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Abstract

Self-supervised speech representations have been shown to be
effective in a variety of speech applications. However, exist-
ing representation learning methods generally rely on the au-
toregressive model and/or observed global dependencies while
generating the representation. In this work, we propose Non-
Autoregressive Predictive Coding (NPC), a self-supervised
method, to learn a speech representation in a non-autoregressive
manner by relying only on local dependencies of speech. NPC
has a conceptually simple objective and can be implemented
easily with the introduced Masked Convolution Blocks. NPC
offers a significant speedup for inference since it is paralleliz-
able in time and has a fixed inference time for each time step
regardless of the input sequence length. We discuss and ver-
ify the effectiveness of NPC by theoretically and empirically
comparing it with other methods. We show that the NPC rep-
resentation is comparable to other methods in our experiments
while being more efficient.

Index Terms: speech representation, self-supervised learning,
non-autoregressive model

1. Introduction

Speech representation learning aims to extract high-level repre-
sentations from surface features such as waveforms or spectro-
grams. Ideally, these representations make latent information
in speech such as phonetic content and speaker characteristics
more accessible to downstream tasks. While speech representa-
tions can be computed via different transformations of the sur-
face feature, recent research has successfully combined neural
networks and self-supervised learning (i.e., where learning tar-
gets can be derived from the input itself) [1,2,3,4,5,6,7,8,9].
Contrastive Predictive Coding (CPC) [1] is one such ap-
proach whereby a surface feature sequence is transformed into a
latent representation by an encoder network. An autoregressive
model summarizes the latent sequence history into a higher-
level representation that is used to predict future latent repre-
sentations. CPC and its extensions are effective for learning
expressive and robust representations of speech [2, 3, 4, 5].
Instead of predicting future latent representations, Autore-
gressive Predictive Coding (APC) suggests that simply predict-
ing future surface features is suitable for learning an effective
representation of speech [6]. APC has also been extended and
improved by enforcing constraints that information from past
sequences be stored in the representation [10] or by imposing
an information bottleneck via vector quantization (VQ) [11].
Inspired by the left-to-right nature of speech, both CPC
and APC achieve self-supervision by using future features in
a uni-directional ordered learning. Masked Language Mod-
eling (MLM) relaxes this constraint and uses a different self-
supervised learning strategy whereby parts of the input se-
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quence are randomly masked and set as the prediction target,
allowing models to observe the entire surface feature sequence
without seeing the target and derive a representation from con-
textual information [12]. A bidirectional RNN [8] or Trans-
former [9] can be used to learn MLM speech representations.

To introduce our work, we first formulate our task and mark
two properties of the aforementioned methods. Our goal is to
derive a high-level representation (h1, ho, ..., hr) from the sur-
face feature sequence of audio (z1, z2, ..., z7) with length 7.
In APC and CPC, the representation h; at time ¢ is learned by
predicting the unseen future frame x4, (or its latent counter-
part) based on the current frame x+ and the previous latent rep-
resentation k1. These methods 1) are autoregressive: the pre-
vious representation h:_1 is required at each timestep; and 2)
incorporate global dependency: h:_1 encodes all the past inputs
(21, ..., Tt—1), making h; depend on (z1, .., z¢). These proper-
ties also apply to MLM!, but with a stronger global dependency
since the full input sequence is always observed, i.e. h; depends
on (z1, ..., z7) for any ¢. Note that these two properties have a
large impact on the efficiency of representation models. The au-
toregressive property implies that the extraction process cannot
be parallelized in time, and relying on global dependency re-
sults in time complexity bounded by the input sequence length
as we verify later in our experiments (Sec. 3.2.1).

To this end, we propose Non-Autoregressive Predic-
tive Coding (NPC) to learn latent representations in a non-
autoregressive manner by observing only the local dependency
of speech. Without the autoregressive property, NPC offers a
significant speedup for deriving speech representations by en-
abling parallelizing in time. By observing only local dependen-
cies, NPC allows representations to be derived efficiently re-
gardless of the input sequence length, which is useful for down-
stream tasks requiring low latency such as streaming speech
recognition. Furthermore, we show that representations derived
by NPC, relying only on local dependencies and incorporating
a non-autoregressive model, is empirically comparable to dif-
ferent self-supervised learning strategies.

2. Proposed method
2.1. Non-autoregressive Predictive Coding

To derive the high-level feature h; at time ¢ without a global
dependency or autoregressive property, we restrict it to de-
pend only on the neighbors of z; within a receptive field
(Ti—ry ooy Tty oony Tetr) Of size R = 2r + 1. While any model
architecture with a fixed-size receptive field can be used, we
stack Convolution Blocks (ConvBlock, Fig. 1(b)) to build the
representation extraction model in this work.

"The MLM autoregressive property does not apply to transformers [13]
but increases compute complexity in terms of input sequence length.
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Figure 1: Illustration of NPC at time t with desired input mask size M;, = 3 on an example network having receptive field size R = 13.
In all figures, orange nodes represent the frames that contain information of the target frame x:, therefore should not be used for
prediction; blue nodes are the rest of frames that can be used. (a) An example of 2-layered feedforward network for NPC. Input frames
are processed by layers of ConvBlock, features from Masked ConvBlock at each layer are summed up to the context representation hy,
which will be passed into Vector Quantization layer followed by a linear projection predicting y: to match the target frame x. (b)
ConvBlock applies a CNN along the time axis, resulting target-related information to spread to its neighbor at next layer. (c¢) Masked
ConvBlock generates representation only based on unmasked frames containing no prohibited information.

To ensure that the high-level feature h; is indeed represen-
tative of x4, it is linearly transformed into y; to predict ;. Fol-
lowing previous work [11, 4, 14], we adopt a VQ layer [15]
before the linear projection to serve as an information bottle-
neck on h; to yield a better representation. The NPC objective
is to minimize the L1 difference between surface feature x; and
prediction y; based on h; for all time steps:

T
Dy — el
t=1

Note that the target x; of representation h; is in the recep-
tive field (z¢—r, ..., Tt, ..., Tr4r), which might cause h: to be
uninformative, since the network can implicitly learn to copy
the target directly from the input. Therefore, NPC requires
an additional restriction where the target and its close neigh-
bors in time cannot be observed by h;. Concretely, given the
receptive field (z¢—p, ..., T4, ..., ¢4, ) Of the high-level repre-
sentation h, the nearest 2m neighbors of x; and itself, i.e.
(Tt—myeey Tty ey Te+m ), cannot be observed, forming an in-
put mask size M;, = 2m + 1 for h:. As the receptive field of
each layer in the model varies, the desired mask size changes
accordingly, e.g., the choice of ConvBlock with receptive field
of size 3 results in the desired mask size to increase by 2 (see
orange nodes in Fig. 1(a)(b)).

ey

2.2. Masked Convolution Blocks for NPC

To implement the desired restriction, we introduce the Masked
Convolution Block (Masked ConvBlock), where the kernel-
wise convolution operation can be written as

(WoeD)xZ 2)

with Z € RT*? denoting the intermediate features from model
with sequence length 7" and dimension d, W & R**? denoting
the learnable kernel weight with size k, and D € {0, 1}**? de-
noting the mask with each element d;; = ligg T ]li2§+m.

3731

For example, Fig. 1(c) illustrates a Masked ConvBlock with
k = 7 and m = 2. The Masked ConvBlock prevents high-
level feature h; from observing any surface feature within the
desired input mask. Moreover, it can be applied to any interme-
diate level feature as long as the desired mask size can be cal-
culated at each layer. In practice, we find this property valuable
as it allows aggregation of representations at different depths.

3. Experiments
3.1. Self-supervised Learning Setup

We learn speech representations from LibriSpeech [17], where
the 360-hour clean subset is used for a probing task in Sect. 3.2
and the full 960-hour training set is used for semi-supervised
speech recognition experiments in Sect. 3.3. An 80-dimensional
log Mel spectrogram is selected as the surface feature of speech.
Unless otherwise specified, each channel is normalized to have
zero mean and unit variance across the same utterance. For the
NPC model, we use multi-layer convolution networks, where
each layer consists of a ConvBlock and Masked ConvBlock
as shown in Fig. 1. Given a desired receptive field R, since
ConvBlocks have a fixed receptive field of 3, the kernel size of
Masked ConvBlock can be set to R —2 x L where L is the depth
of NPC model. The dimensionality of the representation and all
intermediate layers is set to 512 for probing tasks, while 768 is
used in the recognition task. We use the Gumbel-softmax VQ
layer described in [4] with a group of 4 codebooks each con-
sisting of 64 codewords. We train NPC using Adam [18] with a
learning rate of 102 and a batch size of 32 for 50 epochs.

3.2. Evaluation of Representation with Probing Tasks

We first evaluate the NPC representation and study the effect
of hyper-parameter choice via probing tasks. We follow prior
work [1, 6, 9] to define the “effectiveness” of representations
such as accessibility to latent information, i.e., their linear sepa-
rability with respect to underlying phonetic label and speaker



Table 1: Efficiency and performance of different self-supervised methods. All representations have dimension of 512. A
speaker-wise normalized log Mel spectrogram is used as the surface feature. All numbers in the phone and speaker error rate
columns except those of NPC are directly taken from [11]. See Sec. 3.2.1 for more setup details.

Method Network Frame Theoretic‘alt . Empirica.l§ Phone Speaker
dependency | complexity inference time | error rate  error rate
log Mel-spectrogram - - - - 50.3 17.6
CPC [1] 34.1 9.7
APCI6] 3-layer GRU Left-to-right | O(T - d?) 29x 33.3 8.5
MT-APC [10] 30.5 7.3
VQ-APC [11] 28.4 5.5
RNN-MLM [8] 3-layer Bi-GRU Global oO(T - d?) 72x 324 6.2
Transformer-MLM [9] | 3-layer Transformer O(T? - d) 33x 30.8 5.1
NPC (ours) 3-layer Masked Conv. Local O(k - d?) 1x 279 6.1

+ Frame-wise time complexity. 7" denotes the sequence length, d the representation dimension, and & the kernel size.
§ Averaged time cost over 10K runs on a single GPU with PyTorch [16] without further optimization on all networks

ID. The NPC model pre-trained on LibriSpeech is fixed and
used to extract representations from the Wall Street Journal cor-
pus (WSJ) [19] for the tasks defined in [11]. For phone classi-
fication, we use 90% of the utterances in the standard s1284
split to train a linear classifier, the remaining 10% as a valida-
tion set, and report frame-wise test accuracy on dev93. For
speaker classification, the extracted representations are aver-
aged utterance-wise to serve as input to a linear classifier. We
consider the first 259 speakers in s1284 and use 80% of the ut-
terances as a training set, 10% as a validation set, and report the
frame-wise test accuracy on the last 10%. All reported numbers
are averaged over 3 runs with negligible variance.

3.2.1. Performance

In Table 1, we compare NPC with prior speech representation
learning models, including CPC [1], APC family [6, 10, 11],
and MLM family [8, 9] as introduced in Sec. 1. We note that
utterance-wise zero mean unit variance normalization on log
Mel spectrograms is more suitable for NPC (and potentially all
other methods), but we use speaker-wise normalization follow-
ing previous work specifically in Table 1 for a fair comparison
to the reported results in [11].
Efficiency: To study the speed advantage of NPC brought by
the non-autoregressive and local-only dependent property, we
first compare the time complexity and empirical inference speed
to others as shown in Table 1. For time complexity, we consider
the worst-case complexity per frame in terms of the input se-
quence length 7', the representation dimension d, and the con-
volution kernel size k for the NPC model.”> For empirical in-
ference time, we average run time over 10K runs for all models
with fixed sequence length 7" = 1000 (approximately corre-
sponding to a 10 sec. utterance), d = 512, and batch size 32.
For NPC, the time complexity is O(k - d*) since the rep-
resentation at any time step has a fixed-size receptive field de-
pending on k, which is independent of the sequence length 7.
We set the average running time of a 3-layer NPC as the stan-
dard (denoted ”1x” in Table 1) and compare it against other
methods. For APC and CPC based methods, the worst case is
the representation at the end of the sequence which must process
through all T inputs, resulting in the complexity O(T-d?). With

2We treat the depth of models c as a constant since all models discussed
in this paper have ¢ < T and ¢ < d.
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Figure 2: Phone/speaker error rate and training loss with re-
spect to different mask size on 2-layer NPC with R = 23.

the choice of 3-layer GRU, we observed 29 times longer infer-
ence time on APC and CPC models. For RNN-MLM, the time
complexity is identical to the previous case since the represen-
tation is the combination of 2 GRU hidden states. However, in
practice, bi-directional autoregressive representations can be up
to 72 times slower than NPC without further optimization. For
the Transformer-MLM, the time complexity is O(T? - d) since
each representation is a weighted sum of the complete sequence
of hidden states of transformer encoders as noted in [13]. As
speech signals are generally longer (1" > d), we observed a
slightly longer inference time than APC/CPC models.?
Effectiveness: Given that NPC provides a significantly faster
inference, we now take a look into the accessibility of speaker
characteristics and phonetic information compared to other
methods. For the task of speaker classification, an NPC rep-
resentation produced a 6.1% error rate where the best from
Transformer-MLM is 1% better. This suggests that NPC may
not be as effective as other representation models when the
task explicitly requires global information. For phone classi-
fication, which depends less on global information compared
to speaker classification, we observe a better performance com-
pared to other methods, indicating that NPC can be applied for
tasks focusing on local dependencies without a trade-off.

3.2.2. Importance of the Mask Size M,

Fig. 2 shows the result of varying the mask size with a fixed
receptive field of size 23, i.e. restricting inputs to be 11 frames
on both sides of the target. Intuitively, increasing the mask size

3In practice, this can be addressed by downsampling the feature se-
quence at the cost of making frame-wise representation unavailable.



Table 2: Ablation study on NPC with input mask size M;, =
5, receptive field size R = 23. Single MaskedConv indicates
applying Masked ConvBlock at the last layer only.

Method PER
NPC 4-layer 27.2
- remove 1 layer 27.7
- remove 2 layer 28.8
- remove VQ layer 27.9
- Single MaskedConv | 29.7

Table 3: Word error rate on LibriSpeech test set with 100 hour
labeled data and representations from 960 hours training set,
comparing to results from prior work [20].

Representation Depth / Model | clean/ other
filterbank - 9.36/30.20
wav2vec 2.0 [5] 12 Transformer | 5.10 /11.94
VQ-APC [11] 3 uni-GRU 7.42/23.38
DeCoAR [21] 4 bi-LSTM 6.10/17.43
DeCoAR 2.0 [20] | 12 Transformer | 5.02/12.07
NPC 3 ConvBlock 7.39/22.49

will increase the difficulty of predicting the target frame, and
the training loss increases accordingly as a consequence. It can
be observed that with the mask size less than 5, NPC repre-
sentations begin to lose speaker and phonetic accuracy despite
having a lower loss, which verifies our assumption in Sec. 2.1
where observing the target and its close neighbor will result in
a less informative representation. On the other hand, a dramatic
increase in phone error rate but not the speaker error rate is ob-
served as the mask size exceeds 9, indicating that proper con-
straint on mask size is important for NPC to capture phonetic
content. This matches the fact that phonetic content may change
within a short time period while speaker characteristics tend to
persist across time, hence are less affected by a larger mask.

3.2.3. Ablation study

To verify the importance of the model architecture, we per-
formed an ablation study and list the results in Table 2. We note
that the difference in speaker error rate is not significant and we
only report phone error rate. We start with a 4-layer NPC model
with receptive field size R = 23 and input mask size Mi, = 5.
By either reducing the depth of the NPC model or removing
the vector quantization layer, the phone error rate slightly in-
creases but varied no more than 1.6%. In contrast, phone error
rate drops over 2% when applying the Masked ConvBlock on
the last layer only (29.7). Nevertheless, we observe that none
of the architectural decisions have a huge impact on NPC as we
also saw for the input mask size M;,, which demonstrates the
robustness of the NPC model in terms of architecture.

3.3. Application on Semi-supervised Speech Recognition

Speech recognition is used as the downstream application for
NPC. We follow the semi-supervised setting of prior work [20]
using the following pipeline: 1) Pre-train the self-supervised
model on all 960 hours of LibriSpeech data and freeze the rep-
resentation extraction parameters for the downstream task. 2)
Train a 2-layer bidirectional LSTM acoustic model using the
CTC objective [22]. The targets are phone sequences consisting
of 71 phone labels plus 1 blank symbol. 3) Apply WFST-based
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ASR decoding from EESEN [23] together with the 4-gram lan-
guage model provided by LibriSpeech. The dev-clean subset is
used for validation and we report the word error rates (WERs)
on test-clean and test-other in Table 3. The NPC used in this
pipeline has 3 layers and 768 dimensions, the final ReLU func-
tion in ConvBlock is replaced with BatchNorm, and the output
of the last ConvBlock is used as the input of downstream ASR.

Clearly, there is a gap between NPC (shallow network
with local dependencies only) and state-of-the-art models like
wav2vec2.0 [5] and DeCoAR2.0 [20] (which are deeper and
more contextualized). This suggests that speeding up self-
supervised speech representation without hurting downstream
applications is still an unsolved problem. Nevertheless, NPC
still made a significant improvement over baseline surface fea-
ture (spectrogram) similar to VQ-APC [11] with a lower com-
putational cost that benefits computationally limited scenarios.

3.4. NPC Analysis

Conceptually, NPC relies on local context to predict a target
frame. The idea of learning an embedding based on local neigh-
bors has been useful for learning word embeddings [24, 12] and
also for speech representation learning [25, 26, 21, 27, 28].
However, NPC defines explicit masks, and uses a simple recon-
struction loss, which differentiates it from other methods.

To better understand how NPC derives its representation
from speech, we take the Masked ConvBlock kernels from the
pre-trained 2-layer NPC model of different receptive fields R
and compute the magnitude of these kernel weights at the sec-
ond layer. This can be viewed as the importance of the adjacent
frames of the target learned by NPC for generating a speech
representation. Results are normalized and visualized in Fig. 3.

Unsurprisingly, frames adjacent to the masked input pos-
sess the largest magnitude, indicating they are the most impor-
tant part for NPC to produce a representation. Conversely, the
inputs farthest from the target usually have less than 5% of the
total magnitude. This supports our view that local dependency
is sufficient for learning effective speech representations.

4. Conclusion

In this work we propose Non-Autoregressive Predictive Cod-
ing (NPC) to significantly speed up the inference time required
for speech representation learning. This is done by learning
only from local contexts of speech with a fix-sized receptive
field. Target-related information masking is implemented by a
Masked ConvBlock. In our experiments, we examine and dis-
cuss the importance of each NPC component to demonstrate
the robustness of the proposed framework. Evaluations on the
learned representation and analysis of the model were carried
out to support the conclusion that speech representation can be
obtained more efficiently by NPC.

Code at: https://github.com/Alexander-H-Liu/NPC
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