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Abstract
Physical computing involves the autonomous prognosis
and adaptation of the physical state of a system in
a dynamic environment through distributed sensing,
computation, and fusion-driven self-organization. It
incorporates distributed computation for both local
self-awareness and situational awareness of the spatial-
temporal processes through in-situ learning to discern
the current state of the system, collaborative situation
assessment, prediction and adaptive control. Signifi-
cant impediments to physical computing in complex
dynamic environments are due to high dimensionality,
nonlinear interaction of parameters, lack of adequate
environmental models, non-stationarity and complex
interactive dynamics. This paper addresses these issues
by developing constructive methods derived from statis-
tical mechanics to formulate a higher level alphabet and
minimal ontology that captures the essential physics
of the distributed operational context as observed in
asynchronous streams of sensor data. Formal semantics
are then used to develop distributed computational algo-
rithms to discover atomic causal patterns, represented
as finite state automata, that capture the generating dy-
namics of the system. Under Markovian assumptions,
the algorithm achieves maximal compression while
preserving statistical predictability of system states.
Hence, the causal patterns can be discovered in-situ in
the observed data streams, and are not derived from a
pre-selected model. Since the causal patterns preserve
the statistical characteristics of quasi-stationary pro-
cesses, they can be used for situation awareness and
adaptive control.

Keywords: Statistical mechanics, machine learn-
ing, adaptive control, model discovery, spatial-temporal
dynamics, information fusion, undersea sensor network,
physical computing, mine countermeasures.

1 Introduction
Harnessing the collaborative power of networks of elec-
tronic devices with embedded sensing, computation and
actuation capabilities is a new frontier in technology that
holds the promise of unprecedented levels of depend-
able autonomy and control in the execution of complex
dynamic missions. As a network of physically embod-
ied sensing agents that interact with the sensed phenom-
ena, the cognitive abilities of the nodes are constrained
by the laws of physics. As a team of goal directed
agents, they must jointly evolve in real world environ-
ments to optimize operational effectiveness and adapt to
physical change. This paper deals with the computa-
tional intractability, physical limitations, and uncertain
nonlinear dynamics that today inhibit in-situ adaptation
of autonomous missions such as multi-asset undersea
mine-hunting or anti-submarine warfare.

The concept of an artificial language is introduced
that expresses the interactive dynamics of complex
physical processes that characterize the causal behav-
iors of the networked multi-agent system with a view
to distributed computation, communication, and in-situ
control of the system in its operational environment. In
the absence of a known model of the generating dy-
namics, the current state of the system is divined from
the asynchronous multi-sensor data streams. Spatial-
temporal change in the system is statistically captured
as a change in the probability distribution of transitions
of system states. Nonlinear filtering algorithms for the
discovery of causal patterns of state transitions in the
evolving system are presented. The discovery of these
patterns is important for understanding the physical
processes that generate them. Two steps are involved:
symbolization of the evolving streams of sensor data by
maximal entropy partitioning and dynamic filtering of
the symbol stream to generate probabilistic finite state
automata. Symbolization defines an alphabet that rep-
resents the multivariate system as a univariate symbol
sequence. Causal patterns in this symbol sequence are
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discovered via nonlinear dynamic filtering algorithms
and state-machine construction algorithms that repre-
sent system state transitions as probabilistic finite state
automata. By thus fusing atomic symbols of causal
knowledge embedded in the sensory observations,
this paper formulates an interactive computational
model of the evolutionary physics captured via the
distributed sensor suite for adaptive computation. The
causal patterns represent words in a formal machine
language. The formal language thus generated, se-
mantically represents the discovered model of the
evolving system and can be used for machine learning,
semantic reasoning for collaborative pattern discovery,
and distributed control [1]. Under regularity conditions,
it preserves the full predictive power of the original
data streams and is computationally faster than clas-
sical methods (Bayesian, Hidden Markov Machines,
Particle Filtering, etc.) [2]. Therefore, it enables in-situ
discovery and prediction of spatial-temporal patterns in
multi-sensor data streams. Hence, the dynamic control
of the system can be adapted in-situ to its unmodeled
physical evolution.

This paper formulates a rigorous scientific basis for
constructing an alphabet and a set of atomic patterns
(words) from this alphabet that preserve the statisti-
cal properties of the spatial-temporal multivariate data
streams generated by the complex dynamic system in
its operational environment. The formal language thus
created captures the generating dynamics of the system
and can be used for predictions of future behavior of
the system. Section 2 of the paper summarizes the rel-
evant background in Statistical Mechanics. Section 3
contains algorithms for semantic modeling to discover
the generating formal language from asynchronous mul-
tivariate streams of sensor data. Section 4 delineates
properties of the machine language and compares it
to classical methods. Section 5 presents architectures
and algorithms for distributed machine learning using
this formal machine language. Section 6 illustrates the
power of physical computing methods under resource
constraints by analyzing side-scan sonar images taken
by unmanned undersea vehicles for collaborative detec-
tion of undersea mines. Section 7 presents concepts of
higher levels of machine semantics for semantic fusion
and contextual decision-making. Section 8 introduces
the concept of Artificial Languages and their broader
impact on deep machine learning and distributed com-
putation.

2 BACKGROUND
Statistical Mechanics provides an elaborate explanation
of the emergence of macroscopic behavior in dynami-
cal systems, where complexity accrues from the inter-
actions of their microscopic constituents. The macro-
scopic and microscopic behavior is linked by statistical
patterns that represent the probability distribution of the

microstates. Concepts of statistical physics, originally
developed to study collective properties of physical sys-
tems such as solids, liquids, and gases, have been ex-
tensively applied to investigate a diverse range of sys-
tems including chemical and biological structures such
as colloids, emulsions, liquid crystals, complex fluids,
polymers, bio-polymers and cellular, economical and
sociological, ecological and a variety of network sys-
tems. The fundamental principles of equilibrium in sta-
tistical physics have been used to investigate station-
ary and quasi-stationary behavior of complex systems.
This discipline is known as thermodynamic formalism
of complex systems in the applied physics literature [3].
Such applications have been successful because it is
possible to identify a hierarchically structured model
based on the order parameter and complexity associated
with each level of the hierarchy.

3 SEMANTIC MODELING AND
PATTERN DISCOVERY

Sensors require physical interaction with the sensed
phenomena and are not individually very reliable. Sen-
sor signal deteriorates as the sensing distance increases.
But in the vicinity of a stimulus, the sensor data is highly
correlated, both spatially and temporally. Hence collab-
orative inference is needed for reliable identification and
registration of spatio-temporal phenomena in complex
dynamic missions. However, the nonlinear and non-
stationary interactive dynamics of the observed param-
eters, noise and measurement inaccuracies, and uncon-
trollable exogenous environmental disturbances, make
it impossible to apply fundamental laws of physics to
achieve required modeling accuracy and precision. This
section provides an alternative method of observation-
based estimation of the generating dynamics of a com-
plex system. This method, called semantic modeling
consists of two steps: symbolization and nonlinear fil-
tering. These two steps, described below, result in
compressing the information contained in the ensemble
of asynchronous data streams emanating from multiple
sensors into identifiable macroscopic patterns of the sys-
tem that represent the evolving characteristics of the un-
derlying process dynamics of the system.

3.1 Symbolization
Symbolization is the process of discretizing the n-
dimensional space of the time-series data generated by
n individual sensors. This is often achieved by maximal
entropy partitioning of the phase space and assigning
a distinct symbol to each partition [1]. The set of sym-
bols thus generated is called an alphabet for the dynamic
system. As the system evolves in time, its trajectory is
assumed to be circumscribed in a compact region of the
n-dimensional phase space. Under specific stimuli, the
trajectory travels through and touches various cells in

2



the partition, generating the corresponding symbol from
the alphabet. The generated multivariate asynchronous
streams of sensor data can thus be encoded as a univari-
ate sequence of symbols as shown in Fig. 1.

Figure 1: Semantic Representation of Sensor Data

The size δ of the cells of a partition and the cardinality
of the alphabet are critical to the accuracy and complex-
ity of semantic modeling and subsequent pattern dis-
covery. The objective is to simultaneously capture the
high fidelity dynamics of the system by choosing a small
enough δ and keep the alphabet size small for control-
ling computational complexity. Maximal entropy parti-
tioning has the benefit that partitions are coarser in re-
gions of low data variability and finer in regions of high
data variability. A phase space partition is called a gen-
erating partition of the phase space if every symbolic
orbit uniquely identifies a system trajectory.

As an alternative to phase space partitioning, the time
series data set Y = {. . . , yk, yk+1, . . . , y0} of sen-
sor observations can be directly used for symbolic dy-
namic encoding. In this regard, several techniques have
been reported in the literature that suggest appropriate
transformation of the signal before employing the par-
titioning method for symbol generation to retrieve the
relevant information from time series data. One such
technique is based on wavelet transform of time se-
ries data, called Wavelet-Space Partitioning (WSP) [1]
that is particularly effective with noisy data from high-
dimensional dynamical systems. Another reported tech-
nique is Analytic-Signal-Space Partitioning (ASSP) [4]
based on the Hilbert transform of time series data. The
Hilbert transform has the added advantage that it yields
an unambiguous definition of the symbol sequence in
both space and time simultaneously and is robust to
noise with relatively low computational cost.

3.2 Nonlinear Filtering and State Machine
Construction Algorithms

The objective of nonlinear filtering of a symbol se-
quence is to encode small order representations of the
semantic structure of recurrence in the sensed data.
The mathematical framework in which the nonlinear fil-
tering techniques are laid out is statistical inferencing
based on the construction of Probabilistic Finite State
Automata (PFSA) from a symbolized sequence of sen-
sor data. In their survey paper, Angluin and Smith [5]
define inductive inference as the process of hypothesiz-
ing a general rule from examples. The process of non-
linear filtering yields such a rule in the form of a PFSA
which captures the internal structure of a black box that
emits the symbolized sequence constructed from the
sensor data.

Several algorithms for construction of PFSAs from a
symbol sequence have been proposed in the literature.
Initially, ε machine construction was proposed by Shal-
izi and Crutchfield [6]. This construction requires parti-
tions of fixed length histories of a quasi-stationary pro-
cess by defining equivalence classes of system trajecto-
ries that have a common morph,i.e. probability distribu-
tion of the next symbol. These equivalence classes de-
fine the causal states of the system. The evolution of the
next symbol of the alphabet causes a transition from the
current causal state of the system to another with proba-
bility p(i, j). Together, the set S of causal states and the
transition matrix P are called the εmachine generated by
the ensemble of data. The Causal State Splitting Recon-
struction (CSSR) algorithm described in [6] formulates
a PFSA that represents the ε-machine from a given en-
semble of data. However, this method is not suitable for
in-situ adaptation because it requires the recomputation
of the causal states after every evolution of a symbol.
To make ε-machines useful for time critical physical
computing, the D-Markov method of PFSA construc-
tion, detailed in [1], sustains the same finite state set of
causal states for successive shifts of windows of a fixed
length D representing the symbol subsequences gener-
ated during successive time epochs.

A finite state machine is constructed, where the states
of the machine are defined corresponding to a given al-
phabet set Σ and window length D. The alphabet size
|Σ| is the total number of partition segments while the
window length D is the length of consecutive symbol
words, which are chosen as all possible words of length
D from the symbol sequence. Each state belongs to an
equivalence class of symbol words of length D or more,
which is characterized by a word of length D at the
leading edge. Therefore, the number n of such equiv-
alence classes (i.e., states) is less than or equal to the to-
tal permutations of the alphabet symbols within words
of length D. That is, n ≤ |Σ|D; some of the states may
be forbidden with zero probability of occurrence. For
example, if Σ = {0, 1}, i.e., |Σ| = 2 and if D = 2, then
the number of states is n ≤ |Σ|D = 4; and the possible
states are 00, 01, 10 and 11, as shown in Fig. 2
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Figure 2: Example of finite state machine with |D| = 2
and Σ = {0, 1}

The choice of |Σ| and D depends on specific exper-
iments, noise level and also the available computation
power. A large alphabet may be noise-sensitive and a
small alphabet could miss the details of signal dynam-
ics. Similarly, while a larger value of D is more sensi-
tive to signal distortion, it would create a much larger
number of states requiring more computation power.

Using the symbol sequence generated from the time
series data, the state machine is constructed on the
principle of sliding block codes [7]. The window of
length D on the symbol sequence . . . σi1 , σi2 . . . σik

. . .
is shifted to the right by one symbol, such that it
retains the last (D-1) symbols of the previous state
and appends it with the new symbol σi`

at the end.
The symbolic permutation in the current window gives
rise to a new state. The machine constructed in
this fashion is called the D-Markov machine [1], be-
cause of its Markov properties. A symbolic sta-
tionary process is called D-Markov if the probabil-
ity of the next symbol depends only on the previous
D symbols, i.e., P

(
σi0 |σi−1 . . . σi−D

σi−D−1 . . .
)

=
P
(
σi0 |σi−1 . . . σi−D

)
.

The states of the machine are causal states and if max-
imal entropy partitioning is used to generate the symbol
sequence then the probability for the system to be in any
one of these states is uniform by construction. Hence,
the reference distribution is uniform.

3.3 Pattern Discovery Algorithms
The PFSA generated using the D-Markov machine can
be used in-situ to detect behavioral changes at a slower
time scale.

The finite state machine constructed above has D-
Markov properties because the probability of occur-
rence of symbol σi`

on a particular state depends only
on the configuration of that state, i.e., the previous D
symbols. Once the alphabet size |Σ| and word length
D are determined at the nominal condition (i.e., time
epoch t0), they are kept constant for all slow time epochs
{t1, t2, . . . tk . . .}. That is, the partitioning and the state

machine structure generated at the nominal condition
serve as the reference frame for data analysis at sub-
sequent slow time epochs.

The states of the machine are marked with the cor-
responding symbolic word permutation and the edges
joining the states indicate the occurrence of a symbol
σi`

. The occurrence of a symbol at a state may keep
the machine in the same state or move it to a new
state. On a given symbol sequence . . . σi1 , σi2 . . . σi`

. . .
generated from the time series data collected at a
slow time epoch, a window of length D is moved
by keeping a count of occurrences of word sequences
σi1 . . . σiD

σiD+1 and σi1 . . . σiD
which are respectively

denoted by N(σi1 . . . σiD
σiD+1) and N(σi1 . . . σiD

).
Note that if N(σi1 . . . σiD

) = 0, then the state q ≡
σi1 . . . σiD

∈ Q has zero probability of occurrence.
For N(σi1 . . . σiD

) 6= 0, the transitions probabilities are
then obtained by these frequency counts as follows:

πjk ≡ P (qk|qj) =
P (qk, qj)
P (qj)

=
P (σi1 . . . σiD

σ)
P (σi1 . . . σiD

)

⇒ πjk ≈
N(σi1 . . . σiD

σ)
N(σi1 . . . σiD

)

where the corresponding states are denoted by qj ≡
σi1 , σi2 . . . σiD

and qk ≡ σi2 . . . σiD
σ. The state tran-

sition matrix, Π = [π]jk , satisfies the properties of a
stochastic matrix, i.e., Σkπjk = 1∀j.

As the system transitions from one state to another,
the relative frequency of its visiting a particular causal
state is updated resulting in a new frequency distribution
F . If F is sufficiently distinguishable from the reference
distribution, then the dynamic system has deviated from
its original pattern and a new pattern is said to have been
identified. Other more effective measures of semantic
pattern deviation or semantic distance have been devel-
oped recently and are given in [8] and [9].

4 Artificial Language Properties
The above methods of formulating a mechanism that is
most likely to generate a given sequence of sensor data
are particularly effective for providing a succinct sta-
tistical characterization of the evolutionary physics in-
herent in the data for time critical situation awareness,
fusion and prediction. It differs from classical methods
by not requiring an initial guess at a prior distribution
like the Bayesian approach which then proceeds to up-
date the prior by maximizing the log likelihood ratio.
In this approach, the model is discovered in the struc-
ture of the data stream and physical association of the
identified states and graph connectivity with the causal
semantics is a consequence of inherent recurrence prop-
erties of the data [10]. A generating partition provides
maximal compression that preserves the predictability
of the system state. Other methods like Hidden Markov
Models (HMM), Neural Networks and Particle Filtering
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methods use a fixed topology and require more training
than updating relative frequencies of state transitions in
PFSAs. Experimental results in [11] show that learning
a PFSA can be 10-100 times faster than that in HMM.

Another major difficulty in physical computing is the
lack of availability of environmental models which in-
fluence system performance. By modeling the physi-
cal system as a multi-agent system, the environment is
modeled as an agent that interacts with other agents.
The exact dependencies of multiple agents are not ex-
plicitly modeled but are reflected in the ensemble of
data generated in the operational environment. In the
Bayesian approach, in contrast, adequate knowledge of
the environment and its influence must be captured into
a priori knowledge for making accurate predictions. In
Bayesian networks, state machines are hand coded and
a priori probability estimates are necessary. In-situ up-
dates based on expectation maximization algorithms are
not computationally feasible as opposed to semantic
compression in the above mentioned physical comput-
ing algorithms. Hence, the formal machine language
is superior for in-situ inductive inference-learning of
a generating rule (represented as PFSA) from the ob-
served data. It is also more noise tolerant due to in-
herent coarse graining and because the construction of
the PFSA ignores sensing imperfections that may cause
non-recurrent observed behavior. Further results com-
paring performance of above machine learning methods
are given in [2].

5 Distributed Machine Learning
During the training phase of an experiment, a library
may be developed off-line consisting of all significant
causal patterns xi of interest observed in data collected
by a single sensor. As a distributed set of homogeneous
sensors with limited on-board computation and commu-
nication capability collect data in a sensor field, each in-
dividual sensor can process its own data and formulate
its own D-Markov machine for the observed semantic
pattern. If this semantic pattern matches an element
xi from the on-board library then the sensor has iden-
tified a pattern of interest. The state machine structure
generated off-line serves as the reference frame for data
analysis and stays fixed from sensor to sensor and for
subsequent slow time epochs. Since individual sensors
achieve only limited confidence levels for classifying
patterns of interest in noisy data, it may be necessary
for them to collaborate with other sensors to achieve a
high level of confidence. In this case the sensor needs
to communicate only a code for the library pattern that
it is observing, and form a cluster with nearest neigh-
bors observing the same pattern within a small semantic
distance. Communications are modeled as receive and
send message passing events. Single-hop and multi-hop
dynamic clustering algorithms based on semantic infor-
mation are presented in [12] and [13]. Since, the repre-
sentation of the emerging pattern differs only in relative

frequency of transitions from the reference state space,
data from multiple sensors can be semantically fused in-
situ to classify observed patterns with high confidence
as shown in the following section.

6 Undersea Mine-hunting Appli-
cation

Recent developments in portable Unmanned undersea
Vehicles (UUVs) with advanced on-board sensing de-
vices like side scan sonar, and limited computational
capability, are expected to transform undersea mine-
countermeasure operations through adaptive collabora-
tion in searching for and classifying mine-like-objects.
The sonar sensors generate a monochromatic mapping
of sea-bed bottom objects and vehicle induced image
artifacts. Traditional approaches based on assigning a
threshold of brightness to mapped features do not work
well in distinguishing mine-like objects in a textured
background. Bottom features themselves generate many
false alarms. Calder et. al [14] have proposed improve-
ments to traditional Bayesian detection methods using
statistical and geometric properties of objects to reduce
false alarms.

This section exemplifies the use of semantic analysis
for pattern discovery in sonar images for detection of
undersea mine-like objects. Data for training and vali-
dating the algorithms was obtained from the Naval Sur-
face Warfare Center. Ground truth information is avail-
able for a set of images acquired by a UUV about the
location of mines. The ensemble of data sets is parti-
tioned into a training set of 100 images and a test set of
100 images for further analysis. Parameters required for
the application of symbolic dynamics, such as alphabet
size are chosen based on the ground-truth statistics. A
geometric model, similar to [14] has been used for fea-
ture extraction to detect and classify mines in a sonar
trace. This model is used in the training set to obtain
the distributions of the various regions of a mine. A
sequence of tests is determined to characterize a mine
according to the identified distributions.

More details for applying the semantic analysis meth-
ods to two-dimensional images are given in [3] and [17].
Two important parameters need to be determined for
successful partitioning of data. The first parameter is
the alphabet size |Σ| and the second is the vector of the
partition segment boundaries. In mine detection, the es-
sential robust features that need to be preserved are the
bright reflections from the front of an object protruding
above the sea bed and the long shadow that follows the
object. Apart from this information, clutter is an im-
portant feature that has been used in the pattern analysis
presented in this paper. It is observed that only three
symbols are sufficient to characterize the features of in-
terest. Fig. 3 shows histograms of density functions
for mine, shadow, and clutter regions. The histograms
depict the number of pixels vs pixel intensity for each
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region. These histograms are generated from the a pri-
ori known ground-truth information about the exact lo-
cation of mines from the training data set of 100 sonar
images. The histograms for the three regions are clearly
separated. Therefore, a distinct single symbol in the al-
phabet Σ is assigned to each of the three features cor-
responding to mine, shadow and the clutter. The infor-
mation gained by increasing the alphabet size is found
to be too little to offset the additional computation. A
point to note from the clutter histogram in Fig. 3 is that
a small neighborhood around the mine region causes
more bright spots from the mine to be relegated to the
clutter region.

Figure 3: Histogram of sonar wave reflections for
mines, shadows and clutter. The distribution of pixel
intensities in the regions of mine-clutter and shadow-
clutter showed similar trends, therefore, they have been
combined together in a single histogram of clutter re-
gion.

The next important consideration is selection of seg-
ment boundaries of the partition. Traditional partition-
ing techniques (e.g., uniform partitioning and maximum
entropy partitioning [15]) may not adequately capture
the details of mine patterns; and conventional data-
driven partitioning methods lead to a large alphabet size.
This paper makes use of the statistical model informa-
tion from the three histograms in Fig. 3. Partitioning is
constructed by assigning symbol a to high intensity pix-
els ranging from 180 to 255 on the gray scale; similarly,
symbol b is assigned to medium intensity pixels ranging
from 56 to 179; and symbol c is assigned to low inten-
sity pixels ranging from 0 to 55. As seen from Fig. 3,
approximately 97% of the pixels in the mine histogram
correspond to the symbol a (i.e., bright pixels); simi-
larly, approximately 89% of the pixels in the shadow
histogram correspond to the symbol c (i.e., dark pixels).
A majority of the remaining (i.e., moderately dark) pix-
els corresponding to the symbol b belong to the clutter
region. Thus, the entire image is symbolized and repre-
sented by a two dimensional array of symbols belonging
to the set Σ = {a, b, c}. This partitioning scheme en-
ables robust detection of mines with a high probability
of detection and a very low probability of false alarms

as discussed in the results section. Further, this symbol-
ization greatly reduces the amount of memory required
for any processing. The next subsection explains the
method of feature extraction using the geometric model
for mine detection.

A finite state Markov machine is now constructed,
where the set of machine states is isomorphic to the
symbol alphabet Σ [1]. As there are three symbols in Σ,
the dimension of the state space is also 3. Symbol a cor-
responds to a bright pixel state in the sonar image, while
symbol c corresponds to a dark pixel state that may be
a part of a shadow. Symbol b denotes a mid-level pixel
state.

A region β in the image space represents one of the
three regions in the geometric model, i.e, the mine re-
gion, the shadow region, and the clutter region. The
Markov assumption allows construction of the state
probability vector p that is chosen to be the feature
vector for a given bounded region β. The elements of
p , [pa pb pc]T are calculated by frequency counting
as:

pi = Prob(σi ∈ Σ|β) ≈ N(σi)∑
j∈{a,b,c}N(σ)

, i = a, b, c

where N(•) is the count of • in β. The construction of
the feature vector p follows the sliding block code [16],
where sliding of the geometric model along the sonar
image is depicted in Fig. 4. For every pixel location
(i, j), the geometric model is constructed around that
pixel, such that (i, j) lies at the center point of the mine
region. In this way, the feature vector is generated for
each region of the geometric model. Therefore, for any
pixel location (i, j) on the sonar image, the following
four feature vectors (see Fig. 5) are generated.

1. PM (i, j) =
[
pM

a (i, j) pM
b (i, j) pM

c (i, j)
]T

is con-
structed from the mine region.

2. PS(i, j) =
[
pS

a (i, j) pS
b (i, j) pS

c (i, j)
]T

is con-
structed from the shadow region.

3. PMC(i, j) =
[
pMC

a (i, j) pMC
b (i, j) pMC

c (i, j)
]T

is constructed from the clutter region around the
mine.

4. PSC(i, j) =
[
pSC

a (i, j) pSC
b (i, j) pSC

c (i, j)
]T

is
constructed from the clutter region around the
shadow.

A classifier was then constructed for identification of
mines and non-mine-like objects based on mine classi-
fication methods used in [17].

A sliding window method is used to implement the
geometric model and the classifier described above. For
each pixel in the image, a model is constructed, as
shown in Fig. 3. Assuming that the pixel under con-
sideration is at the center of the mine region, the four
feature vectors PM , PS , PMC and PSC are generated.
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Figure 4: Symbolic dynamics-based mine detection

Then, the classification scheme is applied and a binary
decision is made to determine whether the pixel location
belongs to a potential mine. A binary number of 1 or 0 is
assigned to each pixel of the image based on the classi-
fication as a mine or nonmine- like object, respectively.

Figure 5: Geometric model for mine detection

To construct the receiver operating characteristics
(ROC), a test data set consisting of 100 images is con-
sidered. These images consist of various textured back-
grounds, with different types of sea-bed objects and
vehicle-induced image artifacts. The images are in the
range of 0 to 255 on the gray scale. Each of the four
thresholds (i.e., λ1, λ2, λ3, and λ4) are varied from 0
to 1 in steps of 0.1 and the pattern analysis algorithm is
executed over the entire set of test data. The number of
false alarms, and the number of correct detections are
counted in each threshold parameter combination. The
ROC plot is constructed by joining the outermost points
on the plot of probability of detection (PD) versus false
alarm rate (FAR) per image as shown in Fig. 6. For sub-

sequent analysis, the chosen thresholds (λ1 = 0.8, λ2 =
0.7, λ3 = 0.4 and λ4 = 0.4) gives a probability of detec-
tion of 92% and 1.5 false alarms per image (or 900m2).

Figure 6: Receiver Operating Characteristics for Sym-
bolic Dynamics based detection

This section presents the results generated upon exe-
cution of the pattern analysis algorithm on one hundred
images from the test data set that is different from the
training data set used to generate the partition.

Four representative images are shown in Fig. 7, each
showing different levels of background noise, and sea-
bed clutter. A representative set of threshold values
is chosen to yield a high detection probability with an
acceptable false alarm rate. An appropriate operating
point is chosen on the ROC curve based on the premise
that a missed detection cost is much higher than a false
alarm. Tests show that the algorithm is capable of de-
tecting mines in a high concentration of sea-bed clutter,
including mines buried under vehicular artifacts. The
algorithm has been executed on the entire set of test
data with the same values of representative thresholds.
With alternative choices of operating points on the ROC
curves, the mine detection probability can be increased
at the expense of increased false alarm rate as a trade-off
between Type I and Type II errors.

The major advantages of the proposed pattern analy-
sis algorithm for underwater mine detection are delin-
eated below.

1. The algorithm is computationally efficient in terms
of execution time and memory requirements as a
consequence of a small alphabet and a small num-
ber of states in the Markov machine of the algo-
rithm. As such the entire algorithm can be pro-
grammed and powered on a small microprocessor
on-board a UUV.

2. In contrast to traditional Bayesian methods such as
the likelihood-ratio-test, the symbolic pattern anal-
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ysis does not require a priori knowledge of prob-
ability distribution for characterizing mines and
non-mine-like objects. Specifically, the proposed
algorithm is robust even if the unknown distribu-
tions are multi-modal.

7 Higher Level Machine Semantics
and Information Context

The above method of physical computing has an impor-
tant characteristic that makes it suitable for higher levels
of situation awareness and higher levels of formal ma-
chine languages for command and control of distributed
complex dynamic missions. Sensor data streams entail
complex and dynamic dependencies and statistical pat-
terns due to operational or environmental stimuli which
can be exploited at higher levels of decision-making.
Multiple decision-making contexts with differing and
overlapping information semantics, spatial scales and
temporal assumptions, need to capture the relevant de-
pendencies embedded in the data streams. The physi-
cal computing framework defined in this paper can be
naturally extended to multiple levels of hierarchy in
both space and time for machine learning and decision-
making. The multi-scale dynamics at the fast time scale
and local interactions can be encoded through symbol-
ization and causal pattern discovery methods described
above, yielding a library of PFSAs. These PFSAs them-
selves form a higher level alphabet for encoding the evo-
lutionary interactive dynamics of multiple sensor nodes
in a region at the next level of fusion, decision and con-
trol, as shown in Fig. 8. Of course, the semantics at
each level of the hierarchy represent abstract events that
capture the decision-making structure at higher levels.
Thus, each element of the higher level defines a context
in which the lower level must operate.

8 Artificial Languages and Ma-
chine Collaboration

The process of learning the evolving situational contexts
from spatio-temporal data streams is that of generating
higher level formal language semantics that capture
the structural dynamics and statistical predictability
embedded in the original data. Conceptually, this
process is the inverse process of generating a high level
instruction for a computer to execute it at the machine
level. Hence, physical computing reverses the role of
computation in relating function to machine execu-
tion. Whereas a compiler requires the specification
of semantics (executable instruction) to manipulate
data, physical computing infers causal semantics
from multi-scale data observable in physical systems.
The operational contexts thus generated represent
distributed machine cognition of higher level function Figure 7: Representative images from test data set
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Figure 8: Multi-Layered Spatio-temporal Semantics

that generates the operational dynamics. If these higher
level semantics are projected onto events of human
cognition during a training phase, then distributed
control algorithms can be devised for in-situ automated
control of complex missions embedded in the evolving
physics of a physical system. One such language
is C3L- Control, Communications and Computation
Language for collaboration of multiple devices. The
syntax and semantics of this language are presented
in [18] and updated in [19] a compiler development for
executing mission scripts in this language is presented
in [20].
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