can use direct
product or direct sum theorems of communication complexity to derive distributed round complexity
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lower bounds for k-shot versions of a given distributed problem.
Let us now take a closer look at this distributed k-shot question, by using a classical (single-

shot) problem as an example. Consider the k-shot version of the MST problem: For the network
graph G = (V,E), we are given k different weight functions w1 to wk, each wi : E → R, and we
want to find the k Minimum Spanning Trees corresponding to these weight functions. It is easy to
see that for MST (and in fact for most problems), the naive idea of running k copies of the best
single-shot algorithm, even with the best possible pipelining/scheduling, is not optimal. The core of
the matter is that, the single-shot algorithm is designed to minimize its running time, i.e., dilation
in our terminology, but it typically does not lead to the best congestion.

Let us make the discussion more concrete by considering some examples. For MST, the almost
a century-old algorithm of Boruvka [26] from 1926, which has the same outline as the one used by
Galleger, Humblet, and Spira [14], has dilation = Õ(n) rounds and running it once gives a very low
congestion of O(log n). Other algorithms give different values for these two parameters. For instance,
an alternative near-linear time algorithm can be achieved by filtering edges—discarding heaviest edge
in each cycle—while they are being upcast on a tree towards the root, which leads to dilation and
congestion both being Õ(n). Furthermore, the newer algorithm of Kutten and Peleg [20] has an
almost optimal running time of dilation = Õ(D+

√
n) rounds, but (as is) it has congestion = Θ(

√
n).

This simple example is a witness to the clear fact that the algorithms designed to have optimal
dilation do not necessarily have good congestion.

For the case of the MST problem, we can actually understand the tradeoff between congestion
and dilation quite well: Using constructs similar to those of Das Sarma et al. [12], one can see that
there is indeed an inevitable tradeoff and an MST algorithm that has congestion at most L will
require a dilation of at least Ω̃(n/L) rounds. Interestingly, using some simple parameter tuning in
the algorithm of Kutten and Peleg [20], one can algorithmically match this tradeoff of

congestion = L, dilation = Θ̃(D + n/L).

This single-short tradeoff also has direct implications for the k-shot version of the problem.
For the k-shot version, the aforementioned lower bound can be combined with a strong direct sum
theorem for communication complexity of k independent shots of two-party set disjointness [19],
and some parameter tuning, to show that solving k-shots of MST requires at least Ω̃(D +

√
kn)

rounds. Again, this can be matched algorithmically: we use the parameter-optimized algorithm of
Kutten and Peleg, with the parameter choice of L =

√
n/k, as our single-shot algorithm, and we

run k copies of it in parallel using (even a simplified version of) our O(congestion + dilation log n)
round schedule. As a result, we get an algorithm that solves k independent instances of MST in
Õ(D +

√
nk) rounds, thus essentially matching the aforementioned lower bound.

Perhaps it is simply a lucky coincidence that in the case of MST, we already know how to solve
k-shots of it optimally, simply by doing some parameter tuning in the known single-shot algorithms
and then running k copies of it in parallel. Can we achieve such a result for a broader family of
problems (hopefully, ones which have a different “nature” compared to that of MST7)?

To summarize, we believe that when designing distributed algorithms, it is valuable to keep
track of both dilation and congestion, as opposed to merely dilation (i.e., round complexity) which
is the standard objective in the recent years of theoretical distributed computing. This is because,
congestion gives us a sense of what will happen when we run this algorithm along with others.
Of course the ideal case would be if one can have an algorithm with a controllable (and efficient)

7One can see that for instance, a k-shot version of minimum cut approximation can also be computed in Õ(D+
√
kn)

rounds, by extending [16], and that also is optimal due to essentially the same lower bound constructions. However,
this is not really a novel addition but merely an extension of the same tradeoff “nature”.
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tradeoff between the two parameters, as we saw above for the MST problem. Furthermore, this
tradeoff between congestion and dilation deserves a study from a lower bound viewpoint, and even
congestion deserves a study of its own. For instance, given a problem, can we solve it with a
congestion below the given threshold?

As a side note, we remark that a measure that received more attention in the old days of
theoretical distributed computing was message complexity. In fact message complexity has some
correlation with congestion. However, this correlation is not strong and the message complexity alone
does not characterize the related congestion. For instance, an algorithm with message complexity
O(m) can have congestion anywhere between O(1) to O(m).

Smaller Technical Questions: We next mention a few smaller questions about the technical
results presented in the paper. A particular question is, the lower bound we presented in this paper
is merely existential. Is it possible to provide a necessary and sufficient classification of special cases
of distributed algorithm scheduling problems which admit O(congestion+dilation) round schedules?
Alternatively, can we get at least a sufficient condition that covers a broad range of problems of
interest? If yes, for those, can we also find these schedules distributedly and efficiently?

Another question is regarding Theorem 1.3, which gives a schedule of length O(congestion +
dilation log n) but after O(dilation log2 n) rounds of pre-computation. Can we improve the latter,
hopefully to O(dilation log n) rounds?
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A Removing Shared Randomness in Distributed Algorithms

Generally, having shared randomness between the nodes of a network is a questionable assumption
and it is ideal to not depend on such an assumption. Here, we sketch how the approach used in
Section 4 can be applied for removing the assumption of having shared randomness in a large class
of randomized distributed algorithms.
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The class that our approach will apply to is what Goldwasser recently named Bellagio algo-
rithms [17], although a wide range of classical randomized algorithms fall into this category. The
definition translated to distributed algorithms is that each node must output the same value—i.e.,
its canonical value—in at least 2/3 of the executions; that is, with probability at least 2/3. Note
that in many problems, the correct solution is unique, or the problem can be slightly changed
to make the solution unique, and in these problems, any randomized algorithm will indeed be a
Bellagio algorithm. On the other hand, a classical distributed problem for which obtaining a fast
(polylogarithmic rounds) Bellagio algorithm seems hard is the Maximal Independent Set problem.

The reason that our approach only applies to Bellagio algorithms is that we will try to simulate
the algorithm with shared randomness by only locally sharing randomness, as we did in Section 4.
Thus, we will have many partial executions of the algorithm, each cut to a small local area, and
the Bellagio property allows us paste these together and make sure that the outputs of these partial
executions are consistent.

Meta-Theorem A.1. For any problem that has a T -round Bellagio randomized distributed algo-
rithm which uses R bits of shared randomness and where each node outputs a canonical solution with
probability at least 2/3, there is a randomized algorithm with round complexity O(T log2 n+R) that
only uses private randomness and w.h.p. each node outputs its canonical solution. Furthermore, if
the input given to each node can be described using poly(n) bits, a different technique can be used
to reduce R to O(log n), thus giving a O(T log2 n) round algorithm.

We first use an example to explain the first part of the meta-theorem. Then, we describe the
general approach for the second part which reduces the amount of the shared randomness in the
original shared-randomness Bellagio algorithm to O(log2 n), in most cases of interest, while keeping
it Bellagio. Simulating this new algorithm via our techniques in Lemmas 4.2, 4.3, and 4.4, leads to
the claimed round complexity of O(T log2 n) round.

One of the key multi-party computation operations in which shared randomness gets used fre-
quently is hashing. Many variants of hashing are using in different algorithms, but typically the
hash function is constructed via a seed that comes from shared randomness. We now explain how
this shared randomness assumption can be removed. To have a concrete explanation, we use a very
simple case of dimensionality reduction via hashing as our example. We note that we will only
present a rough sketch which illustrates the main idea without getting caught up in the details of
the particular example problem.

Suppose each node v ∈ V receives as input a string sv ∈ {0, 1}L for L = poly(n), and the
objective is for each node v to know the number of distinct strings within d-hops of v, to within
a (1 + ε) factor, for a small ε > 0. Note that even two neighbors exchanging their strings would
require L = poly(n) rounds, so intuitively a first natural step is to reduce the dimension Lof the
problem, and this we do via a simple hashing.

Using shared randomness, nodes can pick a random hash function h : {0, 1}L → {0, 1}Θ(logn)

at random, which would give the property that among the at most n strings in the graph, w.h.p.,
there is no hash-collision. This dimension reduction to O(log n) already captures the usage of shared
randomness that we wanted to illustrate and it opens the road for computing the number of distinct
elements via standard algorithm. Later, we will talk more about the details of how to actually solve
this approximate distinct elements problem, but let us here focus more on the heart of the story,
i.e., how to mimic the shared randomness via only local sharing

To keep the hash function collision free w.h.p., pairwise independence is enough which means
sharing O(log n) bits of randomness is sufficient in this example. Now, this solution relies on that
for each node v, all nodes within its h-neighborhood have picked the same hash function, i.e., the
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same Θ(log n) bits of hashing seed. Obviously we cannot have this for all nodes, unless one is willing
to spend O(D) rounds for achieving global shared randomness, but that might be undesirable.

Using the techniques in Lemma 4.2, we can carve Θ(log n) layers of clustering, where each cluster
has radius Θ(d log n), and such that each node’s h-neighborhood is fully contained in Θ(logn) of
such balls. This takes Θ(d log2 n) rounds. Then, we share Θ(log n) bits of the randomness in each
cluster picked by the center, similar to Lemma 4.3, in Θ(d log n) rounds. In fact here, in this simple
example where we want Θ(log n) bits, this sharing can be done at the same time as we are carving the
clusters. But in general, especially when R = ω(log n), we would do it after the clustering, similar
to Lemma 4.3, and it would take O(d log n+R) rounds. Finally, we can simulate the hash functions
locally for each of the clusters. Hence, the hash function construction part takes O(h log2 n + R)
rounds.

Note that each node will be in Θ(log n) clusters and thus will have Θ(logn) hash functions,
one for each cluster layer. Hence, given an algorithm A that uses the hash-functions to solve the
problem, we still need to simulate A for each of these cluster layers, as we did in Lemma 4.4. But
if A takes T rounds, we can similalry simulate A also in local clustering areas, each of diameter at
most O(T log n), in total in O(T log2 n) time.

Before going to the issue of reducing shared randomness, since we have started the discussion,
let us actually finish the story of this particular problem of distinct elements: we explain how to
approximate it to within 1 + ε, in O(d log n/ε3) rounds, and just present a rough sketch: Consider
a threshold k = (1 + ε)j . We can compare the number of distinct elements in each node’s h-hop
neighborhood with this threshold k as follows: Use a hash function h′1 = {0, 1}Θ(logn) → {0, 1} where
for each s ∈ {0, 1}Θ(logn), Pr[∀s ∈ h′1(s) = 1] = 1− 2−1/k ≈ 1/k, and these events are independent
among different k. Then, in d rounds, each node v can know whether there is a node u in its d-hop
neighborhood for which h′1(h(su)) = 1. One can see that if the number of distinct elements in the
d-hop neighborhood of v is at least (1 + ε/2)k, then the probability that there is at least one node
node u in its d-hop neighborhood for which h′1(h(su)) = 1 is at least 0.5 + Θ(ε). Furthermore, if
the number is at most k/(1 + ε/2), then the probability is at most 0.5 − Θ(ε). This Θ(ε) gap is
the key distinguishing element. If we repeat this process for Θ(log n/ε2) iterations (different binary
hash functions h′i), Hoeffding’s bound tells us that at the end, w.h.p, each node v knows whether
the number of distinct elements in its d-neighborhood is above (1 + ε/2)k or below k/(1 + ε/2), just
by seeing what the majority of the experiments say. Repeating this for all the Θ(log n/ε) different
thresholds (i.e., different values of j ∈ {1, . . . ,Θ(log n/ε)}), node v can know the number of distinct
elements in its neighborhood to within 1 + ε factor. In fact, each Θ(log n) iterations can be bundled
together as the CONGEST model admits O(log n) bit messages, now a bit-wise or of these message
will be propagated. This gets us to the bound O(d log n/ε3).

Reducing the Shared Randomness: Now we explain a distributed generalization of a classical
observation of Newman [27] for two-party protocols, which shows that O(log n) bits of shared ran-
domness is sufficient if in the problem, there are at most 2poly(n) possibilities for the input given to
each node, i.e., if each node’s input can be described in poly(n) bits. Note that almost all problems
of interest in theoretical distributed computing fall within this category, e.g., the edges of a node,
which are typically a key part of the input, can be described in at most n log n bits.

An algorithm with R bits of shared randomness is simply a collection F of 2R deterministic
algorithms. We know that for each fixed set of inputs, in 2/3 or more of the algorithms, node v is
outputting the same canonical output. We claim that we can find a smaller collection F ′ of these
deterministic algorithms, with size poly(n), such that for each set of fixed input, each node outputs
the same canonical output with probability say at least 3/5. The argument is by an application
of the probabilistic method: simply pick poly(n) many of the deterministic algorithms in F at
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random and define the resulting collection to be a candidate for being collection F ′. Regarding one
fixed set of inputs, using the Chernoff bound, we know that the probability that node v outputs
the correct canonical value in at least 3/5 of the algorithms in the candidate collection is at least
1−2−Θ(poly(n)). Now, there are 2poly(n) sets of possible inputs to all nodes, n nodes, and furthermore
at most 2O(n2) possible graphs between the nodes. We can union bound over all of these possibilities
and say that the probability that the candidate F ′ collection is good for all these choices is at least
1 − 2−Θ(poly(n)) × 2poly(n) ≥ 1 − 2−Θ(poly(n)). That is, with very high probability, the candidate
collection is good. Hence, in fact there exists such a good smaller collection F ′ with |F ′| = poly(n).
Now, note that to pick one of the algorithms in collection F ′ only takes O(log n) bits.

We note that this argument is simply existential in the sense that it proves that there exists
a good collection F ′, and thus an algorithm which uses O(log n) bits of shared randomness. The
argument does not provide a fast (centralized) method for finding this algorithm. However, if we
ignore the local computations, which is a standard practice in distributed computing [25,30], nodes
can deterministically search through the space of all collections, using a simple deterministic brute
force, each running it on its own, and consistently find the first good collection F ′. Here, “first” is
with respect to the deterministic search order.
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