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Abstract
Recent models such as XLS-R and Whisper have made multi-
lingual speech technologies more accessible by pre-training on
audio from around 100 spoken languages each. However, there
are thousands of spoken languages worldwide, and adapting to
new languages is an important problem. In this work, we aim
to understand which model adapts better to languages unseen
during pre-training. We fine-tune both models on 13 unseen
languages and 18 seen languages. Our results show that the
number of hours seen per language and language family during
pre-training is predictive of how the models compare, despite
the significant differences in the pre-training methods.
Index Terms: speech recognition, multilingual, self-
supervised, weakly-supervised

1. Introduction
Multilingual speech processing has seen rapid progress thanks
to the availability of more data and larger models. Models like
XLS-R [1] and Whisper [2] are pre-trained on hundreds of thou-
sands of hours of audio from around 100 spoken languages.
Downstream users can adapt these publicly available models for
Automatic Speech Recognition (ASR) on different languages
and domains [3–5]. XLS-R follows Wav2Vec2.0’s [6] self-
supervised pre-training process, which only requires unlabeled
speech, and it can be adapted for ASR with a small amount
of labeled data. In contrast, Whisper was pre-trained with la-
beled speech-text pairs acquired by scraping the web and can
be directly applied to ASR in many languages without requir-
ing fine-tuning.

Although these models are pre-trained on many languages,
they still omit several thousand spoken languages during pre-
training, which limits their applicability to these unseen lan-
guages. Many of these unseen languages have over a million
speakers, making them sufficiently widespread to be of impor-
tance. We believe more audio in these languages will become
available through projects like CommonVoice [7]. However,
it is infeasible to repeat pre-training each time more data is
released since the compute required is only accessible to the
largest corporations. For example, XLS-R [1] was pre-trained
on 128 GPUs for smaller models and 200 GPUs for larger mod-
els. Therefore, we find it essential to study the adaptation of
these pre-trained models to unseen languages.

In this work, we compare XLS-R and Whisper for adapta-
tion to languages unseen during pre-training. We fine-tuned the
models on 13 unseen languages in the FLEURS dataset [8], on
which neither model was pre-trained. As shown in Figure 1,
the models have seen different amounts of languages during
pre-training, and we discuss how this impacts the performance
on the unseen languages. We also fine-tuned on 18 seen lan-
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Figure 1: Hours of audio used to pre-train Whisper [2] and
XLS-R [1] per language family.

guages in FLEURS and found that the number of hours seen
per language during pre-training are predictive of how the mod-
els compare.

In summary, our contributions are: 1) We compare two
state-of-the-art multilingual speech models with self-supervised
and weakly-supervised pre-training strategies for adaptation to
13 unseen and 18 seen languages through fine-tuning; 2) We
analyze the impact of the pre-training data and give suggestions
for selecting either model for adaptation. Please see our ArXiv
paper version for additional results in the Appendix.

2. Methods
Multilingual speech models have recently been trained on
around 100 languages [9–15]. However, few models are pub-
licly available. We use XLS-R [1] and Whisper [2] since they
are publicly available, were trained on the most languages and
hours of audio, and have different pre-training strategies.

2.1. Self-Supervised Learning: XLS-R

Self-Supervised Learning has proved to be effective for training
ASR models. Wav2Vec2.0 [6] was trained with large amounts
of unlabeled audio and fine-tuned on smaller, labeled datasets
to achieve good performance. XLSR53, a multilingual version
of Wav2Vec2.0, was trained on 50k hours of audio in 53 lan-
guages and fine-tuned for ASR in different languages. Multilin-
gual self-supervised training usually outperformed monolingual
training, especially for lower-resource languages. XLS-R [1]
scaled the pre-training to 436k hours of data in 128 languages,
using publicly available datasets such as VoxPopuli [16], Com-
monVoice [7], Babel [17], and Multilingual LibriSpeech [18].
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2.2. Weakly-Supervised Learning: Whisper

Although Wav2Vec2.0 was pre-trained with unlabeled data
which is easier to acquire than labeled data, it needs to be
fine-tuned on each dataset with potentially different hyperpa-
rameters. Radford et al. [2] addressed this issue by develop-
ing Whisper, a supervised model trained on multilingual speech
that can perform “zero-shot” ASR on different datasets (with-
out fine-tuning). The authors trained Whisper on 680k hours
of speech from 99 languages. In their experiments on English
datasets, Whisper outperformed Wav2Vec2.0 without any fine-
tuning. Recent work also finds that Whisper can outperform
other state-of-the-art ASR models when fine-tuned [19].

When tested on multilingual ASR, Whisper performed well
on high-resource languages but performed poorly on languages
it saw few hours of during pre-training. We extend this analysis
by comparing Whisper to XLS-R on multilingual ASR. We also
fine-tune Whisper, improving performance on seen languages
and enabling adaptation to unseen languages.

2.3. Language Adaptation

Language adaptation aims to use representations learned from
high-resource languages to improve performance on low-
resource languages. No audio in the target language is avail-
able in the zero acoustic resource setting [17]. However, a more
realistic setting is to assume a limited amount of transcribed au-
dio. Transferring representations from fully-supervised English
models to other languages is a common setup [7, 20], while
others transfer from multilingual models. Early work trans-
ferred from models trained on three languages [21] while others
scaled training to 100 languages [9]. As self-supervised mod-
els became more common, cross-lingual transfer from meth-
ods like Contrastive Predictive Coding [22] were also ex-
plored [23]. More recently, XLS-R has been shown to outper-
form Wav2Vec2.0 for multilingual cross-lingual transfer [3–5].

Several prior studies also fine-tune XLS-R and other self-
supervised models on low-resource languages [5,24]. Our work
differs since we focus on unseen languages and distinguish
them from seen languages, we analyze how the pre-training data
impacts the results, and we compare with Whisper.

Finally, we focus on adaptation to new languages and not on
the language forgetting phenomenon in the models. Language
forgetting could be studied as future work, with approaches in-
cluding adaptors [20, 25] and weight factorization [26].

3. Experimental Setup
Dataset. We use the FLEURS [8] dataset, which covers 102
languages. We selected this dataset since neither XLS-R nor
Whisper was pre-trained on it, there is a sufficient number of
unseen languages, the data is approximately equal per language,
and the data was verified by paid annotators. The dataset con-
tains around 2k sentences per language, and each sentence is
spoken by up to 3 different speakers for a total of around 12
hours of audio per language. The text was originally sourced
from English Wikipedia and translated into other languages as
the FLoRes-101 benchmark for machine translation [27]. For
each language, we fine-tune the models on the training set, se-
lect the best checkpoint on the validation set, and report the per-
formance on the test set. We evaluate models with the Character
Error Rate (CER) since languages such as Chinese, Japanese,
Thai, and Burmese do not use regular spacing, which is consis-
tent with prior work [7, 8]. We show WER results and results
on the CommonVoice [7] dataset in our ArXiv paper version.

Languages. We used the 13 unseen languages in FLEURS
which are common to XLS-R and Whisper. We also used 18
seen languages. We picked a roughly equal number of seen
languages for which XLS-R saw more hours of audio during
pre-training than Whisper, and vice-versa. The languages use
different scripts; the Latin script is used by 12 of the unseen
languages and 8 of the seen languages.
Model Sizes. XLS-R ranges in size from 24 layers / 317M pa-
rameters to 48 layers / 2.16B parameters, while Whisper ranges
in size from 4 layers / 39M parameters to 32 layers / 1.55B pa-
rameters. We compare XLS-R 317M with Whisper models with
the closest number of parameters: 12 layers / 244M parameters
(Whisper-Small) and 24 layers / 769M parameters (Whisper-
Medium). We show the results for XLS-R 965M and Whisper-
Large-V2 in the Appendix of our ArXiv paper version.
Tokenization. For XLS-R, we used the language-specific char-
acters from the FLEURS text as the outputs for ASR training.
For Whisper, we used the token IDs from the byte-level BPE
tokenizer for ASR training, which can encode any UTF-8 text
by converting characters to bytes. This results in no out-of-
vocabulary characters, although the encoding might not be ef-
ficient since one character of multiple bytes could be encoded
as multiple tokens. Whisper also expects a language token in
the decoder input that is either predicted by its audio-based lan-
guage ID system or manually specified. Since no token corre-
sponds to the unseen languages, we tried setting the token equal
to English or a language similar to each unseen language. Both
strategies resulted in similar results, so we used English as the
language token for all unseen languages.
Hyperparameters. XLS-R is fine-tuned with the CTC objec-
tive [28], and Whisper is fine-tuned with the Cross-Entropy ob-
jective. We used Fairseq [29] and HuggingFace [30] for fine-
tuning XLS-R and Whisper, respectively, and adopted most of
the default hyperparameters, with the following changes. We
fine-tuned XLS-R for 20k steps with a learning rate of 5e-5 and
a gradient accumulation factor of 5. We used a batch of around
1 minute of transcribed speech. Unlike [1], we did not find it
necessary to freeze the Transformer [31] encoder’s parameters
at the beginning of training. For Whisper, we used a batch of
48 recordings for the small model and 24 recordings for the
medium model, and fine-tuned for 2k steps with a learning rate
of 1e-5. We used a single V100 32GB GPU, and each experi-
ment took around 12 hours.
Decoding. We used greedy search for ASR inference with
XLS-R. We tried beam search without a language model (LM)
but found no improvement. We do not train LMs so that our
results are independent of external modules used in the decod-
ing process, and also since FLEURS contains little text to train
them. For inference with Whisper, we used greedy search for
a fair comparison. However, as discussed in Section 4.2, beam
search decoding gives a slight improvement.
Text Normalization. Since Whisper was trained with unnor-
malized transcripts, it generates transcripts with punctuation.
Hence, Radford et al. [2] introduced a multilingual text normal-
izer to standardize both the Whisper transcripts and evaluation
transcripts by removing punctuation. The text in FLEURS was
already normalized; however, we still found some punctuation
and irrelevant characters. Therefore, we applied the Whisper
normalizer to all model-generated and ground-truth transcripts
during evaluation to make a fair comparison between models
with and without fine-tuning. The Whisper normalizer erro-
neously introduces spaces to transcripts in a few languages; we
discuss the impact of this in the Appendix of our ArXiv paper
version.
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Table 1: Results on the FLEURS dataset. XLS-R 317M, Whisper-Small 244M, and Whisper-Medium 769M are fine-tuned on each
language individually. CER=Character Error Rate (↓ is better); PT=Pre-Train; FT=Fine-Tune; ZT=Zero-Shot (no fine-tuning).

Language Language XLS-R Whisper XLS-R Whisper-S Whisper-M Whisper-S Whisper-M
Family PT Hours PT Hours FT CER FT CER FT CER ZT CER ZT CER

Seen Languages

XLS-R PT Hours < Whisper PT Hours
English Indo-European 69,493 438,218 6.45 3.63 2.72 3.18 2.81
Mandarin Chinese Sino-Tibetan 90 23446 20.25 9.55 7.77 25.84 16.06
Korean Koreanic 61 7993 15.92 9.31 5.27 7.56 5.78
Japanese Japonic 49 7054 24.84 12.10 7.22 14.47 9.18
Indonesian Austronesian 41 1014 3.57 4.19 2.85 6.83 3.33
Arabic Afro-Asiatic 95 739 5.99 6.86 4.80 9.64 6.08
Ukrainian Indo-European 72 697 4.16 4.81 3.20 6.39 3.89
Vietnamese Austro-Asiatic 96 691 10.54 9.42 6.42 11.05 7.01
Thai Kra-Dai 20 226 10.29 12.65 8.82 24.05 17.75

XLS-R PT Hours ≈ Whisper PT Hours
Azerbaijani Turkic 47 47 5.84 8.05 5.25 19.62 12.54

XLS-R PT Hours > Whisper PT Hours
Czech Indo-European 18514 192 5.00 8.51 4.69 11.30 6.43
Maltese Afro-Asiatic 9120 1.1 4.08 8.80 5.78 100.26 88.24
Bengali Indo-European 100 1.3 6.04 11.08 7.67 114.56 111.30
Swahili Atlantic-Congo 91 5.4 4.88 6.91 4.71 44.40 37.67
Afrikaans Indo-European 87 4.1 9.31 13.83 9.14 29.80 21.24
Hindi Indo-European 65 12 5.94 8.21 6.13 45.46 24.16
Khmer Austro-Asiatic 33 1.3 12.49 27.18 18.63 133.97 112.02
Burmese Sino-Tibetan 33 0.1 11.58 30.46 27.58 152.30 178.60
Average CER for Seen Languages 9.29 10.86 7.70

Unseen Languages

Asturian Indo-European 0 0 5.29 7.09 5.02 N/A N/A
Kabuverdianu Indo-European 0 0 4.65 5.64 4.00 N/A N/A
Sorani Kurdish Indo-European 0 0 7.75 12.57 9.89 N/A N/A
Oromo Afro-Asiatic 0 0 16.23 18.95 17.57 N/A N/A
Fula Atlantic-Congo 0 0 16.07 20.87 16.26 N/A N/A
Kamba Atlantic-Congo 0 0 12.87 19.20 16.50 N/A N/A
Sotho Atlantic-Congo 0 0 7.35 13.90 11.16 N/A N/A
Nyanja Atlantic-Congo 0 0 8.64 13.37 14.69 N/A N/A
Wolof Atlantic-Congo 0 0 14.59 17.60 14.71 N/A N/A
Xhosa Atlantic-Congo 0 0 6.34 12.48 8.52 N/A N/A
Igbo Atlantic-Congo 0 0 12.56 19.34 19.64 N/A N/A
Umbundu Atlantic-Congo 0 0 18.13 24.69 19.58 N/A N/A
Luo Nilo-Saharan 0 0 5.96 8.55 6.54 N/A N/A
Average CER for Unseen Languages 10.49 14.94 12.62

4. Results
4.1. Seen Languages

In Table 1, we show the results of fine-tuning XLS-R and
Whisper on the seen and unseen languages in FLEURS. We
also show the Whisper results on seen languages without fine-
tuning. Both Whisper-Small and Whisper-Medium usually im-
proved after fine-tuning. The improvements are significant
for languages with only a few hours of audio seen during
pre-training; for example, CER improved from 88.24 to 5.78
for Whisper-Medium on Maltese (1.1 hours seen during pre-
training). However, for high-resource languages like English
and Korean, the improvement was small, and the performance
slightly decreased in some cases. Whisper-Medium outper-
formed Whisper-Small on all seen languages both with and
without fine-tuning.

Comparing XLS-R to Whisper, the results tend to depend
on the number of hours seen per language during pre-training.
Whisper-Medium outperformed XLS-R both with and without
fine-tuning on languages for which it saw more hours of au-
dio during pre-training. Whisper-Medium fine-tuned also out-
performed XLS-R on some languages for which it saw fewer

hours of audio during pre-training, such as Czech (4.69 vs 5.00)
and Swahili (4.71 vs 4.88). However, XLS-R outperformed
Whisper-Medium on languages that it had seen far more of
during pre-training, such as Hindi (5.94 vs 6.13) and Khmer
(12.49 vs 18.63). XLS-R outperformed Whisper-Small on most
languages including those that Whisper had seen more hours
of during pre-training, such as Indonesian (3.57 vs 4.19) and
Arabic (5.99 vs 6.86). However, Whisper-Small outperformed
XLS-R on languages that it had seen far more hours of during
pre-training, such as Mandarin (9.55 vs 20.25) and Japanese
(12.10 vs 24.84).

In Figure 2, we compare the performance of XLS-R to
Whisper-Small and XLS-R to Whisper-Medium based on the
hours of pre-training data for each language. The y-axis mea-
sures the relative CER and the x-axis measures the relative num-
ber of pre-training hours per language on a log-log scale. Based
on both plots, we observe a medium-to-strong correlation be-
tween the log of the relative CER and the log of the relative
number of pre-training hours, which could be helpful for pre-
dicting whether XLS-R or Whisper will perform better on other
seen languages. The first line of best fit predicts that Whisper-
Small will outperform XLS-R on languages for which it has
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Figure 2: Comparing the performance of XLS-R 317M to Whisper Small 244M (left) and XLS-R 317M to Whisper Medium 769M (right)
on seen languages in FLEURS. X-axis: log10(

XLS-R #PT Hours
Whisper #PT Hours ). Y-axis: log10(

XLS-R CER
Whisper CER ).

seen at least 3.47 times more hours of audio than XLS-R dur-
ing pre-training. The second line of best fit predicts that XLS-
R will outperform Whisper-Medium on languages for which it
has seen at least 9.23 times more hours of audio during pre-
training. This result is intuitive since it predicts that a smaller
model would outperform a larger model on languages for which
it has been trained with far more hours of audio. It is also inter-
esting that the raw number of hours seen per language is predic-
tive of the models’ relative performance, despite the significant
differences between XLS-R’s self-supervised pre-training and
Whisper’s weakly supervised pre-training.

4.2. Unseen Languages

The bottom half of Table 1 shows the results of fine-tuning
XLS-R and Whisper on the unseen languages. We also at-
tempted to test Whisper without fine-tuning but found that
the transcripts were incomprehensible. XLS-R outperformed
Whisper-Small on all languages and outperformed Whisper-
Medium on all languages except for Asturian and Kabuver-
dianu. The models tend to perform worse on the unseen lan-
guages compared to the seen languages based on the aver-
age CER, but XLS-R’s average CER only decreased by 12.9%
relative, while Whisper-Medium’s average CER decreased by
63.9% relative.

To understand the impact of the models’ pre-training data
on performance, we plotted the hours of audio seen during pre-
training per language family in Figure 1. Language families
consist of languages that have a common ancestral language.
Whisper saw more audio in high-resource language families
such as Indo-European (Whisper: 506k hours vs XLS-R: 379k
hours), while XLS-R saw more audio in lower-resource lan-
guage families such as Afro-Asiatic (Whisper: 1.4k hours ver-
sus XLS-R: 10k hours) and Atlantic Congo (Whisper: 5.4 hours
versus XLS-R: 1.5k hours). In our experiments, the model
which saw more data in the corresponding language family usu-
ally performed better on the unseen language. XLS-R did bet-
ter on the Atlantic-Congo, Afro-Asiatic, and Nilo-Saharan lan-
guages, consistently outperforming the larger Whisper-Medium
model. Although neither model was pre-trained on Nilo-
Saharan languages, the family is similar to Atlantic-Congo
which explains XLS-R’s better performance on Luo. Whisper-
Medium outperformed XLS-R on Indo-European languages, a

family that Whisper had seen more data from, except for So-
rani Kurdish. Overall, these results show that the distribution of
hours seen per language family can be useful to make predic-
tions about how XLS-R and Whisper compare on unseen lan-
guages, despite the different pre-training methods.

For seen languages, the hours seen per language during pre-
training appears to be a more important factor than the hours
seen per family. For example, XLS-R outperformed Whisper-
Medium on languages that XLS-R had seen more hours of
during pre-training, such as Hindi (Indo-European), Khmer
(Austro-Asiatic), and Burmese (Sino-Tibetan), even though
Whisper saw more hours in those families. Similarly, XLS-R
outperformed Whisper-Small on Indo-European languages that
XLS-R had seen more hours of during pre-training, such as
Czech, Bengali, and Afrikaans, even though Whisper saw more
hours from the family in total.

Finally, we attempted to improve Whisper’s performance
on the unseen languages by using beam search instead of greedy
search. With a beam size of 5, Whisper’s performance improved
by around 3.34% relative or 0.42 absolute on average, but the
improvement was never large enough to outperform XLS-R.

5. Conclusion
We compared XLS-R and Whisper for adaptation to unseen lan-
guages not included during pre-training. XLS-R largely out-
performed Whisper on unseen languages, which we attribute
to more data seen in the related language families during pre-
training. The hours per language seen during pre-training was
predictive of how the models performed on seen languages. Our
results confirm that diverse pre-training data is essential for gen-
eralization and should ideally include more languages. Since
unlabeled audio is easier to collect, future self-supervised mod-
els like XLS-R may have greater potential to outperform super-
vised models like Whisper on other unseen languages, with the
limitation that self-supervised models can’t perform ASR with-
out fine-tuning. Future work could try ensembles of the two
models or different tasks such as speech translation.
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