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ABSTRACT

Training unsupervised speech recognition systems presents
challenges due to GAN-associated instability, misalignment
between speech and text, and significant memory demands.
To tackle these challenges, we introduce a novel ASR sys-
tem, ESPUM. This system harnesses the power of lower-
order N -skipgrams (up to N = 3) combined with posi-
tional unigram statistics gathered from a small batch of
samples. Evaluated on the TIMIT benchmark, our model
showcases competitive performance in ASR and phoneme
segmentation tasks. Access our publicly available code at
https://github.com/lwang114/GraphUnsupASR.

Index Terms— speech recognition, self-supervised speech
processing, acoustic unit discovery, unsupervised phoneme
segmentation

1. INTRODUCTION

Learning a speech recognizer with only unpaired speech
and text corpora, or unsupervised speech recognition (ASR-
U)[1], is a self-supervised learning task crucial for developing
speech technology for low-resource languages. Beyond con-
verting speech to text without reliance on transcribed speech,
an ASR-U system can serve as the linchpin for low-resource
text-to-speech synthesis [2, 3], speech translation [4, 5] and
other spoken language understanding tasks. Despite signifi-
cant strides made in the domain [6, 7, 8, 9, 10], the stability
of ASR-U systems remains a conspicuous bottleneck [11, 2].
Many leading ASR-U models, including the current state-
of-the-art models, wav2vec-U and its 2.0 iteration [9, 10],
rely heavily on generative adversarial networks (GAN) [12].
These GANs are notoriously difficult to train, demanding
rigorous regularization and hyperparameter tuning, often dis-
playing sensitivity to the relative weightings of regularization
losses [2].

The only existing method that bypasses the need for
GANs is the empirical output distribution matching (EODM)
approach [8]. This approach trains an ASR system to di-
rectly match the empirical N -gram distribution of authentic
phoneme sequences, eliminating the need for a discrimina-
tor. However, straightforward N -gram matching encounters

difficulties: the quantity of unique N -grams quickly grows
to intractable number and the accuracy of approximating the
N -gram distribution diminishes as N increases. Notably, [8]
revealed the necessity of 5-gram and large batch size (50,000
tokens per batch) for EODM to yield optimal ASR-U out-
comes. Due to memory restrictions, they consider only the
top 10,000 5-gram distributions.

An additional pivotal challenge for ASR-U lies in phoneme
segmentation. While [7] utilized a fixed phoneme segmenta-
tion derived from an unsupervised model [13] during GAN
training, [8] opted for a block-wise alternative minimization
technique to refine segmentations. By contrast, wav2vec-
U (2.0) [9, 10] performs segmentation by directly merging
successive frames assigned to identical phonemes. Unfor-
tunately, current methodologies have yet to incorporate the
innovative strides made in unsupervised phoneme segmen-
tation [14, 15, 16]. These recent techniques improve the
quality of the detected phoneme boundaries by employing
differentiable self-supervised learning objectives, such as
(segmental) contrastive predictive coding (CPC) [14, 15] and
teacher-student learning [16].

In this paper, we proposed Empirical Skipgrams and Po-
sitional Unigram Matching (ESPUM), a novel GAN-free
ASR-U model based on N -skipgrams and positional unigram
matching. Our model achieves competitive ASR-U perfor-
mance on the standard TIMIT [17] benchmark while being
more consistent in different hyperparameter settings than the
GAN-based approach. Further, our model is more memory-
efficient than the previous GAN-free ASR-U models [8] by
requiring only lower-order N -skipgrams (up to N = 3) and
positional unigram information. Last but not least, we design
a novel differentiable phoneme segmenter end-to-end train-
able with the rest of the ASR-U systems and outperform all
previous methods in the unsupervised phoneme segmentation
task.

2. PROBLEM FORMULATION

Suppose we have an unlabeled speech corpus consisting of
speech feature sequences X(i) ∈ X T ∼ PX , i = 1, · · · , nX

and another unpaired text-only corpus containing phoneme
label sequences Y (j) ∈ YL ∼ PY , j = 1, · · · , nY . Suppose
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(a) Overall architecture. Dashed components are fixed during training.

(b) Differentiable monotonic aligner

Fig. 1: Overview of ESPUM

that the speech and text corpora are matched in the sense that
there exists a speech recognizer (ASR) G : XT 7→ YL such
that for any phoneme sequence ∀y ∈ YL,

PX ◦G(y) :=
∑
x∈XT

PX(x)Gy(x) = PY (y). (1)

The goal of ASR-U is to recover such an ASR.

3. METHOD

While most existing methods employ a GAN [7, 9] for learn-
ing such an ASR, we propose a GAN-free method consisting
of five main modules as shown in Fig. 1a.

3.1. Self-supervised speech generator

Our model first takes raw speech waveform as input to a
pretrained, self-supervised speech encoder such as wav2vec
2.0 [18]. Empirically we found that the raw features lead to
unstable training, and instead we use a K-means clustering
module to discretize the speech features into one-hot vectors.
A convolutional neural network (CNN) generator (the ASR)
then converts the one-hot vectors into phoneme probabilities.

3.2. CNN segmenter

While solving Eq. (1) over all possible ASR is both statis-
tically and computationally infeasible, in practice we can
constrain the structure of the ASR significantly if we have
access to noisy, unsupervised phoneme-level segmentations
B̃

(i)
1:T , i = 1, · · · , nX , where B̃t = 1 if frame t is a bound-

ary between two phonemes and otherwise 0 if it is within
a phoneme. Using these labels, we train a CNN-based
segmenter to predict the phoneme boundaries from speech

features:

Pθ[Bt = 1|X1:T = x] := σ(CNNθ(x)), (2)

where σ(·) is the sigmoid function. The segmenter is then
trained using a weighted binary cross-entropy (BCE) loss
Lsegment(θ) on the pseudo-labels (more in Sec.4.1).

3.3. Monotonic alignment

Due to the noise in the segment labels, the raw labels from
the segmenter often lead to severe misalignments between the
speech features and phoneme labels. To address this issue,
we propose a “soft” monotonic alignment Aθ ∈ [0, 1]L×T

from the segmenter by a sequence of differentiable operation
shown in Fig. 1b, inspired by a similar mechanism from the
Segmental CPC model [15]. Using this alignment, we then
compute a sequence of segment-level features from the frame-
level features as

X̄θ
l =

T∑
t=1

Aθ
ltXt. (3)

Note that this soft monotonic alignment can be trained end-
to-end with the speech generator with the ASR-U criteria, al-
lowing the model to refine the segment boundaries using in-
formation from the unpaired text data.

3.4. N -skipgram and positional unigram matching

After the monotonic alignment, the ASR now takes a much
simpler form as it can predict each phoneme label indepen-
dently given each segment-level speech feature. We can then
learn the ASR by performing distribution matching between
the segmented speech distribution P θ

X̄1:L
and the text distri-

bution PȲ1:L
. Instead of matching the full distributions or N -

grams, we find it much more memory-efficient and reliable to
use (bi-)skipgrams and more generally, N -skipgrams defined
for skip sizes k := (k1, · · · , kN−1) as

PY,k(y1:N ) := PY1,Y1+k1
,··· ,Y

1+
∑N−1

l=1
kl

(y1:N ). (4)

Using Eq. (1), we then learn the ASR G by minimizing the
following matching loss:

Lskipgram(G, θ) :=
∑
k∈K

∥∥∥P̂Y,k − P̂ θ
X̄,k ◦G

∥∥∥
1
, (5)

where K is the set of skip sizes used and P̂Y,k and P̂ θ
X̄,k

are
empirical distributions estimated from sample batches. Fur-
ther, inspired by the ASR-U theory [19], we also use the po-
sitional unigram P θ

X̄l
and PYl

by another L1 loss:

Lunigram(G, θ) :=

L∑
l=1

∥P̂Yl
− P̂Xl

G∥1. (6)
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GAN? LM matched unmatched

val ↓ test ↓ val ↓ test ↓
EODM [8] No 5-grams - 42.6 - 49.1
+ HMM ST - 36.5 - 41.6
wav2vec-U [9] Yes 4-grams 17.0 17.8 21.3 22.3
+ CTC ST 11.3 12.0 13.8 15.0

Proposed models

uni+bi+tri
No 4-grams

42.9 43.3 51.3 47.3
uni+bi+tri, iter 1 39.4 39.1 49.8 45.1
+ HMM ST 33.1 33.7 47.0 42.9

Table 1: PER of various ASR-U models on TIMIT.

P ↑ R ↑ F1 ↑ R-val ↑
H L H L H L H L

Speech-only

Kreuk et al [14] 81.4 85.3 76.5 83.5 78.9 84.4 81.7 86.6
Kreuk et al [14]∗ 78.3 85.8 75.8 82.7 77.1 84.2 80.4 86.3
Bhati et al [15] - 84.6 - 86.0 - 85.3 - 87.4
Strgar et al [16] 82.4 91.0 81.2 88.5 81.8 89.7 84.5 91.0
Strgar et al [16]∗ 82.6 89.6 74.8 81.6 78.5 85.4 81.0 86.4

Speech+unpaired text

EODM [8] - 80.9 - 84.3 - 82.6 - 84.8
wav2vec-U+HMM ST [9] 67.8 74.3 74.4 80.0 71.0 77.1 73.8 79.5
Ours (matched) 88.9 93.3 77.3 83.9 82.7 88.4 83.5 88.4
Ours (matched, iter 1) 87.2 93.4 85.3 89.3 86.2 91.3 88.1 91.9
Ours (unmatched, iter 1) 88.2 90.8 76.4 84.0 81.9 87.3 82.8 88.3

Table 2: Unsupervised phoneme segmentation results on En-
glish (TIMIT). “L” stands for the lenient metric commonly re-
ported in the literature and “H” is the harsh metric proposed
in [16]. ∗ stands for results we obtained by running the code
provided by the authors. “Ours” is a uni+bi+tri-grams ES-
PUM trained on TIMIT.

3.5. Smoothness and segment relabeling

Similar to previous works [8, 9]. we also apply the smooth-
ness loss to encourage similar phoneme labels for nearby
speech feature frames:

Lsmooth(G) :=

nX∑
i=1

T∑
t=1

∥∥∥G(X
(i)
t+1)−G(X

(i)
t )

∥∥∥2
2
. (7)

The overall training objective is then

Lunigram + Lskipgram + Lsegment + λsmoothLsmooth. (8)

Moreover, to further improve the segmentation quality, we
replace the older, noisier labels B̃1:T with the predicted labels
from the segmenter B̃′

1:T after training converges using the
older labels, a process called segment relabeling.

4. EXPERIMENTS

4.1. Experimental setup

We use the TIMIT dataset [17] with the same split as in [8, 9]
for the ASR-U experiments. For the phoneme segmentation

Fig. 2: Convergence behavior of ESPUM (no segment rela-
beling) vs wav2vec-U over a range of hyperparameters de-
fined in [9], where λcp is the code penalty and λgp is the
gradient penalty (neither used in ESPUM). λsm = λsmooth

is defined in Eq. (8).

Model
PER ↓
(val)

Boundary F1 ↑
(val, harsh)

bigrams only 71.6 87.2
uni+bi-grams 39.2 87.4
uni+bi+tri-grams 38.4 87.1
uni+bi+4-grams 40.0 86.5
uni+4-grams 45.0 86.6
uni+5-grams 77.9 87.6
uni+bi+tri+5-grams 41.8 86.0

Table 3: Effect of different positional unigram and N -
skipgram combinations. All models use the segmentation
from a uni+bi+tri-grams ESPUM after one segment relabel-
ing iteration.

experiments, the full TIMIT test set is used instead to align
with prior work [14]. We map the original 60 phonemes to
39 as in [9]. Phoneme error rate (PER) is used to evaluate
the ASR performance, while precision, recall, F1 and R-value
metrics are used for the phoneme segmentation performance.
For the latter task, we use both the lenient scores in [8, 14, 15]
as well as the harsh scores defined in [16] designed to avoid
double counting of detected boundaries.

We use the 14-th layer of the wav2vec 2.0 [18] model pre-
trained on 10,000-hour LibriLight [20] as the speech input
features and a K-means module with 128 clusters for quan-
tizing the speech features. The CNN generator is a one-layer
CNN with a kernel size of 4 and a stride size of 1. To ob-
tain noisy phoneme boundary labels, we use the wav2vec 2.0
readout model [16] with the LibriLight wav2vec 2.0 encoder
as the backbone. We then use the same 7-layer CNN in [16] as
the CNN segmenter. During testing, we replace the soft align-
ment with a mean pooling within the predicted boundaries for
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Fig. 3: An example pooling matrix generated by a uni+bi+tri-
grams ESPUM after one segment relabeling iteration.

decoding. We also found that training the segmenter using
BCE loss with a positive weight of 1.1 and only labels with
a confidence score above 0.6 from the wav2vec 2.0 readout
model achieves the best performance. We use λsmooth = 16
unless specified otherwise.

For all models, we only use bi-skipgrams with skip sizes
up to 6, tri-skipgrams with skip sizes up to 2 and the top 5000,
or 68% of the 4-grams and 50% the 5-grams. We conduct all
our experiments on a 12GB GTX 1080Ti GPU. We imple-
ment our models using fairseq and follow training settings in
[9] if not specified. We train them end-to-end using Adam
optimizer [21] with an initial learning rate of 0.004 and be-
tas equal to [0.5, 0.98] and a batch size of 640. We train the
model further for one segment relabeling iterations for 20000
updates and observe further relabeling iteration leads to no
significant improvement. We also experiment with HMM
self-training (ST) techniques found previously to be effec-
tive [7, 8, 9].

4.2. Results

The overall ASR-U result is shown in Table 1. Compared with
EODM [8] before self-training, our model achieves an 8% rel-
ative (42.6 → 39.1) improvement in phone error rate (PER) in
both the matched and unmatched setting. Further, segment re-
labeling of one iteration helps to reduce PER by 8.9% relative
(43.3 → 39.1). After self-training, while our model contin-
ues to outperform [8] by 7.7% relative PER (36.5 → 33.7)
in the matched setting, while does not perform as well in the
unmatched setting. This may be primarily due to the use of
different language models used as well as discrepancy in hy-
perparameter settings of the self-training algorithms. Further,
our model is still lagging behind the GAN-based wav2vec-
U [9].

The overall unsupervised phoneme segmentation result by
our model is shown in Table 2. With the help of unpaired text,
our model trained in the matched setting outperforms the best
previous speech-only model [16] by 5.4% relative F1 (81.8 →

86.2) and 4.2% relative R-value (84.5 → 88.1), despite start-
ing with segmentations with lower F1 (78.5%) due to discrep-
ancy in training setting. It is also superior to EODM, the best
speech+unpaired text models by 10.5% relative F1 (82.6 →
91.3) and 8.4% relative R-value (84.8 → 91.9), though with
the help of self-supervised representation pretrained on large
speech corpora. We observe that segment relabeling helps to
refine the segmentation by 2.3% relative F1 (82.7 → 86.2) and
2.9% relative R-value (83.5 → 88.1). In addition, ESPUM
consistently achieves 4.3% relative F1 improvement (78.5 →
81.9) over the speech-only segmenter [16], the teacher of our
model in the unmatched setup, demonstrating the ability of
our model to leverage unpaired textual information.

4.3. Analysis

By comparing Table 1 and 2, we observe that a better rec-
ognizer (wav2vec-U) is not always a better boundary detec-
tor (ESPUM). One explanation is that better recognizers learn
blurry boundaries in order to fully exploit between-phoneme
context, while better boundary detector loses some recogni-
tion capacity by focusing mainly on within-phoneme context.
We partially confirm our hypothesis by visualizing the pool-
ing matrix from the ESPUM segmenter in Fig. 3, and finding
that most of its weights align with the true phoneme bound-
aries.

Next, we compare the training stability of ESPUM and
wav2vec-U by analyzing their training convergence curves.
As shown in Fig. 2, wav2vec-U fails to converge when
λsmooth is too small or too large, while ESPUM remains
consistent with a small improvement in PER as λsmooth in-
creases from 0 to 16. Such improvement suggests that local
homogeneity of phoneme distributions provide additional
constraints to the generator besides those provided by the
N -skipgrams matching constraints.

Finally, we study the effect of different combinations of
positional unigrams and N -skipgrams in Table 3. We found
that lower-order skipgrams play bigger roles than higher-
order skipgrams for ASR-U, evident by the fact that the
uni+bi-grams model outperforms the uni+4/5-grams models.
Also the information in the positional unigrams is crucial for
ASR-U since the bigrams only model performs much worse
than the uni+bi-grams model. While adding tri-skipgrams
help improve the PER of the uni+bi-grams model, adding
4-grams or 5-grams degrades its performance.

5. CONCLUSION

In this work, we propose ESPUM, a novel GAN-free model
for ASR-U that is better at phoneme segmentation and more
stable to train. Future directions include a better understand-
ing on the relation between recognition and segmentation in
ASR-U as well as building end-to-end systems excelling at
both tasks.
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