
EXPLICIT ALIGNMENT OF TEXT AND SPEECH ENCODINGS
FOR ATTENTION-BASED END-TO-END SPEECH RECOGNITION

Jennifer Drexler, James Glass

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA, USA

{jdrexler, glass}@csail.mit.edu

ABSTRACT

In this work, we present a novel training procedure for
attention-based end-to-end automatic speech recognition.
Our goal is to push the encoder network to output only lin-
guistic information, improving generalization performance
particularly in low-resource scenarios. We accomplish this
with the addition of a text encoder network, which the speech
encoder is encouraged to mimic. Our main innovation is the
comparison of the attention-weighted speech encoder outputs
to the outputs of the text encoder - this guarantees two se-
quences of the same length that can be directly aligned. We
show that our training procedure significantly decreases word
error rates in all experiments and has the biggest absolute
impact in the lowest resource scenarios.

Index Terms— speech recognition, end-to-end, attention,
low-resource

1. INTRODUCTION

End-to-end neural network models for automatic speech
recognition (ASR) have recently achieved comparable per-
formance to traditional HMM-based models in tasks with
large training corpora [1, 2]. However, these models can
easily overfit when trained on smaller corpora, making them
ill-suited to lower-resource tasks [3, 4].

This is unfortunate, given that low-resource scenarios are
exactly where the advantages of end-to-end models are most
necessary. For example, end-to-end models have been found
to work best with graphemic output, while traditional models
work best with access to a pronunciation dictionary [5]. In
practice, domains or languages in which only small training
corpora are available tend to also be ones in which such dic-
tionaries, as well as the resources to do feature engineering or
follow a complicated training procedure, are also limited. If
they can be modified to work well with less training data, end-
to-end models could enable effective ASR without significant
domain expertise.

In this paper, we consider an additional objective function
designed to improve the generalization performance of end-
to-end neural network models in low-resource scenarios. We

argue that the ability to easily incorporate multiple objective
functions to train specific model components is a key advan-
tage of neural network models that has been overlooked in the
ASR literature, especially in low-resource scenarios.

Our novel objective function makes use of a text encoder
network in combination with an attention-based end-to-end
ASR system. In addition to end-to-end training of the ASR
model, our objective function pushes the ASR encoder to
match the output of the text encoder when the two networks
are fed paired inputs. In this way, we hope to force the
speech encoder to output only linguistic information and
not any other information (like speaker and noise charac-
teristics) contained in the speech signal. Our hypothesis is
that this will improve the generalization performance of the
end-to-end model by limiting spurious correlations between
the output transcripts and non-linguistic information in the
speech signal, which are most likely to occur in low-resource
scenarios.

One key contribution of our work is to handle the length
discrepancies between the speech and text encoder outputs by
comparing the attention-weighted speech encoder outputs to
the text encoder outputs. Once trained, the attention mecha-
nism provides an explicit alignment between speech and text
that enables this comparison.

Our model training proceeds in several stages. First, we
train a baseline ASR model. Then, we train the text encoder
to match the ASR encoder as well as it can - by definition, this
will capture the linguistic information in the speech encoder
outputs but nothing else. Next, we retrain the speech encoder
to match the text encoder - removing the non-linguistic in-
formation from the encoder outputs. Finally, we retrain the
decoder to effectively decode these updated encoder outputs.

We use the Librispeech [6] corpus for experiments, train-
ing on the “clean 100” set or a smaller subset - 20 or 50
hours - of it. We show that, by following the procedure out-
lined above, we can significantly improve performance over
the baseline and that the improvements are larger for models
trained on less data. We confirm the effectiveness of this pro-
cedure for low-resource scenarios with the SI84 training set
from the Wall Street Journal corpus [7]. We also explore the
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contribution of the different steps in our training procedure
with several “early stopping” experiments in which certain
stages of training are not trained to convergence.

To conclude, we discuss several paths forward for this
work, both towards achieving these gains with a simpler
training procedure and towards making use of additional
text corpora and untranscribed speech within the framework
presented here.

2. RELATED WORK

In this paper, we focus on attention-based end-to-end neu-
ral network models for ASR, specifically the listen, attend,
and spell (LAS) architecture [8]. Similar models have re-
cently achieved state-of-the-art status in a number of large
ASR tasks [1, 2, 9]. These impressive results rely on several
modifications to the LAS architecture - including pretraining,
subword units, and multi-headed attention - some of which
we incorporate here.

In low-resource settings, end-to-end ASR results are more
mixed. In [3], a traditional HMM-DNN system outperformed
both CTC-based [10] and attention-based [8, 11] end-to-end
models on eight low-resource languages, each with 40 hours
of training data.

End-to-end ASR has been successful, however, in low-
resource settings for which additional unpaired speech and
text are available for semi-supervised training. [4] introduced
a multi-task learning framework similar to the model in this
work, but used adversarial training to create a shared embed-
ding space from unpaired speech and text. In [12] and [13],
the authors develop a “speech chain” model created by com-
bining ASR and text-to-speech (TTS) models. They use the
ASR model to transcribe additional speech, creating synthetic
training data for the TTS system, and similarly use the TTS
model to create ASR training data from additional text. This
process iteratively improves both ASR and TTS performance.

Hori et al. [14] introduced a modified, and somewhat sim-
plified, version of the speech-chain system by replacing the
TTS system with a text-to-encoder (TTE) model, with essen-
tially the same structure as the TTS model used in [12]. Their
training procedure had three stages: first, standard end-to-end
training of the ASR model; second, training the TTE model;
and third, unsupervised cycle-consistency training. The TTE
model is trained in the second stage with paired speech and
text: it is trained to take input text and produce the same out-
put that the speech encoder produces when given the match-
ing speech utterance. In the third stage, the authors sample
several possible text outputs from the ASR model for a given
speech input and compute a cycle-consistency loss based on
the difference between the output of the speech encoder and
the TTE model outputs.

Our model and training procedure share many similarities
with [14], but we consider only fully supervised training -
we are able to significantly improve our baseline results using

only the same data used to train the baseline model. Our text
encoder is much simpler than the one used in [14] but still
has the potential for semi-supervised training using a similar
cycle-consistency loss; we plan to explore this in future work.

Within the traditional ASR framework, there is a thread
of research that also bears some similarity to this work: ad-
versarial training for removing non-linguistic factors from
speech representations. This research has been focused on
neural network acoustic models. [15] uses adversarial train-
ing to push the outputs of an intermediate layer of a DNN
acoustic model to be speaker-invariant; [16] uses a similar
method to induce features that are invariant to noise condi-
tions. In both cases, the authors reported significant improve-
ments in performance. Here, we attempt to generate similar
invariance without using explicit speaker or noise condition
labels.

3. ASR MODEL ARCHITECTURE

<bos> Y2Y1

w2

X1 X2 X3 X4

g1 g2 g3 g4

a21 a22 a23 a24

Y2’

Fig. 1. High-level schematic of the ASR model architecture
when using teacher forcing, at time-step t = 2. Speech inputs
(X) and text labels (Y ) shown in black/solid circles. Encoder
outputs (g) shown in red/vertical-striped circles. Decoder
states and outputs shown in blue/dotted circles. Attention-
weighted encoder outputs (w) shown in green/horizontal-
striped circles, with attention weights (a) computed as part
of the transformation from g to w. Calculations from t = 1
rendered in faded colors.

Our ASR model is based on the listen, attend, and spell
(LAS) architecture [8]. It is an encoder-decoder model with
attention [11]. The architecture is depicted in Figure 1, which
shows the inputs to the model, as well as the encoder outputs
(in red), attention-weighted encoder-outputs (green), decoder
intermediate states and outputs (blue). The neural network
components themselves are not shown in the figure; they are
encapsulated in the arrows.
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The encoder is composed of four bidirectional LSTM lay-
ers, three of which downsample their input by a factor of two.
The encoder as a whole downsamples the speech input by a
factor of eight. This downsampling is left out of Figure 1 for
simplicity.

The encoder is combined with an LSTM-based decoder
with attention. The decoder itself has two unidirectional
LSTM layers and a softmax layer. At each time-step, its input
is the previous output from the decoder, starting with a special
start symbol as the first input. During ASR training, we use
a fixed scheduled sampling rate of 0.1: 10% of the time we
randomly sample from the output distribution the decoder to
provide the next input, the rest of the time we use the ground
truth. The output targets of the decoder are either characters
or subword units discovered with a unigram language model,
as in [17].

The attention mechanism within the decoder uses input
feeding [18], meaning that it compares the encoder outputs
to both the current decoder state and the previous state of the
attention mechanism. It is an MLP attention mechanism, as
described in [11].

The ASR model is trained end-to-end with cross-entropy
loss to maximize the log-likelihood of the ground truth output
sequence. Our stopping criterion for training is the accuracy
of the most likely decoder output on the validation set using
teacher forcing. At test time, we use beam search [19] to find
the most likely transcript.

4. ALIGNMENT OF TEXT AND SPEECH
ENCODINGS

We introduce a text encoder network for our additional objec-
tive function. The text encoder architecture is quite simple: it
has an embedding layer followed by two bidirectional LSTM
layers that do not downsample their input. We use the same
subword segmentation for input text as for the ASR output
targets.

Our goal is to push the speech and text encoders to output
similar encodings when fed matched speech/text pairs. This
goal is complicated by the fact that the text and speech in-
puts, and thus the encoder outputs, are different lengths. A
key innovation in this paper is to use the attention-weighted
speech encoder outputs (w) for this training. For a matched
speech/text pair, these will necessarily be the same length as
the text encoder outputs when we use teacher forcing in the
decoder, because the length of the attention-weighted speech
encoder outputs is equal to the number of decoder steps.

We compute the encoding loss, Lenc, of the model given
speech features X and text Y . g(X) is the output sequence
from the speech encoder given input X; it has length N , and
gn(X) denotes the nth element of g(X). h(Y ) is the output
sequence of the text encoder given input Y ; its length is T .
We use the MLP attention mechanism described in detail in
[11]; its output, a(X,Y ), is an N -dimensional score vector at

each decoding timestep t, where
∑N

n=1 a
t
n(X,Y ) = 1. We

compute the attention-weighted speech encoder output, wt,
for timestep t as:

wt(X,Y ) =

N∑
n=1

atn(X,Y ) ∗ gn(X) (1)

The variables in Equation 1 (X , g, a, and w) are noted
in Figure 1. We use the following equation to compute the
encoder loss for the full utterance (X,Y ):

Lenc(X,Y ) =

T∑
t=1

SmoothL1(wt(X,Y ), ht(Y )) (2)

Equation 2 calculates the difference between the attention-
weighted speech encodings, w, and the text encodings, h(Y ).
We use an element-wise smoothed L1 loss that is equivalent
to the mean squared-error (MSE) when the absolute differ-
ence is less than one and the L1 loss otherwise.

SmoothL1(a, b) =

{
0.5(a− b)2, if |a− b| < 1

|a− b| − 0.5, otherwise

This is in contrast to [14], which uses the sum of the L1
loss and the MSE when comparing the speech and text en-
coder outputs.

5. TRAINING PROCEDURE

For all experiments in this paper, we follow a sequential train-
ing procedure with different loss functions depending on the
step. The steps of this procedure are outlined in Table 1. Step
1 is baseline ASR training; this step impacts all of the param-
eters in the ASR model. In Step 2, we train the text encoder
to match its outputs to those of the speech encoder; all pa-
rameters are fixed except for those of the text encoder. Step
3 uses the same loss as Step 2, but it is now used to train the
parameters of the speech encoder, pushing the speech encod-
ings closer to the text encoder outputs. Finally, in Step 4, we
again do standard ASR training, but we fix the parameters of
the speech encoder and train only the decoder.

For our main results, we train each step to convergence
on an ASR validation set before moving on to the next step.
Steps 1 and 4 are trained to maximize the accuracy of the
validation set using the ASR model. Steps 2 and 3 are trained
to minimize the loss between the speech and text encodings
of the validation set.

We also present results for a set of experiments in which
we explore the impact of stopping one of the training steps
early, while still training the rest to convergence. These ex-
periments are designed with two questions in mind. First,
whether it is possible to achieve similar performance im-
provements with fewer overall training iterations, and second,
what the requirements are for an effective shared encoding
space for text and speech.
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Table 1. Training Procedure

Step Description Loss Function Components Trained

1 ASR Training Lasr speech encoder, attention, decoder
2 Text Encoder Training Lenc text encoder
3 Speech Encoder Training Lenc speech encoder
4 ASR Training Lasr attention, decoder

We considered an alternate training procedure in which
we replace steps 1 and 2 with simply training a text autoen-
coder, followed by step 3, in which we train the parameters of
the speech encoder to minimize the loss between the speech
and text encoder outputs. We found, however, that this was
not a reliable method for training the attention mechanism in
the decoder.

6. EXPERIMENTAL DETAILS

In this paper, we experiment with two standard corpora: Lib-
rispeech [6] and Wall Street Journal (WSJ) [7]. For Lib-
rispeech, we present results for the standard clean 460 train-
ing set as a ‘topline’ and treat the standard clean 100 train-
ing set as a low-resource training regime. We also create
two lower-resource scenarios with subsets of the clean 100
set: clean 50 and clean 20 which comprise 50% and 20% of
the utterances in the clean 100 set, respectively. We use the
standard clean validation and test sets for all Librispeech ex-
periments. For WSJ, we use the SI84 training set (also called
WSJ0), which contains approximately 15 hours of transcribed
speech. We use the standard dev93 set for validation and all
WSJ scores are reported on the eval92 set.

We use 80-dimensional log-mel filterbank features, com-
puted using 25ms frames with a 10ms frame-rate for all
speech input. Librispeech text was segmented using a un-
igram wordpiece model with a 500 unit vocabulary with a
maximum unit length of four characters. WSJ models are
character based.

All models trained with at least 50 hours of speech used
512 units for all encoder layers and 1024 units for all decoder
layers. Models trained on the clean 20 set used 128 units
for all encoder layers and 256 units for decoder layers - we
find that a smaller model produces better results in very low-
resource scenarios. For WSJ, we used 320 units in all layers,
to match comparable prior work. All word embedding layers
in all models had 128 units.

We use Kaldi1 to generate all speech features. All models
were trained with a modified version of OpenNMT2. We used
SentencePiece3 for text segmentation.

1https://github.com/kaldi-asr/kaldi
2https://github.com/OpenNMT/OpenNMT-py/
3https://github.com/google/sentencepiece

7. RESULTS AND DISCUSSION

7.1. Main Results

7.1.1. Librispeech

First, we establish a baseline for our low-resource conditions.
These results are in the second and third columns of Table
2. We report both character error rate (CER) and word error
rate (WER). For comparison, our topline model trained on the
clean 460 training set achieves a WER of 12.7% and CER of
5.7%.

Table 2. Comparison between baseline models and models
trained with encoding alignment procedure, across different
amounts of training data.

Baseline Aligned
Train Set CER WER CER WER

clean 100 11.2 23.3 9.9 21.3
clean 50 16.0 31.2 14.6 29.2
clean 20 30.4 53.3 27.7 49.7

Our baseline results on the standard 460 and 100 hour
training sets are comparable to those reported in [14] (they re-
port 11.1% CER, 25.2% WER on clean 100 and 4.6% CER,
11.8% WER on clean 460) - our ASR encoder has fewer lay-
ers with more units each and our decoder has a different out-
put vocabulary, so it is to be expected that the results would
be slightly different - in particular, our slightly less powerful
model performs better on the smaller dataset but worse on the
larger dataset.

Our results on the 50% and 20% subsets illustrate the gen-
eral problem with low-resource ASR: performance degrades
significantly as less and less training data is used.

The last two columns of Table 2 show the results of our
encoding alignment procedure. In all cases, we are able to
improve on the baseline results, despite using exactly the
same training data as the comparable baseline model. The
relative improvement in WER is largest on the clean 100
set (8.6%), while the absolute improvement is largest on
the smallest training set (3.6%). It is also worth noting that
our best result on the clean 100 training set is comparable
to the model presented in [14] (CER: 9.4%, WER: 21.5%),
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which uses an extra 360 hours of speech (without transcrip-
tions). We are eager to explore in future work whether the
gains achieved here are complementary with the use of an
unsupervised cycle-consistency loss.

7.1.2. WSJ

Since the Librispeech clean 50 and clean 20 training sets
were created for this paper, we have no comparison in the
literature for those results. We ran the same experiments on
the WSJ0 corpus, to confirm both the competitiveness of our
baseline model and the effectiveness of our proposed method.
Our baseline model achieves a CER of 15.0% and WER of
36.5%, compared to similar attention-based models reporting
a CER of either 17.0% [20] or 15.8% [21]. The training
procedure presented here reduces the CER to 13.8% and the
WER to 35.0%. This represents a 4.1% relative improvement
in WER.

7.2. Early Stopping Results

In this section, we experiment with early stopping of differ-
ent steps of our training procedure. All experiments in this
section use the clean 20 training set.

Fig. 2. Validation set loss (blue) and test set WER (red) as a
function of the number of Step 3 training epochs completed.

7.2.1. Speech Encoder Training (Step 3)

Stopping Step 3 early is a test of our core hypothesis - we
expect that it will negatively impact our results if the speech
encoding space is not fully aligned to the text encoding space.
To perform this test, we train Steps 1 and 2 to convergence,
then save models at several points during Step 3. From each
of these models, we train Step 4 to convergence to get a final
WER.

As shown in Figure 2, we see a direct relationship between
the encoding loss on the validation set and the WER on the
test set as training progresses. This confirms our hypothesis
that directly matching the speech encoder outputs to a text
encoding space will improve generalization performance of
the model.

7.2.2. Text Encoder Training (Step 2)

There is no theoretical reason why the text encoding space
must be as close to the original speech encoding space as pos-
sible, given that we will be re-training the speech encoder to
match whatever text encoder space is defined in Step 2. In
these experiments, we stop Step 2 training early, then train
Steps 3 and 4 to convergence using their respective stopping
criteria. The results of these experiments are in Table 3, with
models referenced based on how many epochs of Step 2 train-
ing were run before moving on to Step 3.

Table 3. Results of encoder alignment models with early
stopping of Step 2. After Step 2, all models were trained to
convergence on Steps 3 and 4.

Step 2 Epochs Val Lenc CER WER

50 86.4 27.6 49.9
100 82.4 27.8 50.0
200 80.8 27.7 49.7

Table 3 shows that the final model performance does not
depend strongly on the number of epochs of Step 2 training.
The second column, indicating the encoder loss on the valida-
tion set at the end of Step 2 training, shows that this training
has not converged after 50 or 100 epochs; still, the final results
are comparable across all three models.

It is not necessary to train Step 2 to convergence, but that
does mean that we will be able to save computation by stop-
ping Step 2 early; it is possible that we are simply trading
fewer iterations of Step 2 for more iterations of Step 3 in or-
der to achieve the same final result. As shown in Figure 3,
this is not the case: regardless of how many epochs of Step 2
we complete, Step 3 training follows virtually the same path
in terms of the validation set loss and the models converge at
approximately the same number of Step 3 epochs.

It is also interesting to note the difference in the values of
the validation loss after Step 2 (in Table 3) and after Step 3
(in Figure 3). These numbers confirm that the original speech
encoder outputs contain much non-linguistic information that
the text encoder cannot learn to represent, and that much of
this extraneous information is removed from the speech en-
codings during Step 3 training.
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Fig. 3. Validation set loss (blue) as a function of the number
of Step 3 training epochs completed. Each line represents a
different early stopping point for Step 2. Validation loss at
X = 0 is the loss at the end of Step 2.

8. CONCLUSIONS

In this paper, we develop a training procedure for attention-
based ASR models designed to improve their generalization
performance in low-resource settings. Our training strategy
includes the addition of a text encoder network to a standard
ASR model architecture, and a novel objective function de-
signed to push the encoder component of the ASR model to
represent only linguistic information. This is accomplished
by encouraging the attention-weighted speech encoder out-
puts to match the outputs of the trained text encoder when the
networks are fed paired speech/text inputs.

We experiment with several subsets - 100, 50, and 20
hours - of the Librispeech corpus and the SI84 set of the
WSJ corpus, and find that our procedure improves WERs
in all cases. On the 100 hour Librispeech set, we achieve
comparable improvements to those reported in a related pa-
per that made use of an additional 360 hours of untranscribed
speech [14], while using only the same data used to train the
baseline model.

Additionally, we show through a series of early-stopping
experiments that the second step in our training process does
not need to be trained to convergence, which can reduce the
overall training time needed.

We look forward to several possible directions for future
work using this framework. First, we plan to explore whether
some steps of our training procedure can be trained jointly, re-
ducing the complexity of model training. Second, we hope to
investigate whether the improvements achieved here are com-
plementary with the cycle-consistency loss proposed in [14].
In addition to the use of untranscribed speech, this model ar-
chitecture can also take advantage of stand-alone text corpora,

using the method described in [4]. Given the significant per-
formance improvements demonstrated here in a fully super-
vised training scenario, we are confident we can also improve
upon previously reported semi-supervised training results.
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