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Abstract
Many of the recent advances in audio event detection, partic-
ularly on the AudioSet data set, have focused on improving
performance using the released embeddings produced by a pre-
trained model. In this work, we instead study the task of training
a multi-label event classifier directly from the audio recordings
of AudioSet. Using the audio recordings, not only are we able
to reproduce results from prior work, we have also confirmed
improvements of other proposed additions, such as an attention
module. Moreover, by training the embedding network jointly
with the additions, we achieve an mAP of 0.392 and an AUC of
0.971, surpassing the state of the art without transfer learning
from a large data set. We also analyze the output activations of
the network and find that the models are able to localize audio
events when a finer time resolution is needed.
Index Terms: acoustic scene analysis, audio classification, au-
dio event detection

1. Introduction
Audio classification is the task of detecting whether an event
occurred given an audio clip. Examples could include recog-
nizing car horns in driving footage or detecting glass break-
ing in a home security recording system. Audio classification
was initially addressed as a single-label task [1, 2, 3, 4, 5, 6].
However, by definition, it is a multi-label classification task,
because multiple audio events can occur in the same audio clip.
There has been a lot of progress thanks to many publicly avail-
able datasets, such as ESC, those in the DCASE challenges,
and AudioSet [7, 8, 9, 10]. Audio classification serves as the
first step not only for understanding the environment but also
for many downstream tasks, such as voice activity detection
before speech recognition [11], noise detection before speech
enhancement [12], and localizing speakers before speaker iden-
tification [13]. Any improvement in audio event detection can
potentially help improve the downstream tasks.

Audio segmentation is a separate but similar task to audio
classification. In classification, the goal is to simply recognize
when a particular type of sound occurs somewhere in the in-
put. In segmentation, the goal is to be able to detect exactly
where in the sample each label occurred, more finely labeling
the events within the audio scene over time. Audio classifica-
tion is a weaker task in the sense that if there is a solver for
audio segmentation, we can use that solver to solve audio event
detection. On the other hand, while collecting fine-grained la-
beling for audio segmentation requires expert knowledge and
is labor-intensive, collecting labels for audio classification does
not require expert knowledge and can be easily crowdsourced.

In this work, we focus on deep convolutional neural net-
works (CNNs) for audio classification due to the success in
many prior studies [14, 15, 16, 17, 18, 19]. CNNs perform es-
pecially well when there is access to a large amount of data.
In particular, it has been shown in [20] that a CNN trained on
70 million audio clips on YouTube is able to generalize well to
other audio clips collected in the wild, such as AudioSet [10].

A set of features extracted from a model in [20] has been
released in the public domain, and a significant amount of work
has been done based on these features. The study in [21] ap-
plies an attention module for each class over time after a few
additional transformations on top of the released features. This
approach is able to surpass the results on AudioSet in [20]. This
work is extended by [22], applying a multi-level attention mod-
ule. In particular, the output of attentions applied at different
layers are concatenated before the final classification. This ap-
proach has the current state of the art AUC result on AudioSet,
significantly surpassing their previous work. Most recently, this
work has once again been extended by [23], where they applied
an attention module in the hidden layers before a final classifi-
cation layer, holding the current state of the art for mAP.

Though the released features certainly help make progress
in this field, the results are not satisfying for the following rea-
sons. First, we ignore if pre-training on 8 million audio clips
is necessary to perform well on AudioSet. Second, we are un-
able to state that improvement from the additions, such as the
attention module, would transfer without pre-training. Finally,
having to work on released features without access to the actual
working model hinders the possibility to update the base model
based on the error signal from the additions, i.e., training the
model end to end.

In this work, we explore these questions, by having a clean
setting and clean comparisons for the task and considering some
of the additions proposed in the past. Specifically, we find that
training on AudioSet itself is sufficient to perform well on its
evaluation set. Moreover, we do see performance improvement
in the clean setting when the additions are used and when the
models are trained end to end. We also explore several different
architectures, and achieve a new state of the art without pre-
training on 8 million audio clips or any other outside data.

Since audio classification is a weaker task than audio seg-
mentation, it is natural to ask whether the trained network per-
forms localization before giving the final classification result.
We analyze the best performing network on a subset of Au-
dioSet that contains fine-grained segmentations, and we find
that this is indeed the case. At the penultimate layer just before
applying attention in the network, we are able to extract the lo-
cation at which the sound events occur. This further justifies the
use of the weak labels collected for audio classification.
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2. Task Definitions
In this section, we formally define the task of audio classifi-
cation. Let X be the space of input frames. For example,
X = R64 if the input feature is 64-dimensional log Mel spec-
trograms. Let Y be the space of labels, and in this case, Y =
{0, 1}K , where K is the number of audio events that we are in-
terested in detecting. The task of audio classification is to find a
function that maps T input frames x1, . . . , xT to a vector y ∈ Y
where xt ∈ X for t = 1, . . . , T . For audio segmentation, the
goal is to find a function that maps T input frames x1, . . . , xT

to a sequence (c1, s1, e1), . . . , (cm, sm, em) of m events where
si and ei are the start and end time and ci ∈ {1, . . . ,K} is the
class of the i-th event for i = 1, . . . ,m. Note that in general
the number of frames T varies from clip to clip, and the number
of events m can be zero. It is also easy to see that if a vector y
has yci = 1 for i = 1, . . . ,m and zero everywhere else, then
this vector y is a correct audio classification so long as the audio
segmentation is correct.

3. Model Architectures
In this section, we describe the proposed and evaluated ResNet
variants. ResNet [24] was the first model to introduce skip-
connections, additional layers that pass values around future
layers, allowing blocks of layers to easily learn the identity
function and avoid transformation of features. Skip-connections
also enable improved error propagation and significantly help
against the vanishing gradient problem. This allows for the ex-
tending of a network with many more layers with little worry of
degradation in performance. The ResNet architecture has been
used in audio tasks such as speaker spoof detection [25] and
unsupervised audio representation learning [26].

We start with the ResNet50 audio variant proposed by [20],
termed here ResNet A. It consists of 50 layers with a skip con-
nection almost every 3 layers, with an average pooling before
prediction. Following [20], we divide each 10s audio clip into
960ms independent segments, feed each segment into the net-
work to make independent predictions, then average the indi-
vidual predictions over all segments.

The first variation we explored eliminated the segmenta-
tion step used by ResNet A, and processed the entire 10s audio
clip, advancing one 10ms frame at a time. As shown in Fig-
ure 1, this effectively produced a 3D tensor consisting of time
(T), Channels (filterbanks), and CNN filters (F). The ResNet B
model performed Global pooling over this tensor at the penul-
timate layer, producing a single F-dimensional vector, which
was passed to the final classification layer. Global pooling thus
averages over time and frequency channels.

In order to be able to attend over time, we then consid-
ered a different kind of pooling that we call Channel pooling,
which average pooled only over the Channel dimension. Chan-
nel pooling is shown in Figure 1 (b). Model ResNet B + att
incorporated an attention mechanism with Channel pooling.

Finally, we also considered two other ResNet models using
different residual architectures. ResNet C + att and ResNet D
+ att are the same as ResNet B + att but are based on ResNet34
and ResNet101, respectively. Table 1 describes these model ar-
chitectures in detail.

(a) Global pooling

(b) Channel pooling

Figure 1: Global vs Channel pooling. In global pooling, all
elements in the time and channel dimensions are averaged to
generate a 1 × 1 × F tensor, with F being the number of fil-
ters. Alternatively, channel pooling averages over channels to
generate a 1× T ×F tensor, where T is the number of frames,
which allows for using an attention mechanism over time.

4. Experiments
4.1. Dataset

Our work focused on utilizing AudioSet, a collection of over 2
million 10-second clips of YouTube videos released by Google,
weakly labeled with the sounds that the clip contains from a
set of 527 labels. Weakly labeled, as opposed to strongly la-
beled, means that labels are given to a clip with no indica-
tion of where in the clip the associated sound occurred. Au-
dioSet is also a multi-label dataset so every clip can, and
most often does, have multiple labels associated with it, with
an average of 5 labels per sample. The dataset is split into
three groups: balanced train, unbalanced train,
and evaluation. The balanced train dataset is a set of
22,000 examples, where each label has 49 samples, while the
unbalanced train set contains the rest of the complete
training dataset. The evaluation set consists of 22,000 exam-
ples. AudioSet indexes video IDs, timestamps, and labels for
each video segment from YouTube. It also provides bottleneck
features, which consist of 128-D vectors for each second of au-
dio, and were obtained using a VGG-inspired model trained on
an early version of the YouTube-8M dataset.

We extracted the dataset from YouTube, but due the con-
stant change in video availability (videos being removed, taken
down, etc.) there is a natural shrinkage (about 5%) from the
original dataset. This noted, we do draw fair comparisons be-
tween the previous state-of-the-art architecture and our models
by evaluating on the same subset of the evaluation dataset.

4.2. Evaluation

We train our model to be able to predict the classes that occur at
some-point in an approximately 10 second long audio clip. We
have our model predict each label independently, as multiple
labels can occur in a single sample. Our model predicts softly,
returning some value between 0 and 1. It is also worth noting
that while the labels of AudioSet form an ontology, each label
is still predicted independently, partly due to the fact that the
appearance of a ground truth label does not imply the presence
of parent and ancestor labels.

For evaluation, we measure how our model performs on the

2569



Table 1: Tested ResNet Architectures. Note Truncated ResNet is the ResNet architecture after applying changes described by [20], and
removing all layers after the final convolution layer.

Model ResNet A ResNet B ResNet B + att ResNet C + att ResNet D + att

Input 11x960ms 10s 10s 10s 10s

Base Model Truncated ResNet50 Truncated ResNet34 Truncated ResNet101

Pooling Global Pool Global Pool Channel Pool Channel Pool Channel Pool

Extension 1FC + 1FC 1FC + 1FC + 1FC +

Time Averaging Attention Module Attention Module Attention Module

AudioSet evaluation set by three metrics: 1) mean Average Pre-
cision (mAP) of all the classes, which is an approximation of
the area under a class’s precision-recall curve, 2) average area
under the curve (AUC) of the receiver operating characteristic
(ROC) curve for each class, and 3) sensitivity index (d-prime),
which is deterministically calculated from AUC.

4.3. Training

Each model was trained on the whole subset of the AudioSet
training set that was still available on YouTube at the time of
extraction. Our training subset consists of 1,953,082 samples
of the total 2,063,949, a 5.3% loss from the original dataset. We
trained each model for up to 50 epochs, with most all models
peaking in performance by the 40th epoch. All networks were
trained with the Pytorch framework [27], using the Adam op-
timizer [28], with a learning rate of 0.0001, weight decay of
5e−7, and beta values of 0.95 and 0.999.

4.4. Results

Our evaluation subset consists of 19,185 samples; 5.9% fewer
than the original 20,371. To ensure we could compare to the
state-of-the-art method, we re-trained the Multi-level attention
model by Yu et al.[22] on the released features and evaluated the
final model-averaged results on our evaluation subset. As the re-
sults were slightly worse overall (mAP: 0.3586, AUC: 0.9678),
we believe that the published numbers are a fair comparison.

As seen in Table 2, there’s an interesting pattern in our tran-
sition from ResNet A, to ResNet B, to ResNet B + att. Perfor-
mance worsened when feeding the whole audio clip into the
ResNet variant model (B). The addition of an attention module
greatly improved our performance, leading to our checkpoint
averaged result achieving state-of-the-art performance (ResNet
B + att (Avg)), and even our peak individual model (ResNet B +
att) still outperforms previous state-of-the-art results. It is also
clear in the progression from our shallower to deeper models
(C, B, D) that there is clear performance gain moving from the
ResNet34 to the ResNet50 based model, but insignificant gains
moving deeper from ResNet50 to ResNet101 based models.

5. Segmentation
An auxiliary task that our strongest model is able to perform,
thanks to the addition of the attention module, is audio event
segmentation. This means that although our model was trained
on weakly-labeled data, it is able to predict strongly.

To evaluate our model, we made use of data from task 4
of DCASE 2018, “Sound event detection in domestic environ-
ments” [14]. In particular, we used the strongly labeled portions
of the data which were the test set released at the start of the
challenge, and the final evaluation set. To perform segmenta-

Table 2: Model Performance on AudioSet Evaluation set. Note
that (Avg) indicates checkpoint averaged results, where outputs
of all 50 epoch versions are averaged and evaluated.

Model mAP AUC d-prime

Baseline[20] 0.314 0.959 2.452

Yu[22] 0.360 0.970 2.660

Kong[23] 0.369 0.969 2.640

ResNet A 0.347 0.966 2.582

ResNet B 0.329 0.966 2.584

ResNet B + att 0.379 0.970 2.657

ResNet B + att (Avg) 0.392 0.971 2.682
ResNet C + att 0.360 0.966 2.587

ResNet D + att 0.380 0.970 2.655

Table 3: Segmentation Performance (F1 Macro %)

Model Test Eval

DCASE Baseline 14.06 -

JiaKai[29] 25.9 32.4

0.5 Thresholds 9.83 6.70

Swept Thresholds (ST) 12.41 8.70

median filtering and ST 17.87 11.50

tion with our model architecture, we took the output right be-
fore attention is applied over time and applied a class-dependent
threshold to determine activation. We show results for thresh-
old of 0.5 for all classes, as well as fine-tuned thresholds which
were found by sweeping over values and evaluating on the test
set by each class’s F1 score in Table 3. We then also swept
over kernel sizes for class-specific median filters, allowing for
smoothing over activation values before thresholds are applied.

Performance on this task is evaluated with the macro-
averaged F1 score. This means finding the F1 score per label
and taking the unweighted mean of these values. To compute
an F1 score, there needs to be a way to determine a hit or miss
for each strong label. A labeling is determined to be a hit if
both the starting and end times are within 200ms of the ground-
truth, and that the event duration is no less than 80% of the true
event duration [30]. A labeling that does not fit this criteria is
a false-positive, and any ground-truth label that does not have a
corresponding “hit” labeling is considered a false-negative.

There are a few things to note in reviewing these results.
For one, our model has a time resolution of about 300ms but
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(a) Clear detection of a fire alarm

(b) Frying, a long-duration event, is not consistently being detected de-
spite its presence through the entire audio sample

(c) Clear detection of cat noises

(d) Shaver detection is not consistent throughout the event, and speech
is being sporadically triggered by background mumbling

Figure 2: Spectrograms and activation levels for different sound
events. The activation plots show only the top-2 classes for clar-
ity.

Table 4: Segmentation Performance by Class (F1 %)

Class Our model Baseline

Alarm/bell/ringing 9.8 3.9

Blender 3.4 15.4
Cat 40.0 0.0

Dishes 20.5 0.0

Dog 21.1 0.0

Electric Shaver/Toothbrush 24.5 32.4
Frying 12.5 31.0

Running Water 1.9 11.4
Speech 27.3 0.0

Vacuum Cleaner 17.9 46.5

the evaluation is done with a 200ms collar. This means that
there is naturally going to be some loss in performance purely
due to this discretization. When the time collar is increased
to 400ms, Macro F1 performance increases to 31.25% on the
test set and 22.26% on the eval set, indicating that the model
is detecting many of the events but with lesser precision. In the
release of the baseline, they claim that their model doesn’t seem
to be really learning how to perform segmentation as it’s only
succeeding with long-duration class types, which in many clips
is essentially equivalent to a clip-level classification. In con-
trast, our model performs particularly well with short-duration
events, and worse with longer-duration events (Table 4). This
shows that our model is in fact learning how to perform seg-
mentation given the success with short-duration event types. A
possible reason for failure in long-duration events is that the
model found some features in time to be more strongly indica-
tive of a classification result, leading to inconsistent detection
throughout the event’s entirety. Figure 2 shows both positive
and negative examples of our segmentation results. Finally, we
can see that while our model is able to outperform the DCASE
baseline, the top performing models built specifically for seg-
mentation achieve better results [29].

6. Conclusion
This paper presents a model that outperforms previous state-of-
the-art work on the AudioSet dataset labeling task, surpassing
results from models built upon the released bottleneck features,
achieving an mAP of 0.392 and AUC of 0.971. This indicates
that there is promise in further exploring model types that learn
directly from log-Mel features of the audio samples. We also
validated that the addition of an attention module helps signif-
icantly in improving the performance of CNN architectures for
Audio Classification. The attention module has also shown to
perform segmentation in order to achieve a final classification,
and can be used to extract strong labels for acoustic events.

Work here has indicated that there is a potential greater need
for capturing long-duration acoustic characteristics. Model ar-
chitectures employing some form of recurrent structure could
be particularly useful in more accurately performing segmenta-
tion, and increasing confidence of detecting a particular sound
given surrounding key features.
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