The Impossibility of Boosting Distributed Service Resilience *

Paul Attie! Rachid Guerraoui? Petr Kouznetsov? Nancy Lynch® Sergio Rajsbaum?

(1) Department of Computer Science, American University of Beirut
(2) Distributed Programming Laboratory, EPFL
(3) MIT Computer Science and Artificial Intelligence Laboratory
(4) Instituto de Matematicas, Universidad Nacional Auténoma de México (UNAM)

January 23, 2007

Abstract

We study f-resilient services which are guaranteed to operate as long as no more than f of
the associated processes fail. We prove two theorems about the impossibility of boosting the re-
silience of such services. Our first theorem allows any connection pattern between processes and
services but assumes these services to be atomic objects. The theorem says that no distributed
system in which processes coordinate using reliable registers and f-resilient atomic objects can
solve the consensus problem in the presence of f + 1 undetectable process stopping failures. In
contrast, we show that it is possible to boost the resilience of systems solving problems easier
than consensus: the 2-set consensus problem is solvable for 2n processes and 2n — 1 failures (i.e.,
wait-free) using n-process consensus services resilient to n — 1 failures (i.e., wait-free).

We also introduce the larger class of failure-oblivious services. These are services that cannot
use information about failures, but are not necessarily atomic objects (where each invocation
by a process results in a single response to that same process). An important instance of such
a service is totally ordered broadcast. We show that the first theorem and its proof generalize
to failure-oblivious services.

Our second theorem allows the system to contain failure-aware services, such as failure
detectors, in addition to failure-oblivious services. This second theorem requires that each
failure-aware service be connected to all processes. Thus, f 4+ 1 process failures overall can
disable all the failure-aware services. In contrast, it is possible to boost the resilience of a
system solving consensus if arbitrary patterns of connectivity are allowed between processes
and failure-aware services: consensus is solvable for any number of failures using only 1-resilient
2-process perfect failure detectors.

As far as we know, this is the first time a unified framework has been used to express atomic
and non-atomic objects, and the first time boosting analysis has been performed for services
more general than atomic objects.

Categories and subject descriptors: D.1.3 [Concurrent Programming]: Distributed programming;
C.2.4 [Distributed Systems]

Additional keywords and phrases: distributed services, resilience, consensus, atomic objects, failure
detectors.

*The first author was supported by the National Science Foundation under Grant No. 0204432. An extended
abstract [1] containing some of the results of this paper was presented at the 25’th International Conference on
Distributed Computing Systems, June 2005, Columbus, Ohio.

1 Introduction

We consider distributed systems consisting of asynchronously operating processes that coordinate
using reliable multi-writer multi-reader registers and shared services. A service is a distributed
computing mechanism that interacts with distributed processes, accepting invocations, performing
internal computation steps, and delivering responses. Examples of services include:

e Shared atomic (linearizable) objects, defined by sequential type specifications [11,12], for example,
atomic read-modify-write, queue, counter, test&set, compare&swap and consensus objects.

e Concurrently-accessible data structures such as balanced trees.
e Broadcast services such as totally ordered broadcast [10].

e Failure detectors, which provide processes with information about the failure of other pro-
cesses [5].1

Thus, our notion of a service is quite general. We define three successively more general classes of
service—atomic objects, failure-oblivious services, and general (possibly failure-aware) services—in
Sections 2, 6, and 7. We define our services to tolerate a certain number f of failures: a service is
f-resilient if it is guaranteed to operate as long as no more than f of the processes of the service
fail. (We define the notion of a process connected to a service later in the paper).

The motivation of this work is to determine the level of resilience that can be achieved by a
distributed system composed of several services. In short, we prove that the resilience of the
system cannot be “boosted” above that of its individual services. More specifically, we prove two
theorems saying that no distributed system in which processes coordinate using reliable registers
and f-resilient services can solve the consensus problem in the presence of f 4+ 1 process stopping
failures.

We focus on the consensus problem because it has been shown to be fundamental to the study of
resilience in distributed systems. The focus on the consensus problem as a benchmark to measure
the resilience of the system is crucial. Consensus has been shown to be universal [11]: an atomic
object of any sequential type can be implemented in a wait-free manner (i.e., tolerating any number
of failures), using wait-free consensus objects.

Our contribution. Our first main theorem, Theorem 1, assumes that the given services are
atomic objects and allows any connection pattern between processes and services. The result is
a strict generalization of the classical impossibility result of Fischer et al. [8] for fault-tolerant
consensus (for the case where f = 1). Our simple, self-contained impossibility proof is based on
a bivalence argument similar to the one in [8]. The proof involves showing that decisions can be
made in a particular way, described by a hook pattern of executions.

In contrast to the impossibility of boosting for consensus, we show that it is possible to boost the
resilience of systems solving problems easier than consensus. In particular, we show that the 2-set
consensus problem is solvable for 2n processes and 2n — 1 failures (i.e., wait-free) using n-process
consensus services resilient to n — 1 failures (i.e., wait-free).

Theorem 1 and its proof assume that the given services are atomic objects; however, they extend
to the larger class of failure-oblivious services. A failure-oblivious service generalizes an atomic
object by allowing an invocation to trigger multiple processing steps instead of just one, and to
trigger any number of responses, to any number of “client” processes. The service may also include

'Our notion of service encompasses all failure detectors defined by Chandra et al. [4] with one exception: we
exclude failure detectors that can guess the future.

background processing tasks, not related to any specific client process. The key constraint is
that no step may depend on explicit knowledge of failure events. We define the class of failure-
oblivious services, give examples (e.g., totally-ordered broadcast), and describe how Theorem 1 can
be extended to such services.

Our second main theorem, Theorem 10, addresses the case where the system may contain general
services (possibly failure-aware, e.g., failure detectors), in addition to failure-oblivious services
and reliable registers. This result also says that boosting is impossible. However, it requires the
additional assumption that each general service is connected to all processes; thus, f + 1 process
failures overall can disable all the general services. The proof is an extension of the first proof, using
the same “hook” construction. We also show that the stronger connectivity assumption is necessary,
by demonstrating that it is possible to boost the resilience of a system solving consensus if arbitrary
connection patterns are allowed between processes and general services: specifically, consensus is
solvable for any number of failures using only 1-resilient 2-process perfect failure detectors.

In addition to the two main theorems, our paper presents (as far as we know) the first unified
framework for expressing both atomic and non-atomic objects. In particular, our models for failure-
oblivious services and general services are new. Moreover, this is the first time boosting analysis
has been performed for services more general than atomic objects.

Related work. Our Theorem 1, when restricted to atomic services, can be derived by carefully
combining several earlier theorems, including Herlihy’s result on universality of consensus [11], and
the result of Chandra et al. on f-resiliency vs. wait-freedom [3] (see Appendix A). However, this
argument does not extend to prove impossibility of boosting for failure-oblivious and failure-aware
services. Moreover, some of the proofs upon which this alternative proof rests are themselves more
complex than our direct proof. Theorem 1 appeared first in a technical report [2]. Subsequent
impossibility results for atomic objects appeared in [9,13].

Organization. Section 2 presents definitions for the underlying model of concurrent computation
and for atomic objects. Section 3 presents our model for a system whose services are atomic objects.
Section 4 presents the first impossibility result. Section 5 shows that boosting is possible for set
consensus. Section 6 defines failure-oblivious services, gives an example, and extends the first
impossibility result to systems with failure-oblivious services. Section 7 defines general services,
gives examples, and presents our second main impossibility result. Appendix A shows how Theorem
1 can be derived from results in [3,11,14, 15] and why these arguments do not extend to services
more general than atomic services. Appendix B provides the complete proofs for the extension of
the first impossibility result to failure-oblivious services.

2 Mathematical Preliminaries

2.1 Model of concurrent computation

We use the I/O automaton model [16, chapter 8] as our underlying model for distributed compu-
tation. We also make use of the associated terminology ([16, chapter 8]). An I/O automaton A is
deterministic iff, for each task e of A, and each state s of A, there is at most one transition (s, a, s")
such that a € e.

An execution « of A is fair iff for each task e of A: (1) if « is finite, then e is not enabled in
the final state of «, and (2) if « is infinite, then a contains either infinitely many actions of e,
or infinitely many occurrences of states in which e is not enabled. A trace of A is a sequence of

external actions of A obtained by removing the states and internal actions from an execution of A.
A trace of a fair execution is called a fair trace. If a and o/ are execution fragments of A (with
« finite) such that o' starts in the last state of «, then the concatenation « - o’ is defined, and is
called an extension of a.

2.2 Sequential types

We define the notion of a “sequential type,” in order to describe allowable sequential behavior of
atomic services. The definition used here generalizes the one in [16, chapter 9]: here, we allow
nondeterminism in the choice of the initial state and the next state. Namely, sequential type
T = (V, Vp, invs, resps, §) consists of:

e V. a nonempty set of values,

e V5 C V., anonempty set of initial values,
e inws, a set of invocations,

e resps, a set of responses, and

e J, a binary relation from invs x V to resps x V that is total, in the sense that, for every (a,v) €
invs x V| there is at least one (b,v") € resps x V such that ((a,v), (b,v")) €.

We sometimes use “dot” notation, writing 7.V, 7.V, 7 .invs, ... for the components of 7. We
say that 7 is deterministic if Vj is a singleton set {vg}, and ¢ is a mapping, that is, for every
(a,v) € invs x V, there is ezactly one (b,v") € resps x V such that ((a,v), (b,v)) € 6.

We allow nondeterminism in our definition of a sequential type in order to make our notion of
“service” as general as possible. In particular, the problem of k-set-consensus can be specified using
a nondeterministic sequential type.

Example. Read/write sequential type: Here, V is a set of “values”, Vi = {wg}, where vy is
a distinguished element of V, invs = {read} U {write(v) : v € V}, resps = V U {ack}, and
§ = {((read,v), (v,v)) : v € V} U {((write(v),v’), (ack,v)) : v,v" € V}.

Example. Binary consensus sequential type: Here, V = {{0},{1},0}, Vo = {0}, invs = {init(v)) :
v € {0,1}}, resps = {decide(v) : v € {0,1}}, and § = {((init(v), D), (decide(v),{v})) : v € V} U
{((init(v),{v'}), (decide(v"),{v'})) : v,0" € V'}

Example. k-consensus sequential type: Now V is the set of subsets of {0,1,...,n — 1} having
at most k elements (0 < k < n), Vo = {0}, invs = {init(v) : v € {0,1,...,n — 1}}, resps =
{decide(v) : v € {0,1,...,n — 1}}, and § = {((init(v), W), (decide(v"), W U {v})) : [W| < k,0v" €
W U {v}} U{((init(v), W), (decide(v"),W)) : |W| = k,v' € W}.

Thus, the first k£ values are remembered, and every operation returns one of these values.

2.3 Canonical f-resilient atomic objects

A “canonical f-resilient atomic object” describes the allowable concurrent behavior of atomic ob-
jects. Namely, we define the canonical f-resilient atomic object of type T for endpoint set J and
index k, where

e 7 is a sequential type,

e J is a finite set of endpoints at which invocations and responses may occur,

e f € N is the level of resilience, and

e k is a unique index (name) for the service.

CanonicalAtomicObject(7, J, f, k), where 7 = (V, Vp, invs, resps, d)

Signature:

Inputs:

a; i, a € 1nws, © € J, the invocations at endpoint %

fail,, 1€ J

Outputs:
bi i, b € resps, i € J, the responses at endpoint 4

Internals:
perform,; ., i € J
dummy_*; j,, x € {perform, output}, i € J

State components:
val € V, initially an element of Vj

inv — buffer, a mapping from J to finite sequences of invs, initially identically empty
resp — buffer, a mapping from J to finite sequences of resps, initially identically empty

failed C J, initially 0

Transitions:

Input: a;
Effect:
add a to end of inv— buffer(i)

Internal: perform,
Precondition:
a = head(inv — buffer(t))
6((a, val), (b,v))

Output: b;
Precondition:

b = head(resp— buffer(z))
Effect:

remove head of resp— buffer(i)

Input: fail;
Effect:

Effect: failed — failedU {3}
remove head of inv— buffer(i)
val — v Internal: dummy_*; i
add b to end of resp— buffer(z) Precondition:
i € failed V |failed| > [V failed = J
Effect:

none

Tasks:

For every ¢ € J:
i-perform: {perform,; y, dummy_perform, ;}
i-output: {b; x : b € resps} U {dummy_output; , }

Figure 1: A canonical atomic object.

The object is described as an I/O automaton, in Figure 1.

The parameter J allows different objects to be connected to the same or different sets of processes.
A process at endpoint i € J can issue any invocation specified by the underlying sequential type
and can (potentially) receive any allowable response. We allow concurrent (overlapping) operations,
at the same or different endpoints. The object preserves the order of concurrent invocations at
the same endpoint ¢ by keeping the invocations and responses in internal FIFO buffers, two per
endpoint (one for invocations from the endpoint, the other for responses to the endpoint). The
object chooses the result of an operation nondeterministically, from the set of results allowed by
the transition relation 7.6 applied to the invocation and the current value of val. The object can
exhibit nondeterminism due to nondeterminism of sequential type 7, and due to interleavings of
steps for different process invocations.

We model a failure at an endpoint ¢ by an explicit input action fail,. We use the task structure of
I/O automata and the basic definition of fair executions to specify the required resilience: For every

process i € J, we assume the service has two tasks, which we call the i-perform task and i-output
task. The i-perform task includes the perform,; action, which carries out operations invoked at
endpoint ¢. The i-output task includes all the b; ;, actions giving responses at 4. In addition, every
i-* task (* is perform or output) contains a special dummy_x; j, action, which is enabled when either
process ¢ has failed or more than f processes in J have failed. The dummy_x;; action is intended
to allow, but not force, the service to stop performing steps on behalf of process i after ¢ fails or
after the resilience level has been exceeded.

The definition of fairness for I/O automata says that each task must get infinitely many turns to
take steps. In this context, this implies that, for every ¢ € J, the object eventually responds to an
outstanding invocation at ¢, unless either ¢ fails or more than f processes in J fail. If ¢ does fail or
more than f processes in J fail, the fairness definition allows the object to perform the dummy x; j
action every time the i — % task gets a turn, which permits the object to avoid responding to 3.
In particular, if more than f processes fail, the object may avoid responding to any process in J,
since dummy_ouput, ;, is enabled for all i € J. Also, if all processes connected to the service (i.e.,
all processes in J) fail, the object may avoid responding to any process.

Thus, the basic fairness definition expresses the idea that the object is f-resilient: Once more
than f of the processes connected to the object fail, the object itself may “fail” by becoming silent.
However, although the object may stop responding, it never violates its safety guarantees, that is,
it never returns values inconsistent with the underlying sequential type specification.

A canonical atomic object whose sequential type is read/write is called a canonical register. In
this paper, we will consider canonical reliable (wait-free) registers.

2.4 Our notion of implementation

An I/O automaton A implements an I/O automaton S iff all of the following hold:

1. A and S have the same input actions (including fail actions) and the same output actions.
2. Any trace of A is also a trace of S.

3. Any fair trace of A is also a fair trace of S.

2.5 f-resilient atomic objects

An I/O automaton A is an f-resilient atomic object of type 7 for endpoint set J and index k,
provided that it implements the canonical f-resilient atomic object S of type 7 for J and k, as
defined above. Note that clause 2 (any trace of A is also a trace of S) guarantees the atomicity of
A, and clause 3 (any fair trace of A is also a fair trace of S) guarantees the f-resilience of A.

We say that A is wait-free (or, reliable), if it is (|JJ| — 1)-resilient. This is equivalent to saying
that (a) A is |J|-resilient, or (b) A is f-resilient for some f > |J| — 1, or (c¢) A is f-resilient for
every f > |J]| — 1.

3 System Model with Atomic Objects

Our system model consists of a collection of process automata, canonical reliable registers, and
fault-prone canonical atomic objects (which we sometimes refer to as services). For this section,
we fix I, K, and R, finite (disjoint) index sets for processes, services, and registers, respectively,
and 7, a sequential type, representing the problem the system is intended to solve. A distributed
system for I, K, R, and 7 is the composition of the following I/O automata (see [16, chapter 8]):

1. Processes P;, 1 € I,

2. Services (canonical atomic objects) Sy, k € K. We let 7}, denote the sequential type, and J, C I
the set of endpoints, of service Si. We assume k itself is the index.

3. Registers S,, r € R. We let V,. denote the value set and vg, the initial value for register S,. We
assume r is the index.

Processes interact only via services and registers. Process P; can invoke an operation on service
S provided that ¢ € Ji. Process P; can also invoke a read or write operation on register .S,
provided that i € J,. Services and registers do not communicate directly with one another, but
may interact indirectly via processes. In the remainder of this section, we describe the components
in more detail and define terminology needed for the results and proofs.

3.1 Processes

We assume that process P;, ¢ € I has the following inputs and outputs:

e Inputs a;, a € T .invs, and outputs b;, b € T .resps. These represent P;’s interactions with the
external world.

e For every service Sj such that ¢ € Ji, outputs a; 1, a € Ti.invs, and inputs b; 1., b € Tj,.resps.

e For every register S,, outputs a;,, where a is a read or write invocation of S, and inputs b; .,
where b is a response of S,.

e Input fail,.

P; may issue several invocations, on the same or different services or registers, without waiting
for responses to previous invocations. The external world at P; may also issue several invocations to
P; without waiting for responses. As a technicality, we assume that when P; performs a decide(v),
output action, it records the decision value v in a special state component.

We assume that P; has only a single task, which therefore consists of all the locally-controlled
actions of P;. We assume that in every state, some action in that single task is enabled. We assume
that the fail;, input action affects F; in such a way that, from that point onward, no output actions
are enabled. However, other locally-controlled actions may be enabled—in fact, by the restriction
just above, some such action must be enabled. This action might be a “dummy” action, as in the
canonical resilient atomic objects defined in Section 2.3.

3.2 Services and registers

We assume that service Sy is the canonical f-resilient atomic object of type 7; for Ji and k.
Likewise, we assume that register S, is the canonical wait-free atomic read/write object with value
set V,. and initial value v, for J, and r.

3.3 The complete system

The complete system C is constructed by composing the P;, Sk, and S, automata: the actions used
to communicate among these automata are hidden. Our composition operation is the standard 1/0
automaton parallel composition defined in [16].

For any action a of C, we define the participants of action a to be the set of automata with a
in their signature. Note that no two distinct registers or services participate in the same action a,
and similarly no two distinct processes participate in the same action. Furthermore, for any action

a, the number of participants is at most two. Thus, if an action @ has two participants, they must
be a process and either a service or register.

As we defined earlier, each process P; has a single task, consisting of all the locally controlled
actions of P;. Each service or register S;, ¢ € K U R, has two tasks for each i € J.: i-perform,
consisting of {perform, ;, dummy_perform, ;}, and i-output, consisting of {b;y : b € Ty.resps} U
{dummy_output, ;. }. These tasks define a partition of the set of all actions in the system, except
for the inputs of the process automata that are not outputs of any other automata, namely, the
invocations by the external world and the fail;, actions. The I/O automata fairness assumptions
imply that each of these tasks get infinitely many turns to execute.

We say that a task e is applicable to a finite execution « iff some action of e is enabled in the
last state of a.

3.4 The consensus problem

The “traditional” specification of f-resilient binary consensus is given in terms of a set {F;,i € I}
of processes, each of which starts with some value v; in {0,1}. Processes are subject to stopping
failures, which prevent them from producing any further output.? As a result of engaging in a
consensus algorithm, each nonfaulty process eventually “decides” on a value from {0,1}. The
behavior of processes is required to satisfy the following conditions (see, e.g., [16, chapter 6]):

Agreement No two processes decide on different values.
Validity Any value decided on is the initial value of some process.

Termination In every fair execution in which at most f processes fail, all nonfaulty processes
eventually decide.

In this paper, we specify the consensus problem differently: We say that a distributed system S
solves f-resilient consensus for I if and only if S is an f-resilient atomic object of type consensus
(Section 2.2) for endpoint set I. In [2], we show that any system that satisfies our definition satisfies
a slight variant of the traditional one. In this variant, inputs arrive explicitly via init() actions, not
all nonfaulty processes need receive inputs, and only nonfaulty processes that do receive inputs are
guaranteed to eventually decide. Our agreement and validity conditions are the same as before;
our new termination condition is:

Termination In every fair execution in which at most f processes fail, any nonfaulty process that
receives an input eventually decides.

4 Impossibility of Boosting for Atomic Objects

Our first main theorem is:

Theorem 1 Letn = |I| be the number of processes, and let f be an integer such that 0 < f < n—1.
There does not exist an (f + 1)-resilient n-process implementation of consensus from canonical f-
resilient n-process atomic objects and canonical reliable registers.

2Stopping failures are usually defined as disabling the process from executing at all. However, the two definitions
are equivalent with respect to overall system behavior.

To prove Theorem 1, we assume that such an implementation exists and we derive a contradiction.
Let C denote the complete system, that is, the composition of the processes P;, i € I, services Sy,
k € K, and registers S,., r € R. By assumption, C satisfies the agreement, validity and termination
properties of consensus.

For each component ¢ € K U R and ¢ € J. (recall that J. denotes the endpoints of c) let
inv—buffer(i). denote the invocation buffer of ¢, which stores invocations from F;, and let
resp— buffer(i). denote the response buffer of ¢, which stores responses to P;. Also let buffer(i). =

(inv — buffer(i)¢, resp— buffer(i).).

4.1 Technical Assumption

To prove Theorem 1, we make the following assumption:

(i) We assume that the processes P;, i € I, are deterministic automata, as defined in Section 2.1.
For services, we assume a slightly weaker condition: that the sequential type is deterministic,
i.e, the sequential type has a unique initial value and the transition relation § is a mapping.
Note that the sequential type for registers is also deterministic, by definition.

Assumption (i) implies that, after a finite failure-free execution «, an applicable task e determines a
unique transition, arising from running task e from the final state s of a. We denote this transition as
transition(e, s) (since it is uniquely defined by the final state s). If transition(e, s) = (s,a, s), then
we write first(e, s), action(e, s), and last(e, s) to denote s, a, and s', respectively. We sometimes
abbreviate last(e,s) as e(s). We also write e(«) to denote a extended by transition(e, s), i.e.,
e(a) = a-(s,a,s’). Note that, if s is the final state of «, then transition(e, s), first(e, s), action(e, s),
and last(e, s) are defined iff e is applicable to «.

Assumption (i) implies that any failure-free execution can be defined by applying a sequence of
tasks, one after the other, to the initial state of C. Assumption (i) does not reduce the generality
of our impossibility result, because any candidate system could be restricted to satisfy (i); if the
impossibility result holds for the restricted automaton, then it also holds for the original one.

Lemma 2 Let a be any finite failure-free execution of C, e be any task of C applicable to o, and -3
be any finite failure-free extension of a such that B includes no actions of e. Then e is applicable
to a- (.

Proof: Task e is either a process task, service task, or register task. If e is a process task, then
e is applicable to any finite execution, by our assumption that each process always has some en-
abled locally controlled action. If e is a service task, say of service S, then applicability of e to «
means that service Sy has either a pending invocation in an inv— buffer or a pending response in
a resp — buffer, after a. Since B does not include any actions of e, and the invocation or response
remains pending as long as e is not scheduled, e is also applicable after - 5. If e is a register task,
the argument is similar. O

Let s be any state of C arising after a finite failure-free execution « of C, and let e be a task
that is applicable to « (equivalently, enabled in s). Then we write participants(e, s) for the set of
participants of action action(e, s). Note that, for any task e and any state s, |participants(e, s)| < 2.
Also, if |participants(e, s)| = 2, then participants(e, s) is of the form {P;, S.}, for some i € I and
ce KUR.

4.2 Initializations and valence

In our proof, we consider executions in which consensus inputs arrive from the external world at
the beginning of the execution. Thus, we define an initialization of C to be a finite execution of C
containing exactly one init(); action for each ¢ € I, and no other actions. An execution « of C is
input-first if it has an initialization as a prefix, and contains no other init() actions. A finite failure-
free input-first execution « is defined to be 0-valent if (1) some failure-free extension of «a contains
a decide(0), action, for some 7 € I, and (2) no failure-free extension of a contains a decide(1),
action, for any ¢ € I. The definition of a 1-valent execution is symmetric. A finite failure-free
input-first execution « is univalent if it is either 0-valent or 1-valent. A finite failure-free input-first
execution « is bivalent if (1) some failure-free extension of « contains a decide(0), action, for some
i, and (2) some failure-free extension of « contains a decide(1), action, for some i. These definitions
immediately imply the following result:

Lemma 3 FEwvery finite failure-free input-first execution of C is either bivalent or univalent.

The following lemma provides the first step of the impossibility proof:
Lemma 4 C has a bivalent initialization.

Proof: Write I = {1,...,n}. For each i € {0,...,n}, let o’ be an initialization of C in which
processes Pp, ..., P; receive initial value 1 and processes Pji1,..., P, receive 0. By the validity
property of C and Lemma 3, o is O-valent, a” is 1-valent, and every o (j € {0,...,n}) is either
univalent or bivalent.

Then there must be some index i € {0,...,n — 1} such that o is O-valent and o/*! is either 1-
valent or bivalent. The only difference between the initializations in o’ and o't is the initial value
of P;. So consider a failure-free extension of o that is fair, except that P; takes no steps. Since this
execution looks to the rest of the system like an execution in which P; has failed, the termination
condition requires that the other processes must eventually decide, as C is (f + 1)-resilient, f > 0.
Since the execution is in fact failure-free and o' is O-valent, the decision must be 0.

Now, an analogous failure-free extension may be constructed for a’*!, also leading to a decision
of 0. Since, by assumption, a’t! is either 1-valent or bivalent, it must be bivalent. O

For the rest of this section, fix oy to be any particular bivalent initialization of C.

4.3 The graph G(C)
Now define an edge-labeled directed graph G(C) as follows:

(1) The vertices of G(C) are the finite failure-free input-first extensions of the bivalent initialization
Qp.

(2) G(C) contains an edge labeled with task e from a to o/ provided that o = e(a).

By assumption (i) of Section 4.1, any task triggers at most one transition after a failure-free

execution a. Therefore, for any vertex a of G(C) and any task e, there is at most one edge labeled
with e outgoing from a.

10

g (0-valent)

1 (1-valent)

Figure 2: A hook starting in «.

4.4 The existence of a hook

We show that decisions in C can be made in a particular way, described by a hook pattern of
executions. Similarly to [4], we define a hook to be a subgraph of G(C) of the form depicted in
Figure 2.

Lemma 5 G(C) contains a hook.

Proof: Starting from the bivalent vertex ap of G(C), we generate a path m in G(C) that passes
through bivalent vertices only, as follows. We consider all tasks in a round-robin fashion. Suppose
we have reached a bivalent execution « so far, and task e is the next task in the round-robin list that
is applicable to . (We know such a task exists because the process tasks are always applicable.)

Lemma 2 implies that, for any finite failure-free extension o’ of « (such that e is not executed
along the suffix of o/ starting in the last state of «) e is applicable to o/, and hence e(a’) is defined.
We look for a vertex o of G(C), reachable from « in G(C) without following any edge labeled
with e, such that e(a’) is bivalent. If no such vertex o' exists, the path construction terminates.
Otherwise, we proceed to e(a’) and continue by processing the next task in the round-robin order.
This construction is presented in Figure 3. Each completed iteration of the loop extends the path
by at least one edge. Let m be the path generated by this construction.

First suppose that 7 is infinite. Then 7 corresponds to a fair failure-free input-first execution «
of C. Moreover, every finite input-first prefix of « is bivalent. Thus, no process can decide in « (for
otherwise, the agreement property of C would be violated). This is a contradiction, so 7 must be
finite.

Let a be the last vertex of w. By construction, « is bivalent. Upon termination of the above
path construction in vertex «, let e be the next task in round robin order that is applicable to a.
Such an e always exists since nonfaulty processes can always take a step, by assumption. Since
the path construction terminated in a, we conclude that e satisfies the following condition: for any
descendant o’ of a, such that the path from « to o’ includes no e labels, e(’) is univalent.

Without loss of generality, assume that e(«) is 0-valent. Since « is bivalent, there is a descendant
o' of a such that e(a’) is 1-valent. By our technical assumption (Section 4.1), the first task of this
extension of « is not e. Let o0g,...,0., be the sequence of vertices of G(C) on the path from «
to o, and for each j, 0 < j < m — 1, let ¢; be the label of the edge on this path from o; to
0j+1. Thus, 0j41 = ej(0;). By construction, e(og) is 0-valent, e(oy,) is 1-valent, and every e(o}),
jeA{l,...,m— 1}, is univalent. Thus, there exists an index j € {0,...,m — 1} such that e(o;) is
O-valent and e(oj41) is 1-valent.

As a result, we obtain a hook (Figure 2) with e in the hook equal to e in this proof, a = o},
o =o0j11, ag = e(0j), a1 = e(oj11), and € = e;.]

11

a — op;
while true do
let e be the next task (in round-robin order) applicable to «;
if « has a descendant o in G(C) such that the path from « to o’ includes no e labels
and e(a’) is bivalent then
choose some such o/;
a «— e(a)
else
exit

Figure 3: Hook location in G(C).

4.5 Similarity

In this section, we introduce notions of similarity between system states. These will be used in
showing non-existence of a hook, which will yield the contradiction needed for the impossibility
proof. First, we define j-similar system states.

Let j € I and let sy and s; be states of C. Then sy and sy are j-similar if:

(1) For every i € I —{j}, the state of P; is the same in so and s;.
(2) For every c € K UR:

1. The value of wval. is the same in sg and s7.
2. For every i € J. — {j}, the value of buffer(i). is the same in s¢ and s;.

Lemma 6 Let j € I. Let ag and oy be finite failure-free input-first executions, sg and si the
respective final states of ag and ayi. Suppose that so and s1 are j-similar. If ag and a1 are
univalent, then they have the same valence.

Proof: We proceed by contradiction. Fix j, ag, a1, Sg, and s1 as in the hypotheses of the lemma,
and suppose (without loss of generality) that ag is O-valent and «; is 1-valent. Let J C I be any
set of indices such that j € J and |J| = f + 1. Since f < n — 1 by assumption, we have |J| < n,
and so I — J is nonempty.

Consider a fair extension of ag, ap - B, in which the first f + 1 actions of 8 are fail,, ¢ € J,
and no other fail actions occur in 3. Note that, for all ¢ € J, 8 contains no output actions of P;.
Assume that in 3, no perform, . or b;. (i.e., a response) action of any i-* task, i € J, occurs at any
component ¢ € K U R; we may assume this because, for each ¢ € J, action fail; enables a dummy
action in every i-* task of every service and register (x is perform or output).

Since «q is a failure-free input-first execution, the resulting extension «q - 8 is a fair input-
first execution containing f + 1 failures. Therefore, the termination property for (f 4+ 1)-resilient
consensus implies that there is a finite prefix of ag - 8, which we denote by «q -y, that includes
decide(v), for some [¢ J and v € {0,1}. Construct ag-+’, where ' is obtained from ~ by removing
the fail; action, all dummy actions, and any remaining internal actions of P;, i € J. Thus, «ag -/
is a failure-free extension of aq that includes decide(v),;. Since «y is 0-valent, v must be equal to 0.

12

We claim that decide(0), occurs in the suffix 4/, rather than in the prefix ag. Suppose for
contradiction that the decide(0); action occurs in the prefix oy. Then by our technical assumption
about processes, the decision value 0 is recorded in the state of [. Since sg and sy are j-similar and
I # j, the same decision value 0 appears in the state s;. But this contradicts the assumption that
a1, which ends in sy, is 1-valent. So, it must be that the decide(0), occurs in the suffix /.

Now we show how to append essentially the same ' after a;. We know that, for every i € J, 7/
contains no locally controlled action of F;, and contains no perform, . or b; . action (b € resps), for
any ¢ € K U R. By definition of j-similarity, we have:

(a) For every i ¢ J, the state of P; is the same in sg and s;.

(b) For every c € K UR,

1. The value of val, is the same in sy and s; (that is, in the final states of oy and «;).
2. For every i € J. — J, the value of buffer(i). is the same in sy and s;.

Thus:

(¢) If 4/ contains any locally controlled actions of a process i, then the state of P; is the same in sg
and s7.

(d) For every c € K UR,

1. The value of wval. is the same in sg and s7.
2. For every i € J., if 4 contains any perform, . or b;. (b € resps) actions of ¢, then the value
of buffer(i). is the same in sp and s;.

It follows that it is possible to append “essentially” the same +/ after aq, resulting in a failure-free
extension of oy that includes decide(0),.> But oy is 1-valent — a contradiction. O

Similarly, we define the notion of k-similar states: Let k € K, and let sg and s1 be states of C.
Then sg and s; are k-similar if the following conditions hold:

(1) For every i € I, the state of P; is the same in sy and s;.

(2) For every ¢ € (K —{k}) U R, the state of S, is the same in sy and s;.

Lemma 7 Let k € K. Let oy and aq be finite failure-free input-first executions, sog and s1 the
respective final states of ag and «y. Suppose that sqg and s1 are k-similar. If g and a1 are
univalent, then they have the same valence.

Proof: Fix k, ag, a1, Sg, and s as in the hypotheses of the lemma. By contradiction, suppose
(without loss of generality) that «q is O-valent and oy is 1-valent. Let J C I be any set of indices
such that |J| = f 4+ 1, and, if |Jg| < f + 1, then J; C J, whereas if |Jg| > f + 1, then J C Ji.

Consider a fair extension of ag, o - 3, in which the first f 4 1 actions of § are fail;, i € J, and
no other fail actions occur in 3. Note that, for all 4 € J, 3 contains no output actions of 7. Assume
that in 3, no perform, ; or b; action (b € resps) of Sy occurs; we may assume this because the
f + 1 fail actions enable dummy actions in all tasks of Sj.

Since aq is a failure-free input-first execution, the resulting extension aq - 3 is a fair input-first
execution containing f + 1 fail actions. Therefore, the termination property for f + 1-resilient

3Really, we are appending another execution fragment ~" after oy — one that looks the same to all the processes
and service tasks that take steps in v'.

13

consensus implies that there is a finite prefix of ag - 3, which we denote by «q - 7y, that includes
decide(v),; for some [€ I —J and v € {0,1}. We know that decide(0), occurs in the suffix v, rather
than in the prefix ag, by an argument similar to that in the proof of Lemma 6.

Now construct ag - 7', where +' is obtained from v by removing all the fail; actions, i € J, and
all dummy actions. Thus, ag -7/ is a failure-free extension of ag that includes decide(v),;. Since ag
is 0-valent, v must be equal to 0.

Now we show how to append essentially the same + after o;. By definition of k-similarity, we
have:

(a) For every i € I, the state of P; is the same in sy and s;.

(b) For every ¢ € (K — {k}) U R, the state of S, is the same in sp and s;.
Thus:

(¢) For every ¢ € K UR, if 7/ contains any perform; . or b; . actions of S, then the state of S is
the same in sg and s1, since ¢ # k in this case.

By properties (a) and (c), it follows that it is possible to append “essentially” the same + after o,
(differing only in the state of Sy) resulting in a failure-free extension of «; that includes decide(0),.
But o7 is 1-valent — a contradiction. O

4.6 The non-existence of a hook

Now we are ready to prove the absence of hooks.
Lemma 8 G(C) contains no hooks.

Proof: By contradiction. Assume that a hook exists, as depicted in Figure 2. Let s, s’, sg, and
s1 be the respective final states of a, o/, ag, and a1, and let e and ¢’ be the two tasks involved in
the hook, as shown. Since oy and «a; are 0-valent and 1-valent, respectively, by Lemmas 6 and 7,
sp and s1 cannot be j-similar for any j € I, or k-similar for any £ € K. In particular, we cannot
have sp = s1. Also, note that €'(ap) is 0O-valent, since it is an extension of a 0-valent execution.
Therefore, again, by Lemmas 6 and 7, €/(sg) and s; cannot be j-similar for any j € I, or k-similar
for any k € K. In particular, we cannot have €’(sp) = s;. We establish the contradiction using a
series of claims:

Claim 1: e # €.
Suppose for contradiction that e = ¢/. Then by determinism (Assumption (i) in Section 4.1), we
have ag = o'. However, aq is 0-valent, whereas o has a 1-valent failure-free extension oy — a
contradiction.

Claim 1 and Lemma 2 imply that ¢’ is enabled from e(s).

Claim 2: participants(e, s) N participants(€’, s) # (.
Suppose for contradiction that participants(e, s) N participants(e’,s) = (). Therefore, the two tasks
commute, that is, €’(e(s)) = e(€/(s)). In other words, €'(s9) = s1 — a contradiction.

Since participants(e, s) N participants(e’, s) # 0, either a process, service, or register must be in
the intersection. We prove three claims showing that none of these possibilities can hold, thus
obtaining the needed contradiction.

14

Claim 3: There does not exist ¢ € I such that P; € participants(e, s) N participants(e’, s).
Suppose for contradiction that P; € participants(e,s) N participants(e’, s). Then the two actions
action(e, s) and action(€’, s) involve only P; and the buffers buffer(i)., ¢ € K U R. Furthermore
(since the same task e is used), the action action(e, s') also involves only P; and the buffers buffer(i).,
¢ € KU R. But then the states sgp and s; can differ only in the state of P; and in the values of
buffer(i)e, ¢ € K U R. This implies that sg and s; are i-similar — a contradiction.

Claim 4: There does not exist k € K such that Sy € participants(e, s) N participants(e’, s).
Suppose for contradiction that Sy € participants(e, s) N participants(e’, s). There are four possibili-
ties:

1. participants(e, s) = participants(e’, s) = {Sk}.
Then e and €’ must be perform tasks of Sk, and so involve only the state of Sy. But then the
states sg and s; can differ only in the state of Si. So sg and s; are k-similar — a contradiction.

2. For some i € I, participants(e,s) = {Sk, P;} and participants(e’, s) = {Sk}.
Then the two tasks commute, that is, €/(sg) = s1 — a contradiction.

3. For some i € I, participants(e’, s) = {Sk, P;} and participants(e, s) = {Sk}.
Again, the two tasks commute, that is, €/(sg) = s1 — a contradiction.

4. For some 1,j € I, participants(e, s) = {Sk, P;} and participants(e’,s) = {Sk, P;}.
By Claim 3, we know that ¢ # j. Then again, the two tasks commute, so €/(sg) = s; — a
contradiction.

Note that for cases 2 and 3 above (but not case 4), whenever action(e, s) and action(e’, s) access
the same buffer, one action inserts an item and the other removes an item. Hence the actions
commute.

Claim 5: There does not exist r € R such that S, € participants(e, s) N participants(€’, s).
Suppose for contradiction that S, € participants(e, s) N participants(€’, s). There are four possibili-
ties:

1. participants(e, s) = participants(e’, s) = {S,}.
Then e and €’ must be perform tasks of register S,. Without loss of generality, suppose that
action(e, s) is perform,, and action(e',s) is perform;,.. Since e # €', we have i # j. We
consider subcases based on whether the two operations performed are reads or writes:

(a) action(e, s) and action(e’, s) both perform read operations.
Then the two tasks commute, so €’(sp) = s; — a contradiction.

(b) action(e, s) performs a write operation.
Then states sp and s; can differ only in the value of inv — buffer(j), and resp— buffer(j),:
in s1, an invocation is missing from inv— buffer(j), and an extra response appears at
the end of resp—buffer(j),, with respect to inv— buffer(j), and resp—buffer(j), in so.
So sg and s1 are j-similar — a contradiction.

(¢c) action(e, s) performs a read operation and action(e’, s) performs write(v).
Then €'(sp) and s; differ only in the value of resp— buffer(i), (different read responses
may be appended at the end). So €/(sp) and s; are i-similar — a contradiction.

2. For some i € I, participants(e, s) = {S,, P;} and participants(e’, s) = {S,}.
Then the two tasks commute, so €’(sg) = s1 — a contradiction.

15

3. For some ¢ € I, participants(e’, s) = {S,, P;} and participants(e, s) = {S,}.
Again, the two tasks commute, so €'(sg) = s1 — a contradiction.

4. For some i,j € I, participants(e, s) = {Sy, P;} and participants(e’, s) = {Sy, P;j}.
By Claim 3, we know that ¢ # j. Then the two tasks commute, so €¢/(sg) = s; — a contra-
diction.

Now Claims 3, 4, and 5 together imply that participants(e, s) N participants(e’, s) = (). But this
directly contradicts Claim 2. O

Lemma 5 contradicts Lemma 8. Hence we have derived a contradiction by assuming the negation
of Theorem 1. Hence Theorem 1 is established.

5 k-Set Consensus

Our boosting impossibility result concerns consensus implementations. Interestingly, while it is not
possible to implement (f + 1)-resilient consensus using registers and f-resilient atomic objects, this
is not the case for the k-set consensus problem [6]. In k-set consensus, the processes have to agree
on at most k£ > 1 different values (k-set consensus reduces to consensus when k = 1).

Suppose we have some number s > 1 of k-set consensus services, each one exporting n endpoints,
and resilient to n — 1 failures (i.e., wait-free). An algorithm that implements f’-resilient k’-set
consensus, where f' = sn — 1 and k' = sk works as follows.

There are sn client processes, divided into s groups of n each. Each group accesses a different
k-set consensus service. Each client process participates only in its own k-set consensus, and
returns whatever answer it gets. Hence there are at most sk different answers. Since the k-set
consensus services are wait-free, each client process is guaranteed to get an answer back, and so the
algorithm is wait-free, i.e., resilient to sn — 1 failures. So, to summarize, we can implement wait-
free sk-set consensus for sn client processes using wait-free k-set consensus services for n processes.
As a particular instance, when & = 1, s = 2, wait-free 2-set consensus for 2n processes can be
implemented using wait-free n-process consensus services.

Note the tradeoff between resilience and number of different answers; as s increases, there are
more possible answers (worse), but the resilience also increases (better).

6 Failure-Oblivious Services

A failure-oblivious service is a generalization of an atomic object. It allows an invocation to
trigger multiple processing steps instead of just one perform step. These steps can interleave with
processing steps triggered by other invocations, and this makes a failure-oblivious service non-
atomic, in general. A failure-oblivious service also allows an invocation to trigger any number of
responses, at any endpoints, instead of just a single response at the endpoint of the invocation. The
service may also include background processing tasks, not related to any specific endpoint. The
key constraint is that no step may depend on explicit knowledge of failure events. In this section,
we define the class of failure-oblivious services, give examples, and describe how Theorem 1 can be
extended to such services.

6.1 f-resilient failure-oblivious services

As for atomic objects, we begin by defining a canonical f-resilient failure-oblivious service. A
canonical f-resilient failure-oblivious service is parameterized by J, f, and k, which have the same

16

meanings as for canonical atomic objects. Also, in place of the sequential type parameter 7, the
service has a service type parameter U, which is a tuple (V, Vy, invs, resps, glob, 41, 2, 03), where V
and V{ are as before, invs and resps are the respective sets of invocations and responses (which can
occur at any endpoint), glob is a set of global tasks, and 1, d2, d3 are three transition relations.

Here, d; is a total binary relation from invs x J X V to (the set of mappings from J to finite
sequences of resps) x V. It is used to map an invocation at the head of a particular inv— buffer,
and the current value for wal, to a set of results, each of which consists of a new value for val and
sequences of responses to be added to any or all of the resp—buffers. d, is a total binary relation
from J x V to (the set of mappings from J to finite sequences of resps) x V. It is used to map
a particular endpoint and value of val to a set of results, defined as above. Finally, 3 is a total
binary relation from V to (the set of mappings from J to finite sequences of resps) x V. It it used
to map a value of val to a set of results. The code for a canonical failure-oblivious automaton,
showing how these parameters are used, appears in Figure 4.

Thus, a canonical f-resilient failure-oblivious service is allowed to perform rather flexible kinds
of processing, both related and unrelated to individual endpoints, as long as processing decisions
do not depend on knowledge of occurrence of failure events.

An I/O automaton A is an f-resilient failure-oblivious service of type U, endpoint set J, and
index k, provided that it implements the canonical f-resilient failure oblivious service S of type U
for J and k, in the same sense as for atomic objects.

6.2 Example: Totally Ordered Broadcast

We describe an f-resilient totally ordered broadcast service for a particular message alphabet M,
endpoint set J and index k, as a special case of an f-resilient failure-oblivious service for J and k. To
do this, we need only specify the failure-oblivious service type U = (V, Vp, invs, resps, glob, d1, 02, d3).
Here, V' consists of a single msgs queue, containing messages that have been totally ordered,
together with their sources (Figure 5). V{ indicates that this queue is initially empty.

The invocation set invs is {bcast(m) : m € M }. The response set resps is {rcv(m,i) :m € M,i €
J}. (rcv(m, i) indicates the receipt of message m from sender i. This receipt can occur at any
endpoint.) glob consists of one task named g, that is, glob = {g}. 1, the relation describing the
transitions that process invocations from inv— buffers, is defined in Figure 6: This code processes
the first element of inv — buffer(i) by adding it to the end of the sequence stored in msgs. (Formally,
0 ((a,i,v),(B,v")) holds iff @ = beast(m), v'.msgs is the result of adding (m,) to the end of v.msgs,
and B(j) is empty for all j.)

09 is the identity relation, indicating that no other processing is done on behalf of i. Relation
03 is defined in Figure 7. This code processes the first element of msgs by removing it from msgs
and adding it to the end of the sequence of messages stored in resp — buffer(j), for all j. (Formally,
d3(v, (B,v")) holds iff either (a) v.msgs is nonempty, (m,i) = head(v.msgs), v'.msgs = tail(v.msgs),
and for every j € J, B(j) is the sequence consisting of the single element rcv(m, i), or (b) v.msgs
is empty, v = v, and for every j, B(j) is the empty sequence.)

6.3 Impossibility of Boosting

Let index set K include now the indices of all failure-oblivious services. Now the notion of k-
similarity restricts the states of all registers and of all atomic and failure-oblivious services except
Sk.

We now argue that Lemmas 2-8 extend to this case. For Lemmas 6-8, we provide complete
proofs in Appendix B.

17

CanonicalFailureObliviousService(U, J, f, k), where U = (V, Vy, invs, resps, glob, 41, d2, 63)

Signature:

Inputs:
a; g, a € invs, i € J
fail;, i€ J

Outputs:
bik, b€ resps,i € J

Internals:

perform; ., i € J

compute; ., i € J

dummy_; 1, * € {perform, compute, output}, i € J
computegy 1., g € glob

dummy_compute, 1, g € glob

State components:
As for canonical atomic object.

Transitions:

Input: a;
As for canonical atomic object.

Internal: perform, j
Precondition:
a = head(inv — buffer(t))
1((ay 4, val), (B, v))
Effect:
remove head of inv— buffer(i)
val — v
for j € J do
add B(j) to end of resp— buffer(j)

Internal: compute; j, i € J
Precondition:
62((s, val), (B,v))
Effect:
val «— v
for j € J do
add B(j) to end of resp— buffer(j)

Tasks:
For every i € J:
i-perform: {perform, ., dummy_perform, .}
i-compute: {compute, j,, dummy_compute, ; }
i-output: {b; 1, : b € resps} U {dummy_output, 1}
For every g € glob:
g-compute: {compute, j,, dummy_compute, 1}

Internal: compute, ;, g € glob
Precondition:
d3(val, (B,v))
Effect:
val «— v
for j € J do
add B(j) to end of resp— buffer(j)

Output: b;
As for canonical atomic object.

Input: fail;
As for canonical atomic object.

Internal: dummy_*;, i€ J
As for canonical atomic object.

Internal: dummy-compute, ;,, g € glob
Precondition:

|failed| > f
Effect:

none

Figure 4: A canonical failure-oblivious service.

18

Components of val:
msgs, a finite sequence of items in M x J, initially empty

Figure 5: The composition of val in a totally ordered broadcast service.

Internal: perform,
Precondition:

send(m) = head(inv— buffer(i))
Effect:

remove head of inv— buffer (i)

add (m, i) to msgs

Figure 6: Relation d; in a totally ordered broadcast service.

Lemma 2: We have added the i-compute and g-compute tasks to the definition of a service,
Figure 4. These are defined using total transition relations d2 and d3. Since these are total relations,
we see from Figure 4 that these tasks are always enabled. Hence Lemma 2 still holds.

Lemmas 3-5: The proofs of these lemmas do not depend on the definition of a service, and so
they carry over.

Lemma 6: The proof carries over by replacing every reference to perform,; actions with a
reference to perform; ; or compute; ;, or compute, ; actions.

Lemma 7: Since service Sy is “silent” along <y, the change in its definition does not affect the
proof. The other services have the same behavior along v and 7/, and the original proof of Lemma 7
does not refer to their detailed definition. Hence this proof carries over.

Lemma 8: Claims 1, 2, 3, and 5 carry over with no difference in the proof, since their proof does
not refer to the definition of actions of services. For claim 4, the proof of case 1 (participants(e, s) =
participants(e’, s) = {Sk}) must be modified by replacing every reference to i — perform tasks with
a reference to ¢ — perform or i — compute or g — compute tasks. The proofs of the other cases carry
over. Hence the lemma as a whole carries over.

Hence the following result:

Theorem 9 Let f and n be integers, 0 < f < n — 1. There does not exist an (f + 1)-resilient
n-process implementation of consensus from canonical f-resilient atomic services, canonical f-
resilient failure-oblivious services, and canonical reliable registers.

7 General (Failure-Aware) Services

A general, or failure-aware service is a further generalization of a failure-oblivious service. This
time, the generalization removes the failure-oblivious constraint, allowing the service’s decisions to
depend on knowledge of failures of processes connected to the service.

7.1 f-resilient general services

A canonical f-resilient general service is parameterized by J, f, and k, which have the same mean-
ings as for canonical failure-oblivious services, and by a service type parameter U/, which is a tuple
(V, Vo, invs, resps, glob, 1, 02, d3), as for failure-oblivious services. This time, however, the domains
of 81, 0, and 05 are invs x J x V x 21, J x V x 2 and V x 2, respectively. The final argument,
in each case, will be instantiated in the service code with the current failed set.

19

Internal: compute, j
Precondition:
true
Effect:
if (m,4) = head(msgs) then
remove head of msgs
for each j € J:
add rcv(m, 1) to resp— buffer(j)

Figure 7: Relation d5 in a totally ordered broadcast service.

The only portions of the code that are different from those for failure-oblivious services are the
three transition definitions that use the ¢d;, d2, and d3 (Figure 8).

Internal: perform,
Precondition:
a = head(inv — buffer(t))
61 ((a7 i val, failed)a (37 U))
Effect:
remove head of inv — buffer(i)
val «— v
for j € J do
add B(j) to end of resp— buffer(j)

Internal: compute; ;, i € J
Precondition:
02((4, val, failed), (B, v))
Effect:
val — v
for j € J do
add B(j) to end of resp— buffer(j)

Internal: computegy 1., g € glob
Precondition:
(53((1}&[, faz'led), (B7 U))
Effect:
val — v
for j € J do
add B(j) to end of resp— buffer(j)

Figure 8: Relations 41, d2 and d3 in a general service.

An I/O automaton A is an f-resilient general service of type U, endpoint set J, and index k,
provided that it implements the canonical f-resilient general service S of type U for J and k, in
the same sense as for atomic and failure-oblivious services.

7.2 Examples: Failure detectors

In this section, we describe how a variety of well-known failure detectors [4,5] can be modeled as
general services. Our failure detectors do not provide all the functionality of the standard model [4]:
because our failure detectors are automata, they cannot predict future input actions. Thus, our
services encompass only realistic failure detectors [7].

All of our failure detector services have empty invs sets, that is, their only inputs are fail; actions.

20

7.2.1 Perfect Failure Detector P

First, we define an f-resilient perfect failure detector for J and k. V contains only one (trivial)
state, that is, the service maintains no internal information other than the failed set. Responses
are of the form suspect(J'), J' C J. The set glob of global tasks is empty. Since there are no
invocations, 47 is trivial. Since there are no global tasks, d3 is empty. All that remains is to define
d2, which describes computation on behalf of each process i: J2(i, failed) simply puts a suspect
response containing the current failed set into i’s response buffer (Figure 9).

Internal: compute; j
Precondition:
true
Effect:
add suspect(failed) to resp— buffer (i)

Figure 9: Relation d5 in P.

7.2.2 Eventually Perfect Failure Detector OP

Again, responses are of the form suspect(J'), J' C J. We model eventual perfection using a mode
variable, which can take on values perfect or imperfect. Initially, and after each new failure, mode
is set to imperfect. A background task is responsible for eventually switching mode to perfect.
Since failures must eventually stop, the mode eventually remains perfect. While in perfect mode,
the failure detector suspects exactly the processes that have failed. In imperfect mode, suspicions
are arbitrary. The set of internal state components in P is presented in Figure 10.

Components of val:
mode € {perfect, imperfect}, initially imperfect
oldfailed C J, initially

Figure 10: The composition of val in OP.

The global task set glob = {g1,92}. Task g; is responsible for setting mode to imperfect while
task go sets it to perfect. The interesting transition definitions are presented in Figure 11.

7.2.3 Eventual Leader Service ()

The eventual leader service €2 provides leader(l) responses at all nodes, where [€ J. Eventually
(assuming that not all processes fail), the latest leader announcements should be identical at
all endpoints, and should indicate the name of a non-failed endpoint. We again model eventual
perfection using a mode variable (Figure 12).

We again use two global tasks g1, ga. Now g1 sets mode to imperfect and removes any choice of
leader, while g9 sets mode to perfect and chooses a leader. The corresponding transition definitions
are presented in Figure 13.

7.3 Impossibility of Boosting

Our impossibility results for atomic and failure-oblivious services allow arbitrary connections be-
tween processes and services. However, it turns out that we can boost the resilience of systems
containing failure-aware services, if we allow arbitrary connection patterns:

21

Internal: compute; j
Precondition:
true
Effect:
if mode = perfect then
add suspect(failed) to resp— buffer(i)
else
choose J' where J' C J
add suspect(J') to resp— buffer(z)

Internal: compute,
Precondition:
true
Effect:
if failed # oldfailed then
mode := imperfect
oldfailed := failed

Internal: compute,, j
Precondition:
true
Effect:
if mode = imperfect then
mode := perfect

Figure 11: Internal transitions in OP.

Components of val:
mode € {perfect, imperfect}, initially imperfect
oldfailed C J, initially ()
leader € JU {1}, initially L

Figure 12: The composition of val in Q.

For example, consider a system that uses wait-free registers and 1-resilient perfect failure detec-
tors. Suppose that every pair of processes shares a 1-resilient 2-process failure detector. Such a
system can implement a wait-free perfect failure detector for all processes as follows: Process i just
listens to all failure detectors it is connected to and accumulates the set of suspected processes in a
dedicated register. Periodically, it outputs its set of suspected processes. Since every perfect failure
detector is 1-resilient, the algorithm is wait-free. Using this construction, f-resilient consensus, for
any f, can be implemented using wait-free registers and 1-resilient services.

This boosting is, however, impossible if we assume a system in which f-resilient failure-aware
services must be connected to all processes, thus, f + 1 process failures overall can disable all the
failure-aware services. We assume that the system may also contain f-resilient failure-oblivious
services, connected to arbitrary processes. By applying arguments similar to ones presented in
Section 4, we can prove boosting to be impossible, i.e., that (f + 1)-resilient consensus cannot be
solved in such a model.

The proof is also based on analysis of a “hook”. In fact, we need to introduce only slight
modifications into the proofs of Lemmas 6 and 7: Let ag and 1 be any two univalent failure-free
input-first executions whose respective final states, sp and s, are j-similar (respectively, k-similar).
Assume, by contradiction, that ag and «; have opposite valences. The definitions of j-similarity
and k-similarity do not restrict the states of failure-aware services, that is, failure-aware services
can have arbitrary states in sy and s1, the respective final states of ag and ;.

However, note that the f + 1 failures of processes in J allow every failure-aware service to stop

22

Internal: compute; j
Precondition:
true
Effect:
if mode = perfect then
add leader(leader) to resp— buffer(i)
else
choose j € J
add leader(j) to resp— buffer(i)

Internal: compute,
Precondition:
true
Effect:
if failed # oldfailed then
mode := imperfect
oldfailed := failed

Internal: compute,, j
Precondition:
true
Effect:
if mode = imperfect then
leader := choose | where | € J — failed
mode := perfect

Figure 13: Internal transitions in .

performing (non-dummy) locally controlled steps. Then following the arguments of Lemmas 6
and 7, we can construct a failure-free extension of ag, g -/, such that (1) 4/ includes decide(v);,
for some | € I — J; (2) 9/ includes no locally controlled step of process Pj, nor any perform,
compute , or output; step for any service or register (respectively, +' includes no locally controlled
step of service Sk); (3) 7/ includes no locally controlled step of any failure-aware service. Thus, +/
is essentially applicable to a; — a contradiction with the assumption that ag and «; have opposite
valences.

We first note that Lemmas 2-5 carry over to the case of general services. The argument for this
is identical to that for failure-oblivious services, given in Section 6.3.

For Lemma 6: The proof for the case of failure oblivious services already handles both atomic and
failure oblivious services. To handle f-resilient general services, we note that we can assume that
all of these servies are “silent” along +, since the occurrence of f 41 fail; actions enables a dummy
action in every task of every general service. Thus the different definition for actions perform, i,
compute; j, and compute j, in particular, their ability to observe the set of failed processes, makes
no difference. Hence 7/ can be appended after ; in the same way as in the proof for the case of
failure oblivious services.

For Lemma 7: Since the service S can be “silenced” as before, the proof is unchanged from that
for failure oblivious services.

For Lemma 8: We defined the hook so that it does not contain any fail;, actions. Hence at
all states in the hook, the set failed of failed processes is empty. Thus the different definition
for actions perform, j, compute;;, and compute, ;, in particular, their ability to observe the set of
failed processes, makes no difference. Hence the proof is unchanged from that for failure oblivious
services.

Hence the following result:

Theorem 10 Let f and n be integers, 0 < f < n — 1. There does not exist an (f + 1)-resilient

23

n-process implementation of consensus from canonical f-resilient general services connected to all
processes, canonical f-resilient atomic services (connected to arbitrary processes), canonical f-
resilient failure-oblivious services (connected to arbitrary processes), and canonical reliable registers.

8 Conclusions

We presented, to our knowledge, the first unified framework that can express both atomic and
non-atomic services, including failure-oblivious and failure-aware ones. Within this framework, we
established the impossibility of boosting the resilience of services in a distributed asynchronous
system. More specifically, we proved that f-resilient services cannot solve the fundamental con-
sensus problem in the presence of f 4+ 1 process stopping failures. The choice of consensus as a
benchmark to measure the resilience of services is crucial, for it is proved to be universal [11] for
atomic services; in fact, as we show in the paper, our result does not apply to problems that are
weaker than consensus.

Interestingly, our result can be viewed as a generalization, to any number f of failures, of the
seminal consensus impossibility result of Fischer, Lynch, and Paterson [8] for f = 1.

We proved our result first considering atomic services, then non-atomic but failure-oblivious
services and finally failure-aware services. While our first result (for atomic services) can be derived
from existing results in the literature, the direct proof that we give is simpler, and is also easily
extended to more general services than atomic objects. The results for more general services are
the first such results to appear.

Future work includes investigating whether there are interesting refinements of our three-level
hierarchy (atomic, failure-oblivious, general), and investigating issues within this hierarchy such
as universal abstractions for failure-oblivious services. In particular, is consensus universal for
failure-oblivious services? We show in Appendix A.2 that consensus is not universal for general
services.

References

[1] P. Attie, R. Guerraoui, P. Kouznetsov, N. A. Lynch, and S. Rajsbaum. The impossibility of boosting
distributed service resilience. In The 25°th International Conference on Distributed Computing Systems,
2005.

[2] P. C. Attie, N. A. Lynch, and S. Rajsbaum. Boosting fault-tolerance in asynchronous message passing
systems is impossible. Technical report, MIT Laboratory for Computer Science, MIT-LCS-TR-877,
2002. Available at http://theory.lcs.mit.edu/tds/reflist.html.

[3] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Generalized irreducibility of consensus and the
equivalence of t-resilient and wait-free implementations of consensus. SIAM Journal on Computing,
34(2):333-357, 2005. Conference version appears in PODCO04.

[4] T.D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685-722, July 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
the ACM, 43(2):225-267, March 1996.

[6] S. Chaudhuri. Agreement is harder than consensus: set consensus in totally asynchronous systems. In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC’00),
pages 311-324, August 1990.

[7] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. A realistic look at failure detectors. In IEEFE
Symposium on Dependable Systems and Networks (DSN 2002), Washington DC, June 2002.

24

8]
[9]

[10]

[15]

[16]

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(3):374-382, April 1985.

R. Guerraoui and P. Kouznetsov. On failure detectors and type boosters. In Proceedings of the 17th
International Symposium on Distributed Computing (DISC’03), October 2003.

V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcast and related problems.
Technical report, Cornell University, Computer Science, May 1994.

M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124-149, January 1991.

M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463-492, June 1990.

P. Jayanti. Private communication. 2003.

P. Jayanti and S. Toueg. Some results on the impossibility, universability and decidability of consensus.
In Proceedings of the 6th International Workshop on Distributed Algorithms (WDAG’92), volume 647
of LNCS. Springer Verlag, 1992.

M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous
processes. Advances in Computing Research, pages 163-183, 1987.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

Appendix A Alternative proof for atomic services

In this section, we show how our result for the case of atomic objects can be derived from earlier
results [3,11,14,15]. This alternative proof of our result was obtained independently and concur-
rently by Jayanti [13] and Guerraoui and Kouznetsov [9]. However, this alternative proof does not

ext
mo

end to failure-oblivious and general services. This proof uses results from [3,11,14,15]. In the
del used in those papers, a process accesses an object by means of an access procedure AP-

PLY (0p, i, O) where O is an object, op is an operation of O, and i is a port of O (ports are similar to
our endpoints). We argue as follows that the two models are equivalent with respect to establishing
the impossiblity result presented here for atomic objects.

1. In our model, a process sends an invocation to an object, after some delay the object generates
a response, and then the response is sent from the object to the process. In the access
procedure model, a process invokes an access procedure on an object, and waits until this
procedure terminates and returns a value to the process. This, in both models there is some
(asynchronous) delay between invocation and response: an object that has not failed will
generate a response after an arbitrary, but finite, delay.

2. In our model, a process can have outstanding invocations for several objects (one invocation
per object), while in the access procedure model, a process invokes one object at a time, since
it has to wait for one access procedure to terminate before it can invoke another. However,
in [3], in the proof of claim 5.1.1 (page 19, lines 21-25), the paper states that a process can
access two ports at a time by alternately executing the access procedures of both, and goes
on to give the construction. Thus, at least for the purpose of establishing the impossiblity
result presented here for atomic objects, the two models seem equivalent w.r.t. this issue.

25

A.1 The proof

The following two lemmas are restatements in our terminology of the “necessity” part and the
“sufficiency” part of Theorem 6.1 in [3], respectively.

Lemma 11 Let f and n be integers, 0 < f, 1 < n. Then there exists an f-resilient n-process
implementation of consensus from wait-free (f +1)-process consensus objects and reliable registers.*

Lemma 12 Let f and n be integers, 2 < f < mn. Then there exists a wait-free (f + 1)-process
implementation of consensus from f-resilient n-process consensus objects and reliable registers.

In Herlihy’s universal construction [11], if we replace the wait-free consensus objects by f-resilient
ones, then the overall construction becomes f-resilient instead of wait-free. Hence the following
result:

Lemma 13 Let f and n be integers, 0 < f, 1 < n. Let T be a sequential type. Then there exists
an f-resilient n-process implementation of an atomic object of type T from f-resilient n-process
consensus objects and reliable registers.

The following result is shown in [14].

Lemma 14 Let n be integer, n > 0. There does not exist a wait-free (n+1)-process implementation
of consensus from wait-free n-process consensus objects and reliable registers.

We have so far considered the implementation of a service by a system, as defined in Section 3.
The alternative proof for Theorem 1 requires the replacement of a service (within a system) by a
subsystem which implements that service, and then the replacement of a service within this subsys-
tem by a subsubsystem which implements this latter service, etc. In performing such substitutions,
we must preserve resilience levels. When we replace a single service S by a subsystem Swu, the
invocations that used to go to the service S will now go to the subsystem Swu, i.e., to the processes
in Su, which will then invoke the objects (“subservices” and registers) within Su.

Now for each endpoint j of the service S, we have a single “client” process P; that invokes
operations at the endpoint j (see Section 3.1). Each endpoint j is implemented by a single process
P, in the subsystem that replaces S. Since connections between processes and endpoints are
static, and each endpoint services at most one process, each subsystem process Py, will interact
with at most one client process P;. Furthermore, each client process P;, being connected to at
most one endpoint j, will interact with at most one subsystem process Pgyp.

When the client process P; fails, we consider that the subsystem process P, that P; is connected
to also fails. Thus, f failures of processes that are clients of a given system Su will induce at most
f failures of processes within Su, these processes being clients of services and subsystems inside of
Swu. Thus, the number of failures that a service is subject to cannot increase as we replace a service
by a subsystem, even if we do so repeatedly, i.e., if we “chain” substitutions.

Theorem 1 Letn = |I| be the number of processes, and let f be an integer such that 0 < f < n—1.
There does not exist an (f + 1)-resilient n-process implementation of consensus from canonical f-
resilient n-process atomic objects and canonical reliable registers.

“Theorem 6.1 in [3] assumes 2 < f. However, the necessity part of the theorem holds for 0 < f.

26

Proof: By contradiction, assume that there exists an (f 4 1)-resilient n-process implementation
of consensus from f-resilient n-process atomic objects and reliable registers. We consider two cases.

First suppose that f = 0, so n > 2. Thus, we have a l-resilient n-process implementation of
consensus using O-resilient n-process atomic objects and reliable registers. By Lemma 13, each
O-resilient n-process atomic object used in this implementation can itself be implemented from 0-
resilient n-process consensus objects and reliable registers. By substituting these implementations
for the objects, we obtain a 1-resilient n-process implementation of consensus using O-resilient n-
process consensus objects and reliable registers. Now, a 0-resilient n-process consensus object can
be implemented from reliable registers,® so substituting once more, we obtain a 1-resilient n-process
implementation of consensus using only reliable registers. But this contradicts the impossibility
result of [15].

Now suppose that f > 1. Thus, we have a (f + 1)-resilient n-process implementation of consen-
sus using f-resilient n-process atomic objects and reliable registers. By Lemma 13, each f-resilient
n-process atomic object used in this implementation can itself be implemented from f-resilient
n-process consensus objects and reliable registers. By substituting, we obtain an (f 4 1)-resilient
n-process implementation of consensus from f-resilient n-process consensus objects and reliable
registers. By Lemma 11, each f-resilient n-process consensus object used in this implementation
can be implemented from wait-free (f + 1)-process consensus objects and reliable registers. By sub-
stituting again, we obtain an (f + 1)-resilient n-process implementation of consensus from wait-free
(f + 1)-process consensus objects and reliable registers. Now by Lemma 12 (using the fact that
2 < f+1 < n), a wait-free (f+2)-process consensus object can be implemented from (f+1)-resilient
n-process consensus objects and reliable registers. By substituting, we obtain an implementation
of a wait-free (f 4+ 2)-process consensus object from wait-free (f + 1)-process consensus objects and
reliable registers. But this contradicts Lemma 14. O

A.2 Extension to more general services

The argument in the previous subsection does not extend to all services. Here we give two reasons
for this.

First, the universality result (Lemma 13) fails to hold for many (non-atomic) distributed services.
In particular, no meaningful failure detector can be implemented from consensus objects. Indeed,
by definition, an atomic service does not provide any information about failures: the value of the
service is not affected by failures of processes. Here we simply give an example, showing that
consensus cannot implement a perfect failure detector.

Indeed, assume, by contradiction, that there is an algorithm A that implements a perfect failure
detector in a system of n processes using n-process consensus objects and registers. Consider any
finite execution a of A in which process ¢ is faulty and is declared to be faulty. Now we consider
an execution o that is identical to a except that o’ includes no fail; event (i is just slow to take
steps in). Clearly, o/ is also a finite execution of A, since registers and consensus objects are
failure-oblivious. Thus, in o, a process is declared faulty without having failed— a contradiction.
This example shows that why consensus is not universal for failure-aware services. We leave the
question of whether consensus is universal for failure-oblivious services for future work.

A O-resilient consensus object with an endpoint set J can be easily implemented from two reliable registers as
follows. Every process participating in the consensus algorithm writes its input value in a dedicated “proposal”
register R (initialized to L). Then the process keeps reading a dedicated “decision” register D (initialized to L) until
a non-_L value is read, in which case the process decides on this value. In parallel, a dedicated process P; (i € J)
keeps reading R. As soon as P; reads a non-_1 value v in R, P; writes v in D.

27

The second reason is that the arguments of [3] do not work with non-atomic services: generally
speaking, an f-resilient implementation of n-process consensus (from non-atomic services) is not
necessarily equivalent to a wait-free implementation of (f + 1)-process consensus (Theorem 6.1
of [3]). Indeed, if f-resilient k-process consensus is implemented from non-atomic services, the
simulation algorithm presented in the proof of Theorem 6.1 in [3] is not valid: a step of a process
accessing a general service cannot always be simulated by another process. This is because a
response of a non-atomic service to a given process ¢ might not necessarily be simulated by another
process j without communicating with ¢, i.e., no set of f + 1 processes can independently simulate
an f-resilient k-process consensus algorithm without communicating with the rest of the system.

Appendix B Complete proofs for failure-oblivious services

Proof of Lemma 6 when failure-oblivious services are allowed.

Lemma 6 Let j € I. Let ag and «; be finite failure-free input-first executions, sy and s; the
respective final states of oy and «1. Suppose that sy and s; are j-similar. If ap and aq are
univalent, then they have the same valence.

Proof: We proceed by contradiction. Without loss of generality, assume that all services are
failure-oblivious. Atomic services can be handled by the same argument as used in the proof of
Lemma 6 for atomic services only.

Fix j, ao, a1, so, and s; as in the hypotheses of the lemma, and suppose (without loss of
generality) that «p is 0-valent and «; is 1-valent. Let J C I be any set of indices such that j € J
and |J| = f+ 1. Since f < n — 1 by assumption, we have |J| < n, and so I — J is nonempty.

Consider a fair extension of ag, ag -3, in which the first f+ 1 actions of 3 are fail;, i € J, and no
other fail actions occur in . Note that, for all ¢ € J, § contains no output actions of P;. Assume
that in 3, no perform, ., compute; ., or b; . action of any i-* task, i € J, occurs at any component
¢ € K U R; we may assume this because, for each i € J, action fail, enables a dummy action in
every i-* task of every service and register (x is perform or compute or output).

Since «q is a failure-free input-first execution, the resulting extension «q - 8 is a fair input-
first execution containing f + 1 failures. Therefore, the termination property for (f 4 1)-resilient
consensus implies that there is a finite prefix of ag - 3, which we denote by «q - 7y, that includes
decide(v), for some [¢ J and v € {0,1}. Construct ag-+’, where ' is obtained from -y by removing
the fail; actions, all dummy actions, and any remaining internal actions of P;, i € J. Thus, ag - v/
is a failure-free extension of aq that includes decide(v);. Since vy is O-valent, v must be equal to 0.

We claim that decide(0), occurs in the suffix 4/, rather than in the prefix ag. Suppose for
contradiction that the decide(0); action occurs in the prefix op. Then by our technical assumption
about processes, the decision value 0 is recorded in the state of [. Since sg and sy are j-similar and
I # 7, the same decision value 0 appears in the state s;. But this contradicts the assumption that
a1, which ends in s1, is 1-valent. So, it must be that the decide(0), occurs in the suffix /.

Now we show how to append essentially the same ' after a;. We know that, for every i € J,
7/ contains no locally controlled action of P;, and contains no perform, ., compute; ., or b; . action,

,C) 1,C)

for any ¢ € K U R. By definition of j-similarity and j € J, we have:

(a) For every i ¢ J, the state of P; is the same in sy and s;.
(b) For every c € K UR,

1. The value of val. is the same in sy and s; (that is, in the final states of ap and a).
2. For every i € J. — J, the value of buffer(i). is the same in sy and s;.

28

Thus:

(¢) If 4/ contains any locally controlled steps of a process i, then i ¢ J, and so the state of P; is the
same in sg and s

(d) For every c € K UR,

1. The value of wal. is the same in sg and s7.

actions, then i ¢ J,

2. For every i € J., if 4/ contains any perform,; ., compute; ., or output; .

1,¢) i,c9
and so the value of buffer(i). is the same in sy and s;.

Finally, we note that the presence of compute, . does not invalidate the argument. A compute, .
cannot refer to or modify any input buffers. The precondition of compute, . depends only on val.,
and so the same compute,, . actions can be applied in ~" after a, and they can add the same items
to the output buffers. Thus for i ¢ J the sequence of values that buffer(i). takes along ' after
and v after o are the same.

It follows that it is possible to append “essentially” the same ' after a, resulting in a failure-free
extension of oy that includes decide(0),.%

But oy is 1-valent — a contradiction. O

Proof of Lemma 7 when failure-oblivious services are allowed.

Lemma 7 Let £k € K. Let ag and a7 be finite failure-free input-first executions, sg and s; the
respective final states of ap and a;;. Suppose that sy and s1 are k-similar. If oy and « are univalent,
then they have the same valence.

Proof: Fix k, ag, a1, sp, and s; as in the hypotheses of the lemma. By contradiction, suppose
(without loss of generality) that ag is 0-valent and «; is 1-valent. Let J C I be any set of indices
such that |J| = f + 1, and, if |J| < f + 1, then Ji C J, whereas if |Ji| > f + 1, then J C Jj.

Consider a fair extension of ag, g - 3, in which the first f + 1 actions of § are fail;, ¢ € J, and
no other fail actions occur in 3. Note that, for all ¢ € J, 8 contains no output actions of 7. Assume
that in 3, no perform, ; or b;), or compute; j, or compute) action (b € resps, g € glob) of Sy occurs;
we may assume this because the f + 1 fail actions enable dummy actions in all tasks of Sk.

Since aq is a failure-free input-first execution, the resulting extension aq - 3 is a fair input-first
execution containing f + 1 fail actions. Therefore, the termination property for f 4 1-resilient
consensus implies that there is a finite prefix of ag - 3, which we denote by «q - 7y, that includes
decide(v), for some [€ I —J and v € {0,1}. We know that decide(0), occurs in the suffix v, rather
than in the prefix ag, by an argument similar to that in the proof of Lemma 6.

Now construct «g -7/, where 4/ is obtained from v by removing all the fail; actions, i € J, and
all dummy actions. Thus, ag -7/ is a failure-free extension of ag that includes decide(v);. Since ag
is 0-valent, v must be equal to 0.

Now we show how to append essentially the same 7/ after «1. By definition of k-similarity, we
have:

(a) For every i € I, the state of P; is the same in sy and s;.

(b) For every ¢ € (K — {k}) U R, the state of S, is the same in sy and s;.

Thus:

SReally, we are appending another execution fragment ~” after oy — one that looks the same to all the processes
and service tasks that take steps in v'.

29

(c) For every c € K UR, if v/ contains any perform, . or b; . or compute; , or compute, . actions of
Sc, then the state of S, is the same in sg and s1, since ¢ # k in this case.

By properties (a) and (c), it follows that it is possible to append “essentially” the same + after o,
(differing only in the state of Sy) resulting in a failure-free extension of a; that includes decide(0),.
But «; is 1-valent — a contradiction. O

Proof of Lemma 8 when failure-oblivious services are allowed.
Lemma 8 G(C) contains no hooks.

Proof: We establish the same 5 claims as in the case of atomic services, which establishes the

needed contradiction.

Claims 1, 2, and 5 do not refer to the definition of a service, and so their proof remains unchanged
from the atomic services case.

The proof of Claim 3 is unchanged, since the only actions considered have as participants either
a process P;, or P; and a component S., c € K U R. Thus, whenever S, is a participant, the action
must be an external action of S.. Since the external actions in the definitions of atomic service and
failure oblivious service have the same effect, namely to add or remiove a single item from a single
buffer, it follows that the proof of Claim 3 for the atomic case still applies.

The proof of Claim 4 is modified as follows.

Claim 4: There does not exist k € K such that Sy € participants(e, s) N participants(€’, s).
Suppose for contradiction that Sy € participants(e, s) N participants(e’, s). There are four possibili-
ties:

1. participants(e, s) = participants(e’, s) = {Sk}.

Then e and €’ must be i — perform or ¢ — compute or g — compute tasks of Si, and so involve
only the state of S;. But then the states sy and s; can differ only in the state of Sx. So sg
and s; are k-similar — a contradiction.

2. For some i € I, participants(e, s) = {Sk, P;} and participants(e’, s) = {Sk}.

Hence action(e, s) is either a; or by, and action(e,s) is one of perform;, compute,, or
compute ., where j € Ji, g € glob.

Inspection of the definition of a failure-oblivious service shows that the two tasks commute,
that is, €/(sg) = s1 — a contradiction.
3. For some i € I, participants(e’, s) = {Sk, P;} and participants(e, s) = {Sk}.

Hence action(e, s) is one of perform; ,, compute; ., or compute, ., where j € Ji, g € glob, and
action(€’, s) is either a;j or b; .

Inspection of the definition of a failure-oblivious service shows that the two tasks commute,
that is, €/(sg) = s1 — a contradiction.
4. For some 1,j € I, participants(e, s) = {Sk, P;} and participants(e’,s) = {Sk, P;}.

By Claim 3, we know that i # j. Now action(e, s) is either a;j or b; ;, and action(€,s) is
either a; ;. or bj .

Inspection of the definition of a failure-oblivious service shows that the two tasks commute,
that is, €/(sp) = s1 — a contradiction.

a

30

