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ABSTRACT

In this work, we investigate mapping both natural language food
and quantity descriptions to matching USDA database entries. We
demonstrate that a convolutional neural network (CNN) model with
a softmax layer on top to directly predict the most likely database
matches outperforms our previous state-of-the-art approach of learn-
ing binary classification and subsequently ranking database entries
using similarity scores with the learned embeddings. The softmax
model achieves 97.3% top-5 USDA quantity and 91.1% food recall
over the full database, compared to only 70.0% quantity and 46.4%
food recall with a sigmoid model, where top-5 recall indicates the
percentage of test cases in which the correct quantity or food is in
the top-5 hits. Evaluated on 9,600 spoken meals over all foods, the
softmax model achieves 91.6% top-5 quantity and 80.1% food recall.
We also explore jointly learning both mappings with a single CNN
to boost quantity mapping, and improve food mapping by reranking
the food database entries using the predicted quantity matches.

Index Terms— Convolutional Neural Networks, Multitask
Learning, Crowdsourcing, Semantic Embeddings, Reranking

1. INTRODUCTION

Today many Americans are tracking their diet, often to lose weight
or to monitor specific nutrients, such as glucose levels for diabetics
or sodium intake for those with high blood pressure. However, exist-
ing diet tracking applications can be too time-consuming for many
users, requiring manually entering each eaten food one at a time and
scrolling through a long list of potential database matches. Our pro-
posed solution is a diet tracking application that uses speech and
language understanding technology to enable quick, intuitive diet
tracking; that is, a user simply speaks or types a natural language de-
scription of their meal, and our technology automatically determines
the most likely food database matches [1, 2, 3].

In our prior work, we investigated the problem of mapping natu-
ral language meal descriptions to their corresponding food database
entries. But this was limited to food matching, whereas we also need
to address the remaining challenge of mapping user-described quan-
tities to matching database quantity entries. This is a difficult prob-
lem because user descriptions are often very different from database
entries. For example, a user might say “a bowl” or “a handful,” but
these do not easily map to database quantities, such as cups or grams.
In a scenario where the user says, “a spoonful of peanut butter,” the
system should determine that the database food match is Peanut but-
ter, smooth style, with salt with the corresponding quantity 1 tbsp.
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[ Meal [ #Quantities | # Foods | # Diaries |
Breakfast 616 1,477 33,317
Dinner 613 2,556 23,094
Salad 173 232 2,446
Sandwich 234 372 4,474
Smoothies 214 382 5,789
Pasta/Rice 366 1,262 12,715
Snacks 725 1,334 12,041
Fast Food 271 661 5,474

| All Foods H 1,562 [ 5,156 [ 99,350 ]

Table 1. AMT data statistics, organized by meal.

In this paper, we tackle the quantity mapping problem by devel-
oping a new convolutional neural network (CNN) architecture that is
trained with a softmax layer on top to directly predict the most likely
database quantities, whereas our prior food mapping work used a
binary classification network to learn embeddings for each database
food entry, which were then ranked via cosine similarities at test
time. In addition, we explore multitask learning to jointly predict
both the matching food and quantity database entries given a single
input meal description. We show that by leveraging the close rela-
tionship between quantities and foods, we can use predicted quantity
matches to improve food ranking performance.

The remainder of the paper is organized as follows. First we
describe the data collection process for obtaining natural language
quantity descriptions and matching database entries. We then dis-
cuss the CNN architectures we explored and the multitask learning
paradigm, followed by experimental results and discussion. Finally,
we review related work and conclude with directions for future work.

2. DATA COLLECTION

Previously [4], we collected 31,712 meal descriptions and associated
USDA food database matches via crowd-sourcing with Amazon Me-
chanical Turk (AMT). In order to generate intuitive meal description
tasks, we partitioned the 5,156 database foods into eight meal cat-
egories, such as breakfast and dinner (see Table 1), and collected
over 99k food and quantity descriptions in total. To collect quan-
tity descriptions for our new work, we revised the AMT task such
that workers were told to select one quantity option from among all
the database quantity units available for a given food item. Then they
were instructed to describe this quantity naturally (e.g., two cups of ),
and in a separate textbox, to describe the food item (e.g., chopped
kale). To reduce biasing the language used by workers, we included
images of the food items along with the less natural USDA titles.
For our evaluation on speech data, we collected 9,600 spoken
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meal descriptions on AMT (1,200 for each of the eight meal cate-
gories), using the Google Chrome speech recognizer. The data was
collected the same way as the text data, but with speech instead of
text, and as a single description for each combined food and quantity.

3. METHOD

We implemented two variants of the CNN architecture for mapping
natural language quantity descriptions to the USDA database: the
first is reminiscent of our prior work on food mapping [5], learning
USDA quantity embeddings via binary classification with a sigmoid
output, and the other is a new approach that directly predicts the
most likely database matches via a softmax layer on top. In this
section, we first describe two baseline methods for ranking database
quantities (using the longest common substring, and number of exact
token matches). We then detail our two sigmoid and softmax CNN
models. Finally, we explain the new multitask training mechanism.

3.1. Baselines

A simple lexical approach for ranking the most likely database quan-
tity entries, given a user’s meal description, is to use the number of
tokens' that are an exact match between the two. Those database
quantities with the maximum number of tokens in common would
be ranked most highly. Our second baseline uses the length of the
longest common substring (LCS) between the user’s meal descrip-
tion and each database quantity, where we implement a string match-
ing algorithm that stores the number of matching characters seen so
far in a dynamic programming table. For the food mapping task, we
compare against our prior state-of-the-art CNN with reranking [5].

3.2. Sigmoid CNN

The sigmoid model (see Fig. 1) is the same as that used in our pre-
vious work [4] for mapping natural language meal descriptions to
their associated food database matches, except we pad the input
quantity descriptions to 20 tokens instead of 100.2 The input 50-
dimension embedding layer is followed by a 1D convolution with 64
filters spanning windows of three tokens, with a rectified linear unit
(ReLU) activation and dropout of probability 0.2. This network is
trained for a binary verification task, where each input pair consists
of a user-described quantity and a USDA quantity that either matches
the user’s description or not.” Through learning to complete this bi-
nary verification task, the network learns semantic embedding rep-
resentations of each USDA database quantity, which are then used
at test time to rank all the possible database quantity options based
on the cosine similarity score with the user-described quantity em-
bedding (which is generated by feeding the input meal description
through the meal portion of the network, consisting of an embed-
ding layer followed by a convolution and max-pooling). The model
is trained with the Adam optimizer [6] on binary cross-entropy loss.

3.3. Softmax CNN

The softmax CNN (see Fig. 2) is a new architecture that we imple-
mented to directly rank all the USDA database quantities within the
network itself, rather than requiring the multi-step process of gener-
ating embeddings with the network and subsequently ranking all the

"'We used the Spacy toolkit (https://spacy.io/) for tokenization.

2The padding results in dot products with each of the 20 input tokens.

3For each positive match we collected, we sampled a random negative
quantity from among those quantities not described by the user.
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Fig. 1. The sigmoid CNN for predicting whether or not an input
USDA quantity name and user-described quantity match or not.

USDA quantities with cosine similarity scores. Rather than feeding
the network only a single USDA quantity option, we input all pos-
sible USDA quantities along with the user’s meal description. The
USDA quantities are embedded and used in dot product computation
with the convolved meal description the same way as in the sigmoid
network; however, this model performs the computation for every
USDA quantity, with a final feed-forward layer on top that outputs a
probability distribution over all the quantities via a softmax.
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Fig. 2. The softmax CNN for directly ranking all the USDA quantity
options for a given user’s input meal description.

3.4. Simple Softmax CNN

The simple softmax CNN (see Fig. 3) is another new neural archi-
tecture that feeds only the input meal description into the embed-
ding and convolution layers before the final feed-forward layer with
a softmax output over all possible food or quantity options.

3.5. Multitask CNN

The new multitask model is structured the same way as the sigmoid
and softmax CNNs for quantity mapping, but has an additional out-
put layer for predicting the USDA food match. Thus, the majority
of the network is shared between the two tasks, and the loss is the
combination of the quantity prediction and food prediction losses.

4. EXPERIMENTS

Here, we demonstrate that the new softmax model outperforms the
state-of-the-art CNN [5] that we used previously for food mapping.
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Fig. 3. The simple softmax CNN for directly ranking all the USDA
quantity options for a given user’s input meal description.

We also show that jointly training the CNN to predict both USDA
food and quantity matches yields higher quantity recall for most
meal categories. We note that since the quantity predictor has high
performance, we can leverage the predicted quantities to rerank the
USDA food options to favor those that have the highest ranked quan-
tities as available options in the database, which consistently boosts
performance. We evaluate on both written and spoken held-out test
sets* using top-5 recall, which indicates the percentage of test cases
in which the correct food or quantity option appears in the top-5 hits.

4.1. Sigmoid vs. Softmax

We can see in Table 2 that all the CNN models significantly out-
perform the longest common substring (LCS) and number of word
matches (WM) baselines on the quantity mapping task; thus, sim-
ply counting word or character matches is not sufficient, and a more
sophisticated model is required. The softmax is superior to the sig-
moid, for both food and quantity matching (trained separately). For
all subsequent experiments, we use the simple softmax as the default
softmax since it performs best; we conjecture this is due to the rel-
atively simple task, for which the complex softmax is too powerful
and overfits the training data. In Table 3, we evaluate the new CNN
models on food mapping and discover that the simple softmax model
improves our prior state-of-the-art CNN (using a word-by-word sim-
ilarity reranking algorithm [5]) with an 83.3% gain on all foods.

[ Meal || LCS | WM | Sigm. | Soft. | Simple Soft. |
Breakfast 135 | 7.87 71.1 94.8 96.9
Dinner 10.9 104 82.1 94.8 98.2
Salad 25.1 36.9 75.5 82.7 97.4
Sandwich 19.2 | 30.1 717.7 92.0 97.2
Smoothies 18.5 37.1 75.3 92.6 98.7
Pasta/Rice 11.7 12.6 84.0 95.5 98.1
Snacks 15.8 12.3 63.7 93.4 96.9
Fast Food 16.5 13.7 72.2 93.8 98.7

[AllFoods || 139 | 133 | 700 | 9.5 | 973 |

Table 2. Top-5 quantity recall per meal category for LCS and word
match (WM) baselines, the sigmoid, softmax, and simple softmax.

4.2. Spoken Data

Because our production system will enable both text and speech in-
put, here we investigate whether the models trained on text data still
perform well on speech data. As shown in Table 4, when evaluated
on 9,600 spoken meal descriptions (1,200 per meal category), the
softmax quantity and food mapping models still perform quite well.
4We divide the 99,350 text samples into 80% train/10% dev/10% test.

[  Meal | Baseline CNN | Sigmoid | Simple Soft.

Breakfast 473 34.6 95.8
Dinner 38.5 254 91.6
Salad 759 40.4 98.4

Sandwich 70.8 46.4 97.9

Smoothies 69.5 53.7 97.2

Pasta/Rice 39.2 299 89.5
Snacks 60.2 41.4 96.9

Fast Food 53.6 38.7 98.2

| All Foods || 49.7 | 46.4 | 91.1 |

Table 3. Top-5 food recall per meal category for the new sigmoid
and softmax CNNs, compared to the baseline CNN reranker [5].

| Meal || QLCS | QWM | QBest | FCNN | FBest |
Breakfast 152 8.36 92.0 54.5 80.9
Dinner 14.5 14.6 92.8 45.7 67.3
Salad 272 40.9 89.5 82.6 90.9
Sandwich 24.8 29.3 89.2 82.4 88.8
Smoothies 26.0 37.8 90.8 73.6 88.6
Pasta/Rice 14.5 14.0 89.4 43.7 60.2
Snacks 19.5 16.8 90.3 64.4 84.1
Fast Food 15.0 13.3 84.3 58.2 84.0

[AllFoods || 20.1 | 219 | 916 | 626 | 80.1 |

Table 4. Top-5 quantity (Q) and food (F) recall per meal category
for the best simple softmax and baseline models on spoken data.

4.3. Quantity Input Only

Since it would seem that the interaction between foods and quanti-
ties helps the models learn to predict relevant foods and quantities,
we ran an experiment to see whether the quantity mapping perfor-
mance would suffer if the input to the network was only the quantity
description, without the associated food’s description. For example,
with the vuser-described input meal diary “I had a cup of cheese,” the
model might tend to prefer database units that relate to cheese, such
as “cup, shredded” rather than the generic “cup” or “cup, diced.”
However, in this experiment, the input would simply be “cup.” To
convert the full meal to a quantity segment, we ran our CNN tag-
ger from prior work [3] that labels food and quantity tokens, and
extracted only the tagged quantity tokens. As expected, quantity
mapping performance is much worse without the full meal input.
On Breakfast, the top-5 quantity recall is only 55.8 for sigmoid and
70.0 for softmax (leading to 21.5% and 26.2% drop in performance
for the sigmoid and softmax models, respectively, with only quanti-
ties as input); the top-5 quantity recall scores for the other meals are
similarly all below 70 for sigmoid models and below 80 for softmax.

4.4, Multitask Learning

Finally, we investigated multitask learning (MTL) to determine
whether a single model that jointly predicts food and quantity la-
bels would perform better than either model individually. MTL with
the simple softmax model improves quantity mapping for most meal
categories (see Table 5); however, the food mapping task is more
challenging, as there are far more food options than quantities, so
MTL does not benefit this task. This indicates that MTL can improve
the task with fewer labels, but not the more challenging task [7].
Since we also want to boost food mapping by leveraging the
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quantity mapping task, as an alternative approach to training a joint
multitask model, we used the best quantity softmax trained on all
data (since if we only used training data, then it could not accurately
predict quantities seen only in the test data) to rerank the predicted
foods. This boosts the top-1 food mapping performance on test data
for all meals except Fast Food (see Table 5). First, we predict the
top-5 USDA quantities. Then, we rerank the predicted USDA foods
that have at least one of the top-5 predicted quantities as a unit option
above those that do not. This gain indicates that we can leverage a
higher-performing task to improve a weaker, closely related task.

[ Meal [ QSoft. [ MTL Q [ F Soft. [ RerankedF |
Breakfast 89.6 88.7 80.4 81.5
Dinner 89.6 89.7 71.8 72.9
Salad 89.0 88.2 83.7 84.1
Sandwich 89.6 88.4 82.7 83.6
Smoothies 89.3 89.9 82.0 82.0
Pasta/Rice 90.0 90.1 66.5 67.4
Snacks 85.9 86.5 82.4 83.0
Fast Food 92.5 934 88.8 88.3

[AllFoods | 866 | 863 | 703 | 711 |

Table 5. Top-1 recall for MTL Quantity and reranked Foods.

5. DISCUSSION

When users interact with our live nutrition system, we must ensure
the rankings generated by our food and quantity mappers at test time
are reasonable. To qualitatively evaluate the performance of our
CNN model, we observe that its predictions make sense intuitively.
For example, in the test meal description “I had a cup of milk and a
tablespoon of honey,” with the softmax model trained on Breakfast
data, the quantity ranking for milk is {cup, fl oz, quart} and {tbsp,
cup, packet (0.5 0z)} for honey, which matches commonsense.

By inspecting the nearest neighbors of the learned USDA quan-
tity embeddings (see Table 6), we see that the Pasta Softmax model
(i.e., the complex softmax CNN trained on the Pasta meal category®)
is learning meaningful semantic representations of quantities, where
those of a similar unit are close to each other in vector space. We can
also determine what the 64 CNN filters over the embedded quanti-
ties learned by inspecting which tokens cause the filters to fire with
the highest activations. This analysis shows that filter 46 tends to
identify meat-related tokens (i.e., tenderloin, beef, loin, strip, steak,
pork, wagyu, roast, dried, and strips are the top-10 tokens in order of
descending filter response), while filter 53 picks out numbers (i.e.,
three, one, a, two, eight, five, four, six, twelve, and seven).

[ Quantity ][ Neighbor 1 [ Neighbor2 [ Neighbor3 |
cup cup whole cup slices cup shredded
oz oz whole oz boneless | oz serving 2.7 oz
serving 1/2 cup || serving 1 cup | cup slices cup whole

Table 6. Top-3 neighbors to three USDA quantities, based on Eu-
clidean distance of learned embeddings from a Pasta softmax model.

6. RELATED WORK

Multitask learning (MTL) has been applied successfully to many
natural language processing (NLP) tasks. Collobert et al.’s early

5 A pre-trained semantic tagger [3] identifies each food/quantity segment.
6In the deployed system, we would use the full Allfood Softmax model.

exploration of multitask learning involved jointly training a single
CNN like ours on several tasks: part-of-speech tagging, chunking,
named entity recognition, semantic role labeling (SRL), semantic
relation prediction, and language modeling (LM) [8]. They focus
specifically on SRL, while we care about both our tasks equally. Liu
et al. built a multitask deep neural network (DNN) that combined
two different tasks of multiple-domain query classification and in-
formation retrieval for web search ranking [9]. Similar to our work,
they embedded an input query into a lower-level shared semantic
representation used for the two different tasks at the top layer; how-
ever, they use a DNN while we employ a CNN.

Other work in MTL for NLP demonstrated an improvement in
sentence compression by incorporating two auxiliary tasks, com-
binatory categorical grammar (CCG) tagging and gaze prediction,
based on the intuition that longer reading time correlates with text
difficulty [10]; they showed that the cascaded architecture, where
auxiliary tasks are predicted at an inner layer, outperforms the model
where auxiliary tasks are predicted at the top layer. Luong et al. in-
vestigated MTL for neural machine translation with the sequence-to-
sequence model, with the surprising result that parsing (i.e., sharing
the encoder) and image caption generation (i.e., sharing the decoder)
both improve translation, despite the much smaller datasets [11].

Multi-task learning has also been applied to other fields, includ-
ing speech recognition and computer vision. Toshniwal et al. ex-
plored end-to-end speech recognition on the conversational Switch-
board corpus, demonstrating gains in character-based automatic
speech recognition (ASR) by adding supervision at lower layers in a
deep long short-term memory (LSTM) network with two lower-level
tasks [12]. In computer vision, Misra et al. proposed a novel cross-
stitch unit that combines CNNs for two tasks by automatically learn-
ing an optimal combination of shared and task-specific representa-
tions [13]. In addition, Wang et al. constructed a shared sub-network
with higher-level sub-networks for two image representations, in or-
der to achieve high accuracy from cross-image representations while
maintaining the efficiency of single-image representations [14].

Another area of work related to ours is that of learning joint
embeddings. Prior work used a margin-based hinge loss to rank
annotations given an image [15], learned a joint multimodal space
between images and captions for caption generation [16, 17], and
learned sentence or document embeddings [18]. Recently, CNNs
have also gained popularity among the NLP community, achieving
state-of-the art performance on text classification [19, 20, 21]. Fi-
nally, parallel CNNs [22, 23, 24], attention-based CNN (ABCNN)
models [25], and hierarchical ABCNNs [26] have been proposed for
sentence matching and machine comprehension.

7. CONCLUSION AND FUTURE WORK

In this paper, we expanded our prior work mapping natural language
meal descriptions to their corresponding USDA food database en-
tries to address the remaining challenge of mapping meal descrip-
tions to their associated guantity database hits. We have shown that
a new softmax CNN model outperforms our previous best sigmoid
CNN trained on a binary verification task, and achieves 91.6% top-5
quantity recall on a spoken test set of 9,600 meal descriptions over
the full USDA database. We investigated multitask learning to im-
prove quantity mapping, and demonstrated that we can leverage the
high recall of the quantity predictor to improve food ranking. In fu-
ture work, we will investigate contextual understanding to determine
whether the user has refined their meal description, and run a pilot
study with nutritionists’ patients. We may explore speech-to-speech
networks and input lattices to account for speech recognition errors.
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