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ABSTRACT
Task allocation is an important problem for robot swarms to solve,

allowing agents to reduce task completion time by performing tasks

in a distributed fashion. Existing task allocation algorithms often

assume prior knowledge of task location and demand or fail to

consider the effects of the geometric distribution of tasks on the

completion time and communication cost of the algorithms. In this

paper, we examine an environment where agents must explore

and discover tasks with positive demand and successfully assign

themselves to complete all such tasks. We first provide a new dis-

crete general model for modeling swarms. Operating within this

theoretical framework, we propose two new task allocation algo-

rithms for initially unknown environments – one based on N-site

selection and the other on virtual pheromones. We analyze each

algorithm separately and also evaluate the effectiveness of the two

algorithms in dense vs. sparse task distributions. Compared to the

Levy walk, which has been theorized to be optimal for foraging,

our virtual pheromone inspired algorithm is much faster in sparse

to medium task densities but is communication and agent intensive.

Our site selection inspired algorithm also outperforms Levy walk

in sparse task densities and is a less resource-intensive option than

our virtual pheromone algorithm for this case. Because the perfor-

mance of both algorithms relative to random walk is dependent on

task density, our results shed light on how task density is impor-

tant in choosing a task allocation algorithm in initially unknown

environments.
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1 INTRODUCTION
Robot swarms are simple, distributed units that are able to work

together to achieve emergent collective behaviours [10]. We con-

tribute a general, theoretical framework to model these swarms,

which can be leveraged, as will be done in this work, to implement

various swarm algorithms. Swarm algorithms often draw inspira-

tion from swarms in nature such as birds, ants, and bees [19, 26, 29].
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Swarm algorithms provide a scalable and fault-tolerant solution to

problems such as search-and-rescue [8] and environmental mon-

itoring [9]. One of the most well-studied swarm problems is task

allocation [12], which aims to assign agents to tasks in an optimal

manner. Here, a task refers to an abstract notion; a task is simply

a location of interest in the environment which requires some ac-

tion(s) by agents. This could be a food item in foraging, survivors

in search-and-rescue, mines for robots to defuse, and more.

Many classes of task allocation algorithms assume that task lo-

cations and demand for agents are known, and try to optimize an

assignment of agents to tasks [3, 4, 35]. However, in many applica-

tions, such as finding and defusing mines [32], task information is

not initially known. Algorithms which do consider task allocation

in unknown environments [5, 15] run limited testing on the effects

of task density. However, the density of tasks in the environment

affects relative algorithm performance.

In this paper, we consider the problem of assigning agents to

tasks with positive demand in an initially unknown environment.

We assume each agent can only be assigned to one task. Within

this setup, we contribute two new algorithms and compare them to

the Levy Walk (RW), which is used in nature for foraging [28]. We

also show how task density makes our different algorithms better

suited towards different task environments.

The first algorithm, our house hunting task allocation algorithm

(HHTA), is inspired by swarm house-hunting models [27]. While

the house hunting problem aims for agents to agree on one of many

locations in the environment, the task allocation problem aims for

agents to split themselves proportionally to task demand amongst

all tasks in the environment. In our HHTA algorithm, agents use

their starting location as a home base that they can return to after

discovering tasks in the environment. The home base functions as

a central point of communication and allows for agents to recruit

each other to do tasks, serving the same function as the home nest

in many swarm house hunting algorithms.

The second algorithm is our propagation-based algorithm (PROP),

which uses a regular grid of cheap, simple agents to propagate task

demand information outwards to neighboring propagator agents.

We assign a separate type of agent with more advanced computing

powers to read the information and use it to probabilistically decide

which task to head towards. The propagation of task demand infor-

mation via cheap agents is inspired by virtual pheromones [1, 2], a

commonly used nature-inspired technique in swarm algorithms.

By comparing both algorithms to the Levy flight, we show that it

is harder for PROP to do well with very dense tasks, as a large influx

of propagated information can confuse agents. Our other algorithm,

HHTA, does worse when tasks are mid to high density because

inter-agent communication about tasks is not worth it compared to



a random walk, which is highly likely to encounter tasks quickly.

However, it does better than RW when tasks are sparse as the

cost of communication about task location is justified when tasks

are harder to find. It is also less resource intensive compared to

PROP. We also evaluate the effects of varying individual parameters

within several task densities in order to better understand our new

algorithms.

Our results demonstrate how different task allocation algorithms

do well in environments with different task density and invite

further examination on the performance of other task allocation

algorithms in different types of task environments.

Section 2 provides the inspiration for our two proposed algo-

rithms, explaining house hunting and virtual pheromones in further

depth. Section 3 describes our general formal model and then dives

into the models for our two specific algorithms. Our simulation

results and comparison between the two new algorithms in sparse

and dense task environments can be found in Section 4. Section 5

discusses our results, and Section 6 concludes the paper and pro-

vides ideas for future work. The full simulation code can be found

at [14].

2 BACKGROUND
Task allocation is a well studied problem and has been classified

into many subproblems. Per the taxonomy defined in [12] our task

allocation problem is of the single-task agents, multi-robot tasks

variety, which means that agents can only do one task at a time,

but tasks may require multiple agents.

When task demands and locations are known, this problem be-

comes a coalition formation problem, where we wish to form agents

into groups that are best suited to do each task. This problem can

be thought of as a set partitioning problem [12], and adaptations to

distributed swarms have been proposed [4, 35].

Other strategies for when tasks are fixed at known locations

model tasks as a graph where agents can travel between edges

[3, 13, 18]. These algorithms optimize for a flow rate between edges

in the graph so that agents can satisfy all task demands quickly.

Another strategy in this case, based onOptimalMass Transport [33],

is to treat the tasks with demands as sinks and the tasks with agents

as sources in a min cost flow problem. However, both strategies

require prior knowledge of task locations.

Our problem differs from coalition formation and the graph-

based task allocation problems because we are assuming that agents

have no initial knowledge of task location or demands. In this case,

wewant to discover tasks and communicate information about them

as quick as possible so that agents can satisfy all task demands.

One solution to task allocation in an environment with unknown

tasks is to have agents form local clusters and run Optimal Mass

Transport locally [36]. Other task allocation algorithms, such as

auction-based algorithms, perform a similar type of agent cluster-

ing to assign tasks [16]. Our two algorithms by contrast are fully

distributed and computationally simple, without the need for group-

ing to locally run a complex centralized algorithm. This allows us

to save the time needed to form agent clusters and allows agents to

be cheaper to implement due to low computation cost.

2.1 Levy Flight
The Levy flight is a randomwalk that has been observed in foraging

animals and adapted to swarm algorithms [11, 28] as well. The Levy

Flight has shown to be an optimal forgaing algorithm, which is very

relevant to the situation in which task locations and demands are

unknown. As such, we will be using this random walk as a baseline

to compare against for our two new algorithms.

2.2 House Hunting
Several ant species engage in a house-hunting behaviour when

their home nest is destroyed [25, 26]. First, ants explore nearby for

nest sites. If a site is found, the ant waits a period of time inversely

proportional to the site quality before returning to the home nest to

lead others to the new nest. This process of recruitment is known

as forward tandem running (FTR). Once the encounter rate of other

ants in the candidate nest reaches a critical threshold known as the

quorum threshold, ants switch to carrying members of the colony

to the new nest. This carrying behaviour is 3 times faster than FTR

and accelerates the move to the new site [26].

Ant house hunting has inspired the corresponding swarm prob-

lem of N-site selection [34], where agents must choose the highest

quality site from N initially unknown candidates. One common

N-site selection model has agents transition between four main

states: Uncommitted Interactive, Uncommitted Latent, Favoring

Interactive, and Favoring Latent [27]. Some works also include a

fifth Committed state [6, 7, 20]. In this type of model, Uncommitted

Interactive agents explore the arena for new sites, while Uncom-

mitted Latent agents stay in the home nest. Once an Uncommitted

Interactive agent discovers a site, it can decide to favor the site.

Favoring agents can be interactive, meaning they return to the

home nest to recruit other favoring agents, or latent, meaning they

stay in their favored site to build up quorum. Lastly, if agents de-

tect a sufficient number of others in a new candidate site, they can

transition into the committed state to finalize their decision.

Task allocation can be thought of as an extension to the house

hunting problem, where instead of trying to send all agents to one

location, we want to send agents to multiple locations according

to the demand at each one. This idea has been used in Berman [3]

and Halasz’s [13] work to develop task allocation algorithms for a

known graph of tasks where agents can traverse along the edges.

We extend this idea further by using inspiration from site selection

algorithms to develop our novel HHTA algorithm, in which, unlike

[3, 13], task locations are initially unknown. In HHTA, agents use a

home nest which functions as a location for recruiting other agents

to tasks and communicating with other agents. The four main

states of the HHTA algorithm share parallels to the Uncommitted

Interactive, Uncommitted Latent, Favoring Active, and Committed

states described above which are further explained in Section 3.3.

2.3 Virtual Pheromones and Potential Fields
Ants leave pheromones in their environment when foraging to

guide other ants to any discovered food sources [1]. This strategy

of leaving information in the environment has inspired swarms to

implement virtual pheromones (pheromones represented by com-

putational data instead of chemical signals). For example, [2] used



physically deployable beacons that robots could leave in the envi-

ronment to store information in, [21] simulated pheromone trails

by leveraging depots to store target-rich locations (pheromone way-

points) found by other robots, and [22] set up a virtual pheromone

approach with a pre-deployed network of beacons that acted as a

grid of locations to leave information in. One cheap way to imple-

ment virtual pheromones is using wireless sensor motes to store

and propagate information [31].

Pheromones are frequently used in conjunction with potential

fields or particle swarm optimization techniques. Potential field

algorithms model objects in the environment as either positive

charges or negative charges, with agents experiencing attraction

or repulsion from the objects based on the electric force between

them. Particle swarm optimization [24] follows a similar physics

approach, except the attractive and repulsive forces were based on

springs as opposed to charges. These techniques are employed in

navigation tasks, where potential fields and pheromones can work

together to guide robots around obstacles and towards a target in

space [23]. Pheromones are also employed in foraging tasks to help

robots efficiently find what they are foraging for [17].

We apply the ideas of virtual pheromones in our novel PROP algo-

rithm, which uses simple mote-like agents to leave task information

in the environment. Task-performing robots use this information

when searching for tasks in the task allocation process. The use

of virtual pheromones allows us to easily notify task-performing

robots of nearby tasks. We also use potential fields as inspiration

for how a robot’s motion should be influenced when it learns of

multiple potential tasks through pheromones in the environment.

Robots are more attracted to tasks with higher demand and tasks

that are closer to their current location, so tasks can be thought of

like charges which robots can feel the force of.

3 MODEL
We first describe our new discrete general model for modeling

swarms. Then we discuss the individual restrictions, parameters,

and agent algorithms needed for task allocation. Figure 1 is provided

as a lookup table for the parameter notation used in defining this

theoretical framework (and our two task allocation algorithms).

3.1 General Model
We assume a finite set 𝑅 of agents, with a state set 𝑆𝑅 of potential

states. Agents move on a discrete rectangular grid of size𝑀 × 𝑁 ,

formally modelled as directed graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑀𝑁 .

Edges are bidirectional, and we also include a self-loop at each

vertex. Vertices are indexed as (𝑥,𝑦), where 0 ≤ 𝑥 ≤ 𝑀 − 1, 0 ≤
𝑦 ≤ 𝑁 − 1. Each vertex also has a state set 𝑆𝑉 of potential states.

Local Configurations: A local configuration 𝐶′ (𝑣) captures the
contents of vertex 𝑣 . It is a triple (𝑠𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝), where 𝑠𝑣 ∈
𝑆𝑉 is the vertex state of 𝑣 ,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 ⊆ 𝑅 is the set of agents at 𝑣 ,

and 𝑠𝑟𝑚𝑎𝑝 :𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 assigns an agent state to each agent

at 𝑣 .

Local Transitions: The transition of a vertex 𝑣 may be influenced

by the local configurations of nearby vertices. We define an in-
fluence radius 𝐼 , which is the same for all vertices, to mean

that vertex indexed at (𝑥,𝑦) is influenced by all valid vertices

{(𝑎, 𝑏) |𝑎 ∈ [𝑥−𝐼 , 𝑥 +𝐼 ], 𝑏 ∈ [𝑦−𝐼 , 𝑦+𝐼 ]}, where 𝑎 and 𝑏 are integers.

Notation Parameter Description

𝑀 , 𝑁 Grid dimensions,𝑀 × 𝑁
𝐼 Agent influence radius

𝛼 Agent transition function

𝑇 Number of tasks

𝑡𝑖 Task 𝑖

𝑡𝑖
𝑟𝑑

Residual demand of 𝑡𝑖

HHTA House hunting task allocation algo-

rithm

PROP Task propagation algorithm

RW Levy random walk

𝑃𝑐 Base probability of committing to a task

upon arrival (for HHTA)

𝑃𝑒 Expected fraction of exploring agents

(for HHTA)

𝑟𝑚 Recruiting agents’ message rate (for

HHTA)

MT Propagator agent’s known task demand

information (for PROP)

𝑑𝑝 Maximum propagation radius (for

PROP)

𝑟𝑝 Propagation timeout in integer rounds

(for PROP)

𝐿 1/(𝑀 + 𝑁 )

Figure 1: Summary table of notation for relevant parameters.

We can use this influence radius to create a local mapping𝑀𝑣 from

local coordinates to the neighboring local configurations. For a ver-

tex 𝑣 at location (𝑥,𝑦), we produce𝑀𝑣 such that𝑀𝑣 (𝑎, 𝑏) → 𝐶′ (𝑤)
where𝑤 is the vertex located at (𝑥 +𝑎,𝑦+𝑏) and −𝐼 < 𝑎, 𝑏 < 𝐼 . This

influence radius is representative of a sensing and communication

radius. Agents can use all information from vertices within the

influence radius to make decisions.

We have a local transition function 𝛿 , which maps all the infor-

mation associated with a vertex and its influence radius at one time

to new information that can be associated with the vertex and the

agents at that vertex for the following time.

Formally, for a vertex 𝑣 , 𝛿 probabilistically maps𝑀𝑣 to a quadru-

ple of the form (𝑠𝑣1,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠, 𝑠𝑟𝑚𝑎𝑝1, 𝑑𝑖𝑟𝑚𝑎𝑝1), where 𝑠𝑣1 ∈ 𝑆𝑉
is the new state of the vertex, 𝑠𝑟𝑚𝑎𝑝1 : 𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → 𝑆𝑅 is the

new agent state mapping for agents at the vertex, and 𝑑𝑖𝑟𝑚𝑎𝑝1 :

𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠 → {𝑅, 𝐿,𝑈 , 𝐷, 𝑆} gives directions of motion for agents

currently at the vertex. Note that 𝑅, 𝐿, 𝑈 , and 𝐷 mean right, left,

up, and down respectively, and 𝑆 means to stay at the vertex. The

local transition function 𝛿 is further broken down into two phases

as follows.

Phase One: Each agent in vertex 𝑣 uses the same transition func-

tion 𝛼 , which probabilistically maps the agent’s state 𝑠𝑟 ∈ 𝑆𝑅,

location (𝑥,𝑦), and the mapping𝑀𝑣 to a new suggested vertex state

𝑠𝑣 ′, agent state 𝑠𝑟 ′, and direction of motion 𝑑 ∈ {𝑅, 𝐿,𝑈 , 𝐷, 𝑆}. We

can think of 𝛼 as an agent state machine model.

Phase Two: Since agents may suggest conflicting new vertex

states, a rule 𝑄 is used to select one final vertex state. The rule also

determines for each agent whether they may transition to state 𝑠𝑟 ′



and direction of motion 𝑑 or whether they must stay at the same

location with original state 𝑠𝑟 .

Probabilistic Execution: The system operates by probablisti-

cally transitioning all vertices 𝑣 for an infinite number of rounds.

During each round, for each vertex 𝑣 , we obtain the mapping

𝑀𝑣 which contains the local configurations of all vertices in its

influence radius. We then apply 𝛿 to 𝑀𝑣 to transition vertex

𝑣 and all agents at vertex 𝑣 . For each vertex 𝑣 we now have

(𝑠𝑣𝑣,𝑚𝑦𝑎𝑔𝑒𝑛𝑡𝑠𝑣, 𝑠𝑟𝑚𝑎𝑝𝑣, 𝑑𝑖𝑟𝑚𝑎𝑝𝑣) returned from 𝛿 .

For each 𝑣 , we take 𝑑𝑖𝑟𝑚𝑎𝑝𝑣 , which specifies the direction of

motion for each agent and use it to map all agents to their new

vertices. For each vertex 𝑣 , its new local configuration is just the

new vertex state 𝑠𝑣𝑣 , the new set of agents at the vertex, and the

𝑠𝑟𝑚𝑎𝑝 mapping from agents to their new agent states.

3.2 Task Allocation Problem Definition
Consider𝑇 tasks [𝑡0 . . . 𝑡𝑇−1] arranged at a subset of vertices in our

general model, with at most one task at each vertex. Specifically, the

task locations can be described as 𝑙 = [(𝑥0, 𝑦0), . . . , (𝑥𝑇−1, 𝑦𝑇−1)],
where 𝑙𝑖 = (𝑥𝑖 , 𝑦𝑖 ) is the vertex location of task 𝑡𝑖 and 𝑖 ≠ 𝑗 → 𝑙𝑖 ≠

𝑙 𝑗 (each task has a distinct location). We wish to distribute agents

among the tasks to achieve a certain distribution 𝑎 = [𝑎0, ..., 𝑎𝑇−1]
where 𝑎𝑖 represents the number of agents doing task 𝑖 and

∑
𝑎𝑖 =

𝑘𝑅 ≤ 𝑅 (meaning 𝑘% of all agents is enough to complete all the

tasks).

We assume that when an agent senses a task within its influence

radius, it is able to detect the demand of that task. Since agents

can also detect how many agents are at the task, they can use

this information to compute the residual demand, defined as the

difference between the task demand and the number of agents

already at the task. We denote the residual demand at task 𝑖 by 𝑡𝑟𝑑
𝑖

.

We assume that the desired task distribution does not change over

time, and that the task is complex enough that each agent can only

do one task over the course of the algorithm.

In order to properly represent tasks in both of our algorithms,

the vertex state set 𝑆𝑉 contains the following variables: is_task,
whether the vertex is a task; demand, the task demand if the vertex

is a task; residual_demand, the residual demand if the vertex is

a task; task_location, the 𝑥,𝑦 coordinates of the vertex if it is a

task.

We go into more detail on the agent states and transitions for our

two algorithms in Sections 3.3 and 3.4. One other detail to note about

task allocation is that in phase two of 𝛿 , we reconcile conflicting

proposed vertex states. This shows up in task allocation when

multiple agents attempt to claim the same task. When this happens,

if there are 𝑠 agents trying to claim the task but only 𝑟𝑑 < 𝑠 residual

demand, then only 𝑟𝑑 agents are allowed to transition their state

to having claimed the task (these 𝑟𝑑 agents are chosen arbitrarily).

Otherwise, if 𝑟𝑑 > 𝑠 , all agents will be allowed to claim the task.

3.3 House Hunting Task Allocation Algorithm
In our house-hunting inspired algorithm (HHTA), agents start out

at a square home location with lower left corner (𝑥1
ℎ
, 𝑦1

ℎ
) and upper

right corner (𝑥2
ℎ
, 𝑦2

ℎ
). Call the set of home verticesH . We assume

that ∀𝑖, 𝑙𝑖 ∉ H , meaning no tasks are located at the home location.

In HHTA, the vertex state set 𝑆𝑉 needs the additional variable

is_home, indicating whether the vertex is a home vertex or not.

Agents can be in one of four core states: Home (H), Exploring

(E), Recruiting (R), or Committed (C). Home agents wait in home

nest for news of tasks. Exploring agents explore the arena for tasks.

Home agents have a 𝑃𝐸 =
𝐿∗𝑃𝑒
1−𝑃𝑒 chance of converting to exploring

agents, and exploring agents have a 𝑃𝐻 = 𝐿 chance of converting

to home agents, where 𝐿 is defined as 1/(𝑀 + 𝑁 ) and 𝑃𝑒 is the

expected fraction of exploring agents. The transitions between H

and E agents indicate that agents are expected to explore for𝑀 +𝑁
time steps (enough to reach the corners of the grid) before returning

home. It also ensures that the expected fraction of E agents out of

the total number of E and H agents is 𝑃𝑒 . The factor of 𝐿 is inspired

by house hunting algorithms, where 𝐿 is defined as the inverse

of the average site round trip so that exploring agents will have

enough time to reach candidate sites before returning home.

An exploring agent has a 𝑃𝑡𝑖 chance of finding task 𝑖 . Once it finds

task 𝑖 , it has a 𝑐 = max(𝑃𝑐 , 1/𝑡𝑟𝑑𝑖 ) chance of becoming a Committed

agent, and a 1 − 𝑐 chance of becoming a Recruiting agent. Here 𝑃𝑐

is the base probability of committing, and 1/𝑡𝑟𝑑
𝑖

makes it so that at

low residual demands, agents have a higher chance of committing

to the task right away. If a task has residual demand 1, for instance,

any agent which discovers it will commit to the task right away,

completing the task instead of trying to recruit others for it.

Committed agents have fully committed to a task and stay at

that task. The Committed state is similar to the Committed state

in house hunting, where agents have decided on a new nest site

and have moved to it. Recruiting agents head back to the home

nest to tell Home agents about the task they have found. Agents

recruiting for site 𝑖 have a 1/𝑡𝑟𝑑
𝑖

chance to stop recruiting and

become committed to task 𝑖 . Recruiting agents have a 𝑟𝑚 chance of

sending a message to each agent within their influence radius at

each time step, where 𝑟𝑚 is the message rate. Therefore, a Home

agent has an 𝑃𝑟𝑖 = 𝐼1−𝑟𝑚 (𝑅𝑡𝑖 − 1, 2) chance of receiving at least

one recruiting message for task 𝑖 . Here, 𝑅𝑡𝑖 is the number of agents

recruiting for task 𝑖 that are within sensing radius, and 𝐼 is the

regularized incomplete beta function. If a Home agent receives a

message from a recruiting agent, it has a 𝑃𝑐 chance of committing

to the task and heading towards it, and a 1−𝑃𝑐 chance of recruiting
for the task. Note that the residual demand information for C and R

agents may become stale as more agents commit to tasks. A diagram

of the transitions between these core states can be found in Figure

2.

In order to execute the core state transitions, the agent state

set 𝑆𝑅 comprises of the following variables: core_state, which
can be H, E, R or C; id, the agent id, taking on values from

0 . . . |𝑅 | − 1; L, defined as 𝐿 = 1/(𝑀 +𝑁 ); P_commit, the probability
𝑃𝑐 ; P_explore, the probability 𝑃𝑒 ; message_rate, the message rate

𝑟𝑚 ; angle, the agent’s current angle of travel; starting_point, a
random walk parameter tracking where the agent started from;

travel_distance, the length of the current leg of the random

walk; destination_task, the agent’s destination if they have

just found a task or are headed towards their committed task;

home_destination, the agent’s destination if they are headed to

a home vertex; recruitment_task, the task an agent is recruiting

for; and committed_task, the task an agent has committed to.
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Figure 2: State model of the four core states. The subscript 𝑖
denotes that an agent is recruiting for or committed to task 𝑖.

The agent transition function 𝛼 uses these state variables to

implement the transitions between the four core states.

A pseudocode example of how 𝛼 looks like for Recruiting agents

can be seen in Algorithm 1. In this example, we first check if the

recruiting agent has reached the home nest to recruit yet. If they

have not, they keep heading towards the home nest by stepping

one step in that direction. If they have reached the home nest, they

have a 1/𝑡𝑟𝑑
𝑖

chance of transitioning to the Committed core state.

Otherwise, they remain in the Recruiting state.

Algorithm 1 Agent transition function 𝛼 for a Recruiting agent

with state 𝑠 at vertex 𝑣 with coordinates (𝑥,𝑦)
1: procedure generate_transition(local_vertex_mapping)

2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 ← 𝑠

3: if 𝑠 .home_destination is not None then
4: 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ←
5: dir_from_dest(𝑠 .home_destination, x, y)

6: 𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ←
7: coords_from_dir(x,y,𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)

8: if within_home(𝑛𝑒𝑤_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) then
9: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.home_destination← None
10: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

11: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒 ←
12: 1/𝑠 .recruitment_task.residual_demand
13: if random_float_from(0,1) < 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑_𝑐ℎ𝑎𝑛𝑐𝑒 then
14: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.core_state← Committed
15: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task←
16: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.recruitment_task

17: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.recruitment_task← None
18: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

19: return 𝑠𝑒𝑙 𝑓 .location.state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

3.4 Task Propagation Algorithm
In our task propagation algorithm (PROP), we distinguish between

two types of agents –𝑀𝑁 propagators and 𝐹 followers. Propaga-

tors are simple, mote-like agents. One of them is assigned to each

vertex to allow vertices to propagate task information to each other.

Followers are more advanced agents which are able to perform the

tasks in the task allocation problem. Followers follow the signals

left by propogators in order to find tasks.

Similarly to HHTA, all agents are initially deployed at a rect-

angular home location with lower left corner (𝑥1
ℎ
, 𝑦1

ℎ
) and upper

right corner (𝑥2
ℎ
, 𝑦2

ℎ
). However, agents in PROP do not utilize this

home location after starting the algorithm. First, all𝑀𝑁 propaga-

tors travel to the vertex which they are assigned to, taking
𝑀+𝑁
2

time for all agents to reach their assigned vertex.

Each propagator has an influence radius of 1 and also stores in

their state a mappingM𝑇 from task locations 𝑙𝑖 to residual demands

𝑡𝑟𝑑
′

𝑖
, representing that they have heard that task 𝑖 at location 𝑙𝑖 has

residual demand 𝑡𝑟𝑑
′

𝑖
. After all propagators are in place, propagators

that are at a task 𝑡𝑖 spread the tuple (𝑡𝑟𝑑 ′
𝑖

, 𝑙𝑖 ) to all other propaga-

tors in their influence radius. Every 𝑟𝑝 time steps, a propagator

takes all new task information (if it has new information it did not

already propagate) it has received and spreads that information

to all other propagators in its influence radius with the following

conditions: information about task 𝑖 can only be spread to agents

whose assigned vertex 𝑣 is located within the bounds [𝑥𝑖 − 𝐼 , 𝑥𝑖 + 𝐼 ]
for the x coordinate and [𝑦𝑖 − 𝐼 , 𝑦𝑖 + 𝐼 ] for the y coordinate, and the

Euclidian distance between 𝑡𝑖 and 𝑣 must be less than or equal to 𝑑𝑝 .

Here, 𝑟𝑝 is the integer propagation timeout and 𝑑𝑝 is the maximum

propagation radius. Figure 3 shows an example of this propagation

process, with propagator agents spreading the demand information

of a single task throughout the graph.

Because the residual demand of a task changes over time, the

propagator at task 𝑖 will have to send new information whenever

the residual demand decreases. When a propagator which already

has task informationMT (𝑙𝑖 ) → 𝑡𝑟𝑑
′

𝑖
receives new information

about a task (𝑡𝑟𝑑 ′′
𝑖

, 𝑙𝑖 ), it updates the task information for task 𝑖

to beMT (𝑙𝑖 ) → 𝑚𝑖𝑛(𝑡𝑟𝑑 ′
𝑖

, 𝑡𝑟𝑑
′′

𝑖
) in order to have the most up-to-

date information. Since the residual demand of a task is always

decreasing as more and more agents join the task, we know the

smaller residual demand is the more accurate one.

After all propagators have reached their assigned vertex, fol-

lowers try to use the information of propagators in order to find

tasks to head towards. At every time step, a follower first checks

the vertices within its influence radius for a task with non-zero

residual demand, and starts moving towards that task if it exists. If

no task is found in its influence radius, a follower located at (𝑥,𝑦)
looks at the propagator assigned to location (𝑥,𝑦) in order to get

information about potential task locations it could head towards. It

compiles all non-zero residual demands into the resulting mapping

𝑀𝐹 , which maps from task locations 𝑙𝑖 to residual demands 𝑡𝑟𝑑
′

𝑖
. If

𝑀𝐹 is non-empty (there is at least one task location with non-zero

residual demand) then the probability that a follower located at

(𝑥,𝑦) heads towards task location 𝑙𝑖 ∈ 𝑀𝐹 is:

𝑀𝐹 (𝑙𝑖 )
𝐿2 (𝑙𝑖 ,(𝑥,𝑦) )2∑

𝑙 𝑗 ∈𝐷 (𝑀𝐹 )

𝑀𝐹 (𝑙 𝑗 )
𝐿2 (𝑙 𝑗 ,(𝑥,𝑦) )2

(1)

This means that the probability of a follower heading towards a

task has an inverse square relationship with 𝐿2 distance between

the task location and the agent’s location, and is also weighted by

the residual demand of the task itself. This equation is determined



(a) Initial state (b) Propagator agent at task
propagates demand info to its
influence radius of 1

(c) 𝑟𝑝 rounds later (d) Propagation bounded by 𝑑𝑝 ,
radius of circle here

(e) No new task demand info to
propagate

Figure 3: A simulated example—(a) to (e) chronologically—of
how task demand information is propagated by propagator
agents. Each square in the grid is a vertex, with edges between
adjacent squares. Red denotes home vertices, green vertices
have follower agents, the numbered vertex is a task with
that value as its current residual demand, and blue vertices
have propagator agents containing task demand information,
with darker blues denoting newer information.

so that agents are less likely to travel to tasks that are further

away from them, but more likely to travel to a task if it has higher

residual demand. If the mapping𝑀𝐹 is empty (the agent has no task

information), it takes a random step in one direction {𝐿, 𝐷, 𝑅,𝑈 }
(following a Levy flight random walk) in order to explore.

Once a follower agent reaches a task with non-zero residual

demand, it stays there indefinitely, "completing the task" and decre-

menting the task’s residual demand by one.

In order to execute the algorithm, the agent state set contains

the following variables: type, the type of agent, which can be ‘prop-

agator’ or ‘follower’ and id, the agent id, which takes on values

from 0 . . . |𝑀𝑁 + 𝐹 | − 1. The following additional variables are in
SR and are only used by propagator agents: task_info, the map-

ping MT ; propagation_rate, the propagation timeout 𝑟𝑝 ; and

propagation_ctr, the number of rounds since an agent last prop-

agated task information. Lastly, the variables in SR used only by

follower agents are: destination_task, the agent’s destination if

they have just found a task or are headed towards their committed

task; committed_task, the task an agent has committed to; angle, a
random walk parameter denoting angle of travel; starting_point,
a random walk parameter tracking where the agent started from;

and travel_distance, the length of the current leg of the random

walk.

The agent transition functions 𝛼 for propagator and follower

agents, respectively, use these state variables to implement the

desired transitions at each time step. The pseudocode for 𝛼 for

propogator and follower agents can be found in Algorithms 2 and

3, respectively. The following functions (already described in the

steps of PROP) are referenced in the pseudocode: propagate(),
the propagator spreads its newest task information MT to the

other propagators in its influence radius; find_nearby_task(), the
follower looks at the vertices in its influence radius for a task with

nonzero residual demand; dir_from_propagator(), the follower
looks at the task informationMT of the propagator at its current

vertex, chooses a task according to the probabilities defined earlier,

and returns the direction towards that task, or, ifMT is empty or

zero, returns a random direction.

Algorithm 2 Agent transition function 𝛼 for a propagator agent

with state 𝑠 at vertex 𝑣 with coordinates (𝑥,𝑦)
1: procedure generate_transition(local_vertex_mapping)

2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 ← 𝑠

3: if 𝑣 .state.is_task then
4: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.task_info[(𝑥,𝑦)] ←
5: 𝑣 .state.residual_demand

6: if 𝑠 .propagation_ctr ≥ 𝑠 .propagation_rate then
7: 𝑠𝑒𝑙 𝑓 .propagate()
8: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.propagation_ctr← 0

9: else
10: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.propagation_ctr←
11: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.propagation_ctr + 1
12: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

4 RESULTS
Our algorithms were tested in simulation [14] using Pygame (see

Figure 3) on a grid of size𝑀 = 𝑁 = 50, with a 3×3 home area in the

center of the grid. Each vertex had an area of 1cm
2
, meaning that



Algorithm 3 Agent transition function 𝛼 for a follower agent with

state 𝑠 at vertex 𝑣 with coordinates (𝑥,𝑦)
1: procedure generate_transition(local_vertex_mapping)

2: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 ← 𝑠

3: if 𝑠 .committed_task is None then
4: if 𝑠 .destination_task is None then
5: if 𝑠𝑒𝑙 𝑓 .find_nearby_task() is not None then
6: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task←
7: 𝑠𝑒𝑙 𝑓 .find_nearby_task()

8: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
9: else
10: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒,

11: 𝑠𝑒𝑙 𝑓 .dir_from_propagator()

12: else
13: if 𝑠 .destination_task.state.residual_demand
14: is 0 then
15: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← None
16: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

17: if 𝑠 .destination_task is 𝑣 then
18: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.committed_task←
19: 𝑠 .destination_task

20: 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒.destination_task← None
21: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒 ← 𝑣 .state
22: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒.residual_demand←
23: 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒.residual_demand − 1
24: return 𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥_𝑠𝑡𝑎𝑡𝑒, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S
25: else
26: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒,

27: 𝑠𝑒𝑙 𝑓 .dir_from_dest(𝑠 .destination_task,

28: x, y)

29: else
30: return 𝑣 .state, 𝑛𝑒𝑤_𝑎𝑔𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒, S

agents moved at 1cm/s (letting time be discretized by 1s), a speed

which simple, low-cost robots are able to move at [30]. All simu-

lations were run using 100 task-performing agents—this resulting

swarm density was chosen to allow for feasible task discovery time,

particularly in the case of RW—and the total task demand summed

to 80. In the trials for the HHTA algorithm, agents had an influence

radius of 2. In the trials for the PROP algorithm, propagators had

an influence radius of 1 and followers had an influence radius of 2.

These smaller influence radii were chosen to keep the algorithms

more local.

For each set of trials, we evaluated task completion time, defined

as the time necessary for the total residual demand to become 0.

In subsections 4.1 and 4.2, we also measure the average number of

messages sent per run per agent. For the HHTA algorithm, when-

ever a Home agent is notified of a task by a Recruiting agent, the

Recruiting agent’s message count is incremented. For the PROP

algorithm, the message count is incremented when a propagator

shares new task information with one of its neighbors. We do not

track the message count for follower agents since it is a negligible

portion of total messages.
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Figure 4: The effect of number of tasks on completion time
for HHTA and RW
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Figure 5: The effect of number of tasks on average messages
sent per agent for HHTA

4.1 Effects of Task Density on HHTA
Performance

To examine the effects of task density on the HHTA algorithm’s

performance, we measured task completion time and average num-

ber of messages sent per agent for 𝑇 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}.
For each value of 𝑇 (the number of tasks), we ran 100 trials with

𝑟𝑚 = 1

6
, 𝑃𝑒 = 2

3
, 𝑃𝑐 = 3

10
. Figure 4 shows the resulting average

task completion time for varying task densities. The HHTA algo-

rithm outperforms the random walk by about 100 rounds in very

sparse task setups when 𝑇 ≤ 6 and performs comparably when

7 ≤ 𝑇 ≤ 10, but for denser task setups, the cost of returning to the

home nest to recruit others is too high compared to the random

walk (Welch’s T-test, p=0.05). We can approximate the area cov-

ered by detectable tasks as
𝑇 (2𝐼+1)2

𝑁𝑀
, where (2𝐼 + 1)2 is the size of

the influence radius (in reality, the ratio would be a bit smaller as

the detectable range for tasks can intersect). This means that for

our choice of parameters, the HHTA algorithm outperforms the

random walk when about 6% or less of the total task area has an

immediately detectable task.

Figure 5 shows the average number of messages sent per agent

for the HHTA algorithm. (Note that the random walk algorithm

uses no communication). Note that on average, each agent sends

less than 1.2 messages per round using HHTA. Note also that agents



send less messages on average as density increases. Since the total

task demand is fixed at 80, a larger number of tasks indicates less

demand per task on average, making agents in the HHTA algorithm

less likely to enter the task state (where messages are sent) and

remain in it.

4.2 Effects of Task Density on PROP
Performance

To examine the effects of task density on the PROP algorithm’s

performance, we once again measured task completion time and

average number of messages sent per propagator agent for 𝑇 ∈
{1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80}. For each
value of 𝑇 (the number of tasks), we ran 20 trials with 𝑟𝑝 = 3 and

𝑑𝑝 = 25. Figure 6 shows the resulting average task completion time

for varying task densities. The PROP algorithm outperforms the

random walk significantly (Welch’s T-test, p=0.05) in sparser task

setups (𝑇 ∈ [1, 25]), with fewer tasks exaggerating this performance

gap nonlinearly. In moderately dense task setups (𝑇 ∈ [30, 60]), the
two algorithms’ runtimes are comparable, and in our most dense

task setups (𝑇 ∈ [70, 80]), the random walk begins to increasingly

outperform the PROP algorithm to a significant extent (Welch’s

T-test, p=0.05). Intuitively, as the density of tasks in the environ-

ment increases, follower agents are more likely to find tasks in their

influence radius (benefiting RW). Conversely, more tasks means

more task information within each propagator agent, overloading

and misguiding the follower agents during their decision process

(harming PROP). After a certain point, too much propagated infor-

mation results in that information declining in its specificity and

thus usefulness.

Figure 7 shows the average number of messages sent per prop-

agator agent per round (for the PROP algorithm). Note that on

average, each propagator agent sends less than 1.3 messages to

other agents per round; however, given the grid space’s size, a large

communication cost is still incurred as there are 2, 500 propagator

agents. Regarding the effect of task density on these communica-

tion costs, agents generally send more messages as the number of

tasks increases. When there are more tasks and thus more vertices

close to tasks, it takes less time for most of the propagator agents to

receive some information initially that they can begin propagating.

Additionally, having more tasks means that some task’s demand

gets updated more often, resulting in there being new information

(as messages) that needs to be propagated more often. This increas-

ing trend becomes less dramatic at higher task densities, likely due

to the fact that with enough tasks, the overlapping propagation

radii all cover roughly the same area. As shown in Figure 6, recall

that higher task densities result in higher completion times for the

PROP algorithm. Therefore, higher task densities do not only result

in agents sending more messages per round, but the total number of

messages sent over an entire run increases even more dramatically

along with the number of tasks.

4.3 Effects of 𝑃𝑐 on HHTA Completion Time for
Varying Task Density

We explored the effects of varying 𝑃𝑐 on completion time for vary-

ing𝑇 . We ran 100 trials for each value of 𝑃𝑐 ∈ { 𝑖
10
, 0 ≤ 𝑖 ≤ 9} using

𝑟𝑚 = 1

6
and 𝑃𝑒 = 2

3
. The results can be seen in Figure 8.
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Figure 6: The effect of number of tasks on completion time
for PROP and RW
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Figure 7: The effect of number of tasks on average messages
sent per propagator agent per round (for PROP)

For 𝑃𝑐 ≤ 0.7, there was no significant difference between the

HHTA completion time at different task densities (Welch’s T-test,

p=0.05). However, for 𝑃𝑐 ∈ {0.8, 0.9}, the completion time for𝑇 = 4

is higher than the completion time for 𝑇 = 16 (Welch’s T-test,

p=0.05). Our results show that only for large 𝑃𝑐 do we see a sig-

nificant difference in performance at different task densities. This

makes sense, as a larger proportion of committing agents means

agents mostly find tasks by discovering them independently, which

is harder in the sparse case. We also note that from 𝑃𝑐 = 0.4 to

𝑃𝑐 = 0.8, task completion time follows an increasing trend, indicat-

ing that higher recruitment (lower 𝑃𝑐 ) allows agents to complete

tasks faster.

4.4 Effects of 𝑃𝑒 on HHTA Completion Time for
Varying Task Density

We also explored varying 𝑃𝑒 , running 100 trials each for 𝑃𝑒 ∈
{ 𝑖
10
, 1 ≤ 𝑖 ≤ 10}, with 𝑇 ∈ 4, 10, 16 and using 𝑟𝑚 = 1

6
and 𝑃𝑐 = 3

10
.

The results can be seen in Figure 9.

For 𝑃𝑒 ≤ 0.8, there was no significant difference between the

HHTA completion time at different task densities (Welch’s T-test,

p=0.05) with the exception of 𝑇 = 10 vs. 𝑇 = 4 at 𝑃𝑒 = 0.2, with

𝑝 = 0.03. However, there was a significant difference in completion

time between 𝑇 = 4 and 𝑇 = 16 when 𝑃𝑒 = 1.0 and 𝑃𝑒 = 0.9. Our

results show that HHTAhas a consistent completion time regardless
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Figure 8: The effect of 𝑃𝑐 on HHTA completion time for
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Figure 9: The effect of 𝑃𝑒 on HHTA completion time for
{4, 10, 16} tasks

of task density other than for large 𝑃𝑒 ∈ {0.9, 1.0}, meaning a large

majority of agents are exploring (making the algorithmmore similar

to randomwalk).When 𝑃𝑒 is high, it is harder to complete the sparse

problem because exploring is harder in a sparse environment.

Our results also show that a more even balance of 𝑃𝑒 (the pro-

portion of Exploring agents) vs. 1 − 𝑃𝑒 (the proportion of Home

agents) leads to a faster completion time. When 𝑃𝑒 is too low, not

enough agents are exploring, making it harder to find tasks. When

𝑃𝑒 is too high, not enough agents are available in the home nest to

be recruited when tasks are found.

4.5 Effects of 𝑑𝑝 on PROP Completion Time for
Varying Task Density

We explored the effects of varying 𝑑𝑝 , the maximum propagation

radius, on completion time for varying 𝑇 . We ran 20 trials for each

unique pair of 𝑑𝑝 ∈ {0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 50
√
2} (note

that 𝑑𝑝 = 0 is equivalent to RW, and 𝑑𝑝 = 50

√
2 means all tasks’

information can be propagated over the entire grid space) and

𝑇 ∈ {4, 10, 16, 50}, using 𝑟𝑝 = 3. The results can be seen in Figure

10.

For reasonably sparse task setups (𝑇 ∈ {4, 10, 16}), larger max-

imum propagation radii correlate with faster runtimes (Welch’s

T-test, p=0.05) but after a certain point, completion time is mostly
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Figure 10: The effect of maximum propagation radius (𝑑𝑝 ) on
PROP completion time for {4, 10, 16, 50} tasks

unchanged. In contrast, for very dense task setups (𝑇 = 50), be-

sides a slight improvement in completion time moving from around

𝑑𝑝 = 0 to 𝑑𝑝 = 10, larger maximum propagation radii result in

slower completion times (Welch’s T-test, p=0.05). Increasing 𝑑𝑝
results in more propagator agents having more task information,

which allows (1) for follower agents to find tasks even if they are far

way and (2) for follower agents to leverage this extra task informa-

tion to prioritize tasks with higher demand. This causes the initial

decline in completion time for increasing 𝑑𝑝 values. However, if 𝑑𝑝
is too large, there is too much information being propagated, dilut-

ing the agents’ strategy. This adverse effect is likely not seen with

sparser environments because even with every single propagator

having information about every single task, each mapping of task

info is still bounded in size by this smaller number of tasks. It is also

reasonable to infer that the turning point in each plot’s trend (when

completion time either becomes constant or starts increasing) is

related to the 𝑑𝑝 value at which every propagator agent receives

some task information.

4.6 Effects of 𝑟𝑝 on PROP Completion Time for
Varying Task Density

We explored the effects of varying 𝑟𝑝 , the number of rounds a

propagator must wait before sharing new task information with

its neighbors, on completion time for varying T. We ran 20 trials

for each unique pair of 𝑟𝑝 ∈ {1, 2, 3, 5, 10, 15, 20} and𝑇 ∈ {4, 10, 16},
using 𝑑𝑝 = 25. The results can be seen in Figure 11.

There is a clear, mostly linear trend between 𝑟𝑝 and completion

time, where increasing the propagation timeout results in increasing

completion times. The trend is fairly consistent across all distinct

task densities that were tested. This relationship between 𝑟𝑝 and

completion time is to be expected, as smaller 𝑟𝑝 means that task

information is moved about the environment more quickly, causing

the information that is used by follower agents to decide which

task to move towards to be more up-to-date. Besides at the very

beginning, 𝑟𝑝 has no effect on the locations of task information,

so none of the adverse phenomena we have seen in which there

is “too much” propagated information occur when varying 𝑟𝑝 . It is

the same task information, simply better when when the timeout is

smaller. It is worth noting, though, that smaller values of 𝑟𝑝 involve

more message passing.



5 10 15 20
Propagation Timeout (r_p)

100

150

200

250

300

350

400
Ti

m
e 

to
 C

om
pl

et
io

n 
(#

 R
ou

nd
s)

Effect of Propagation Timeout on Runtime

PROP, 4 tasks
PROP, 10 tasks
PROP, 16 tasks

Figure 11: The effect of integer propagation timeout (𝑟𝑝 ) on
PROP completion time for {4, 10, 16} tasks

5 DISCUSSION
Our results demonstrate for both HHTA and PROP that when the

total demand for agents is held fixed, task density significantly

affects algorithm performance. HHTA performs better than RW

when tasks are very sparse, and worse when the number of tasks is

high because communicating about individual tasks matters less

when there are many of them. RW performs very poorly with sparse

tasks because it becomes harder over time for the remaining agents

to find tasks. PROP also performs better than RW until the number

of tasks is very high, as agents struggle to arrive at tasks when too

much task information is being propagated. Though it outperforms

RW for sparse tasks, PROP’s completion time increases for very

sparse tasks (𝑇 ≤ 6). PROP also has a faster completion time and

is more distributed than HHTA, but is much more resource and

communication intensive, as it requires a propagator agent at every

grid cell in order to spread information.

In relevant task allocation problems such as search-and-rescue or

mine detection, the number of tasks in the environment is expected

to be sparse, so both algorithms provide a speed-up in completion

time compared to the Levy walk. HHTA provides a less agent in-

tensive and less communication intensive approach but requires

a central communication location. Contrarily, PROP provides a

quicker and more distributed approach for sparse and mid-density

environments but is more resource-intensive. Since the Levy flight

has been shown to optimize search efficiency and can be observed in

many species in nature, it makes sense that for very dense task envi-

ronments with a low demand per task, the Levy flight outperforms

both algorithms. Such environments are a very similar problem to

foraging itself. On the other hand, environments with fewer tasks

that require more agents benefit more from the coordination and

communication of more advanced algorithms.

We also analyzed both algorithms’ mechanics individually, show-

ing the importance of recruitment in HHTA as well as the impor-

tance of an even balance of Exploring vs. Home agents. For PROP,

we showed as expected that generally, higher 𝑑𝑝 leads to better

performance, though it is more communication-intensive. We also

showed that as propagation timeout increases, time to completion

increases, since task demands are stale for longer periods of time.

We also note that in extreme parameter settings, HHTA comple-

tion time was similar regardless of task density while varying algo-

rithm parameters like 𝑃𝑐 and 𝑃𝑒 . However, this is untrue for PROP,

which had a higher completion time for sparser environments at

low 𝑑𝑝 , and a higher completion time for denser environments

at high 𝑑𝑝 . This behavior makes sense because as 𝑑𝑝 approaches

0, PROP reduces to RW, which is similarly affected with a higher

completion time for sparse tasks.

6 FUTUREWORK
Future work could explore experiments in a dynamic setting, where

new tasks can appear over time and agents can search for a new

task after their existing task is finished. It could also evaluate other

environment parameters, such as the ratio of total task demand

to total number of agents. A larger such ratio would make the

task allocation problem harder to solve, as there are less and less

extra agents available to communicate. Another parameter left to

be analyzed is swarm density; that is, the ratio of total number of

agents to grid size (𝑀 × 𝑁 ).

Future work could also combine the strengths of the PROP and

HHTA algorithms, where one agent for each task is assigned to

propagate by leaving information in the vertex state of nearby ver-

tices or communicating task information directly to any nearby

agents like HHTA does. This algorithm would have a much smaller

agent cost than the PROP algorithm while still being able to prop-

agate task information. It would also not require a central home

nest like the HHTA algorithm does, instead opting to induce agent

communication all around the arena.

Future work could also aim for analytical bounds on the expected

task completion time of our two algorithms. Because the algorithms

are relatively simple compared to many swarm algorithms, high

probability bounds may be possible to obtain.

Lastly, future work could extend our algorithms to the continu-

ous 2D as well as 3D (discrete and continuous) settings, adaptations

which our presented theoretical framework is amenable to.
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