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ABSTRACT

Task allocation is an important problem for robot swarms to solve,
allowing agents to reduce task completion time by performing tasks
in a distributed fashion. Existing task allocation algorithms often
assume prior knowledge of task location and demand or fail to
consider the effects of the geometric distribution of tasks on the
completion time and communication cost of the algorithms. In this
paper, we examine an environment where agents must explore
and discover tasks with positive demand and successfully assign
themselves to complete all such tasks. We first provide a new dis-
crete general model for modeling swarms. Operating within this
theoretical framework, we propose two new task allocation algo-
rithms for initially unknown environments — one based on N-site
selection and the other on virtual pheromones. We analyze each
algorithm separately and also evaluate the effectiveness of the two
algorithms in dense vs. sparse task distributions. Compared to the
Levy walk, which has been theorized to be optimal for foraging,
our virtual pheromone inspired algorithm is much faster in sparse
to medium task densities but is communication and agent intensive.
Our site selection inspired algorithm also outperforms Levy walk
in sparse task densities and is a less resource-intensive option than
our virtual pheromone algorithm for this case. Because the perfor-
mance of both algorithms relative to random walk is dependent on
task density, our results shed light on how task density is impor-
tant in choosing a task allocation algorithm in initially unknown
environments.
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1 INTRODUCTION

Robot swarms are simple, distributed units that are able to work
together to achieve emergent collective behaviours [10]. We con-
tribute a general, theoretical framework to model these swarms,
which can be leveraged, as will be done in this work, to implement
various swarm algorithms. Swarm algorithms often draw inspira-
tion from swarms in nature such as birds, ants, and bees [19, 26, 29].
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Swarm algorithms provide a scalable and fault-tolerant solution to
problems such as search-and-rescue [8] and environmental mon-
itoring [9]. One of the most well-studied swarm problems is task
allocation [12], which aims to assign agents to tasks in an optimal
manner. Here, a task refers to an abstract notion; a task is simply
a location of interest in the environment which requires some ac-
tion(s) by agents. This could be a food item in foraging, survivors
in search-and-rescue, mines for robots to defuse, and more.

Many classes of task allocation algorithms assume that task lo-
cations and demand for agents are known, and try to optimize an
assignment of agents to tasks [3, 4, 35]. However, in many applica-
tions, such as finding and defusing mines [32], task information is
not initially known. Algorithms which do consider task allocation
in unknown environments [5, 15] run limited testing on the effects
of task density. However, the density of tasks in the environment
affects relative algorithm performance.

In this paper, we consider the problem of assigning agents to
tasks with positive demand in an initially unknown environment.
We assume each agent can only be assigned to one task. Within
this setup, we contribute two new algorithms and compare them to
the Levy Walk (RW), which is used in nature for foraging [28]. We
also show how task density makes our different algorithms better
suited towards different task environments.

The first algorithm, our house hunting task allocation algorithm
(HHTA), is inspired by swarm house-hunting models [27]. While
the house hunting problem aims for agents to agree on one of many
locations in the environment, the task allocation problem aims for
agents to split themselves proportionally to task demand amongst
all tasks in the environment. In our HHTA algorithm, agents use
their starting location as a home base that they can return to after
discovering tasks in the environment. The home base functions as
a central point of communication and allows for agents to recruit
each other to do tasks, serving the same function as the home nest
in many swarm house hunting algorithms.

The second algorithm is our propagation-based algorithm (PROP),
which uses a regular grid of cheap, simple agents to propagate task
demand information outwards to neighboring propagator agents.
We assign a separate type of agent with more advanced computing
powers to read the information and use it to probabilistically decide
which task to head towards. The propagation of task demand infor-
mation via cheap agents is inspired by virtual pheromones [1, 2], a
commonly used nature-inspired technique in swarm algorithms.

By comparing both algorithms to the Levy flight, we show that it
is harder for PROP to do well with very dense tasks, as a large influx
of propagated information can confuse agents. Our other algorithm,
HHTA, does worse when tasks are mid to high density because
inter-agent communication about tasks is not worth it compared to



a random walk, which is highly likely to encounter tasks quickly.
However, it does better than RW when tasks are sparse as the
cost of communication about task location is justified when tasks
are harder to find. It is also less resource intensive compared to
PROP. We also evaluate the effects of varying individual parameters
within several task densities in order to better understand our new
algorithms.

Our results demonstrate how different task allocation algorithms
do well in environments with different task density and invite
further examination on the performance of other task allocation
algorithms in different types of task environments.

Section 2 provides the inspiration for our two proposed algo-
rithms, explaining house hunting and virtual pheromones in further
depth. Section 3 describes our general formal model and then dives
into the models for our two specific algorithms. Our simulation
results and comparison between the two new algorithms in sparse
and dense task environments can be found in Section 4. Section 5
discusses our results, and Section 6 concludes the paper and pro-
vides ideas for future work. The full simulation code can be found
at [14].

2 BACKGROUND

Task allocation is a well studied problem and has been classified
into many subproblems. Per the taxonomy defined in [12] our task
allocation problem is of the single-task agents, multi-robot tasks
variety, which means that agents can only do one task at a time,
but tasks may require multiple agents.

When task demands and locations are known, this problem be-
comes a coalition formation problem, where we wish to form agents
into groups that are best suited to do each task. This problem can
be thought of as a set partitioning problem [12], and adaptations to
distributed swarms have been proposed [4, 35].

Other strategies for when tasks are fixed at known locations
model tasks as a graph where agents can travel between edges
[3, 13, 18]. These algorithms optimize for a flow rate between edges
in the graph so that agents can satisfy all task demands quickly.
Another strategy in this case, based on Optimal Mass Transport [33],
is to treat the tasks with demands as sinks and the tasks with agents
as sources in a min cost flow problem. However, both strategies
require prior knowledge of task locations.

Our problem differs from coalition formation and the graph-
based task allocation problems because we are assuming that agents
have no initial knowledge of task location or demands. In this case,
we want to discover tasks and communicate information about them
as quick as possible so that agents can satisfy all task demands.

One solution to task allocation in an environment with unknown
tasks is to have agents form local clusters and run Optimal Mass
Transport locally [36]. Other task allocation algorithms, such as
auction-based algorithms, perform a similar type of agent cluster-
ing to assign tasks [16]. Our two algorithms by contrast are fully
distributed and computationally simple, without the need for group-
ing to locally run a complex centralized algorithm. This allows us
to save the time needed to form agent clusters and allows agents to
be cheaper to implement due to low computation cost.

2.1 Levy Flight

The Levy flight is a random walk that has been observed in foraging
animals and adapted to swarm algorithms [11, 28] as well. The Levy
Flight has shown to be an optimal forgaing algorithm, which is very
relevant to the situation in which task locations and demands are
unknown. As such, we will be using this random walk as a baseline
to compare against for our two new algorithms.

2.2 House Hunting

Several ant species engage in a house-hunting behaviour when
their home nest is destroyed [25, 26]. First, ants explore nearby for
nest sites. If a site is found, the ant waits a period of time inversely
proportional to the site quality before returning to the home nest to
lead others to the new nest. This process of recruitment is known
as forward tandem running (FTR). Once the encounter rate of other
ants in the candidate nest reaches a critical threshold known as the
quorum threshold, ants switch to carrying members of the colony
to the new nest. This carrying behaviour is 3 times faster than FTR
and accelerates the move to the new site [26].

Ant house hunting has inspired the corresponding swarm prob-
lem of N-site selection [34], where agents must choose the highest
quality site from N initially unknown candidates. One common
N-site selection model has agents transition between four main
states: Uncommitted Interactive, Uncommitted Latent, Favoring
Interactive, and Favoring Latent [27]. Some works also include a
fifth Committed state [6, 7, 20]. In this type of model, Uncommitted
Interactive agents explore the arena for new sites, while Uncom-
mitted Latent agents stay in the home nest. Once an Uncommitted
Interactive agent discovers a site, it can decide to favor the site.
Favoring agents can be interactive, meaning they return to the
home nest to recruit other favoring agents, or latent, meaning they
stay in their favored site to build up quorum. Lastly, if agents de-
tect a sufficient number of others in a new candidate site, they can
transition into the committed state to finalize their decision.

Task allocation can be thought of as an extension to the house
hunting problem, where instead of trying to send all agents to one
location, we want to send agents to multiple locations according
to the demand at each one. This idea has been used in Berman [3]
and Halasz’s [13] work to develop task allocation algorithms for a
known graph of tasks where agents can traverse along the edges.
We extend this idea further by using inspiration from site selection
algorithms to develop our novel HHTA algorithm, in which, unlike
[3, 13], task locations are initially unknown. In HHTA, agents use a
home nest which functions as a location for recruiting other agents
to tasks and communicating with other agents. The four main
states of the HHTA algorithm share parallels to the Uncommitted
Interactive, Uncommitted Latent, Favoring Active, and Committed
states described above which are further explained in Section 3.3.

2.3 Virtual Pheromones and Potential Fields

Ants leave pheromones in their environment when foraging to
guide other ants to any discovered food sources [1]. This strategy
of leaving information in the environment has inspired swarms to
implement virtual pheromones (pheromones represented by com-
putational data instead of chemical signals). For example, [2] used



physically deployable beacons that robots could leave in the envi-
ronment to store information in, [21] simulated pheromone trails
by leveraging depots to store target-rich locations (pheromone way-
points) found by other robots, and [22] set up a virtual pheromone
approach with a pre-deployed network of beacons that acted as a
grid of locations to leave information in. One cheap way to imple-
ment virtual pheromones is using wireless sensor motes to store
and propagate information [31].

Pheromones are frequently used in conjunction with potential
fields or particle swarm optimization techniques. Potential field
algorithms model objects in the environment as either positive
charges or negative charges, with agents experiencing attraction
or repulsion from the objects based on the electric force between
them. Particle swarm optimization [24] follows a similar physics
approach, except the attractive and repulsive forces were based on
springs as opposed to charges. These techniques are employed in
navigation tasks, where potential fields and pheromones can work
together to guide robots around obstacles and towards a target in
space [23]. Pheromones are also employed in foraging tasks to help
robots efficiently find what they are foraging for [17].

We apply the ideas of virtual pheromones in our novel PROP algo-
rithm, which uses simple mote-like agents to leave task information
in the environment. Task-performing robots use this information
when searching for tasks in the task allocation process. The use
of virtual pheromones allows us to easily notify task-performing
robots of nearby tasks. We also use potential fields as inspiration
for how a robot’s motion should be influenced when it learns of
multiple potential tasks through pheromones in the environment.
Robots are more attracted to tasks with higher demand and tasks
that are closer to their current location, so tasks can be thought of
like charges which robots can feel the force of.

3 MODEL

We first describe our new discrete general model for modeling
swarms. Then we discuss the individual restrictions, parameters,
and agent algorithms needed for task allocation. Figure 1 is provided
as a lookup table for the parameter notation used in defining this
theoretical framework (and our two task allocation algorithms).

3.1 General Model

We assume a finite set R of agents, with a state set SR of potential
states. Agents move on a discrete rectangular grid of size M X N,
formally modelled as directed graph G = (V,E) with |[V| = MN.
Edges are bidirectional, and we also include a self-loop at each
vertex. Vertices are indexed as (x,y), where 0 < x < M - 1,0 <
y < N — 1. Each vertex also has a state set SV of potential states.

Local Configurations: A local configuration C’(v) captures the
contents of vertex v. It is a triple (sv, myagents, srmap), where sv €
SV is the vertex state of v, myagents C R is the set of agents at v,
and srmap : myagents — SR assigns an agent state to each agent
at o.

Local Transitions: The transition of a vertex v may be influenced
by the local configurations of nearby vertices. We define an in-
fluence radius I, which is the same for all vertices, to mean
that vertex indexed at (x,y) is influenced by all valid vertices
{(a,b)|a € [x—Lx+I],b € [y—I,y+I]}, where a and b are integers.

Notation “ Parameter Description

M, N Grid dimensions, M X N

I Agent influence radius

a Agent transition function

T Number of tasks

ti Task i

t;7d Residual demand of ¢;

HHTA House hunting task allocation algo-
rithm

PROP Task propagation algorithm

RW Levy random walk

P, Base probability of committing to a task
upon arrival (for HHTA)

P, Expected fraction of exploring agents
(for HHTA)

'm Recruiting agents’ message rate (for
HHTA)

Mq Propagator agent’s known task demand
information (for PROP)

dp Maximum propagation radius (for
PROP)

p Propagation timeout in integer rounds
(for PROP)

L 1/(M +N)

Figure 1: Summary table of notation for relevant parameters.

We can use this influence radius to create a local mapping M, from
local coordinates to the neighboring local configurations. For a ver-
tex v at location (x, y), we produce My such that My(a, b) — C’(w)
where w is the vertex located at (x+a,y+b) and —I < a,b < I. This
influence radius is representative of a sensing and communication
radius. Agents can use all information from vertices within the
influence radius to make decisions.

We have a local transition function §, which maps all the infor-
mation associated with a vertex and its influence radius at one time
to new information that can be associated with the vertex and the
agents at that vertex for the following time.

Formally, for a vertex v, § probabilistically maps M, to a quadru-
ple of the form (sv1, myagents, srmap1, dirmap1), where sv; € SV
is the new state of the vertex, srmap; : myagents — SR is the
new agent state mapping for agents at the vertex, and dirmap; :
myagents — {R,L,U, D, S} gives directions of motion for agents
currently at the vertex. Note that R, L, U, and D mean right, left,
up, and down respectively, and S means to stay at the vertex. The
local transition function § is further broken down into two phases
as follows.

Phase One: Each agent in vertex v uses the same transition func-
tion a, which probabilistically maps the agent’s state sr € SR,
location (x, y), and the mapping M, to a new suggested vertex state
sv’, agent state sr’, and direction of motion d € {R,L,U, D, S}. We
can think of « as an agent state machine model.

Phase Two: Since agents may suggest conflicting new vertex
states, a rule Q is used to select one final vertex state. The rule also
determines for each agent whether they may transition to state sr’



and direction of motion d or whether they must stay at the same
location with original state sr.

Probabilistic Execution: The system operates by probablisti-
cally transitioning all vertices v for an infinite number of rounds.
During each round, for each vertex v, we obtain the mapping
M, which contains the local configurations of all vertices in its
influence radius. We then apply 6 to M, to transition vertex
v and all agents at vertex v. For each vertex v we now have
(svy, myagentsy, srmap,, dirmap,) returned from §.

For each v, we take dirmap,, which specifies the direction of
motion for each agent and use it to map all agents to their new
vertices. For each vertex v, its new local configuration is just the
new vertex state sv,, the new set of agents at the vertex, and the
srmap mapping from agents to their new agent states.

3.2 Task Allocation Problem Definition

Consider T tasks [ty ...tr—1] arranged at a subset of vertices in our
general model, with at most one task at each vertex. Specifically, the
task locations can be described as I = [(x0,yo), ..., (x7—1,y7-1)],
where [; = (x;j, y;) is the vertex location of task t; and i # j — [; #
I; (each task has a distinct location). We wish to distribute agents
among the tasks to achieve a certain distribution a = [ay, ..., aT—1]
where a; represents the number of agents doing task i and }’ a; =
kR < R (meaning k% of all agents is enough to complete all the
tasks).

We assume that when an agent senses a task within its influence
radius, it is able to detect the demand of that task. Since agents
can also detect how many agents are at the task, they can use
this information to compute the residual demand, defined as the
difference between the task demand and the number of agents
already at the task. We denote the residual demand at task i by #] d
We assume that the desired task distribution does not change over
time, and that the task is complex enough that each agent can only
do one task over the course of the algorithm.

In order to properly represent tasks in both of our algorithms,
the vertex state set SV contains the following variables: is_task,
whether the vertex is a task; demand, the task demand if the vertex
is a task; residual_demand, the residual demand if the vertex is
a task; task_location, the x, y coordinates of the vertex if it is a
task.

We go into more detail on the agent states and transitions for our
two algorithms in Sections 3.3 and 3.4. One other detail to note about
task allocation is that in phase two of §, we reconcile conflicting
proposed vertex states. This shows up in task allocation when
multiple agents attempt to claim the same task. When this happens,
if there are s agents trying to claim the task but only rd < s residual
demand, then only rd agents are allowed to transition their state
to having claimed the task (these rd agents are chosen arbitrarily).
Otherwise, if rd > s, all agents will be allowed to claim the task.

3.3 House Hunting Task Allocation Algorithm
In our house-hunting inspired algorithm (HHTA), agents start out
at a square home location with lower left corner (x}ll, y}ll) and upper

right corner (x}zl, y}zl). Call the set of home vertices . We assume
that Vi, [; ¢ H, meaning no tasks are located at the home location.

In HHTA, the vertex state set SV needs the additional variable
is_home, indicating whether the vertex is a home vertex or not.
Agents can be in one of four core states: Home (H), Exploring
(E), Recruiting (R), or Committed (C). Home agents wait in home
nest for news of tasks. Exploring agents explore the arena for tasks.

Home agents have a Pp = 1L ff;"’ chance of converting to exploring
€

agents, and exploring agents have a Py = L chance of converting
to home agents, where L is defined as 1/(M + N) and P, is the
expected fraction of exploring agents. The transitions between H
and E agents indicate that agents are expected to explore for M + N
time steps (enough to reach the corners of the grid) before returning
home. It also ensures that the expected fraction of E agents out of
the total number of E and H agents is P,. The factor of L is inspired
by house hunting algorithms, where L is defined as the inverse
of the average site round trip so that exploring agents will have
enough time to reach candidate sites before returning home.

An exploring agent has a Py, chance of finding task i. Once it finds
task i, it has a ¢ = max(P., 1/ tird) chance of becoming a Committed
agent, and a 1 — ¢ chance of becoming a Recruiting agent. Here P
is the base probability of committing, and 1/t] 4 makes it so that at
low residual demands, agents have a higher chance of committing
to the task right away. If a task has residual demand 1, for instance,
any agent which discovers it will commit to the task right away,
completing the task instead of trying to recruit others for it.

Committed agents have fully committed to a task and stay at
that task. The Committed state is similar to the Committed state
in house hunting, where agents have decided on a new nest site
and have moved to it. Recruiting agents head back to the home
nest to tell Home agents about the task they have found. Agents
recruiting for site i have a 1/t d chance to stop recruiting and
become committed to task i. Recruiting agents have a ry, chance of
sending a message to each agent within their influence radius at
each time step, where ry, is the message rate. Therefore, a Home
agent has an Py, = I, (R;, — 1,2) chance of receiving at least
one recruiting message for task i. Here, R;; is the number of agents
recruiting for task i that are within sensing radius, and I is the
regularized incomplete beta function. If a Home agent receives a
message from a recruiting agent, it has a P, chance of committing
to the task and heading towards it, and a 1 — P chance of recruiting
for the task. Note that the residual demand information for C and R
agents may become stale as more agents commit to tasks. A diagram
of the transitions between these core states can be found in Figure
2.

In order to execute the core state transitions, the agent state
set SR comprises of the following variables: core_state, which
can be H, E, R or C; id, the agent id, taking on values from
0...|R|—1;L, defined as L = 1/(M + N); P_commit, the probability
P.; P_explore, the probability P.; message_rate, the message rate
rm; angle, the agent’s current angle of travel; starting_point, a
random walk parameter tracking where the agent started from;
travel_distance, the length of the current leg of the random
walk; destination_task, the agent’s destination if they have
just found a task or are headed towards their committed task;
home_destination, the agent’s destination if they are headed to
a home vertex; recruitment_task, the task an agent is recruiting
for; and committed_task, the task an agent has committed to.



Figure 2: State model of the four core states. The subscript i
denotes that an agent is recruiting for or committed to task i.

The agent transition function « uses these state variables to
implement the transitions between the four core states.

A pseudocode example of how « looks like for Recruiting agents
can be seen in Algorithm 1. In this example, we first check if the
recruiting agent has reached the home nest to recruit yet. If they
have not, they keep heading towards the home nest by stepping
one step in that direction. If they have reached the home nest, they
have a 1/t] d chance of transitioning to the Committed core state.
Otherwise, they remain in the Recruiting state.

Algorithm 1 Agent transition function « for a Recruiting agent
with state s at vertex v with coordinates (x, y)

1: procedure GENERATE_TRANSITION(local_vertex_mapping)
2 new_agent_state <— s

3 if s.home_destination is not None then

4 new_direction «

5: dir_from_dest(s.home_destination, x, y)

6 new_location «—

7 coords_from_dir(x,y,new_direction)

8 if within_home(new_location) then

9: new_agent_state.home_destination < None

10: return v.state, new_agent_state, new_direction
11: committed_chance «—

12: 1/s.recruitment_task.residual_demand

13: if random_float_from(0,1) < committed_chance then
14: new_agent_state.core_state « Committed

15: new_agent_state.destination_task «

16: new_agent_state.recruitment_task

17: new_agent_state.recruitment_task « None

18: return v.state, new_agent_state, S

19: return self.location.state, new_agent_state, S

3.4 Task Propagation Algorithm

In our task propagation algorithm (PROP), we distinguish between
two types of agents — MN propagators and F followers. Propaga-
tors are simple, mote-like agents. One of them is assigned to each
vertex to allow vertices to propagate task information to each other.
Followers are more advanced agents which are able to perform the

tasks in the task allocation problem. Followers follow the signals
left by propogators in order to find tasks.

Similarly to HHTA, all agents are initially deployed at a rect-
angular home location with lower left corner (x!, y}ll) and upper
right corner (xfl, ylzl) However, agents in PROP do not utilize this
home location after starting the algorithm. First, all MN propaga-
tors travel to the vertex which they are assigned to, taking MJZrN
time for all agents to reach their assigned vertex.

Each propagator has an influence radius of 1 and also stores in
their state a mapping Mr from task locations J; to residual demands

tr @ representing that they have heard that task i at location [; has

residual demand ¢} 4 Afterall propagators are in place, propagators
that are at a task ¢; spread the tuple (¢] @’ 1) to all other propaga-
tors in their influence radius. Every r,, time steps, a propagator
takes all new task information (if it has new information it did not
already propagate) it has received and spreads that information
to all other propagators in its influence radius with the following
conditions: information about task i can only be spread to agents
whose assigned vertex v is located within the bounds [x; — I, x; +I]
for the x coordinate and [y; — I, y; + I] for the y coordinate, and the
Euclidian distance between ¢; and v must be less than or equal to dj.
Here, rp, is the integer propagation timeout and dj, is the maximum
propagation radius. Figure 3 shows an example of this propagation
process, with propagator agents spreading the demand information
of a single task throughout the graph.

Because the residual demand of a task changes over time, the
propagator at task i will have to send new information whenever
the residual demand decreases. When a propagator which already
has task information Mq(l;) — tird' receives new information
about a task (tird”, l;), it updates the task information for task i
to be Mq(l;) — min(ti’d', ti’d”) in order to have the most up-to-
date information. Since the residual demand of a task is always
decreasing as more and more agents join the task, we know the
smaller residual demand is the more accurate one.

After all propagators have reached their assigned vertex, fol-
lowers try to use the information of propagators in order to find
tasks to head towards. At every time step, a follower first checks
the vertices within its influence radius for a task with non-zero
residual demand, and starts moving towards that task if it exists. If
no task is found in its influence radius, a follower located at (x, y)
looks at the propagator assigned to location (x, y) in order to get
information about potential task locations it could head towards. It
compiles all non-zero residual demands into the resulting mapping
Mp, which maps from task locations /; to residual demands tir d 1f
MF is non-empty (there is at least one task location with non-zero
residual demand) then the probability that a follower located at
(x,y) heads towards task location [; € M is:

M (l;)
Lo (li,(x,y))*?
Mk (1)
1,eD(Mr) Ly (1, (x.y))?

1)

This means that the probability of a follower heading towards a
task has an inverse square relationship with Ly distance between
the task location and the agent’s location, and is also weighted by
the residual demand of the task itself. This equation is determined



(a) Initial state

(b) Propagator agent at task
propagates demand info to its

influence radius of 1

J:
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(c) rp rounds later (d) Propagation bounded by d,,
radius of circle here
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(e) No new task demand info to
propagate

Figure 3: A simulated example—(a) to (e) chronologically—of
how task demand information is propagated by propagator
agents. Each square in the grid is a vertex, with edges between
adjacent squares. Red denotes home vertices, green vertices
have follower agents, the numbered vertex is a task with
that value as its current residual demand, and blue vertices
have propagator agents containing task demand information,
with darker blues denoting newer information.

so that agents are less likely to travel to tasks that are further
away from them, but more likely to travel to a task if it has higher
residual demand. If the mapping M is empty (the agent has no task

information), it takes a random step in one direction {L, D,R, U}
(following a Levy flight random walk) in order to explore.

Once a follower agent reaches a task with non-zero residual
demand, it stays there indefinitely, "completing the task” and decre-
menting the task’s residual demand by one.

In order to execute the algorithm, the agent state set contains
the following variables: type, the type of agent, which can be ‘prop-
agator’ or ‘follower’ and id, the agent id, which takes on values
from0...|MN + F| — 1. The following additional variables are in
SR and are only used by propagator agents: task_info, the map-
ping Mg propagation_rate, the propagation timeout r); and
propagation_ctr, the number of rounds since an agent last prop-
agated task information. Lastly, the variables in SR used only by
follower agents are: destination_task, the agent’s destination if
they have just found a task or are headed towards their committed
task; committed_task, the task an agent has committed to; angle,a
random walk parameter denoting angle of travel; starting_point,
a random walk parameter tracking where the agent started from;
and travel_distance, the length of the current leg of the random
walk.

The agent transition functions a for propagator and follower
agents, respectively, use these state variables to implement the
desired transitions at each time step. The pseudocode for « for
propogator and follower agents can be found in Algorithms 2 and
3, respectively. The following functions (already described in the
steps of PROP) are referenced in the pseudocode: propagate(),
the propagator spreads its newest task information Mg to the
other propagators in its influence radius; find_nearby_task(), the
follower looks at the vertices in its influence radius for a task with
nonzero residual demand; dir_from_propagator (), the follower
looks at the task information Mg of the propagator at its current
vertex, chooses a task according to the probabilities defined earlier,
and returns the direction towards that task, or, if Mg is empty or
zero, returns a random direction.

Algorithm 2 Agent transition function « for a propagator agent
with state s at vertex v with coordinates (x, y)

1: procedure GENERATE_TRANSITION(local_vertex_mapping)
2 new_agent_state < s

3 if v.state.is_task then

4 new_agent_state.task_info[(x,y)] «

5 v.state.residual_demand
6: if s.propagation_ctr > s.propagation_rate then
7: self.propagate()
8: new_agent_state.propagation_ctr « 0
9 else
10: new_agent_state.propagation_ctr «
11: new_agent_state.propagation_ctr +1
12: return v.state, new_agent_state, S
4 RESULTS

Our algorithms were tested in simulation [14] using Pygame (see
Figure 3) on a grid of size M = N = 50, with a 3X 3 home area in the
center of the grid. Each vertex had an area of 1cm?, meaning that



Algorithm 3 Agent transition function « for a follower agent with
state s at vertex v with coordinates (x, y)

1: procedure GENERATE_TRANSITION(local_vertex_mapping)
2 new_agent_state <— s

3 if s.committed_task is None then

4: if s.destination_task is None then

5 if self.find_nearby_task() is not None then
6 new_agent_state.destination_task «

7: self.find_nearby_task()

8: return v.state, new_agent_state, S

9: else

10: return v.state, new_agent_state,

11: self.dir_from_propagator()

12: else

13: if s.destination_task.state.residual_demand
14: is 0 then

15: new_agent_state.destination_task < None
16: return v.state, new_agent_state, S

17: if s.destination_task is o then

18: new_agent_state.committed_task «

19: s.destination_task

20: new_agent_state.destination_task « None
21: new_vertex_state < v.state

22: new_vertex_state.residual_demand «

23: new_vertex_state.residual_demand — 1
24: return new_vertex_state, new_agent_state,S
25: else

26: return v.state, new_agent_state,

27: self.dir_from_dest(s.destination_task,
28: X, ¥)

29: else

30: return v.state, new_agent_state, S

agents moved at 1cm/s (letting time be discretized by 1s), a speed
which simple, low-cost robots are able to move at [30]. All simu-
lations were run using 100 task-performing agents—this resulting
swarm density was chosen to allow for feasible task discovery time,
particularly in the case of RW—and the total task demand summed
to 80. In the trials for the HHTA algorithm, agents had an influence
radius of 2. In the trials for the PROP algorithm, propagators had
an influence radius of 1 and followers had an influence radius of 2.
These smaller influence radii were chosen to keep the algorithms
more local.

For each set of trials, we evaluated task completion time, defined
as the time necessary for the total residual demand to become 0.
In subsections 4.1 and 4.2, we also measure the average number of
messages sent per run per agent. For the HHTA algorithm, when-
ever a Home agent is notified of a task by a Recruiting agent, the
Recruiting agent’s message count is incremented. For the PROP
algorithm, the message count is incremented when a propagator
shares new task information with one of its neighbors. We do not
track the message count for follower agents since it is a negligible
portion of total messages.
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Figure 5: The effect of number of tasks on average messages
sent per agent for HHTA

4.1 Effects of Task Density on HHTA
Performance

To examine the effects of task density on the HHTA algorithm’s
performance, we measured task completion time and average num-
ber of messages sent per agent for T € {2,3,4,5,6,7,8,9,10, 20, 30}.
For each value of T (the number of tasks), we ran 100 trials with
m = %, P = %,PC = %. Figure 4 shows the resulting average
task completion time for varying task densities. The HHTA algo-
rithm outperforms the random walk by about 100 rounds in very
sparse task setups when T < 6 and performs comparably when
7 < T < 10, but for denser task setups, the cost of returning to the
home nest to recruit others is too high compared to the random

walk (Welch’s T-test, p=0.05). We can approximate the area cov-

2
ered by detectable tasks as % where (21 + 1)? is the size of

the influence radius (in reality, the ratio would be a bit smaller as
the detectable range for tasks can intersect). This means that for
our choice of parameters, the HHTA algorithm outperforms the
random walk when about 6% or less of the total task area has an
immediately detectable task.

Figure 5 shows the average number of messages sent per agent
for the HHTA algorithm. (Note that the random walk algorithm
uses no communication). Note that on average, each agent sends
less than 1.2 messages per round using HHTA. Note also that agents



send less messages on average as density increases. Since the total
task demand is fixed at 80, a larger number of tasks indicates less
demand per task on average, making agents in the HHTA algorithm
less likely to enter the task state (where messages are sent) and
remain in it.

4.2 Effects of Task Density on PROP
Performance

To examine the effects of task density on the PROP algorithm’s
performance, we once again measured task completion time and
average number of messages sent per propagator agent for T €
{1,2,4,6,8,10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80}. For each
value of T (the number of tasks), we ran 20 trials with rp=3 and
dp = 25. Figure 6 shows the resulting average task completion time
for varying task densities. The PROP algorithm outperforms the
random walk significantly (Welch’s T-test, p=0.05) in sparser task
setups (T € [1, 25]), with fewer tasks exaggerating this performance
gap nonlinearly. In moderately dense task setups (T € [30, 60]), the
two algorithms’ runtimes are comparable, and in our most dense
task setups (T € [70, 80]), the random walk begins to increasingly
outperform the PROP algorithm to a significant extent (Welch’s
T-test, p=0.05). Intuitively, as the density of tasks in the environ-
ment increases, follower agents are more likely to find tasks in their
influence radius (benefiting RW). Conversely, more tasks means
more task information within each propagator agent, overloading
and misguiding the follower agents during their decision process
(harming PROP). After a certain point, too much propagated infor-
mation results in that information declining in its specificity and
thus usefulness.

Figure 7 shows the average number of messages sent per prop-
agator agent per round (for the PROP algorithm). Note that on
average, each propagator agent sends less than 1.3 messages to
other agents per round; however, given the grid space’s size, a large
communication cost is still incurred as there are 2, 500 propagator
agents. Regarding the effect of task density on these communica-
tion costs, agents generally send more messages as the number of
tasks increases. When there are more tasks and thus more vertices
close to tasks, it takes less time for most of the propagator agents to
receive some information initially that they can begin propagating.
Additionally, having more tasks means that some task’s demand
gets updated more often, resulting in there being new information
(as messages) that needs to be propagated more often. This increas-
ing trend becomes less dramatic at higher task densities, likely due
to the fact that with enough tasks, the overlapping propagation
radii all cover roughly the same area. As shown in Figure 6, recall
that higher task densities result in higher completion times for the
PROP algorithm. Therefore, higher task densities do not only result
in agents sending more messages per round, but the total number of
messages sent over an entire run increases even more dramatically
along with the number of tasks.

4.3 Effects of P. on HHTA Completion Time for
Varying Task Density

We explored the effects of varying P, on completion time for vary-
ing T. We ran 100 trials for each value of P € {{5,0 < i < 9} using
m = % and P, = % The results can be seen in Figure 8.
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Figure 7: The effect of number of tasks on average messages
sent per propagator agent per round (for PROP)

For P, < 0.7, there was no significant difference between the
HHTA completion time at different task densities (Welch’s T-test,
p=0.05). However, for P, € {0.8,0.9}, the completion time for T = 4
is higher than the completion time for T = 16 (Welch’s T-test,
p=0.05). Our results show that only for large P. do we see a sig-
nificant difference in performance at different task densities. This
makes sense, as a larger proportion of committing agents means
agents mostly find tasks by discovering them independently, which
is harder in the sparse case. We also note that from P, = 0.4 to
P, = 0.8, task completion time follows an increasing trend, indicat-
ing that higher recruitment (lower P.) allows agents to complete
tasks faster.

4.4 Effects of P, on HHTA Completion Time for
Varying Task Density

We also explored varying P, running 100 trials each for P, €
{{5.1 <i <10}, with T € 4,10,16 and using r,, = % and P = 3.
The results can be seen in Figure 9.

For P, < 0.8, there was no significant difference between the
HHTA completion time at different task densities (Welch’s T-test,
p=0.05) with the exception of T = 10 vs. T = 4 at P, = 0.2, with
p = 0.03. However, there was a significant difference in completion
time between T = 4 and T = 16 when P, = 1.0 and P, = 0.9. Our
results show that HHTA has a consistent completion time regardless
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of task density other than for large P, € {0.9, 1.0}, meaning a large
majority of agents are exploring (making the algorithm more similar
to random walk). When P, is high, it is harder to complete the sparse
problem because exploring is harder in a sparse environment.

Our results also show that a more even balance of P, (the pro-
portion of Exploring agents) vs. 1 — P, (the proportion of Home
agents) leads to a faster completion time. When P, is too low, not
enough agents are exploring, making it harder to find tasks. When
P, is too high, not enough agents are available in the home nest to
be recruited when tasks are found.

4.5 Effects of d, on PROP Completion Time for
Varying Task Density

We explored the effects of varying dp, the maximum propagation
radius, on completion time for varying T. We ran 20 trials for each
unique pair of dp € {0,5,10, 15, 20, 25, 30, 40, 50, 60, 50\/5} (note
that dp = 0 is equivalent to RW, and dp = 502 means all tasks’
information can be propagated over the entire grid space) and
T € {4,10,16,50}, using rp = 3. The results can be seen in Figure
10.

For reasonably sparse task setups (T € {4, 10, 16}), larger max-
imum propagation radii correlate with faster runtimes (Welch’s
T-test, p=0.05) but after a certain point, completion time is mostly
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Figure 10: The effect of maximum propagation radius (d,) on
PROP completion time for {4, 10, 16,50} tasks

unchanged. In contrast, for very dense task setups (T = 50), be-
sides a slight improvement in completion time moving from around
dp = 0 todp = 10, larger maximum propagation radii result in
slower completion times (Welch’s T-test, p=0.05). Increasing dj,
results in more propagator agents having more task information,
which allows (1) for follower agents to find tasks even if they are far
way and (2) for follower agents to leverage this extra task informa-
tion to prioritize tasks with higher demand. This causes the initial
decline in completion time for increasing dj, values. However, if dj,
is too large, there is too much information being propagated, dilut-
ing the agents’ strategy. This adverse effect is likely not seen with
sparser environments because even with every single propagator
having information about every single task, each mapping of task
info is still bounded in size by this smaller number of tasks. It is also
reasonable to infer that the turning point in each plot’s trend (when
completion time either becomes constant or starts increasing) is
related to the dy value at which every propagator agent receives
some task information.

4.6 Effects of r, on PROP Completion Time for
Varying Task Density

We explored the effects of varying rp, the number of rounds a
propagator must wait before sharing new task information with
its neighbors, on completion time for varying T. We ran 20 trials
for each unique pair of r, € {1,2,3,5,10,15,20} and T € {4, 10, 16},
using dp, = 25. The results can be seen in Figure 11.

There is a clear, mostly linear trend between r, and completion
time, where increasing the propagation timeout results in increasing
completion times. The trend is fairly consistent across all distinct
task densities that were tested. This relationship between r;, and
completion time is to be expected, as smaller rp means that task
information is moved about the environment more quickly, causing
the information that is used by follower agents to decide which
task to move towards to be more up-to-date. Besides at the very
beginning, r, has no effect on the locations of task information,
so none of the adverse phenomena we have seen in which there
is “too much” propagated information occur when varying rp. It is
the same task information, simply better when when the timeout is
smaller. It is worth noting, though, that smaller values of p involve
more message passing.
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5 DISCUSSION

Our results demonstrate for both HHTA and PROP that when the
total demand for agents is held fixed, task density significantly
affects algorithm performance. HHTA performs better than RW
when tasks are very sparse, and worse when the number of tasks is
high because communicating about individual tasks matters less
when there are many of them. RW performs very poorly with sparse
tasks because it becomes harder over time for the remaining agents
to find tasks. PROP also performs better than RW until the number
of tasks is very high, as agents struggle to arrive at tasks when too
much task information is being propagated. Though it outperforms
RW for sparse tasks, PROP’s completion time increases for very
sparse tasks (T < 6). PROP also has a faster completion time and
is more distributed than HHTA, but is much more resource and
communication intensive, as it requires a propagator agent at every
grid cell in order to spread information.

In relevant task allocation problems such as search-and-rescue or
mine detection, the number of tasks in the environment is expected
to be sparse, so both algorithms provide a speed-up in completion
time compared to the Levy walk. HHTA provides a less agent in-
tensive and less communication intensive approach but requires
a central communication location. Contrarily, PROP provides a
quicker and more distributed approach for sparse and mid-density
environments but is more resource-intensive. Since the Levy flight
has been shown to optimize search efficiency and can be observed in
many species in nature, it makes sense that for very dense task envi-
ronments with a low demand per task, the Levy flight outperforms
both algorithms. Such environments are a very similar problem to
foraging itself. On the other hand, environments with fewer tasks
that require more agents benefit more from the coordination and
communication of more advanced algorithms.

We also analyzed both algorithms’ mechanics individually, show-
ing the importance of recruitment in HHTA as well as the impor-
tance of an even balance of Exploring vs. Home agents. For PROP,
we showed as expected that generally, higher d, leads to better
performance, though it is more communication-intensive. We also
showed that as propagation timeout increases, time to completion
increases, since task demands are stale for longer periods of time.

We also note that in extreme parameter settings, HHTA comple-
tion time was similar regardless of task density while varying algo-
rithm parameters like P, and P.. However, this is untrue for PROP,
which had a higher completion time for sparser environments at
low dp, and a higher completion time for denser environments
at high dp. This behavior makes sense because as dj, approaches
0, PROP reduces to RW, which is similarly affected with a higher
completion time for sparse tasks.

6 FUTURE WORK

Future work could explore experiments in a dynamic setting, where
new tasks can appear over time and agents can search for a new
task after their existing task is finished. It could also evaluate other
environment parameters, such as the ratio of total task demand
to total number of agents. A larger such ratio would make the
task allocation problem harder to solve, as there are less and less
extra agents available to communicate. Another parameter left to
be analyzed is swarm density; that is, the ratio of total number of
agents to grid size (M X N).

Future work could also combine the strengths of the PROP and
HHTA algorithms, where one agent for each task is assigned to
propagate by leaving information in the vertex state of nearby ver-
tices or communicating task information directly to any nearby
agents like HHTA does. This algorithm would have a much smaller
agent cost than the PROP algorithm while still being able to prop-
agate task information. It would also not require a central home
nest like the HHTA algorithm does, instead opting to induce agent
communication all around the arena.

Future work could also aim for analytical bounds on the expected
task completion time of our two algorithms. Because the algorithms
are relatively simple compared to many swarm algorithms, high
probability bounds may be possible to obtain.

Lastly, future work could extend our algorithms to the continu-
ous 2D as well as 3D (discrete and continuous) settings, adaptations
which our presented theoretical framework is amenable to.
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