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How do we develop programs that are easy to express, easy to reason about, and able to achieve
high performance on massively parallel machines? To address this problem, we introduce Graph-
Step, a domain-specific compute model that captures algorithms that act on static, irregular,
sparse graphs. In GraphStep, algorithms are expressed directly without requiring the program-
mer to explicitly manage parallel synchronization, operation ordering, placement, or scheduling
details. Problems in the sparse-graph domain are usually highly concurrent and communicate
along graph edges. Exposing concurrency and communication structure allows scheduling of par-
allel operations and management of communication that is necessary for performance on a spatial
computer. We study the performance of a semantic-network application, a shortest-path ap-
plication and a max-flow/min-cut application. We introduce a language syntax for GraphStep
applications. The total speedup over sequential versions of the applications studied is up to 4
orders of magnitude. The benefit of spatially-aware graph optimizations (e.g. placement and
route scheduling) for the applications studied is up to a 30 times speedup.

Categories and Subject Descriptors: C.m [Computer Systems Organization]: Miscellaneous

General Terms: Languages, Algorithms, Performance

Additional Key Words and Phrases: Spatial Computing, Compute Model, Parallel Programming,
Graph Algorithm, GraphStep

1. INTRODUCTION

Managing spatial locality is essential to extracting high performance from modern and fu-
ture integrated circuits. Technology scaling is giving us more transistors, higher cross-chip
communication latency relative to operation latency, and fewer cross chip wires relative to
transistors. The first effect means we have more parallelism to exploit. The second two
mean that communication optimizations are primary and are essential concerns that must
be addressed to exploit the potential parallelism. Communication latency can dominate the
critical path of the computation and interconnect throughput can be the performance bot-
tleneck. By carefully selecting the location of operators and data in space, we can exploit
parallelism effectively by minimizing signal latency and message traffic volume.

We introduce the GraphStep compute model [deLorimier et al. 2006]. The set of ap-
plications which GraphStep captures are those that are centered on large, static, sparse
graphs. Typically the application iterates over steps where operations are performed on
graph nodes, data is sent along edges, and there is a global broadcast to and reduce from
nodes. We draw applications from domains such as semantic networks, CAD optimization,

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-022.



2 . M. deLorimier et al.

numerical computations, and physical simulations. The applications we test are queries on
ConceptNet, a semantic network, circuit retiming, which uses a shortest-path algorithm,
and the max-flow/min-cut kernel for vision tasks.

By using the domain-specific GraphStep model we can map high-level, machine inde-
pendent programs to spatially optimized implementations. In this domain, the graph struc-
ture captures the communication and computation structure that allows us to optimize for
spatial locality. The domain-specific model abstracts out race conditions, synchronization
details, operation and data placement, and operation scheduling.

We model the performance of GraphStep applications mapped to FPGA logic. FPGA
hardware provides a highly parallel, spatial computing platform with the flexibility to sup-
port high communication bandwidth, high memory bandwidth, and low synchronization
overhead. The logic architecture placed on the FPGAs is a collection of processing ele-
ments (PEs) interconnected with a Fat-Tree [Leiserson 1985] (Figure 6). Each PE has its
own memory and compute logic.

The contributions of this work include:

1. We illustrate a concrete programming language for GraphStep (Figure 2) and give its
formal semantics (Appendix A).

2. We quantify the benefit of a spatial implementation compared to a sequential implemen-
tation (Section 6).

3. We quantify the benefit of spatially-aware optimizations enabled by the GraphStep model,
which are placement for locality, graph node decomposition, and static computation and
communication scheduling (Section 5).

In Section 2 we explain the GraphStep model and compare it to other parallel compute
models. Section 3 gives example GraphStep applications. Section 4 describes the hard-
ware implementation. Section 5 describes and evaluates the optimizations performed on
our example applications. Section 6 compares our example’s performance in the Graph-
Step model to equivalent algorithms implemented sequentially. Section 7 concludes. Ap-
pendix A summarizes the formal semantics for GraphStep.

2. GRAPHSTEP MODEL

GraphStep is designed to express algorithms that work on sparse graphs. The computation
structure follows the graph structure, so changes made to node state propagate changes
along edges to neighboring nodes. This parallel activity is sequenced into steps, with one
set of synchronous node updates and propagations per step. In general, a subset of nodes
are updated in each step. A subset of the updated nodes then propagate changes to their
neighbors. A sequential process initiates and controls parallel activity on the graph. It
broadcasts to nodes and receives global reductions from nodes.

An operation on a node or edge generates messages which trigger operations on neigh-
boring nodes and edges. The static graph structure is a directed multi-graph, so nodes send
messages to their outgoing edges, and edges send messages to their destination nodes. The
atomic action of an operation is to (1) input incoming message state along with the object
state, (2) update object state, and (3) output new messages. The invocation of an operation
is called an operation firing.

To match the common iterative structure of graph algorithms, this message passing ac-
tivity is divided into graph steps. A graph step consists of three phases:

1. reduce — Each node performs a reduction on the incoming messages received along its
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input edges. The reduction should be associative and commutative.

2. update and send — Each node with a reduction result updates its state and outputs mes-
sages to its output edges. The update operation may also output a message to a global
reduction.

3. edge — Each edge with an input message processes it, possibly updates its state, and
outputs a message to its destination node to be processed in the next graph step.

At most one operation occurs on each edge and at most one update operation occurs on
each node. When multiple messages are pending to a node, they are processed as a single
reduction operation. This means no race conditions can occur, and the programmer need
not reason about relative timing of operations.

A sequential controller broadcasts messages to nodes to initiate the iteration. The broad-
cast value is fed to a node update operator at each receiving node. Graph steps may con-
tinue until the computation has quiesced and no messages are generated. For example,
a graph relaxation usually only generates messages upon changes, so upon convergence
there are no more messages (e.g. Bellman-Ford [Cormen et al. 1990]). Alternatively, the
sequential component of the algorithm may decide when to end the iteration. For example,
Conjugate Gradient [Hestenes and Stiefel 1952] uses a global reduce to decide when the
error is small enough to stop.

2.1 Enabled Optimizations

In order to take advantage of GraphStep on a spatial implementation (e.g. FPGA or multi-
core processors) we must minimize communication work and latency and load balance
memory, computation and communication to fit into small, distributed processing ele-
ments. To do this we use the exposed graph communication structure and exploit the
associativity and commutativity properties of reduce operations.

2.1.1 Placement for Locality. The static graph structure is used to maximize the lo-
cality of neighboring nodes. The number of neighboring nodes placed into the same PE
is maximized, and the distance between neighboring nodes in different PEs is minimized.
This minimizes the volume of message traffic between processing elements. Since lo-
cal communication is fast compared to cross-chip communication, it also minimizes each
graph step’s critical path latency due to message passing.

2.1.2  Node Decomposition. Load-balancing nodes into PEs must be performed to min-
imize the memory area per PE and minimize the computation work per PE. Often nodes
with large numbers of neighbors inhibit load-balancing when scaling to many processing
elements. Associativity and commutativity of reduction operations allows us to decom-
pose a large node and distribute it across multiple processing elements (Figure 1). Node
decomposition transforms a node with a large input-arity to a fanin tree of reduce oper-
ators followed by the state-holding root node. A node with a large number of outputs is
decomposed into a root with a fanout tree to fanout messages. Note that knowledge of the
structure of the graph is required to make connections from fanout tree leafs to fanin tree
leafs.

2.1.3  Static Scheduling. The static graph structure is used to pre-schedule operation
firings and message routes. Upon loading the graph, a static schedule is computed for
a single graph step where each node and edge is active. Each PE and network switch
inputs the pre-determined firing and routing choices from a dedicated memory. These
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Fig. 1. Node decomposition

time-multiplexed memories store a data-independent, VLIW instruction sequence that is
evaluated once per graph step.

Without knowledge of the static graph, a dynamic schedule must be computed online by
(1) a packet-switched network to route messages and (2) extra PE control logic to fire op-
erations. We find that static scheduling is typically more efficient than dynamic scheduling
in terms of hardware area and time (Section 5). The dynamically scheduled case uses more
hardware area than the statically scheduled case due to the high cost of packet-switched in-
terconnect switches. Further, the static router performs offline, global routing to minimize
network congestion. The static scheduler also combines the compute and communicate
phases of each GraphStep.

2.1.4 Hardware. We can also specialize hardware to the GraphStep model. Node and
edge operators and node and edge memories can be pipelined so each operator fires at the
rate of one per cycle. To feed the operator pipeline messages must be input and output
at the rate of one per cycle. Lightweight message handling is enabled by the GraphStep
model since logic need not perform message ordering or buffer resizing.

Global broadcasts and reduces could be a significant source of latency since they must
cross the entire machine. We map them to dedicated binary tree interconnect to elimi-
nate potential congestion with other messages and eliminate latency due to interconnect
switches.

2.2 Compute Model Comparison

This section explains how GraphStep differs from related concurrency models. GraphStep
is high level in its domain, which reduces the detail the programmer must specify and man-
age. The compiler and runtime use the exposed communication structure to optimize for a
spatial implementation.

Actors: In actors languages (e.g. Actl [Lieberman 1987] and ACTORS [Agha 1998]),
computation is performed with concurrently active objects that communicate via message
passing. All computation is reduced to atomic operations that mutate local object state
and are triggered by and produce messages. Similar to actors, GraphStep has the above
restrictions. The primary difference is that actors programs are low-level descriptions of
any concurrent computation pattern on objects, rather than a high-level description of a
particular domain. The communication structure is, in general, dynamic and hence not
visible to the compiler.

Streaming: Streaming persistent data-flow languages have a static or mostly static
graph of operators that are connected by streams (e.g. Kahn Networks [Kahn 1974],
SCORE [Caspi et al. 2000], Ptolemy [Lee 2005], Brook [bro 2004], Click [Shah et al.
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2004]). These are used for high-performance applications such as packet switching and
filtering, signal processing and real-time control. Like GraphStep, streaming data-flow
languages are often high-level, domain-specific, and the spatial structure of a program can
be used by a compiler. The primary difference is that in streaming computations the persis-
tent nodes are operators given by the program, whereas in GraphStep the persistent nodes
are data objects given by input to the program. For GraphStep the global graph steps free
the implementation from the need to track an unbounded length sequence of tokens on
each channel.

Data Parallel: Data parallelism [Blelloch et al. 1993; Koelbel et al. 1994; Hillis 1985;
Dean and Ghemawat 2004] is a simple way to orchestrate parallel activity. A thread applies
an operation in parallel to the elements of a collection. The operation may be applied to
each element independently (map). It may also be a reduction or parallel-prefix operation
(reduce) [Hillis and Steele 1986; Dean and Ghemawat 2004].

Machines that are entirely SIMD or have SIMD leaves [Hillis 1985; Habata et al. 2003;
Lindholm et al. 2008]) are and important target for data-parallel languages. Like Graph-
Step, data-parallel programs can be very efficient since they map well to SIMD hardware.
However, they do not typically describe operations on irregular data-structures efficiently
and do not expose the communication structure of the application to the compiler.

Bulk Synchronous Parallel: BSP is an abstract model of parallel computers [Valiant
1990]. Programs written with a BSP library or language use barriers to synchronize be-
tween processors. Processors input messages from the last barrier-synchronized step and
output messages to the next barrier-synchronized step. Unlike GraphStep, BSP programs
do not expose the communication structure to the compiler.

3. APPLICATIONS

A variety of graph algorithms fit the GraphStep domain. We test the FPGA implementation
performance of GraphStep on Bellman-Ford, Preflow-Push, and ConceptNet.

3.1 lterative Numerical Methods

These are used for solving linear equations, finding eigenvalues and numerical optimiza-
tion. In the examples Conjugate Gradient, Lanczos, and Gauss-Jacobi a commonly used
Compressed Sparse Row representation for the matrix uses one node to represent a row of
the matrix and one edge to represent a non-zero of the matrix. Each matrix-vector multiply
is performed by one graph step, and each global dot-product is performed by a global re-
duce. The spatial implementation of sparse matrix-vector multiply from [deLorimier and
DeHon 2005] achieved a speedup of an order of magnitude over highly tuned sequential
implementations.

3.2 Graph Relaxation Algorithms

Algorithms in this sub-domain are composed of relaxation operations on directed edges.
A relaxation operation on an edge updates its destination node’s state based on its source
node’s state. If the destination node’s state computed by the relaxation is less than its
current state then its state changes. Every time the state of a node changes its out edges
must relax. When there are no remaining relaxations, node states have reached a fixed
point and the algorithm is finished.

If relaxations are timed improperly then there could be an exponential number of re-
laxation operations compared to the optimal timing. Synchronizing relaxations into graph
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seq Graph {
Node nodes; // nodes is a set of objects of type Node
Node source; // source is a pointer to one object of type Node

boolean bellman_ford() {
unsigned nnodes = nodes.size();
source.min_edge (0) ;
// iterate until convergence (no nodes updated distance in the last iteration)
// or iter==nodes.size() in which case there is a negative cycle
unsigned iter;
unsigned active = true;
for (iter = 0 ; active && iter < nnodes ; iter++) {
// step is a primitive function which initiates one graph step and
// returns true iff there are pending operation fires
active = step();
}
// return true iff there is no negative cycle
return iter < nnodes;

}
}

node Node {
Edge edges;
float distance;

// operate on two messages, bound to distancel and distance2 respectively
reduce tree min_edge (float distancel) (float distance2) {
if (distancel < distance2) return distancel;
else return distance?2;
}
update min_edge (float newdist) {
if (newdist < distance) {
distance = newdist;
edges.propagate (distance) ;
}
}
}

edge Edge {
Node to;
float length;
fwd propagate (float distance) {
to.min_edge (distance + length);
}

}

Fig. 2. Bellman-Ford code

ACM Journal Name, Vol. V, No. N, Month 20YY.



Spatial Hardware Implementation for Sparse Graph Algorithms in GraphStep . 7

App Input Nodes Edges
Bellman-Ford | s38584.1 6448 20840
s38417 6407 21344
clma 8384 30462
ex5p 1065 4002
pdc 4576 17193

Preflow-Push | BVZ-tsukubal0_8 45273 | 143592
BVZ-tsukubal0_4 90055 | 285220
BVZ-tsukubal0_2 | 185388 | 591552
ConceptNet small 14556 27275
default 224876 | 553836

Fig. 3. Characteristics for Benchmark Graphs used with Sample Applications

steps bounds the number of graph steps by the number of nodes. Problems which may
use relaxation algorithms include shortest-paths, finding a depth first search tree, identi-
fying strongly connected components [Chandy and Misra 1982], global optimizations on
program graphs [Kildall 1973], max-flow/min-cut, and constraint propagation in combina-
torial problems like CNF SAT.

3.2.1 Bellman-Ford. Bellman-Ford is a shortest-paths algorithm [Cormen et al. 1990].
Each edge in the graph has a length, possibly negative. It finds the shortest path from a des-
ignated source node to all nodes, or detects the presence of a negative cycle. Each iteration
takes a set of nodes whose distance from the source was updated on the previous iteration.
Each out edge from the updated nodes is relaxed, which means that the shortest path so-far
through it is checked against the shortest previously computed path to its destination node.
If the new path is shorter, then the node updates its distance. The iteration continues until
it quiesces, or until it detects a negative cycle.

Figure 2 shows Bellman-Ford in a high-level language for GraphStep. This high-level
language expression does not automatically compile to hardware yet. Our algorithms are
currently expressed in a slightly lower-level language that we expect will be an easy map-
ping target from this high-level language. For simplicity, the example omits code required
to setup the graph.

We test Bellman-Ford as the kernel of register retiming of a circuit to find the minimum
cycle time [Leiserson et al. 1983].

3.2.2  Preflow-Push. Preflow-push uses interactions between neighboring nodes to find
the max-flow on a graph from a single source to a single sink [Cormen et al. 1990]. Preflow-
push is a relatively more complex relaxation algorithm, that propagates updates through a
graph. Unlike Bellman-Ford it always converges to a solution. It uses two basic opera-
tion types on nodes, and whether an operation can be applied to a node depends on its
neighbors’ states. The GraphStep algorithm cycles through four types of graph steps with
different operations on nodes and edges in each.

We test Preflow-Push as the kernel of stereo vision problems [Boykov et al. 1998; Kol-
mogorov and Zabih 2001].

3.3 CAD Algorithms

CAD algorithms typically perform NP-hard optimizations on a circuit graph. Multilevel
partitioning algorithms cluster nodes and iteratively reassociate them with partitions [Karypis
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Component Slices Each | Number Slices
Total 1250K
Network total 411K
switch logic 28 992 28K
switch context memory 342 992 339K
channels 44K
PE total 410 2048 840K
logic 183 2048 375K
application memory 410 2048 840K
context memory 208 2048 426K

Table I. Area model for ConceptNet with the default graph using static hardware with 2048 PEs. Area is measured
in terms of Virtex6 slices (see text).

and Kumar 1999]. Iterative placement algorithms move nodes to reduce cost functions with
arandom element to avoid local minima [Wrighton and DeHon 2003]. Parallel routing may
perform shortest-path reachability searches on the circuit graph [DeHon et al. 2006]. The
above placer and router are spatial implementations which act directly on the circuit graph
and show orders of magnitude speedup over state-of-the-art sequential processor imple-
mentations. These were designed and implemented by hand, whereas GraphStep versions
would automate much of the implementation work. Further, the router can use Bellman-
Ford as its shortest-path kernel.

3.4 Semantic Networks, Knowledge-Bases and Databases

When these are represented as graphs, queries and inferences take the form of parallel
graph algorithms, including marker passing [Fahlman 1979; Kim and Moldovan 1993],
subgraph isomorphism, subgraph replacement, and spreading activation (e.g. Concept-
Net [Liu and Singh 20041]).

3.4.1 ConceptNet. ConceptNetis aknowledge base for common sense reasoning com-
piled from a Web-based, collaborative effort to collect common sense knowledge [Liu and
Singh 2004]. Nodes are concepts and edges are relations between concepts, each labeled
with a relation-type. Spreading activation is a key operation for ConceptNet. Edges are
given weights depending on their relation type. An initial set of nodes is chosen and each is
given an activity of 1.0. Activities are propagated through the network, stimulating related
concepts. After a fixed number of iterations, nodes with high activities are identified as the
most relevant to the query.

4. IMPLEMENTATION

On a modern FPGA, the Virtex6, we can perform a memory operation in less than 3ns, a
16-bit add in less than 3ns, and send a signal across the distance of 2 PEs in the same 3ns
cycle. However, we can place 512 PEs on today’s largest Virtex6, meaning it takes over
an order of magnitude longer (24 times) to communicate across the chip than to perform
a local operation. Further Moore’s Law scaling will allow us to place more PEs on a chip
while maintaining fairly comparable relative delays such that cross chip communication
will easily be two or more orders of magnitude greater delay than a local operation. These
ratios of compute and communicate latency mean the location of computations matter.
We use specific area and timing costs from the Virtex6, but this general trend where
cross-chip communication latencies exceed local computation costs by orders of magnitude
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// body executed per node
for i = 0 to nnodes

emin = edgeoff[i]

emax = edgeoff[i+1]

r = reduce_id[1i]

j = emin
// loop performs edge op, reduce op
while j < emax

1
2 m = input_messagel[]]
message 3 e = edgelj]
memory 4 (f, n) = edge_op(e, m)
4 5 edge[]j] = £
edge 6 % = reduce_op(r, n)
memory [ T
// node update op
a = node[1i]
(b, z) = update_op(a, r)
node[1] = Db
j emin
// fanout output to out edges
node update 8 while j < emax
memory op 9 sa = send_addr[j]
10 output_messagel[sal = z
11 G4+
output
port ) . .
Fig. 5. A sequential PE program that processes all in-
put messages on one graph step and produces all output
messages for the next graph step. The 11 instructions
Fig. 4. Processing Element Dxatapath required per edge are numbered.
PE PE PE PE
PE PE PE PE
S,
{ )
—/
PE PE PE PE
PE PE PE PE

Fig. 6. Two stages of the BFT with 16 PEs and 4 channels up to the next stage

will be true of all high-performance silicon computations. To generate logic for the Virtex6
we use Synplify Pro 9.6.1 for synthesis and Xilinx ISE 10.1 for place and route.

41 Processing Element

PEs are designed for high throughput between operator logic and application memory and
between the PE and the interconnect. In a spatial implementation logic is adjacent to
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memory to enable high memory bandwidth. The communication centric approach requires
a high message input and output rate. Typically a graph has many more edges than nodes
so we provide dedicated node, edge and message memories, which allows the pipeline to
handle one edge per cycle (Figure 4). The operations required by one edge are: at the
source PE output a message, and at the destination PE input the message, perform the edge
operation, and perform one iteration of the reduce operation. Operators are pipelined to
perform one operation per cycle. Memories are dual ported to remove structural hazards
between operations. On the output side, the node memory has one read per edge sent to.
On the input side, the message memory has one read and one write per edge and the edge
memory has one read and one write per edge. The node update operator fires only once
per node so we allow it to conflict with edge sends.

The specialized datapath can be contrasted to a PE using an instruction set processor
and a single local memory. Figure 5 shows the program for such a PE which, like the
specialized hardware, requires one cycle edge operator, reduce operator or node operator
and one memory word per node or edge. The sequential program has a throughput of one
edge per 11 cycles.

For an efficient implementation the number of PEs must be large enough so memory
area is comparable to logic area. Areas are measured in terms of Virtex6 slices, which
each have 4 6-LUTs. Application memories are implemented with BlockRAMs, with one
BlockRAM for every 83 slices. Table I accounts area used due to network components
and PE logic and memory for the ConceptNet-default application (Table 3). PE area in-
cludes operators and controller logic, memory for the application, and memory for the
static schedule. Total PE area is less than the sum of its components’ areas since Block-
RAMs and slices are separate hardware. Including interconnect, the area is 611 slices per
PE, which allows a signal to cross 2 PEs per 3ns cycle.

4.2 Interconnect

The interconnect topology is designed to fit a two-dimensional spatial layout. Processing
elements (PEs) are laid out in a grid, and connected with a Butterfly Fat-Tree (BFT) inter-
connect topology [Leiserson 1985]. Although a mesh topology would also correspond to
two dimensions, the BFT is simpler to route. The BFT is constructed recursively, where
the top level switches of a tree with n PEs connect the top level switches of four n/4 PE
subtrees (Figure 6). The number of switches connecting two subtrees increases with the
level of the tree in order to accommodate a larger number of cut graph edges between the
two subtrees. The Rent parameter of the BFT, p, relates the number of PEs, n, in a subtree
to the number of channels out of the subtree: io_channels = nP [Landman and Russo
1971]. To fit the two dimensional hardware we set p = 0.5, so the number of channels out
of an area scales with its perimeter. The fit to two dimensions allows us to layout a con-
stant of one switch for every two PEs, regardless of tree size [DeHon 2000]. Further, the
maximum PEs a signal crosses in a subtree with n PEs is 8,/n PEs, which is proportional
to the diameter of the subtree. The number of switches in the path is lgn. Table I shows
the area due to interconnect along with the area due to switch logic, memory for the static
schedule, and the channels connecting switches.

5. IMPACT OF SPATIALLY AWARE OPTIMIZATIONS

This section uses our spatial hardware model to evaluate the benefit of the optimizations
highlighted in Section 2.1. We evaluate the benefit of placement for locality, node decom-
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Fig. 7. Time of optimized implementations relative to the baseline. The first optimization decomposes nodes
(decomp), the second also performs local placement (local), the third also schedules statically (static).

App Graph Baseline | Decomposed | Local | Static
ConceptNet small 128 256 256 512
default 256 2048 | 2048 | 2048
Bellman-Ford | tseng 256 128 128 128
ex5p 256 256 128 256
pdc 1024 1024 1024 512
$38584.1 1024 1024 512 256
s38417 1024 1024 512 | 2048
clma 512 1024 1024 1024
Preflow-Push | BVZ-tsukubalO_8 2048 1024 2048 2048
BVZ-tsukubal0_4 2048 1024 | 2048 | 2048
BVZ-tsukubal(0_2 1024 2048 | 2048 | 2048

Fig. 8. Number of PEs used by each application, graph and optimization

position, and compare the static scheduling option to dynamic scheduling.

5.1 Optimization Types

The baseline implementation places nodes of the original graph into PEs with the objective
of maximizing the load balance between PEs. The load balancer takes the weight of a node
to be the maximum of its input-arity and output-arity; since the PE processes one edge per
cycle (Section 4.1) this is the approximate number of cycles spent on the node in one graph
step.
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Fig. 9. Number of PEs and optimization to cycles, with the minimum cycle point marked

The first optimization uses the static graph structure to place neighboring nodes in the
same PE or in nearby PEs in order to minimize total message volume and minimize the
critical path of a graph step. It maximizes the locality of the placement while satisfying a
load-balance constraint. At the top level of the BFT, graph nodes are partitioned into the
two subtrees. The bipartition is chosen to minimize the number of cut edges between the
two partitions while satisfying a load-balance constraint. Bipartitioning is applied recur-
sively until nodes are placed in the leaf PEs. We use the UMpack’s multi-level partitioner
available from UCLA’s MLPart5.2.14 [Caldwell et al. 2000].

The second optimization decomposes graph nodes with large input-arity or output-arity
(Figure 1). Decomposition reduces the size of the largest nodes to allow scaling to a large
number of small PEs. Each large node is transformed into a state-holding root with a
fanin tree to perform reduce operations and a fanout tree to send messages. The input- and
output-arity of all nodes is bounded to 64.

The third optimization performs static scheduling at load time. It then loads the schedule
into switch and PE context memories. The unoptimized, dynamically scheduled imple-
mentation uses a packet-switched network to route messages as they are generated. Static
scheduling removes the need for complex scheduling hardware and improves the quality
of the schedule.

5.2 Optimization Results

Figure 7 shows, for the example applications, the cycles used relative to the baseline im-
plementation with just decomposition applied (decomp), decomposition and placement for
locality turned on (place), and decomposition, placement for locality and static scheduling
turned on (static). The number of PEs used for each application and each optimization is
chosen to minimize the total number of cycles, with a maximum of 2048 PEs (Table 9).
Table 8 gives the number of PEs chosen for each application.

Figure 7 shows that all three optimizations together give speedups between 1.6 times
(BVZ-tsukubal0_8) and 20 times (ConceptNet-default). Just decomposition achieves a
speedup of 15 times for ConceptNet-default. Adding placement for locality gets a speedup
of 1.6 for Bellman-Ford-s38417. Adding static scheduling gets a speedup of 2.7 times for
Bellman-Ford-clma.
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Component Slices Each | Number Slices
Total 2199K
Network total 1109K
logic-switch 974 992 966K
channels 143K
PE total 532 2048 | 1090K
logic 183 2048 375K
app mem 532 2048 | 1090K

Table II. Area model for ConceptNet with the default graph with dynamic hardware with 2048 PEs. Area is
measured in terms of Virtex6 slices (see Section 4).

5.2.1 Node Decomposition. Large nodes can prevent load balancing the computation
due to fragmentation. The computation time for each node is proportional to its input-arity
plus output-arity so the largest node imposes a lower bound on the cycles for each graph
step. Figure 10 shows the result of decomposition on the distribution of node arities for
the ConceptNet-default graph (Table 3). Before decomposition, the largest node has an
arity of 52737, where the sum over all node arities is twice the number of edges: 1107672.
Since the largest node in this case is about 1/20th the weight of all nodes, there can be little
reduction in time by scaling above 20 PEs. After decomposition the largest node has an
input- and output-arity of 64.

The benefit of decomposition increases as graph size increases because large, decom-
posed graphs can efficiently utilize more PEs than small, decomposed graphs. The bench-
mark graphs in Figure 7 are ordered by edge count from left to right for each application.
For example, the speedup from decomposition for Bellman-Ford increases from 1.6 times
for the tseng to 10 times for clma.

Decomposition is required often to fit all nodes into small PEs. Large PEs with frag-
mented memory use waste area and can increase computation time due to high chip-
crossing latency. For ConceptNet-default decomposition reduces slices per PE by 5 times.

5.2.2 Placement for Locality. The primary effect of placement for locality is to de-
crease the message traffic. This can be seen in Figure 11 which compares the lower bound
imposed by message traffic, the lower bound bound imposed by chip crossing latency, and
the total time required for a graph step. At low PE counts, this shows the speedup avail-
able from increasing PE counts. Here we see that the locality-placed design significantly
reduces the minimum cycles required for communications, avoiding this bottleneck and
allowing greater performance as PE counts increase. Figure 11 further shows that perfor-
mance at high PE counts is limited by communication latency, and this latency is only
slightly impacted by placement for locality.

5.2.3 Static Scheduling. Figure 7 shows that static scheduling improves performance
for ConceptNet and Bellman-Ford [Kapre et al. 2006]. This is because (1) the static sched-
uler can compute a higher quality route than the dynamic scheduler, given the same set of
messages, (2) the static scheduler can combine the compute and communicate phases of
each graph step, and (3) static hardware typically has lower area which decreases the chip
crossing latency.

Table II gives areas for the dynamically scheduled hardware components for the ConceptNet-
default application. It shows that the primary difference between dynamic and static hard-
ware areas (Table I) is due to interconnect switch size. Figure 12 shows the Virtex6 slices
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App Graph Activity
Preflow-Push | BVZ-tsukubalO_8 | 0.052395
BVZ-tsukubal0_4 | 0.048740
Bellman-Ford | $38584.1 0.909322
338417 0.784112
clma 0.861848
ex5p 0.807392
pdc 0.916647
ConceptNet small 0.110513
default 0.253764

Fig. 13.  Activity factors for each application and graph

App Graph Sequential Time | GraphStep Time | Speedup
ConceptNet small 10ms 7.2us 1389
default 490ms 31pus 15806
Bellman-Ford | tseng 72ms 3.8ms 19
ex5p 68ms 3.3ms 21
pdc 1.6s 13ms 123
338584.1 2.8s 29ms 97
s38417 3.2s 21ms 152
clma 6.9s 44ms 157
Preflow-Push | BVZ-tsukubal(_8 20s 23s 0.87
BVZ-tsukubal0_4 100s 44s 2.3
BVZ-tsukubal0_2 623s 106s 5.9

Fig. 14. Sequential and GraphStep runtimes for each application and graph

per PE for each application and optimization. The statically scheduled hardware area is
about half the dynamic area. They plot the area per PE, where, as above, the number of
PEs was chosen to minimize the total number of cycles.

However, static scheduling decreases performance for the Preflow-Push graphs tested.
Table 13 show the average fraction of edges activated over graph steps. For Preflow-Push
the low activation of approximately 1/20 causes a slow-down of less than 50

6. COMPARISON TO SEQUENTIAL PERFORMANCE

To evaluate the benefit of using GraphStep on spatial hardware we compare its runtime
to sequential implementations of the GraphStep algorithms. Table 14 shows the results
of the total runtime for the GraphStep implementation and a sequential implementation of
each application studied. ConceptNet-default performs the most favorably with a speedup
of 4 orders of magnitude. The larger Bellman-Ford graphs reach a 2 orders of magnitude
speedup. The largest Preflow-Push graph reaches a 6 times speedup.

The sequential programs were run on a 3GHz Xeon. ConceptNet is implemented in
C and compiled with gcc 4.3.2 using the -O3 option. It uses an active node queue to
perform only the necessary updates on each iteration. Register retiming and its Bellman-
Ford kernel are implemented in Ocaml and compiled with ocamlopt 3.10.2 using the -
unsafe and -inline 2 options. Since activity for our Bellman-Ford graphs in close to 1
(Table 13), the implementation iterates over all nodes in the graph on each step. Preflow
push is implemented in Ocaml and compiled with ocamlopt 3.10.2 using the -unsafe and
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-inline 4 options. Each step of the outer iteration is analogous to a graph step and uses two
queues to keep track of the active nodes. It uses efficient array based queues with O(1)
time per push or pop operation.

7. CONCLUSION

To continue to turn the additional transistors provided by technology scaling into perfor-
mance, we must exploit parallelism. Effective exploitation of this parallelism demands
careful management of the location of computations so that fragmentation, communication
latency and bandwidth requirements do not undermine the benefits of parallelism. Know-
ing the communication structure of a computation, we can automatically select the location
of computations to minimize these costs and achieve efficient spatial implementations. Our
GraphStep model captures this domain and exposes the communication structure to enable
spatial optimizations without placing the burden of locality management on the program-
mer.
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A. GRAPHSTEP SEMANTICS

To specify the formal semantics for GraphStep, we define a syntax, type-checking rules,
static graph specification and rules, and state transition operational semantics. We use
object-oriented terminology: classes specify object behavior, fields name object to object
pointers and methods specify operations. The notation for program structure is in the style
of [Pierce 2002].

Sequences are overlined, so @ = ay...a;...a,,. If two symbols are overlined together,
(e.g. ¢ f) then they have the same index interval (e.g. c;...c,, and f...f,,). The bitvector
data type is written as [b;...b,]. Nested bitvectors are considered flat, so [[by, b2, bs] =
[bla b27 b3} .
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A.1 Syntax
The syntax for a GraphStep program is:
P ::= CLG;CLN; CLE program
CLG ::= globec¢{c f; MBCAST; MGRED} global class
CLN ::= node ¢ {T;c f; MNUP; MNRED} node class
CLE := edge ¢ {T;c f; MEFWD} edge class

MBCAST ::= bcast m (T) f my,
MGRED ::= gredm (T) V OP
MNUP ::= nup m (T,T) f m OP
MNRED ::= nredm (T) my, OP

global broadcast method
global reduce method
node update method
node reduce method

MEFWD ::= efwdm (T, T) ms, OP edge method
T = B, data type is bitvector of length x

V = [0]1] value is bitvector

OP := op {(T,7T) g} operator

Prefix keywords glob, node, and edge categorize classes into their class kind. Similarly,
prefix keywords categorize methods into method kinds. Without loss of generality, the
order of classes in a program and methods in a class are by kind. An operator specifies the
function it performs as g, which is a function with fixed length bitvector input and output.
The implementation of g is left unspecified.

A.2 Data Types

The typing rules for bitvectors include booleans, bitvector list, and append. The primitive
operator is defined to have the correct type.

op {(Baa Bb) g}

by : Bool ... by, : Bool B;+ Bj = By z: B,

0:Bool 1:Bool

[0] : Bn 9@ By

A.3 Structure Access Functions

The following rules define functions to access class structure. ctype(c) is the state type
of objects of class ¢, classto(f) is the class of the objects that field f can point to, and
class(m) is the parent class of the method m. The sets Cyiop, Chode, and Ceqge categorize
classes by kind and correspond to syntax tree nodes CLG, CLN, and CLE. Semicolons
are used to denote multiple conclusions in an inference rule, or equivalently, multiple in-
ference rules.

globec{c f;m}
c € Cgop 5 ctype(c) = By ; classto(f;) = ¢; 3 class(m;) = c

node ¢ {B,;c f;m}
¢ € Cnode 3 ctype(c) = By 3 classto(fi) = ¢; 3 class(m;) = c

Additionally, ffwd(c) is an edge class’s only field.

edge ¢ {Bz;cto fto;m}
¢ € Cegge 3 ctype(c) = By 5 classto(fio) = ¢io 5 class(mj) = ¢ 5 ffwd(c) = fio
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The following rules define functions to access method structure. For a method m,
inmsg(m) is its input message type, op,,, is its operator, fto(m) is the field to sends on,
and mto(m) is the method it sends to. The sets Miycqst, Mgreds Mpup, Mrred, and Me fq
categorize methods by kind and correspond to syntax tree nodes M BC'AST, MGRED,
MNUP, MNRED, and M EFW D. Each method is categorized by its kind into one of:

becast m (Bg) f mio
m € Mpeast 3 inmsg(m) = B, 3 mto(m) =my, ; ftolm) = f

gredm (Ba:) op {(Baa Bb) g}
m c Mgred 5 lnmSg(m) = Bl 5 OPpy = 9

A node update methods can send on multiple fields to multiple methods, so its ffo and
mto have subscripts to denote field selection.

nup m (B, B) f m op {(Ba, By) g}
m € Myup 5 inmsg(m) = By 5 op,, =g 3 fto;(m) = f; 5 mto;(m) =m;

nred m (B,) my op {(Ba, Bp) g}
m € Mprea 3 inmsg(m) = By 3 OPm =9 5 mto(m) = my,

efwd m (B, By) mi, op {(Ba, By) g}

m € Mepywq 3 inmsg(m) = B, 5 op,, =g 3 mto(m) =my, ; fto(m) = ffwd(class(m))
A.4 Type Rules

The following rules infer OK iff a program is correctly typed. Programs and classes are
OK if their methods are OK:

CLG OK ; CLN OK ; CLE OK MBCAST OK ; MGRED OK
P OK glob ¢ {c f; MBCAST; MGRED}OK
MNUP OK ; MNRED OK MEFWD OK

node ¢ {T; ¢ f; MNUP; MNRED} OK edge ¢ {T; ¢ f; MEFWD} OK

Method rules restrict which kinds of methods can send to which others. They check that
the type for a message is consistent between its sender and receiver, and that the class of
the method sent to is the same as the class of the field sent on. They also check that the
object state type and message types are consistent with the operator input and output types.

classto(f) = class(myo) 5 Myo € Myyp 3 By = inmsg(my,)
bcast m (B;) f my, OK
B, = B,*B, 3 B, = B,
gred m (B,) op {(Ba, By) g} OK

¢ = class(m)
classto(f;) = class(m;) 3 m; € MegwaU Mgrea 5 By, = inmsg(m;)
B, = ctype(c) * By, 3 By = ctype(c) * By, * By, * ... B,
nup m (Bg, By,...By,,) f M op {(Bq, By) g} OK

class(m) = class(myo) 3 Mio € Mpyp 3 By = inmsg(my,)
B,=B,*B, ; B, =B,
nred m (B,) M op {(Ba, By) g} OK
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Fig. 15. State machine projected onto phase state component of entire state: {s;qie, Snup, Se fwds Sgred, Snred }

¢ = class(m)
classto(ffwd(c)) = class(mio) 5 Mo € Mpup U Myreq 3 By = inmsg(my,)
B, = ctype(c) * By ; By = ctype(c) * B, * B,
efwd m (Bg, By) mi, op {(Ba, By) g} OK

Reduce operators should be associative and commutative. These rules are not checked
by the type checker. Methods which are correct have the property RUNOK.

MK € {gred,nred}

9([z1,22]) = g([w2,71]) 5 g9([g9([z1, 22]), x3]) = g([x1, g([z2, z3])])
MK m (By) op {(Ba, By) g} RUNOK

A.5 Graph Structure
The static graph is specified as:

O : the set of objects
class(o) : the class of object o
o.f . the set of objects pointed to by o on field f
og : the global object

Rules for the static graph are:

Vo,0',f : 0 € o.f = class(0') = classto(f) : field pointer classes are consistent
Vo, f : class(0) € Ceqge = o.f| =1 : edges point to one object
{o | class(o) € Cqiop}| =1 : there is one global object

A.6 State Transition Rules
The runtime state of a GraphStep process is defined by:
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R = (s, lt, Ynups Yefwds Ygred, Ynred; T) @  entire state
s € {Sidies Snup, Sefwd, Sgreds Snred} ©  phase state
w(o) : ctype(class(o)) : assignment of local state for objects
Ynup : multiset of messages to a method in M,
Yefwd - multiset of messages to a method in M g
Ygred - multiset of messages to a method in Mg,.cq
Ynreqa . multiset of messages to a method in M,,,.cq
msg(o,m,v) : amessage for object o
and method m with data v
(o) : counts the number of reduce

messages ready for object o

We make each v, a multiset so each send generates a unique message, even if there are
others with the same (o, m, v) value. v, W {msg(o, m, v)} denotes the multiset with one
more instance of msg(o, m, v) than ~,.

Computation is modeled as a sequence of state transitions. The GraphStep process com-
municates with a controller process which is not modeled here. Input and output values to
the controller process are modeled as labels on state transitions. I/O state transition labels
are:

cast(m,v) : Input global broadcast along method m with data v.
7continue : Input command to execute the next graph step.
Istop : Input command to stop graph steps.
lgred(v) : Output the result of the global reduce v.

Internally, the process executes a sequence of phases, and each phase contains a sequence
of operation firings. Internal state transition labels are:

¢ : Do an internal transition to the next phase.
€ : Do aninternal transition in a phase.

Figure 15 shows the state machine projected onto the phase state component of the entire
state.

Each state transition from R to R’ with the label ) is written R 2> R’. Each of the
following inference rules describes the transition that occurs when the premises of the
inference are satisfied and the left hand state of the transistion matches the current state.
The first graph step in an iteration is initiated with a transition from the idle state to the
node update phase. 0 is the constant 0 function.

Tnup = {mSg(Oa mto(m),v) ‘ S Ogﬂo(m)}
?bcast(m,v)
_

(Sidleaua¢7¢7®a¢70) (Snupvﬂavnupa¢7¢7¢a0)

Successive graph steps are initiated with a transition from the idle state to the node
reduce phase:

2continue
) ——— (

(Sidlm M, 777,up; @7 @7 Ynred 0 Snreds U, PYnup, (/j, @, Ynreds 0)

Transition from the node reduce phase to the node update phase:

¢
(Snreda s Ynups D5 85 9, 77) - (Snup7 My Ynup, B, B, B, 7T)
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Transition from the node update phase to the edge forward phase:

[
(SnUpa Wy Dy Yefwds Ygreds Dy ) — (Sefwda s Dy Ve fwds Vgred, D, )

Transition from the edge forward phase to the global reduce phase:

¢
(Sefwdv My 'Ynup7 Q, '-Ygredy Inreds 77) i (Sgreda M, 'Ynu;m Q7 ’Ygred, Inred 77)

Transition from the global reduce phase to the idle state: If there were no global reduce
messages then output the nil bitvector. If there were global reduce messages then the

transition occurs after all global reduce messages were reduce to a single message, and it
outputs the result of the reduce.

lgred([ )
_—

(Sgreda s Ynup, D, D, Vnred; 77) (Sidlea s Ynup, D, D, Vnred; 77)

lgred(v)
(Sgreda s Ynup, Dy {mSg(Oga m, U)}7 Ynred, 77) — (&‘dlev My Ynups 35 Dy Vnreds 7T)

At the end of an iteration of graph steps clear the message state:

Istop
(Sidies s Ynups 8, 8, Ynred, T) — (Sidie, i, 0, 9,0, 9, 0)

The action of each method kind is specified by one of the following transition rules.
Before we can define node update and edge forward rules we define the function send,
which uses the message predicate b and message value 7 outputs produced by a method
operator op(m) to generate messages. Iff the bit b; predicate is 1 then messages are sent on
field f; to method m; with value y;. The send on each field fans out to the set of objects,

O.fi.

- 7 _ ms 0',m1-, i OIEO.Z' if b; =[1]Am; € M,
send(o, f,m, b, 7, Mcat) = U{ el n fi if other[Jise t

A node update operation outputs messages on multiple fields to edge forward and global
reduce methods. It modifies the local object state.

’yéfwd = send(o, fo(m), mto(m), b, Y, M fwa)
Vi = send(o, fio(m), mio(m), 5,5, Myrea)
op(m)([p(0), 2]) = [ys, b, 7]
(Snuzn Hs Ynup W {msg(o,m, )}, Yefwds Ygreds D, ) >
(Snupv [0 ys]u, Ynups Vefwd 'Yéfwdy Ygred ¥ ’Y;Tsd, ?,)

An edge forward operation outputs to a node reduce or node update method on a single
field. It modifies local object state, and 7 for each node reduce destination is incremented.

Yrup = send(o, fto(m), mto(m), b, y, Miup)
ry;red = SCHd(O,ﬁO(m), mto(m), ba Y, Mnred)
7'(0) = m(0) + [{msg(o, mc,v.) | msg(o, mc,ve) € Vhroat]
op(m)([u(0), z]) = [ys, b, y]
(Sefwd» s Yrnups Yefwd {msg(o, m, (E)}, Vgred; Ynred, 7T) =
(Sefwd7 [0 = Ys|tty Ynup & 'Y;Lupa Yefwds Vgred: Ynred ¥ ’Y;L,»ew )

A global reduce operation inputs two messages and outputs one:
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op(m)([z1, x2]) =y
(Sgreda My Ynup, 2, Ygred U] {mSg(07 m, Il)v msg(o, m, 1’2)}, Tnred, W) ;
(Sgredv M, ’Ynup; Q, ’ygred W {msg(o, m, y)}, Ynreds 7T)

A node reduce operation inputs two messages and outputs one, and it decrements the 7
count state.

op(m)([z1,22]) =y 5 k=7(0) — 1
(snreda Hs Ynups Dy B, Ynred ) {msg(o, m, 33'1)7 mSg(Oa m, ,IQ)}, a3, 7T) i>
(Snred7 Hs Vnup 3,0, Ynred & {mSg(Oa m, y)}7 2, [O = k]ﬂ)

When there is only one reduce message to an object, it is changed to an update message.
(o) =1
(Snred7 s Ynup 3,9, Ynred ) {mSg(Oa m, (13)}, ,/T) ;
(snupv Hy Ynup w {mSg(O, m, (E)}, D, 0, Ynreds 7T)

The following rules hide internal transitions by folding them into input and output tran-
sitions. First the closure of atomic operation (e) transitions is included in phase (¢) tran-

sitions. Then the closure of phase transitions is included in i/o transitions. A is a variable
over input and output transition labels.

AF b€

RL (SR R (LR
RE R R

AR
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