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ABSTRACT
Existing studies on self-supervised speech representation
learning have focused on developing new training methods
and applying pre-trained models for different applications.
However, the quality of these models is often measured by
the performance of different downstream tasks. How well
the representations access the information of interest is less
studied. In this work, we take a closer look into existing self-
supervised methods of speech from an information-theoretic
perspective. We aim to develop metrics using mutual in-
formation to help practical problems such as model design
and selection. We use linear probes to estimate the mutual
information between the target information and learned rep-
resentations, showing another insight into the accessibility
to the target information from speech representations. Fur-
ther, we explore the potential of evaluating representations
in a self-supervised fashion, where we estimate the mutual
information between different parts of the data without using
any labels. Finally, we show that both supervised and unsu-
pervised measures echo the performance of the models on
layer-wise linear probing and speech recognition.

Index Terms— Self-supervised speech representation
learning, representation analysis, information theory

1. INTRODUCTION

Estimating the amount of information encoded in learned rep-
resentations has been an important research topic in speech
representation learning. A good estimation can not only of-
fer a better view of designing training objectives, especially
under a self-supervised paradigm but also help select mod-
els for the applications of interest. To measure to what extent
the representations reveal specific information, several studies
have adopted a phonetic-related linear probing protocol [1, 8].
Also, a collection of downstream tasks has been proposed to
evaluate learned representations, including phone classifica-
tion and speech recognition [9]. The accuracy obtained from
a task is then believed to reflect the accessibility of represen-
tations to certain information.

Although the aforementioned approaches for measuring
representations have been widely used, there are certain limi-

* Equal contribution.

tations. For example, a probing task is not formally measuring
the “information” inherent in the representations but their ac-
curacy on a task. Another limitation is that the probing tasks
all rely on labeled data. Further, contextual speech representa-
tions learned from self-supervised models are actually trained
to predict the context such as the future or masked frames
[4, 5, 1, 2, 8]. The current probing approaches, however,
ask the classifier to do same-frame prediction. The mismatch
between the training objectives and the evaluations makes it
unclear whether the current measurements have properly re-
flected the information representations encoded.

In this paper, we present an information-theoretic ap-
proach to assess the information contained in representations
[10, 11]. We use mutual information (MI) to measure the re-
lationship between representations and their targets, such as
phonetic labels. To evaluate how well representations capture
the context, we propose that effective representations should
exhibit higher MI between different parts of the input due
to self-supervised training. To test this, we divide the input
into two parts and estimate the MI between representations
derived from different parts. This offers an unsupervised
alternative to measure the learned representations.

Through extensive experiments, our findings reveal a
strong correlation between unsupervised measures and su-
pervised ones in phonetic-related probing. This correlation
suggests the potential for probing representations without
labeled data. Furthermore, we observe that models exhibiting
higher MI in an unsupervised measure also exhibit superior
performance in downstream speech recognition.

2. MEASURING SELF-SUPERVISED MODELS
WITH MUTUAL INFORMATION

2.1. A Mutual Information Perspective of Self-supervised
Methods on Speech

Prior works have drawn the connections between self-supervised
training objectives and maximizing mutual information (MI)
[12, 13, 8, 14]. Following a similar vein, we consider self-
supervised approaches as maximizing the MI between differ-
ent parts of the input by dividing the input into two views,
defined as Xa and Xb. Specifically, we focus on the MI
between Xa and target variables Ztarget derived from Xb.
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Table 1: Summary of prior self-supervised speech representation methods in two different categories: Autoregressive Predictive
Coding (APC) and Masked Langauge Modeling (MLM). VQ stands for vector quantization; EMA stands for exponential
moving average.

Views
Choice of Ztarget Choice of pψ H(Ztarget)

connection to
Xa/Xb H(Ztarget|fθ(Xa))

APC family
APC [1] / VQ-APC [2]

past / future
spectrogram identity matrix intractable, fixed regression

Co-training [3] discrete VQ estimable‡ cross-entropy

MLM family
wav2vec 2.0 [4]

masked† /
unmasked

discrete VQ estimable‡ contrastive loss
HuBERT [5] / WavLM [6] discrete k-means assignment estimable‡, fixed cross-entropy
DinoSR [7] discrete EMA(fθ) + VQ estimable‡ cross-entropy

† WavLM additionally introduced noise to generate Xa. ‡ We consider H(Ztarget) estimable by sampling Ztarget from
pψ(Ztarget|Xb) to compute the empirical entropy.

Formally,

I(Xa;Ztarget) = H(Ztarget)−H(Ztarget|Xa), (1)

where a network fθ is employed to model p(Ztarget|Xa). Be-
sides the different views of data, the choice of target vari-
able Ztarget is perhaps the most significant difference between
methods. Some methods [1, 5, 6] have propose to use pre-
defined transformation pψ(Xb) = Ztarget to derive target vari-
able; other methods [4, 7] have proposed to learn it jointly
during training by introducing pψ(Ztarget|Xb). Table 1 pro-
vides some concrete examples. Note that we only list open-
sourced models in the table, there are more prior works [15,
16, 17] in the field that are not covered.

Theoretically, measuring MI through Eq. 1 allows us to
compare different SSL methods in speech, but in practice, it is
infeasible due to some limitations. For example, methods like
APC [1] and VQ-APC [2] in Table 1, Eq. 1 is intractable due
to the unknown distributions in the equation [18]. Even in the
case where Eq. 1 can be approximated (e.g., HuBERT [5]), it
is hard to fairly compare it to other methods due to the differ-
ent definitions of pψ and Ztarget. This motivates us to bound
MI in a tractable way that is invariant to the choice of Ztarget
and pψ such that we can compare these self-supervised meth-
ods.

2.2. Bounding MI with labeled data

After the SSL stage, the representation Z of data X can be
extracted with the pre-trained model fθ, i.e., Z = fθ(X).
An intuitive way to compare the quality of speech represen-
tations Z from different models is by examining the mutual
information between Z and specific target Y using labeled
data (e.g., the underlying phone at the corresponding time),
namely, I(Z;Y ) = H(Y ) − H(Y |Z). While the entropy of
target H(Y ) is a constant (depending solely on the choice of
target) that can be estimated with an empirical distribution,
the metric itself is still intractable since we do not know the

relation between Z and Y . Nevertheless, the target mutual
information I(Z;Y ) can be lower-bounded through upper-
bounding the conditional entropy H(Y |Z) with an auxiliary
prediction model qϕ(y|z). More precisely,

I(Z;Y ) = H(Y )− E(y,z)∼p(Y,Z)

[
− log p(y|z)

]
(2)

= H(Y )− Ep
[
− log qϕ(y|z)− log

p(y|z)
qϕ(y|z)

]
(3)

≥ H(Y )− Ep
[
− log qϕ(y|z)

]
, (4)

where Ep
[
log p(y|z)

qϕ(y|z)
]
= EZDKL(p(y|z)||qϕ) > 0 leads to

Eq. 4. In other words, we can estimate the lower bound of
the desired mutual information by training the auxiliary pre-
diction model qϕ(y|z) to approximate p(y|z). Note that this
corresponds to probing tasks in the literature [1, 9] since the
last term in Eq. 4 is cross-entropy loss. For example, in linear
probing tasks, qϕ(y|z) is modeled by a linear layer.

By using labeled data and Eq. 4, we are able to estab-
lish a lower bound of mutual information I(Z;Y ) that can be
used as an intuitive metric to measure the quality of repre-
sentation. However, there are several downsides making this
metric less ideal for selecting SSL models such as the need
for labeled data and the narrow viewpoint from the choice of
target. These properties somewhat contradict the spirit of the
SSL paradigm for learning a general model that can be ap-
plied to different tasks with minimum supervision.

2.3. Bounding MI with unlabeled data

In light of how self-supervised methods are designed, we pro-
pose to measure the mutual information between different
views of the input instead of using labeled data. For simplic-
ity, here we use Za = fθ(Xa) to denote the representation
extracted from one view and Zb = fθ(Xb) from the other.
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Table 2: Results of MLM methods on LibriSpeech test-other. For down-
stream tasks, frozen feature results are taken from Speech processing Uni-
versal PERformance Benchmark [9] and the 10-hour fine-tuning results are
the decoding result with language model reported by each prior work.

mutual information lower-bound downstream tasks

I(Z;Y ) (Eq. 4) I(Za;Zb) (Eq. 8) frozen feature fine-tune

logistic MLP logistic MLP PER WER WER

BASE models (12-layer)
wav2vec 2 3.50 3.52 1.13 1.08 5.74 6.43 9.5
HuBERT 3.73 3.75 2.04 2.04 5.41 6.42 9.4
WavLM 3.80 3.82 2.05 2.05 4.84 6.21 9.2
DinoSR 3.83 3.89 2.10 2.15 3.21 4.71 7.6

LARGE models (24-layer)
wav2vec 2 3.81 3.87 1.67 1.63 4.75 3.75 4.9
HuBERT 3.85 3.90 2.08 2.05 3.53 3.62 4.6
WavLM 3.87 3.94 2.40 2.36 3.06 3.44 4.6

1 2 3 4 5 6 7 8 9 10 11 12

Network Layer

1.0

1.2

1.4

1.6

1.8

2.0

2.2
I(Za;Zb) lower-bound

40k step pre-training

80k step pre-training

400k step pre-training

3.2

3.4

3.6

3.8

4.0

I(Z;Y ) lower-bound

40k step pre-training

80k step pre-training

400k step pre-training

Table 3: Lower-bound dynamic w.r.t. different lay-
ers and pre-training steps of DinoSR. Y-axis on the
left corresponded to I(Za;Zb) lower-bound (bit);
right corresponded to I(Z;Y ) lower-bound (bit).

Formally, we consider

I(Za;Zb) = H(Za)−H(Za|Zb). (5)

Similar to Eq. 2, the mutual information is intractable since
the underlying distributions of the variables are unknown. To
overcome the issue, we introduce a clustering function fcluster
to quantize the representation Zb. We can then approximate
H(Zb) with the empirical distribution and estimate a lower
bound of the mutual information with

I(Za;Zb) ≥ I(Za; fcluster(Zb)) (6)
= H(fcluster(Zb))−H(fcluster(Zb)|Za) (7)

≥ H(fcluster(Zb))− Ep
[
− log qϕ(fcluster(Zb)|Za)

]
,

(8)

where Eq. 6 follows from the data-processing inequality and
Eq. 8 can be derived in a similar way to Eq. 4. The key ad-
vantage of this approach is the lower bound can be estimated
regardless of the choice of Ztarget, making cross-method com-
parisons and checkpoint selections possible without labeled
data as we show later in our experiments.

3. EXPERIMENTS

Setup. We use k-means as the clustering function fcluster to
quantize the representation space with default 50 clusters.
For qϕ, we test both logistic regression and multi-layer per-
ceptron (MLP) with 3 layers, ReLU activation, and dropout.
Since our goal is to evaluate pre-trained self-supervised mod-
els, both fcluster and qϕ are trained on the clean dev set of
LibriSpeech [19] and used to estimate MI on test-clean/test-
other for APC/MLM models respectively. By default, we use
k-means with 50 clusters for a max of 100 iterations, then

optimize Eq 8 with a learning rate of 0.1 for 10 epochs. For
I(Z;Y ) , we use force-aligned [20] phone sequences as the
target Y . For MLM models, we follow the same setup but
adopt the noisy subsets.

For APC models, views Za and Zb in Eq. 1 are gener-
ated by applying a time shift identical to the pre-training stage
(60ms; 3 frames) to the representations. For MLM models,
the masked view is generated by masking the last 30 frames
of every 40-frame (i.e., 75% masking ratio), a more detailed
discussion is provided later with results on different masking
ratios. Representations are extracted from the last layer un-
less otherwise specified. All numbers reported are averaged
over 5 runs with different random seeds, we find the variance
across different runs negligible (<4e-4) for all cases.

Bounding the MLM family. We begin with results in Ta-
ble 2 on the MLM family that take masked/unmasked speech
as the different views. We compare both supervised met-
ric and unsupervised metric against the downstream perfor-
mance of each model. For downstream performance, we con-
sider the speech recognition performance from SUPERB [9].
Unsurprisingly, there is a strong connection between the su-
pervised metric and downstream performance. Models with
higher I(Z;Y ) provide representations with higher acces-
sibility of phonetic information and benefit phonetic-related
tasks. On the other hand, a similar pattern can be observed
with the unsupervised metric (despite not using any labeled
data) where the increasing lower bound of I(Za;Zb) reflects
stronger downstream performance. This key result suggests
that it is possible to evaluate self-supervised speech represen-
tations in a self-supervised manner.

Impact of bounding conditional entropy with qϕ. Another
observation from Table 2 worth mentioning is the choice of
qϕ actually have small impact to our estimated lower bounds.
The results are consistent between the two choices with
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Table 4: Results of APC family on LibriSpeech
test-clean. MLP is used as qθ for bounding con-
ditional entropy. LB stands for low-bound. The
layer-wise PER are evaluated following the proto-
col of [1, 8, 3]. All models are trained and evalu-
ated with the same time-shift of 60ms.

I(Z;Y ) LB I(Za;Zb) LB PER
Layer 1/2/3 Layer 1/2/3 Layer 1/2/3

APC 3.0 / 3.6 / 3.3 2.3 / 2.8 / 2.3 25.3 / 23.8 / 31.4
VQ-APC 3.4 / 3.6 / 3.1 2.8 / 3.0 / 2.9 25.4 / 22.7 / 28.4
Co-training 3.3 / 3.6 / 3.2 2.7 / 3.0 / 2.5 27.1 / 21.0 / 27.1

40k 80k 200k 400k

8

9

10

11

12

13

0.0

0.1

0.2

0.3

0.4

0.5Masking / bit@40k

95% / 0.4

85% / 1.1

75% / 1.8

65% / 2.7

55% / 3.6

Table 5: Varying masking ration for
bounding I(Za;Zb) on DinoSR. X-axis:
pre-training step. Y-axis: the improve-
ment of lower-bound compared to 40k
steps (bit; right) and the fine-tuning per-
formance (gray dashed line; WER; left).

40k 80k 200k 400k

8

9

10

11

12

13

1.50

1.75

2.00

2.25

2.50

2.75

3.00

# clusters

25

50

100

200

Table 6: Varying fcluster cluster size
for bounding I(Za;Zb) on DinoSR.
X-axis: pre-training steps. Y-axis:
I(Za;Zb) lower-bound (bit; right) and
the fine-tuning performance (gray dashed
line; WER; left).

slightly better estimation obtained via MLP in most cases.
While only two different options are tested in this paper,
we note that exploring better options of qϕ is worthwhile in
practice since they provide tighter lower bound [10].

Bounding the APC family. In addition to MLM, we experi-
ment with models trained on future prediction pre-training, in
which the past and future are selected as different views. As
shown in Table 4, the trends of supervised and unsupervised
metrics do not completely align with the results of phoneme
classification. Nonetheless, the layer with the highest MI con-
sistently corresponds to the best PER of the model. This indi-
cates the proposed metrics can be potentially applied to layer
selection for phonetic-related tasks. Note that even though the
number of clusters is fixed, unsupervised metric is not com-
parable to that of the MLM methods due to different model
configurations.

Layer-wise analysis. We discover the middle layer of the
APC family, which is farthest from the surface feature,
achieves the highest bound against both labeled data and
future view. More importantly, a consistent trend can be
found across all three columns within each model, suggesting
that the unsupervised metric can be used to select the target
layer for feature extraction. A similar study on MLM models
is carried out in Fig 3. Conversely, we find the trend of the
lower bound of I(Z;Y ) and I(Za;Zb) to match at the early
and last layers of the model. This shows that different self-
supervised learning methods result in different representation
patterns as suggested by existing study [21, 22]. Nevertheless,
we note that using the last layer with I(Za;Zb) lower bound
is a robust option for comparing different models at the same
size as it consistently matches the downstream performance
trend as shown in Table 2 and Table 4.

Robustness for checkpoint selection. In Figure 5 and Fig-
ure 6, we showcase the robustness of I(Za;Zb) lower bound
by using it to evaluate DinoSR at different pre-training steps
given that checkpoint selection is sometimes a hard problem
for self-supervised methods in practice. To simulate the train-
ing scenario, this part is conducted on the validation set only

by splitting it into half for fitting fcluster and MLP qϕ, using
the remaining part to estimate MI.

For MLM-based methods, the masking ratio is an impor-
tant hyper-parameter that controls the view Xa used for train-
ing. Prior works have applied different masking ratios varying
between 65% to 80%1. While lower masked ratios result in
higher absolute MI estimation, we find I(Za;Zb) lower bound
robust to the choice of masking ratio, providing a consistent
pattern as the training continues.

Finally, as shown in Figure 6, we observe similar trends
of I(Za;Zb) lower bound despite varying the number of clus-
ters. These findings point out a new path for evaluating self-
supervised speech models during pre-training as computing
I(Za;Zb) lower bound requires little computations 2.

4. CONCLUSION

In this paper, we revisited self-supervised learning of speech
representation from a mutual information point of view. We
provided two different MI metrics and showed their lower
bounds can be used to evaluate self-supervised models with-
out heavy computations, especially for the I(Za;Zb) lower
bound that is designed in a self-supervised manner. We
checked the robustness of these metrics to demonstrate the
potential of applying them to different pre-trained models
in practice. However, we also note that this work focused
on examining the content of speech as we only considered
recognition tasks in our experiment. An interesting future
direction is to explore the non-content information encoded
in speech representations.

1In practice, these methods randomly sampled 6.5% to 8% of input frames
to apply mask spanning 10 consecutive frames. This results in a lower mask-
ing ratio than expected since spans might overlap each other. For our evalua-
tion, the expected masking ratio is precise since masks are not overlapping.

2Our method required 2 forward passes on the validation set. As a refer-
ence, each estimation with MLP takes less than 5 minutes on CPU for fitting
fcluster and qϕ (can be further sped up by leveraging GPU), which is consid-
erably short compared to the runtime of self-supervised methods itself.
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