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ABSTRACT

We demonstrate a network visualization technique to analyze the re-
current state inside the LSTMs/GRUs used commonly in language
and acoustic models. Interpreting intermediate state and network ac-
tivations inside end-to-end models remains an open challenge. Our
method allows users to understand exactly how much and what his-
tory is encoded inside recurrent state in grapheme sequence models.
Our procedure trains multiple decoders that predict prior input his-
tory. Compiling results from these decoders, a user can obtain a sig-
nature of the recurrent kernel that characterizes its memory behavior.
We demonstrate this method’s usefulness in revealing information
divergence in the bases of recurrent factorized kernels, visualizing
the character-level differences between the memory of n-gram and
recurrent language models, and extracting knowledge of history en-
coded in the layers of grapheme-based end-to-end ASR networks.

Index Terms— Long-short term memory, interpretability, re-
current state visualization, grapheme sequence models

1. INTRODUCTION

Recurrent neural networks such as LSTMs and GRUs achieve state-
of-art performance in a variety of sequence-based tasks, such as lan-
guage modeling [1], acoustic modeling [2], end-to-end ASR [3],
and machine translation [4]. Interpreting the parameters and out-
put of pre-trained recurrent networks, however, is difficult. Tradi-
tional statistics-based models, such as n-grams or regression, allow
for convenient interpretation with respect to their features and train-
ing data. Deep neural networks, however, learn opaque transforms
and embeddings in different real-valued, continuous spaces across
the depth of the network. For the purpose of understanding the be-
havior and limitations of a network, it is sometimes useful to be able
to characterize the information contained in a network’s parameters.

In this paper, we explore the use of state decoders to extract
information embedded inside the recurrent state produced by pre-
trained language and speech networks. We employ this to char-
acterize and dissect the recollection ability of LSTM kernels. As
we will demonstrate, such information can help us answer ques-
tions about the behavior of cross-domain model adaptation methods
(such as model retraining and kernel factorization), and information
encoded within the layers of an end-to-end ASR network such as
Listen-Attend-Spell [5, 6, 3].

The following section describes the prior art in network visu-
alization and interpretation, and where our work stand in relation.
Section 4 describes our visualization technique and our base recur-
rent architecture. We describe experiments applying of our method
in Sections 5, 6, 7, and 8. We conclude with a brief discussion of our
results in Section 9.

�This author completed this work while working at Google, Inc.

2. PRIORWORK

Prior methods used to visualize and interpret deep neural networks
fall into three main classes:

1. Methods that regularize the activations or alter the structure of
the network during training time to align with interpretability
metrics [7, 8, 9, 10].

2. Methods that operate on pre-trained models to identify inputs
or activations that strongly contribute to the network’s output
[11, 12, 13, 14, 15, 16, 17].

3. Methods such as DeepDream or image inversion that attempts
to understand properties of the filter weights that define model
behavior [18, 19].

Our method falls into this last category, extending this class to
include visualization of the memory capacity of time-dependent re-
current kernels. Prior work on interpreting LSTMs in context of
language or speech has been focused on identifying important in-
put tokens in sentiment classification [20], correlating LSTM inputs
with language model outputs [21]), or converting language model
LSTMs to rule-based classifiers [22]. Our visualization method in-
troduces a way to understand the information encoded inside RNN
state, in grapheme-based language and end-to-end ASR models.

3. PRELIMINARIES

In the stacked LSTM formulation [23, 21], the internal recurrent
state c

l
t and cell output hl

t at time-step t and layer l are given by
forward update:

c

l
t = f · clt−1 + i · I h

l
t = o · tanh(clt) (1)

where (f , i,o, I) are the forget-gate, input-gate, output-gate, and
projected-input vectors, respectively. These vectors are computed
using a [4n× 2n] kernel weight matrixWl:
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Gated Recurrent Units (GRUs) are a simpler cell formulation that
combines the recurrent state and output into one vector, hl

t [24].
Output hl

t is the smooth interpolation between a candidate output
�
h

l
t and the previous cell output hl

t−1. For brevity, we leave inter-
ested readers to refer to [21] for a rigorous exposition of both kernel
cell types.

4. EXTRACTING MEMORY SIGNATURES

Of interest in recurrent networks is the information contained in
ct−1 and ht−1 about the history of prior inputs. For example, the

2396978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



2397



2398



2399



10. REFERENCES

[1] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney,
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[18] Grégoire Montavon, Wojciech Samek, and Klaus-Robert
Müller, “Methods for interpreting and understanding deep neu-
ral networks,” arXiv preprint arXiv:1706.07979, 2017.

[19] Aravindh Mahendran and Andrea Vedaldi, “Understanding
deep image representations by inverting them,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 5188–5196.

[20] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky, “Vi-
sualizing and understanding neural models in NLP,” arXiv
preprint arXiv:1506.01066, 2015.

[21] Andrej Karpathy, Justin Johnson, and Li Fei-Fei, “Visual-
izing and understanding recurrent networks,” arXiv preprint
arXiv:1506.02078, 2015.

[22] W JamesMurdoch and Arthur Szlam, “Automatic Rule Extrac-
tion from Long Short TermMemory Networks,” arXiv preprint
arXiv:1702.02540, 2017.

[23] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[24] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio, “Gated feedback recurrent neural networks,”
in International Conference on Machine Learning, 2015, pp.
2067–2075.

[25] Douglas B Paul and Janet M Baker, “The Design for the Wall
Street Journal-based CSR corpus,” in Proceedings of the work-
shop on Speech and Natural Language. Association for Com-
putational Linguistics, 1992, pp. 357–362.

[26] Bo-June Paul Hsu and James Glass, “N-gram weighting:
reducing training data mismatch in cross-domain language
model estimation,” in Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing. Association
for Computational Linguistics, 2008, pp. 829–838.

[27] Graham Neubig and Chris Dyer, “Generalizing and hybridiz-
ing count-based and neural language models,” arXiv preprint
arXiv:1606.00499, 2016.

[28] Ciprian Chelba, Mohammad Norouzi, and Samy Bengio, “N-
gram Language Modeling using Recurrent Neural Network Es-
timation,” arXiv preprint arXiv:1703.10724, 2017.

[29] Lahiru Samarakoon, Brian Mak, and Khe Chai Sim, “Learning
Factorized Transforms for Unsupervised Adaptation of LSTM-
RNN Acoustic Models,” Proc. Interspeech 2017, pp. 744–748,
2017.

[30] Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve,
“Wav2letter: an end-to-end convnet-based speech recognition
system,” arXiv preprint arXiv:1609.03193, 2016.
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