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Abstract

Deep neural network (DNN)-based acoustic models (AMs) have significantly improved
automatic speech recognition (ASR) on many tasks. However, ASR performance
still suffers from speaker and environment variability, especially under low-resource,
distant microphone, noisy, and reverberant conditions. The goal of this thesis is to
explore novel neural architectures that can effectively improve ASR performance.

In the first part of the thesis, we present a well-engineered, efficient open-source
framework to enable the creation of arbitrary neural networks for speech recognition.
We first design essential components to simplify the creation of a neural network with
recurrent loops. Next, we propose several algorithms to speed up neural network
training based on this framework. We demonstrate the flexibility and scalability of
the toolkit across different benchmarks.

In the second part of the thesis, we propose several new neural models to reduce
ASR word error rates (WERs) using the toolkit we created. First, we formulate a
new neural architecture loosely inspired by humans to process low-resource languages.
Second, we demonstrate a way to enable very deep neural network models by adding
more non-linearities and expressive power while keeping the model optimizable and
generalizable. Experimental results demonstrate that our approach outperforms sev-
eral ASR baselines and model variants, yielding a 10% relative WER gain. Third,
we incorporate these techniques into an end-to-end recognition model. We experi-
ment with the Wall Street Journal ASR task and achieve 10.5% WER without any
dictionary or language model, an 8.5% absolute improvement over the best published
result.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist
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1
Introduction

Deep learning and artificial neural network research has grown significantly over the

past decade in the fields of ASR, natural language processing and computer vision.

Compared to traditional methods, deep learning-based approaches require only lim-

ited domain knowledge to reach top performance. This is comes at the cost of requir-

ing much larger datasets and the computational power to process them. In speech

recognition, for instance, neural network-based (NN) acoustic models have greatly

improved ASR performance over traditional Gaussian mixture models (GMMs) on a

variety of tasks [21, 93, 47, 94].

These advances aside, the performance of NN-based acoustic models still suffers

from challenges: 1) for rich resource conditions such as good quality recording con-

ditions in English, researchers want to push ASR performance to human parity and

2) conversely, low-resource or noisy, reverberant recording conditions, ASR perfor-

mance is still far from satisfactory. One key trend that has driven the ASR field

towards these directions is exploring useful neural architectures that preserve im-

portant information, and provide invariance against unwanted noise. For example,

huge improvements have been achieved for ASR from more advanced neural network

models such as convolutional neural networks [88, 85, 3, 109] to capture spectral

invariance, time-delay neural networks [76] and long short-term memory (LSTM) re-

current neural networks (RNNs) [36, 35, 90] to model the dynamic temporal process

in speech. The success of neural methods is contingent on specific operational and

architectural choices of the neural models. However, the architectural decisions often
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come at the cost of huge computation and lack of insight:

∙ Flexible and efficient framework for NN development A standard “recipe”

for building a state-of-the-art speech recognizer typically requires thousands of

hours of transcribed speech. As a consequence of this huge amount of data,

exploring different neural architectures is very time-consuming. For example,

in [93], the training time was one month for a standard deep NN on a 2000 hr

corpus. Moreover, even such large amounts of data do not exist in some scenar-

ios. Because of task specific traits, implementing a new neural network from

scratch can be nontrivial and involve a lot of difficulties. A good framework for

development can go a long way forwards alleviating these difficulties.

∙ Bringing intuition to the architectural choices of the neural model

Deep learning found success in ASR for three reasons: 1) the representational

power comes from speech knowledge, e.g., the hybrid GMM-HMM system; 2)

the network is easy to optimize even in a highly non-linear space and 3) the net-

work can be trained easily using large amounts of data. These properties hinge

upon architectural choices of the neural model driven by human intuition. For

example, some language-specific traits can help us create a better multilingual

recognizer [122]. Furthermore, the operational components need to be easily

optimized. For example, the LSTM is designed for easy optimization of RNNs

which have greatly improved ASR performance [90]. Moreover, computation

needs to be affordable to utilize vast quantities speech data.

In this dissertation, I present the efforts I made for a general purpose machine

learning toolkit called the computational network toolkit (CNTK) and under this

framework, I also explore different neural architecture for various tasks. More specif-

ically, CNTK permits easy architectural and operational variations to explore and to

tune neural network structures. It includes not only highly optimized code to speed

up training, but also new algorithms to make existing recurrent networks train more

efficiently. With an efficient operational platform, I proposed new neural architec-

tures for various tasks. First, I designed a novel system for low-resource language
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recognition. Secondly, training such novel networks is not as straightforward as a

regular deep neural network. Optimization of such networks has proven to be consid-

erably more difficult due to multiple components in the system. To solve this issue, I

approached the problem by using a learned gating mechanism for regulating informa-

tion flow, which enables the optimization of networks with virtually arbitrary depth.

Moreover, we combined all the techniques we developed and other techniques from

the vision community, into an end-to-end speech recognition system.

I briefly describe these techniques below.

1.1 Contributions

The primary contributions of this thesis are:

∙ Designing a flexible and efficient framework for deep learning We

present a well-engineered, efficient open-source framework that fosters future

speech and machine learning research. Besides the engineering effort, my con-

tribution to this framework includes 1) an efficient batching algorithm 2) an

efficient training algorithm for recurrent neural networks and 3) building a state-

of-the-art benchmark using standard datasets.

∙ Building a feedback loop into the acoustic model We propose a new

structured computational network to simulate the prediction, adaptation and

correction process of humans for low-resource language recognition. We demon-

strate that our new model can improve a strong stacked bottleneck feature based

hybrid system. The network itself can further benefit from transfer learning.

∙ Easing gradient-based training We propose a new gated mechanism to train

a much deeper network, in order to improve the generalization of an acoustic

model. Based on the analysis of the experimental results, we further enhanced

performance by adding more controllable gates to the model. We show that

this framework can easily train a deeper network without loss of accuracy. We

23



further demonstrate that our final model could outperform the state-of-the-art

on many standard benchmarks.

∙ Adding more expressive power and better generalization We succes-

sively trained very deep convolutional networks to add more expressive power

and better generalization for end-to-end ASR models. We applied network-in-

network principles, batch normalization, residual connections, and convolutional

LSTMs to build very deep recurrent and convolutional structures. We experi-

mented with the WSJ ASR task and significantly improved the state-of-the-art

system.

1.2 Thesis Overview

The rest of this thesis is organized as follows:

∙ Chapter 2 reviews concepts related to ASR and DNNs. It also provides descrip-

tions of the corpora and metrics used in the thesis.

∙ Chapter 3 presents a well-engineered, efficient open-source framework to make

it easier to create an arbitrary computational neural network.1

∙ Chapter 4 proposes a feedback mechanism for low-resource languages.

∙ Chapter 5 presents a new framework to make it easier to use gradient based

training and also investigates different variants across different tasks.

∙ Chapter 6 investigates methods to improve acoustic modeling in an end-to-end

scheme.

∙ Chapter 7 summarizes the key concepts of the thesis, and suggests future work.

1This toolkit is joint work with many researchers at Microsoft.
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2
Background

2.1 Introduction

This chapter describes some of the building blocks used in this thesis. Section 2.2 first

introduces some ASR basics. Section 2.3 details DNN usage for acoustic modeling

e.g., CNNs and RNNs. Section 2.4 describes the speech corpus which we use heavily

in this thesis.

2.2 Automatic Speech Recognition

ASR is the process of transcribing human speech into text automatically using ma-

chines. Figure 2-1 shows the components of a common speech recognition system,

which we describe here briefly. An input audio recording is first preprocessed using

an audio front-end (Feature Extraction) that extracts acoustic features. Most speech

recognizers use a frame-based model in which an input waveform is converted into

a sequence of frames of features of equal duration. Features such as Mel-frequency

Cepstral Coecients (MFCC), and Perceptual Linear Prediction (PLP) [22] are exam-

ples of this category of features. Speech features have also been developed to use

features computed over different length segments [29] or learned by a neural network

[86]. Our current body of work deals only with frame-based features. Typically a

feature vector is extracted on a small time window of speech, usually on the order of

25 ms. These frames are usually computed every 10 ms.

25



Audio

Frame

State

Phoneme

Word

Sentence

Feature 
Extraction Acoustic Model

Decision Trees Lexicon

Language 
Model

Figure 2-1: A typical speech recognition system. It includes a signal processing
frontend, an acoustic model, a pronunciation model, a language model, and a decoder.

The acoustic model (the red block in Figure 2-1) is a statistical model of the

features that are computed by the acoustic front-end. It is a statistical model of

the features conditioned on different spoken sound classes. We denote sound classes

as state in Figure 2-1 because they are usually represented by states in the Hidden

Markov Model (HMM), as described in Section 2.2.1. This model is typically done

via a Deep Neural Network (DNN), Convolutional Neural Network (CNN), or RNN

acoustic model. Most of work in this thesis attempts to improve the acoustic model.

The decision tree maps sub-word units (the hidden state generated by an HMM)

to phoneme sequences. Then, the lexicon, or pronunciation model, maps a sequence

of phonemes to a word. The decision tree and pronunciation dictionary are typically

fixed, and are rarely updated in the speech pipeline.

The language model is a statistical model giving the probability of word sequences

independent of the acoustics. The standard Language Models (LMs) used in ASR are

n-grams. N-gram models represent the probability of generating the next word given

the previous N-1 words. The log probability from the language model is typically

linearly combined with the acoustic model score, and then fed into the decoder.
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The decoder combines the probabilities from the acoustic model and language

model to search for the best word sequences under the constraints of the pronunciation

model. A brute force search by generating and scoring all candidates one by one is not

feasible computationally. Most decoders use a combination of dynamic programming

and beam-searching to generate a subset of plausible candidates, and score them at

the same time [101, 84]. Modern decoders are usually implemented using Weighted

Finite State Transducers (WFSTs) for efficient searching.

We now describe a typical state-of-the-art DNN-HMM speech recognition system

with more formal mathematical notation.1

2.2.1 Acoustic Model

Given the observation sequence (feature frames), X, extracted from a speech wave-

form, we want to find the best word sequence W* that maximizes the posterior

probability 𝑝(W|X)

W* = arg max
W

𝑝(W|X) (2.1)

We can decompose this probability into two terms using Bayes’s Rule, an acoustic

model, 𝑝AM(X|W), and a language model, 𝑝LM(W):

W* = arg max
W

𝑝AM(X|W).𝑝LM(W) (2.2)

The first term 𝑝AM(X|W) in Eq 2.2, the acoustic model, evaluates the likelihood of

a speech segment X being generated by a word sequence W.

In the traditional Gaussian Mixture Model-Hidden Markov Model (GMM-HMM)

paradigm, the output probabilities are generated by the GMM, and the sequential

property of speech is modeled by the HMM. The hidden states, 𝑆, in the HMM form a

Markov chain. In this manner, the acoustic feature vectors are generated from hidden

states. These hidden states typically represent a subword or phonetic segmentation

1We give more details only for the acoustic model, language model, and discriminative training
because these are the components related to this thesis. Readers are invited to refer to [84] for more
details.
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of each word. In other words, we would change Eq 2.2 to:

W* = arg max
W

∑︁

S

𝑝(X,S|W)𝑝(W) (2.3)

= arg max
W

∑︁

S

∏︁

𝑡

𝑝(x𝑡|S,Ω)𝑝(S|W)𝑝(W) (2.4)

where x𝑡, s𝑡 are the observation and hidden state at time 𝑡, respectively, and 𝑝(x𝑡|S,Ω)

is the acoustic model. Specifically, the parameters Ω are parameterized under the

Markovian assumption as:

𝑝(X|Ω) =
∑︁

𝑠

∏︁

𝑡

𝑏𝑠𝑡(𝑥𝑡)𝑎𝑠𝑡,𝑠𝑡+1 (2.5)

where 𝑏𝑠𝑡(𝑥𝑡) is the GMM and 𝑎* are the HMM transition probabilities.

In practice, HMM hidden states are typically modeled by 3-state triphones. A

triphone is a phone with a left and right context. Each triphone is usually modeled by

3 left-to-right states to handle the transient acoustic dynamics. Systems that model

triphones are usually referred to as having context dependent (CD) models, while

systems that model just single phonemes without any context use context independent

(CI) models.

The parameters of the GMM-HMM acoustic model can be estimated in a Maxi-

mum Likelihood (ML) fashion using the Forward-Backward algorithm. At test time,

the maximization can be solved by using the Viterbi Algorithm. Readers are invited

to refer to [84] for more details.

Recently there has been an explosion of interest in Neural Network models for

AM. We will describe the DNN-based AMs in Section 2.3. Also, in this thesis, we

will mostly use the DNN-based AM paradigm.

2.2.2 Language Model

The classic Language Model (LM) technique for ASR, 𝑝LM(𝑊 ) in Eq 2.2 are n-

grams [71]. An n-gram language model has the Markovian assumption, typically
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conditioning on a 2- to 5-word history, and, therefore, losing long-range context-

dependency. Recently, researchers have looked into using RNNs for language modeling

as well [73]. However, due to the computational cost, LMs based on RNNs are

typically used to re-scoring the N-best lists after the beam search is completed [73].

LMs are usually trained independently from the AMs on large quantity of text data.

The sequence-to-sequence model introduced in Chapter 6 attempts to optimize a

character-based LM and AM jointly but it usually also needs another word-based

LM.

2.2.3 Discriminative Training

In practice, the models trained using the ML criterion do not yield the best results,

since the conditional-independence assumptions of the model do not hold for speech

data. Many discriminative training methods [77] have been proposed to address this

issue. Instead of maximizing the likelihood of the data, discriminative training tries

to minimize the confusion in the training data. Commonly used loss functions, are

Maximum Mutual Information (MMI), Minimum Phone Error (MPE) and state-level

Minimum Bayes Risk (sMBR), which try to minimize the errors in the frame, phone,

and state level, respectively. We mainly use sMBR in this thesis for training hybrid

DNN-HMM systems, since it often yields the best results [113, 91].

While sequence-discriminative training of neural networks may look trivial at first

glance, as it only requires changing the frame-level cross entropy (CE) training cri-

terion to one of the sequence-discriminative training criteria, there are several tech-

niques that are needed to make it work in practice. These include criterion selection,

frame-smoothing, language model selection, and so on. The best configuration of

these techniques depends on the implementation details [113], as well as the dataset

used for training and evaluation, and needs to be optimized when building a state-of-

the-art discriminatively trained NN-HMM system. Moreover, if we use more advanced

acoustic models such as RNNs, GPU memory is a key constraint. In Chapter 3, we

focus on how can we make the sequence training more efficient in the DNN-based AM

paradigm.
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2.3 Deep Neural Networks for Acoustic Modeling

Over the last decades, there has been an explosion of interest in Neural Network

models for AM, LM, and the entire ASR pipeline. DNNs are a particular instance of

Neural Networks, where there are many hidden layers. This model was made possible

by the recent availability of more powerful hardware such as graphical processing units

(GPUs). DNN computations typically require many large matrix multiplications,

which can be parallelized easily in the GPU. In ASR, researchers have shown 5-30%

relative improvement on various tasks [47]. The power of DNNs is often believed to

come from the fact that the representation and the classification are trained jointly.

In the following segments, we will discuss the components of the neural network, and

how it can be trained and used for acoustic modeling.

2.3.1 DNNs for Acoustic Modeling

p(st|xt)

from HMM

...

s3
sN

s2

s1

s4

xt

xt�1

xt+1

Figure 2-2: The hybrid DNN-HMM approach where the targets are the HMM states
and observation probabilities are generated by a DNN. The input x𝑡 is usually con-
catenated with adjacent frames to capture more contextual information.

A DNN-based ASR system usually starts with a baseline GMM-HMM speech

recognizer that computes frame-level output target labels. This is usually done by

force aligning the transcription with the input speech by the GMM-HMM recognizer.

This means that the DNN is trying to model the probability of an acoustic frame x𝑡
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being in state posterior 𝑠𝑡 at time 𝑡 [21]:

𝑝(𝑠𝑡|x𝑡) = DNNAM(x𝑡), (2.6)

where the DNN can be replaced by any neural network, e.g. RNNs. Since DNNs

produce posteriors rather than likelihoods, we need to normalize the DNN outputs

using the class priors for decoding:

𝑝(x𝑡|𝑠𝑡) ≈
𝑝(𝑠𝑡|x𝑡)

𝑝(𝑠𝑡)
. (2.7)

This method of using DNN for acoustic modeling in ASR is usually called the “hybrid

DNN-HMM ” as illustrated in Figure 2-2.

The objective function used for hybrid DNN-HMM training is the cross entropy

(CE) criterion:

ℒ = −
∑︁

𝑡

∑︁

𝑠

𝑙𝑡(𝑠) log y𝑡(𝑠) (2.8)

where 𝑙𝑡(𝑠) is the ground-truth label vector for frame 𝑡, and y𝑡(𝑠) is the output vector

from the softmax layer.

Learning of neural network parameters was performed using back propagation

with stochastic gradient descent (SGD) and momentum. SGD is a gradient descent

approach with a slight modification where the true gradient is estimated by the gra-

dient of a small subset of the training examples, called a mini-batch.

Another widely used approach for neural network models in ASR is called the

tandem approach [39]. It shares the same training paradigm with the hybrid DNN-

HMM approach. However, instead of using the target output of DNNs (Eq. 2.7)

to replace the likelihoods, the DNN is used to generate input features to feed into

another HMM recognizer. The input feature is extracted from the outputs of some

hidden layer in the DNN. That layer is forced to have a smaller number of neurons,

called a bottleneck (BN) layer. Since the DNN usually learns better representations,

BN features usually outperform handcrafted features such as MFCCs and PLPs.
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Hybrid vs. Tandem

The tandem system usually requires more training steps and performs worse in CE

training due to the bottleneck layer. But the Tandem system still attracts a lot of

attention for two reasons: (1) it can build on existing techniques in the HMM world

such as speaker adaptation and (2) the BN features can be used in other tasks, e.g.

multilingual ASR system for low resource languages.

In practice, our experiments also suggest that a hybrid system is better than a

tandem system for a large scale dataset. But for low-resource tasks, a state-of-the-art

ASR system needs to train a hybrid system on top of BN features [60].

Therefore, in this thesis, we mostly use the hybrid approach. However, for low-

resource language, we extract BN features first and then apply our new neural network

models on top of them to reach state-of-the-art performance. In the following sub-

section, more advanced deep learning models, i.e., stacked BN features, and RNNs,

are described for hybrid and tandem ASR systems.

2.3.2 Low-rank Stacked Bottleneck Architecture

The Tandem approach benefits from being able to use existing techniques developed

for the GMM-HMM framework such as discriminative training, or speaker adaptation.

One can also easily train a tandem system as a feature extractor on a high-resource

language, and then use it for a low-resource language. However, as we describe in

the previous section, there usually exists a gap in performance between the Tandem

approach and the hybrid approach. In [121], we propose a method to improve exist-

ing Tandem approaches to be more comparable with the hybrid approach. We will

describe this approach in this section, and use it as a baseline system in Chapter 4.

Low-rank matrix factorization

The left side of Figure 2-3 shows a typical ASR DNN architecture. Following Sainath

et al., [87] we investigate a low-rank approximation to the weights of the softmax

layer of the network. By considering the weights of the softmax layer as a matrix, we
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Figure 2-3: Diagram of the low-rank factorized DNN. The left side of the figure
represents a DNN with ℎ hidden units and 𝑠 target labels. The right side of the
figure is the low-rank bottleneck DNN. The last hidden layer is now replaced by two
set of weights with a linear activation function in between. Bottleneck features can
be extracted from the DNN by taking the output of the linear activations.

can factorize the weight matrix into two matrices of lower rank. As illustrated by the

right side of Figure 2-3, this is done by replacing the usual softmax layer weights by

a linear layer with a small number of hidden units followed by a softmax layer. More

specifically, a new BN output layer with 𝑟 linear hidden units is inserted into the last

weight matrix with a hidden layer of size ℎ, and a softmax layer with 𝑠 state posterior

outputs. This changes the number of parameters from ℎ * 𝑠 to 𝑟 * (ℎ + 𝑠). Notice

that there is no non-linearity for this BN output layer. Instead of using this structure

for hybrid DNNs, we use it for extracting BN features. There are two benefits for

using this method. First, it ensures the best achievable frame accuracy even with a

relatively small 𝑟. Second, the linearity of the output for the BN layer prevents a loss

of information when we treat the DNN as a feature extractor.

Stacked bottleneck (SBN) features

The idea of using hierarchical processing of neural networks (NNs) has been explored

by several researchers. Valente et al. use a second NN to help correct the posterior
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Figure 2-4: Diagram of the stacked bottleneck neural network feature extraction
framework. Two DNNs are combined together in a series. Starting from the left
side of the figure, original input features are passed to the first low-rank BN net-
work. The activations of the linear layer are extracted and stacked with time offsets:
−10,−5,+5,+10. The stacked feature is then used as input features to the second
BN network. Finally, the LrSBN features can be extracted from the BN layer of the
second DNN.

outputs of the first NN by feeding it a different set of features [111]. In the context of

the Babel project, SBN features have shown promising results in [59]. One argument

for the usage of these cascading structures is that they enable more information, such

as additional context, to be utilized more effectively [37].

Low-Rank Stacked Bottleneck (LrSBN)

Figure 2-4 gives an overview of our proposed low-rank SBN feature extraction frame-

work. The BN outputs from the first DNN are concatenated with context expansion

and fed to the second DNN. This structure is similar to [59] except that we always

place the linear BN layer (for the low-rank factorization) in the last hidden layer

instead of a sigmoid BN layer in the middle of the network. Experiments in [87]

have shown that the hidden layers do not have the same low-rank properties as the

weights in the softmax layer. We also use tied-states as the output targets instead of
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CI targets.

We use this LrSBN as the baseline feature for our multilingual system described

in Chapter 4.

2.3.3 Convolutional Neural Networks

Convolutional neural network (CNNs) have been applied widely in the areas of com-

puter vision [66, 64]. In recent years, CNNs, composed of at least one convolutional

layer, have shown improvement over traditional fully-connected deep neural networks

on many ASR tasks [88, 3]. Unlike fully connected layers, convolutional layers take

into account the input topology, and are designed to reduce translational variance by

forcing weight sharing and applying mean/max pooling afterward.

Let input feature x ∈ R𝑇x×𝐹x be a two dimensional matrix, where 𝑇x denotes the

context window width and 𝐹x denotes the number of frequency bands. Suppose there

are 𝐾 kernels with weight W1, W2, · · · , W𝐾 and bias 𝑏1, 𝑏2, · · · , 𝑏𝐾 . We use 𝑘 to

index kernels and the 𝑘-th kernel W𝑘 ∈ R𝑇𝑘×𝐹𝑘 . The activation (also called a feature

map) of the 𝑘-th kernel centered at the (𝑡, 𝑓)-position of the input feature is

ℎ𝑘𝑡,𝑓 = 𝜃(

𝑇𝑘∑︁

𝑖=1

𝐹𝑘∑︁

𝑗=1

𝑥
𝑖+(𝑡−⌈𝑇𝑘

2
⌉),𝑗+(𝑡−⌈𝐹𝑘

2
⌉)𝑊𝑘𝑖,𝑗 + 𝑏𝑘), (2.9)

where 𝜃 is the activation function, which we set to be rectified linear units here. Note

that we set 𝑥𝑖′,𝑗′ = 0 if 𝑖′, 𝑗′ exceeds the boundary.

In this thesis, CNNs are investigated and used extensively in Chapter 6.

2.3.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are variants of feed-forward neural networks,

which contain feedback loops that feed activations not only to the next layer but

also as the input to the current layer at the next time step. This design enables the

network to consider all contexts from the past to make a decision about the current

frame, which is a desirable property since contextual information plays an important
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role in acoustic modeling. However, in early work, the choice of the RNN function

is simply a linear transformation followed by element-wise activation. In practice,

this simple RNN cannot preserve information over a long period when we use it for

acoustic modeling. This is because commonly-used activation functions, such as the

sigmoid function and hyperbolic tangent function, compress the input into a small

dynamic range; therefore, the activations of the same layer from 𝑛-steps before would

have been compressed 𝑛-times when it arrives at the current time step. Thus the

history information has a minor influence. While training with back-propagation

through time (BPTT), this problem is also known as the vanishing gradient problem

in the sense that error signals are not likely to back-propagate along time dimension

for many hops. To address this issue, the LSTM block was proposed in [49] to replace

the traditional hidden unit. In this section, we review the basic single-layer long

short-term memory (LSTM) RNNs, and their deep versions.

Long Short-Term Memory (LSTM) RNNs
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Figure 2-5: Long Short-Term Memory RNNs. An LSTM block contains specialized
gates: 1) input gate, 𝑖𝑡, decides whether the input is significant enough to remember,
2) forget gate, 𝑓𝑡, decides whether to continue remembering the value, and 3) output
gate, 𝑜𝑡, decides whether it should output the value.

The LSTM RNN was initially proposed in [49] to solve the vanishing gradient

problem that often happens when training RNNs. It introduces a linear dependency
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between c𝑡, the memory cell state at time 𝑡, and c𝑡−1, the same cell’s state at 𝑡 − 1.

Nonlinear gates are introduced to control the information flow. The operation of the

network follows the equations

i𝑡 = 𝜎(W𝑥𝑖x𝑡 + W𝑚𝑖m𝑡−1 + W𝑐𝑖c𝑡−1 + b𝑖) (2.10)

f𝑡 = 𝜎(W𝑥𝑓x𝑡 + W𝑚𝑓m𝑡−1 + W𝑐𝑓c𝑡−1 + b𝑓 ) (2.11)

c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ tanh(W𝑥𝑐x𝑡 + W𝑚𝑐m𝑡−1 + b𝑐) (2.12)

o𝑡 = 𝜎(W𝑥𝑜x𝑡 + W𝑚𝑜m𝑡−1 + W𝑐𝑜c𝑡 + b𝑜) (2.13)

m𝑡 = o𝑡 ⊙ tanh(c𝑡) (2.14)

iteratively from 𝑡 = 1 to 𝑡 = 𝑇 , where 𝜎(*) is the logistic sigmoid function, i𝑡, f𝑡,o𝑡, c𝑡

and m𝑡 are vectors that represent values of the input gate, forget gate, output gate,

cell activation, and cell output activation at time 𝑡, respectively. ⊙ denotes element-

wise product of vectors. W* are the weight matrices connecting different gates, and

b* are the corresponding bias vectors. All these matrices are full except diagonal

matrices W𝑐𝑖, W𝑐𝑓 , and W𝑐𝑜 that connect the cell to gates.

For large-vocabulary continuous speech recognition (LVCSR) tasks, we insert a

projection layer, as suggested in [90], to reduce computation. As illustrated in Fig-

ure 2-5, the equations for network units change slightly, as the m𝑡−1 activation vector

is replaced with h𝑡−1 in Eq. (2.10),(2.11),(2.13), and (2.14):

h𝑡 = W𝑚𝑟m𝑡. (2.15)

We then feed this h𝑡 to the softmax layer, and produce y𝑡 as the final output:

y𝑡 = Softmax(h𝑡). (2.16)

Deep LSTM (DLSTM) RNNs

Deep LSTM (DLSTM) RNNs are formed by stacking multiple layers of LSTM cells.

Specifically, the output of the lower layer LSTM cells h𝑙
𝑡 is fed to the upper input
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layer as input x𝑙+1
𝑡 . Although each LSTM layer is deep in time since it can be

unrolled in time to become a feed-forward neural network in which each layer shares

the same weights, deep LSTM RNNs still significantly outperform single-layer LSTM

RNNs. It is conjectured [90] that DLSTM RNNs can make better use of parameters

by distributing them over space through multiple layers. Note that in conventional

DLSTM RNNs the interaction between cells in different layers must go through the

output-input connection.

Similar to deep LSTMs, we use deep LSTMs with a projection layer (LSTMP),

where multiple LSTM layers each with a separate recurrent projection layer are

stacked. In this thesis, we will mostly use this system as our baseline.

2.4 Speech Corpora

Eight speech corpora are used in the experiments in this thesis. A brief overview of

each speech corpus will be described in the following sections.

2.4.1 TIMIT

The TIMIT corpus is designed to provide speech data for acoustic-phonetic studies

and the development and evaluation of ASR systems [27]. The corpus contains broad-

band recordings of 438 male speakers and 192 female speakers of eight major dialects

of American English, each reading ten phonetically rich sentences. The recorded

utterances are stored as 16-bit, 16 kHz speech waveform files, and the time-aligned

phonetic transcriptions of the recorded sentences are also provided in the corpus,

which is the gold standard we use to evaluate the model.

2.4.2 IARPA-Babel corpus

The IARPA-Babel program focused on ASR and spoken term detection of low-

resource languages [1]. The goal of the program was to reduce the amount of time

needed to develop ASR and spoken term detection capabilities for a new language.
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The data from the Babel program consists of collections of speech from a growing

list of languages. For this work, we will consider the full language pack (FLP) (60-80

hours of training data) of the 11 languages released in the first two years as source lan-

guages, while the languages in the third year will be the target languages [18]. Some

languages also contain a mixture of microphone data recorded at 48kHz in both train

and test utterances. For the purpose of this thesis, we downsampled all the wideband

data to 8kHz and treated it the same way as the rest of the recordings. For the target

languages, we focus on the Very Limited Language Pack (VLLP) condition which

includes only 3 hours of transcribed training data. This condition excludes any use

of human generated pronunciation dictionary.

2.4.3 AMI

The AMI corpus comprises approximately 100 hours of meeting recordings in instru-

mented meeting rooms [9]. Multiple microphones were used, including individual

headset microphones, lapel microphones, and one or more microphone arrays. In this

work, we use the single distant microphone (SDM) condition for our experiments.

Our systems follow the split recommended in the corpus release: 80/9/9 hours for

train/dev/test respectively. For our training, we use all segments provided by the

corpus, including those with overlapping speech. Our models are evaluated on the

test set only. NIST’s asclite tool [24] is used for scoring.

2.4.4 SWBD

Switchboard-1 (SWBD) corpus [30] was used for our experiments. We used 4,870

sides of conversations (about 300 hours speech) from 520 speakers as training data,

and 40 sides of Switchboard-1 conversations (about 2 hours speech) from the 2000

Hub5 evaluation as testing data.
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2.4.5 HKUST

The HKUST Mandarin Telephone Speech2 dataset is a medium-sized corpus contain-

ing 150 hours of conversational telephone speech from Mandarin speakers, recorded at

an 8kHZ sampling rate. The two callers do not know each other in advance, and top-

ics similar to those in Fisher English were used to initiate a conversation. The release

is split into training and development sets with 873 calls and 24 calls respectively, of

which we use the development for evaluation.

2.4.6 GALE Mandarin

We merged GALE Phase 2 Chinese Broadcast Conversation Speech , GALE Phase

3 Chinese Broadcast Conversation Speech Part 1 and Part 2, and GALE Phase 2

Chinese Broadcast News Speech3, to create a large 500-hour Mandarin corpus. All

four corpora are recorded at a 16k sampling rate from Chinese broadcast programs.

We use the same 3-hour evaluation set as in [52].

2.4.7 Arabic MGB

This dataset is provided by the 2016 Arabic MGB Challenge,4 containing about 1200

hours of Arabic broadcast programs taken from Aljazeera TV over ten years, recorded

at a 16kHZ sampling rate. Ten hours of data are partitioned as the official develop-

ment set for the challenge and will be used for evaluation in this work.

2.4.8 Wall Street Journal

The Wall Street Journal (WSJ) speech corpus contains read speech of articles drawn

from the Wall Street Journal text corpus.5 An equal number of male and female

speakers were chosen to record the corpus for the diversity of voice quality and dialect.

2It is available as LDC2005S15 in LDC.
3They are available as LDC2013S04, LDC2014S09, LDC2015S06 and LDC2013S08 in LDC re-

spectively.
4http://www.mgb-challenge.org/arabic.html
5It is available as LDC93S6A and LDC94S13A in LDC.
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Two microphones were used for recording: a close-talking Sennheiser HMD414, and

a secondary microphone. The speech data were sampled at 16 kHz and saved as

sequences of 16-bit data samples. We used the si284 as the training set, dev93 as the

validation set and eval92 as the test set.
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3
General Purpose

Deep Learning Toolkit

3.1 Introduction

Great success has been achieved by moving from simple feed-forward networks to more

advanced structures such as CNNs and RNNs [88, 36]. In applications such as speech,

where the data is sequential, the most fundamental components are perhaps feature

extraction and aggregation. In CNNs, convolutions typically learn feature maps, and

in RNNs, recurrent connections from the building block to store or discard features.

The success of deep learning (and neural networks) often derives from well-chosen

neural components as the building blocks. We need to carefully design the building

blocks, such as by using LSTMs to replace simple RNNs, and need to efficiently com-

pose different elements, such as [89], which reduced WER by stacking convolutional

and recurrent layers. Conversely, to exploit the structure and information inside a

particular task, we need to design customized models.

Implementing a neural network from scratch can be nontrivial, and involve a lot

of heuristics to avoid pitfalls. For example, just adding one recurrent loop to a feed-

forward network requires rewriting all the gradient computations, and can be 20 times

slower because of sample-by-sample processing. As a result, an open source, modular,

and extensible deep learning system is crucial for the deep learning community – both

in industry and academia. It allows people with different expertise to focus on their
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own research and leverage advances in other areas.

In this chapter, we describe an open source deep learning toolkit called the com-

putational network toolkit (CNTK) [119]. CNTK is an open source project initiated

by Microsoft, jointly developed by many deep learning practitioners and researchers

from all over the world. The two main CNTK contributions from the author of this

thesis include 1) supporting arbitrary recurrent neural networks, and 2) speeding up

training on GPUs. The following sections describe these two contributions in more

details.

3.2 Related Work

There are many deep learning toolkits that are comparable in various ways with

CNTK [119]. Theano [8], Torch [19], Caffe [56], Chainer [108], TensorFlow [2] and

MXNet [15] are a few systems designed primarily for the training of neural networks.

When CNTK was first released in 2014, only Theano and Torch had support for re-

current neural networks, but none of them had been optimized for speech recognition,

e.g. the large utterance length variation.

The efficient batching algorithm we will propose in Section 3.4.3 relied on the use of

a CNTK special feature called a “DelayNode”, which we will describe in Section 3.3.2.

It enables efficient batching and a dynamic unrolling algorithm for RNNs. However,

it is not as flexible as other toolkits to do utterance level operations, e.g. sequence-to-

sequence models [103]. The algorithm we propose in Section 3.4.4 and Section 3.4.5

did not depend on any specific toolkit.

3.3 Computational Network

A computational network (CN) [119] can be described as a directed graph where

each vertex, called a computation node, represents a computation, and each edge

represents the operator-operants relationship. Specifically, leaf nodes in the graph

are used to represent input values or model parameters, and non-leaf nodes represent
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some computational relations to its children.

Weights h*s In CNTK

Softmax Layer

Sigmoid

W1: Weight X: Input

T1: Times B1: Weight

P1: Plus

W2: Weight S1: Sigmoid

T2: Times B2: Weight

P2: Plus

O: Sofmax

Figure 3-1: A single-hidden-layer neural network and its computational network rep-
resentation. The left side of the picture represents a typical single layer DNN with
ℎ hidden units and 𝑠 target labels. The right side of the picture shows the its CN
representations. All the weight matrices map to leaf nodes and all the operations
map to non-leaf nodes.

All of the popular NNs such as DNNs, CNNs, and RNNs can be reduced to a

series of computational steps. If we know how to compute each step as well as the

order in which they are computed, we have an implementation of these models. This

observation suggests that we can generalize and treat all these models as special

cases of CNs. For example, Figure 3-1 is the CN representation of a one-hidden-layer

sigmoid neural network. In the right side of the graph, each node 𝑛 is identified as a

pair 𝑛𝑎𝑚𝑒 : 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟. We can see a non-leaf node defines a computation such as 𝑃1,

which represents “Plus”, and the leaf node 𝐵1, which represents a weight matrix.

Note that CNs can cover a significantly larger variety of, and more complicated

models than standard neural models such as DNNs and RNNs. To support this

architectural flexibility, we need to employ special algorithms to evaluate and train

CNs.
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3.3.1 Forward Computation

Algorithm 1 Forward computation of CN without loop
1: procedure ForwardOrderWithOutLoop(𝑟𝑜𝑜𝑡)
2: 𝒢 ← Computation Graph
3: 𝒱 ← All the computation nodes
4: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← {}
5: 𝑜𝑟𝑑𝑒𝑟 ← {}
6: if 𝑟𝑜𝑜𝑡 /∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
7: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ 𝑟𝑜𝑜𝑡
8: for 𝑎𝑙𝑙 𝑣 ∈ 𝑟𝑜𝑜𝑡.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
9: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑂𝑟𝑑𝑒𝑟𝑊𝑖𝑡ℎ𝑂𝑢𝑡𝐿𝑜𝑜𝑝(𝑣)

10: 𝑜𝑟𝑑𝑒𝑟 ← 𝑜𝑟𝑑𝑒𝑟 + 𝑟𝑜𝑜𝑡

Given the model parameters (i.e., weight nodes in Figure 3-1) and input values, we

can compute the value of any node. In this DNN case, the computational order can

be trivially determined by layer-by-layer computation from the bottom up. In a more

general case, when a CN is a directed acyclic graph (DAG), the computation order can

be determined with a depth-first traverse over the DAG, as illustrated in Algorithm

1. Here, the computation of the next node starts only after the computation of

the previous node has finished. But we can easily extend this framework in the

asynchronized case, as long as there is no dependency between two nodes.1 Once

the order is decided, it will remain the same for all subsequent runs, regardless of the

computational environment. In other words, this algorithm only needs to be executed

per output node and then the computational order can be cached.2

In this case, each computation node only needs to know how to compute its

value when the operands are known. The computation can be as simple as matrix

summation, or element-wise application of the sigmoid function, or as complex as a

multiple layer NN, as long as the CN is still a DAG. The conditions change when we

introduce a recurrent loop in the graph. In Section 3.3.2, we will describe a simple

1For more details about forward computation in CNs over DAG, please check the CNTK book
[119].

2Recently, dynamic architectures (e.g., where every training instance has a different model archi-
tecture) have become more and more popular for natural language processing tasks. For the con-
struction of dynamic graphs, readers are invited to refer to PyTorch (http://pytorch.org/about/)
for more details.
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version of the forward computation algorithm for a CN with a recurrent loop. In

Section 3.4, we will describe several speed up approaches for RNNs.

3.3.2 Recurrent Connections

W2: h*s In CNTK

Softmax Layer

Sigmoid

W1: Weight X: Input

T1: Times B1: Weight

P1: Plus

W2: Weight

T2: Times B2: Weight

P2: Plus

O: Sofmax

W3: h*h

S1: Sigmoid D: Delay

P3: Plus T3: Times

W3: Weight

Recurrent Connection

W1: d*h

Figure 3-2: A single-hidden-layer neural network with a recurrent loop and its com-
putational network representation. The left side of the picture represents a typical
single layer RNN with one recurrent loop from the hidden layer to itself. The right
side of the picture shows the its CN representations. The recurrent loop is in the red
dashed-line box and the weight matrix W3 of this recurrent loop is mapped to a leaf
node of this red box.

In CNs, the recurrent connection can be specified using a Delay node that retrieves

the value 𝑑 samples in the past, where each column of x is a separate sample stored

in the descending order of time: h𝑡(𝑑,x) = x(𝑡−𝑑).

Figure 3-2 illustrates the correspondence between the simple RNN and the CN

representation using a Delay node. The operations performed by the neural network
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at time 𝑡 are:

P𝑡 = W1x𝑡 + B1 (3.1)

S𝑡 = 𝜎(W3𝑠𝑡−1 + P𝑡) (3.2)

O𝑡 = W2S𝑡 + B2 (3.3)

The recurrent loop is depicted in the dashed-line box in Figure 3-2 and relies on a

Delay node to indicate the dependence of the hidden layer activity on its past values.

In the DAG case, node evaluation under this condition is very efficient because

many samples can be computed concurrently. However, a CN with a loop cannot

be computed for a sequence of samples as a batch since the next sample’s value

depends on the previous samples. A simple way to do the forward computation

and backpropagation in a recurrent network is to unroll all samples in the sequence

over time. Once unrolled, the graph can be expanded into a DAG, and the forward

computation as in Algorithm 1 can be directly applied. This means, however, that

all computation nodes in the CN need to be computed sample-by-sample, and this

significantly reduces the potential for parallelization.

In the next section, we will discuss how can we speedup the computation of a CN

with directed loops.

3.4 Efficient Network Training

Nowadays, GPUs are widely used in deep learning by leveraging massive parallel

computations via mini-batch based training. For unidirectional RNN models, to

better utilize the parallelization power of the GPU card, in [119], multiple sequences

(e.g., 40) are often packed into the same mini-batch. Truncated BPTT is usually

performed for parameter updating, therefore, only a small segment (e.g., 20 frames)

of each sequence has to be packed into the mini-batch. However, when applied to

sequence level training (Bidirectional LSTM (BLSTM) or sequence training), a GPU’s

limited memory restricts the number of sequences that can be packed into a mini-
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batch, especially for LVCSR tasks with long training sequences and large model sizes.

An alternative way to speed up processing is by using asynchronous SGD based on

a GPU/CPU farm [45]. In this section, we are more focused on fully utilizing the

parallelization power of a single GPU Card. The algorithms proposed here can also

be applied to a multi-GPU setup.

3.4.1 Sample-by-Sample Processing Only Within Loops

Algorithm 2 Forward computation of an arbitrary CN
1: procedure ForwardOrderWithRecurrentLoop(𝑟𝑜𝑜𝑡)
2: 𝒢 ← Computation Graph
3: 𝒱 ← All the computation nodes
4: 𝑆𝑡𝑟𝑜𝑛𝑔𝑙𝑦𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝐺,𝐺′) [107] ◁ 𝐺′ is a DAG of

SCC
5: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑂𝑟𝑑𝑒𝑟𝑊𝑖𝑡ℎ𝑂𝑢𝑡𝐿𝑜𝑜𝑝(G’)→ 𝑜𝑟𝑑𝑒𝑟
6: for 𝑎𝑙𝑙 SCC ∈ 𝐺′, 𝑣 ∈ SCC do
7: 𝑣.𝑜𝑟𝑑𝑒𝑟 = max{𝑣.𝑜𝑟𝑑𝑒𝑟 ∈ SCC}
8: for 𝑎𝑙𝑙 𝑠.𝑟𝑜𝑜𝑡 ∈ 𝐺′ ∧ 𝑠.𝑖𝑠𝑙𝑜𝑜𝑝() do
9: 𝐺𝑒𝑡𝐿𝑜𝑜𝑝𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑂𝑟𝑑𝑒𝑟(𝑠)→ 𝑜𝑟𝑑𝑒𝑟 for each SCC

return 𝑜𝑟𝑑𝑒𝑟 for DAG and 𝑜𝑟𝑑𝑒𝑟 for each SCC
10: procedure GetLoopForwardOrder(root)
11: Set delayNode as leaf ◁ Convert the loop to DAG
12: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑂𝑟𝑑𝑒𝑟𝑊𝑖𝑡ℎ𝑂𝑢𝑡𝐿𝑜𝑜𝑝(𝑟𝑜𝑜𝑡)

To speed up training, we can identify loops in the CN and only apply sample-by-

sample computation for nodes inside the loops. For the rest of the computation nodes,

all samples in the sequence can be computed in parallel as a single matrix operation.

For example, in the red dashed-box of Figure 3-2, all the nodes included in the loop

of 𝑇𝑡−1 → 𝑃3 → 𝑆1 → 𝐷 → 𝑇𝑡 need to be computed sample by sample. All the

rest of the nodes can be computed in batches. In other words, we need to identify

the cliques where all the nodes depend on others (forming a loop). This procedure is

equivalent to finding all the strongly connected components (SCC) in the graph. A

graph is said to be strongly connected if every vertex is reachable from every other

vertex. A SCC of a directed graph is a maximal strongly connected subgraph. We
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can use Tarjan’s algorithm to easily find all the SCCs in a directed graph.3 Once the

loops are identified, they can be treated as composite nodes in the CN, and the CN is

reduced to a DAG. All the nodes inside each loop (or composite node) can be unrolled

over time and also reduced to a DAG. For all these DAGs, the forward computation

and backpropagation algorithms we discussed in the previous section can be applied.

The detailed procedure for determining the forward computation order in the CN

with arbitrary recurrent connections is described in Algorithm 2. Since the input to

the Delay nodes is computed in the past, they can be considered as leaf nodes if we

only consider one time slice, which makes the order decision inside loops much easier.

3.4.2 Processing Multiple Utterances Simultaneously

t = 1 . . . 5

Utterance 1

Utterance 2

Utterance 3

Utterance 4

t = 1 t = 2 t = 3 t = 4

GPU Card

Figure 3-3: Processing multiple sequences in a batch (an example with 4 sequences).
Each color represents one sequence. Frames on the same time step from different
sequences are grouped together and computed in batch.

3Tarjan’s strongly connected components algorithm has a complexity of 𝒪(|𝑉 | + |𝐸|) and can
easily detect all the SCC in a graph.
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Utterance (0,0) Utterance (0,1) Utterance (0,2) ...Stream 0

Utterance (1,0) Utterance(1,1) Utterance (1,2) ...Stream 1

Utterance (2,0) ...Stream 2

Utterance (N-1,0) ...Stream N-1

Utterance (N,0) ...Stream N

Time

Bunch
BPTT size

Sentence Splicing for multi-utterance process

Figure 3-4: Truncated BPTT training with sentence splicing. When we reach the
end of a sentence for each stream, we will load a new sentence, instead of appending
garbage frames.

We can further speed up the training within the loop by processing multiple

sequences at a time. To implement this, we need to organize sequences so that the

frames with the same frame id from different sequences are grouped together, as

shown in Figure 3-3. By organizing sequences in this way, we can compute frames

from different sequences in a batch when inside a loop, and compute all samples in

one batch outside loops. For example, as illustrated in Figure 3-3, we can compute 4

frames together for each time step. Note that sentence length variation in the training

data requires that the number of samples in the input matrix to be the maximum

sentence length in the training corpus. To handle this issue, “garbage frames” are

appended to the end of shorter sentences in the batch. These redundant frames are

ignored during BPTT.

3.4.3 RNN Training with Sentence Splicing

As described in the previous section, as the ratio between the maximum and average

sentence length of the training data increases, the potential speed up from paralleli-
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sation decreases, since there is redundant computation for the “garbage” frames. To

improve efficiency, we load a new utterance and keep track of the cell state during

forward computation. Instead of appending garbage frames at the end of each sen-

tence, each stream now contains a sequence of concatenated sentences, as illustrated

in Figure 3-4. In this case, we only have redundant computation at the end of each

epoch. The additional cost is keeping track of the sentence boundary for each utter-

ance. This can be very inefficient if we have to check this for every node. However,

only the Delay nodes need to access this information and reset the state when they

are aware of a sentence boundary in the current slice. Our experiments show that

in a standard 3-layer LSTM with 1,000 nodes, the cost of the reset boundary in the

Delay node is less than 0.1%. In comparison, “garbage” frames can amount to more

than 40% in a speech corpus due to sentence length variation.

3.4.4 Latency-controlled bi-directional model training

Sequence

Right contextual frame

chunk frame

Left contextual information

Nc Nr

Time

Figure 3-5: Truncated BPTT for Latency-controlled bi-directional RNN. We keep
track the left contextual information in the forward RNN for the entire sequence
when we move to the next BPTT chunk. We use a latency parameter 𝑁𝑟 to control
the length of right contextual information in the backward RNN.

The batching algorithm we described in the previous section works only for the

unidirectional case. Training bi-directional RNNs, or sequence-discriminative training
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of memory-demanding neural networks, often requires whole sequence-based BPTT,

which is problematic is because the number of sequences that can be packed into

the same mini-batch is usually quite restricted due to GPU memory limit. This

situation can significantly decrease the training and evaluation speed. To speed up

the training of bi-directional RNNs, the Context-sensitive-chunk BPTT (CSC-BPTT)

was proposed in [14]. In this method, a sequence is first split into chunks of fixed

length 𝑁𝑐. Then 𝑁𝑙 past frames and 𝑁𝑟 future frames are concatenated before and

after each chunk as the left, and right context, respectively. The appended frames

are only used to provide contextual information, and do not generate error signals

during training. Since each chunk can be independently drawn and trained, they can

be stacked to form large minibatches to speed up training.

Unfortunately, the model trained with CSC-BPTT is no longer a true bidirectional

RNN, since the history it can exploit is limited by the left and right context that is

concatenated to the chunk. It also introduces additional computational cost during

decoding, since both the left and right contexts need to be recomputed for each chunk.

To solve these problems in CSC-BPTT, we propose latency-controlled bi-directional

RNNs. Unlike CSC-BPTT, in our new model we incorporate the entire history while

still using a truncated future context as illustrated in Figure 3-5. Instead of concate-

nating and computing 𝑁𝑙 left contextual frames for each chunk, we directly carry over

the left contextual information from the previous chunk of the same utterance. For

every chunk, both the training and decoding computational cost is reduced by a fac-

tor of 𝑁𝑙

𝑁𝑙+𝑁𝑐+𝑁𝑟
. Moreover, loading the history from the previous mini-batch instead

of using a fixed contextual window makes the context exact when compared to the

uni-directional model. Note that standard BLSTM RNNs come with significant la-

tency, since the model can only be evaluated after seeing the whole utterance. In the

latency-controlled BLSTM (LC-BLSTM) RNNs, the latency is limited to 𝑁𝑟, which

can be set by the users. In our experiments, we process 40 utterances in parallel,

which is 10 times faster than processing the whole utterance, without performance

loss. Compared to the CSC BPTT, our approach is 1.5 times faster and often leads

to better accuracy.
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3.4.5 Two-forward-pass Method for Sequence Training

Algorithm 3 TwoForwardPassSequenceTraining
1: procedure TwoForwardPassSequenceTraining()
2: 𝒮 ← Sequencess
3: 𝒜 ← Alignments corresponding to 𝒮
4: 𝒟 ← Denominator lattices corresponding to 𝒰
5: 𝑀 ←𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ𝑅𝑒𝑎𝑑𝑒𝑟(𝒮) ◁ (E.g., 40 sequences, each with 20 frames)
6: 𝑃 ← 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑃𝑜𝑜𝑙(𝒮,𝒜,𝒟)
7: for 𝑎𝑙𝑙 𝑚 ∈𝑀 do
8: if 𝑃.𝐻𝑎𝑠𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑚) then
9: 𝑔 ← 𝑃.𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑚)

10: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑎𝑠𝑠(𝑚)
11: 𝑠𝑒𝑡_𝑜𝑢𝑡𝑝𝑢𝑡_𝑛𝑜𝑑𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑔)
12: 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑝𝑎𝑠𝑠(𝑚)
13: 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟_𝑢𝑝𝑑𝑎𝑡𝑒()
14: else
15: 𝑚_𝑝←𝑀.𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ𝑃𝑜𝑖𝑛𝑡𝑒𝑟()
16: while 𝑃.𝑁𝑒𝑒𝑑𝑀𝑜𝑟𝑒𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ() do
17: 𝑚1 ← 𝑚_𝑝.𝑅𝑒𝑎𝑑𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ()
18: 𝑝← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑎𝑠𝑠(𝑚1) ◁ Posterior from forward-pass
19: 𝑃.𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑚1, 𝑝)

20: 𝑀.𝑅𝑒𝑠𝑒𝑡𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ𝑃𝑜𝑖𝑛𝑡𝑒𝑟(𝑚_𝑝)

For sequence training, however, we cannot apply the truncated training version to

the sequence-discriminative training of RNNs and other memory-hungry models such

as deep convolutional neural networks (CNNs), since the signal computation itself

requires having posteriors for the whole sequence. One way to speed up the training,

in this case, is to use asynchronous SGD on a GPU/CPU farm [45], at the cost of

low computing resource utilization on each GPU/CPU. This solution is of course not

ideal, and GPU/CPU farms can be quite expensive to build and maintain.

In this section, we propose a two-forward-pass method for efficient sequence-

discriminative training of memory-hungry models. Algorithm 3 demonstrates the

pseudocode of the proposed method. The general idea is to enable partial sequences

in each minibatch for sequence-discriminative training. For this to happen, we will

have to maintain a sequence pool, and compute the gradient for those sequences from

their corresponding lattices in advance. This requires an additional forward-pass so
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that gradients from lattices can be computed at the sequence level, and stored in the

sequence pool (thus the name two-forward-pass). After preparing the gradients in the

sequence pool, sequences can again be split into small segments (e.g., 20 frames), and

segments from multiple sequences (e.g., 40) can be packed into the same mini-batch

for efficient parameter updating.

3.5 Experiments

We use the AMI [9] and SWBD [30] corpus for all our experiments. Kaldi [79] and

CNTK [119] are used for ASR system building. Details of the corpora are in Chapter

2 and system descriptions are similar to the experimental section in Chapter 5.

3.5.1 Speed

As we mentioned above, the motivation of the two-forward-pass method is to al-

low more utterance parallelization in each mini-batch when performing sequence-

discriminative training for recurrent neural networks. On the NVIDIA Grid K520

GPUs that we experiment with, we were only able to parallelize at most 4 utterances

in the same mini-batch for our given LSTMP network structure. In comparison, we

can parallel more than 160 utterances using 20 as BPTT size.

Table 3.1: Speed performance (hours per epoch) comparison of LSTMP sMBR train-
ing with and without parallelization in each mini-batch. Experiment is conducted on
a 10𝐾 utterance subset of the AMI SDM task, with NVIDIA Grid K520 GPUs.

#utterances in each mini-batch
System 1 40

LSTMP sMBR 13.7 0.75

Table 3.1 compares the training time of the conventional whole utterance ap-

proach without multi-utterance parallelization with our proposed two-forward-pass

method with 40 utterances processed in the same mini-batch. Since the training of

the conventional whole utterance approach is quite time consuming, we conducted
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the comparison on a 10𝐾 utterance subset of the SDM task. From the table, we

can see that we get an 18x speedup by using our proposed two-forward-pass method.

Further speed improvement is possible by increasing the number of utterances pro-

cessed in the same mini-batch. For example, in our experiments, we have processed

80 utterances in the same mini-batch without hurting performance. We also found

this can be combined with the LC-BLSTM approach, as shown in the experiments in

Chapter 5.

3.5.2 Performance

Latency-controlled BLSTMP

Table 3.2: Performance (% WER) comparison of BLSTMP and LC-BLSTMP. The
term “(30+30)” means 𝑁𝑐 = 30 and 𝑁𝑟 = 30.

Model WER Speed

LSTMP 14.0% 1x
BLSTMP 13.0% 18.5x
LC-BLSTMP (30+30) 13.3% 2x
LC-BLSTMP (30+15) 13.6% 1.8x

Table 3.2 reports the WER4 of LC-BLSTMP models compared to BLSTMP on

the SWB corpus. It is clear that the LC-BLSTMP model can reduce the latency

without significant performance degradation. It also gives 10 to 15x speed up based

on how many utterances are running in parallel.5

Two-forward-pass Method for Sequence Training

Table 3.3 reports the WER of sMBR models trained with the proposed two-forward-

pass method. The “LSTMP” in this table refers to the LSTM model with a projection

layer, while “BLSTMP” is its bi-directional version.

4The number was worse than the results we report in Chapter 5 because here we use a different
HMM baseline.

5The reported number was on K20 cards. We can run more utterances in parallel for the BLSTMP
case on more advanced GPUs.
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Table 3.3: Performance (% WER) comparison of LSTM sMBR models trained on
AMI SDM task using the two-forward-pass method.

System WER

LSTMP CE 50.7
LSTMP sMBR 49.3

LC-BLSTMP CE 47.3*
LC-BLSTMP sMBR 45.6*
* Experiments were conducted after the JSALT15 workshop with the latest CNTK which may

give slightly better results than what we obtained at the workshop.

It is clear from the table that the sMBR sequence-discriminative training criterion

consistently improves upon the cross-entropy model. Here we didn’t compare with

the single-pass method because it takes too long to train the model.

3.6 Summary

In this Chapter, we have demonstrated the efforts we made for a new deep learning

toolkit “CNTK” which enables creating arbitrary neural networks easily. We then

proposed several algorithms to speed up RNN training based on this framework. More

specifically, we first presented an efficient batching algorithm for unidirectional RNN

training. Second, we presented the latency-controlled BLSTM to speed up training,

and reduce latency for bidirectional LSTMs. We further proposed a two-forward-

pass method for sequence-discriminative training of memory-hungry neural networks,

which enables more utterance parallelization in each mini-batch, and dramatically

decreases the training time. We demonstrated the effectiveness of these method on

the AMI SDM task with various recurrent neural network architectures.

CNTK allows us to define complex CNs and to train and evaluate the model. It

can significantly reduce the effort needed to develop new models and therefore speed

up the innovation. In the following chapters, we will use CNTK to develop new

models for speech recognition.
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4
Building Feedback Mechanism

for Low-Resource Language
Speech Recognition

4.1 Introduction

With the emerging trends of smart devices and big data, ASR research has grown

significantly over the past decade. However, there are only around 100 languages with

speech recognition capability amongst the 7000 languages spoken around the world

[82], even though companies and government agencies have invested heavily in speech

technology. One reason for this discrepancy is that creating a reliable recognition

system requires a large amount of annotated data and linguistic knowledge. The

standard recipe for building a speech recognizer typically requires thousands of hours

of transcribed speech for training the acoustic model, which could easily take a year

just to collect and annotate the data. Therefore, data scarcity remains a big challenge

for low-resource language speech recognition.

One way to overcome this issue is to identify and utilize the acoustics-phonetic

similarity between languages in order to introduce data sharing from rich resource

languages in a multilingual manner to alleviate the data requirements [17]. Instead

of leveraging additional language resources, we propose to add more contextual in-

59



formation when we have limited resources. For example, a speaker adapted feature

could give 6% relative gain in WER in AMI (≈100hrs) using an LSTM model [106].

However, almost no gain is observed in Table 5.7 when we apply speaker adaptation

to SWBD (≈300hrs). We believe this is because, in the limited data condition, the

model lacks the ability to learn contextual information. Therefore, we propose to

improve DNN models for this challenging condition by modifying the neural network

structure to incorporate more predicted contextual information.

The behavior of prediction, adaptation, and correction is widely observed in hu-

man speech recognition [100, 99]. For example, listeners may guess what you will

say next and wait to confirm their guess. They may adjust their listening effort by

predicting the speaking rate and noise condition based on current information, or

predict and adjust a letter to sound mapping based on the talker’s pronunciations.

In [100], the research in neural science community shows that a striking feature of

human perception is that our subjective experience depends not only on sensory in-

formation from the environment but also on our expectations. Inspired by this, we

build a neural network model to emulate these prediction and correction feedback

mechanisms. We believe by incorporating this prediction information, the network

could be more robust on the limited data condition as suggested in [99].

4.2 Related Work

The core concept of prediction, adaptation, and correction has been widely used in

models such as the Kalman filter [58]. Through multi-pass decoding, traditional ASR

systems also implicitly exploit prediction information.

The work that is most similar to ours is that presented in [55]. Their model ex-

plicitly predicts multi-frame state labels that are used during decoding by means of

an autoregressive product. Their work, however, does not involve recurrent feedback,

and thus cannot effectively utilize long-range dependencies in the signal. More im-

portantly, their model is very different from ours in spirit, and was proposed from a

completely different angle.
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RNNs can be naturally used to perform prediction. However, both the simple

RNN [114, 23], and the LSTM [90, 36] RNN that have been successfully applied

to AMs do not explicitly make future predictions. In this study, we have included

results from using the simple RNN and LSTM and showed that the PAC-RNN could

do better by modeling prediction information more explicitly.

4.3 Prediction-Adaptation-Correction RNNs

In this section, we describe the prediction-adaptation-correction RNN (PAC-RNN), in

which a primary (or correction) DNN estimates the state posterior probability based

on both the current frame information, and the prediction made from past frames by

a prediction DNN. The result from the primary DNN is fed back into the prediction

DNN to make better predictions for future frames. In this model, we can consider

that, given new, current frame information, the primary DNN makes a correction

on the prediction made by the prediction DNN. Alternatively, it can be considered

that the primary DNN’s behavior is adapted based on the prediction made by the

prediction DNN. Although the concept of prediction-adaptation-correction is not new

and arises naturally from Kalman filters [58] for example, our specific architecture and

its application to ASR are novel.

4.3.1 Model Structure

Figure 4-1 illustrates the structure of the PAC-RNN studied in this thesis. At the

center of the model is a main (or correction) DNN and a prediction DNN. The main

DNN estimates the state posterior probability 𝑝𝑐𝑜𝑟𝑟(𝑠𝑡|o𝑡,x𝑡) given o𝑡, the observation

feature vector, and x𝑡, the information from the prediction DNN, at time 𝑡. The

prediction DNN predicts some future target information. In this study, it predicts

the posterior probability 𝑝𝑝𝑟𝑒𝑑(𝑙𝑧𝑡+𝑛|o𝑡,y𝑡) given o𝑡 and y𝑡, the information from the

correction DNN, where 𝑙 can be a state 𝑠 or a phone 𝜃, and 𝑛 is the number of frames

in the look ahead. Note that since y𝑡 contains information from the correction DNN,

and depends on x𝑡, information from the prediction DNN, and vice versa, a recurrent
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loop is formed.
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Figure 4-1: The Structure of the PAC-RNN. It includes a prediction model, a correc-
tion model, and recurrent loops to link them together.

Information from the prediction and correction DNNs can be drawn from either

the softmax layer or a hidden layer. In large vocabulary speech recognition (LVSR)

tasks there are often over 5000 states. In these cases, drawing information from the

softmax layer can significantly increase the model size. For this reason, we obtained

information from a (bottleneck) hidden layer whose size can be set independent of

the state size so that the same architecture can be applied to LVCSR tasks directly.

In a very basic setup, x𝑡, the information from the prediction DNN, is simply the

bottleneck hidden layer output value ℎ𝑝𝑟𝑒𝑑
𝑡−1 . To exploit additional predictions made in

the past, however, we can stack multiple hidden layer values as

x𝑡 = [ℎ𝑝𝑟𝑒𝑑
𝑡−𝑇 𝑐𝑜𝑟𝑟 , . . . , ℎ

𝑝𝑟𝑒𝑑
𝑡−1 ]𝑇 , (4.1)

where 𝑇 𝑐𝑜𝑟𝑟 is the contextual window size used by the correction DNN and is set to

10 in our study. Similarly, we can stack multiple frames to form y𝑡, the information

from the correction DNN, as

y𝑡 = [ℎ𝑐𝑜𝑟𝑟
𝑡−𝑇 𝑝𝑟𝑒𝑑−1, ..., ℎ

𝑐𝑜𝑟𝑟
𝑡 ]𝑇 , (4.2)
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where 𝑇 𝑝𝑟𝑒𝑑 is the contextual window size used by the prediction DNN and is set to

1 in our study. In addition, in the specific example shown in Figure 4-1, the hidden

layer output ℎ𝑐𝑜𝑟𝑟
𝑡 is projected to a lower dimension before it is fed into the prediction

DNN.

4.3.2 PAC-RNN-LSTM

LSTMs have improved speech recognition accuracy on many tasks over DNNs [36, 90].

To further enhance the PAC-RNN model, we use an LSTM to replace the DNN used in

the correction model. The input of this LSTM is the acoustic feature o𝑡 concatenated

with the information from prediction model, x𝑡:

𝑝𝑐𝑜𝑟𝑟(𝑠𝑡|o𝑡,x𝑡) = LSTM𝑐𝑜𝑟𝑟([o𝑡,x𝑡]
⊤) (4.3)

The prediction model can also be an LSTM but we did not observe performance gain

on the experiments. To keep it simple, we use the same DNN prediction model.

4.3.3 Training and Decoding

To train the PAC-RNN, we need to provide supervision information to both the pre-

diction and correction DNNs. As we have mentioned, the correction DNN estimates

the state posterior probability, and thus the state label and the frame cross-entropy

(CE) criterion can be used. For the prediction DNN, however, we have the freedom

to choose either the state or the phoneme label. We will compare the performance

difference between these two choices in Section 4.4.

The PAC-RNN training problem is a multi-task learning problem. The two train-

ing objectives can be combined into a single one as

𝐽 =
𝑇∑︁

𝑡=1

(𝛼 * ln 𝑝𝑐𝑜𝑟𝑟(𝑠𝑡|o𝑡,x𝑡) + (1− 𝛼) * ln 𝑝𝑝𝑟𝑒𝑑(𝑙𝑡+𝑛|o𝑡,y𝑡)), (4.4)

where 𝛼 is the interpolation weight and is set to 0.8 in our study unless otherwise

stated, and 𝑇 is the total number of frames in the training utterance.
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During the decoding stage, the state posteriors (or the scaled likelihood scores

converted from them) from the correction DNN are treated as the emission probability

similar to that in a typical DNN/RNN-HMM hybrid system [20].

4.4 Experiments on TIMIT

In this section, we evaluate the PAC-RNN on the TIMIT phone recognition task. In

our experiments the training labels are obtained through forced alignment using our

GMM-HMM system trained with the maximum-likelihood criterion.1 The standard

462-speaker training set is used, and all SA sentences are removed in order to conform

to the standard setup as in [74]. A separate development set of 50 speakers is used

for tuning all hyper parameters. Results are reported on the 24-speaker core test set,

which has no overlap with the development set.

4.4.1 Results Summary

Table 4.1 summarizes the phone accuracy achieved with different hybrid models eval-

uated in this study. All the DNN/RNN models use a 123 dimensional acoustic feature

vector, consisting of 40 dimensional mel-frequency log-filterbank features (FBANK),

an energy measure, and their first and second temporal derivatives. In our experi-

ments, 183 target class labels, corresponding to three states for each of 61 phones,

are used. A bi-gram phone language model estimated from the training set is used in

decoding. The language model weight is tuned on the development set.

We consider three baseline hybrid systems: a DNN with two 2048-unit hidden

layers, a simple RNN with two 2048-unit hidden layers in which the final hidden layer

is a recurrent layer, and an LSTM with 1024 memory cells. We don’t see further

performance improvements by increasing the model sizes of these baseline systems.

In the PAC-RNN (S) model, the prediction DNN has a 1024-unit hidden layer and

an 80-unit bottleneck layer. The correction DNN has two 1024-unit hidden layers.
1In [74], the expertly-annotated phone boundaries were used to generate the training labels,

which outperform the HMM generated labels. We use the HMM generated labels since this is the
only label available in other datasets.
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The projection layer from the correction DNN’s hidden layer contains 500 units. In

the PAC-RNN (L) model, all 1024-unit hidden layers are replaced with 2048-unit

hidden layers.

For the DNN, the simple RNN, and the PAC-RNN models, the input contains a

7-1-7-frame contextual window, which translates to a total size of 123 * 15 = 1845

dimensions. No context expansion is used for the LSTM model since the best perfor-

mance is obtained without any context expansion.

All models are randomly initialized without either generative or discriminative

pretraining [92]. No momentum is used for the first epoch, and a momentum of 0.9

is used for all subsequent epochs. We have found that turning off momentum for

the first epoch helps improve the performance of the final model, although the model

performance seems to be worse after the first epoch. We believe this is because the

randomly initialized model is highly non-optima, so a noisier gradient helps to move

the model to a better starting point. To train the DNN, a learning rate of 0.1 per

minibatch is used for the first epoch. The learning rate is increased to 1.0 at the second

epoch, after which it is kept the same until the development set training criterion no

longer improves, under which condition the learning rate is halved. A similar schedule

is used to train the RNNs, except that all the learning rates are reduced to 1/10 of

that used for DNN training. Following [74], the state posteriors are directly used

as emission probabilities in the HMM without being converted to scaled likelihoods,

although conversion on scaled likelihood is preferred for LVSR tasks.

As shown in Table 4.1, the simple RNN only slightly outperforms the DNN, which

is consistent with other reported results [114]. The LSTM further improves upon the

simple RNN. The PAC-RNN (L) outperforms DNN, RNN and LSTM with 2.4%,

2.1%, and 1.9% absolute phone accuracy improvement, respectively, on the core test

set.

4.4.2 Effect of Expanding Prediction Information

As described in Section 4.3, the prediction information fed into the correction DNN

can include multiple past predictions. Table 4.2 compares phone error rate with
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Table 4.1: TIMIT Phone Error Rate achieved with Different Hybrid Models. PAC-
RNN (S) has 1,024 units for each layer and PAC-RNN (L) has 2,048 units for each
layer.

Model Dev Test # of Parameters

DNN 20.4% 22.2% 8.4M
Simple RNN 20.5% 21.9% 12.5M
LSTM 20.1% 21.7% 5.9M
PAC-RNN (S) 18.9% 20.0% 6.9M
PAC-RNN (L) 18.4 % 19.8% 15.1M

and without prediction information expansion. From the table, we can observe that

if the prediction DNN only predicts the state of the next frame, no gain over the

baseline DNN is observed. This is because most frames have the same label as the

next frame, and so the prediction DNN does not provide much information to the

correction DNN. If the prediction DNN predicts the state of the 𝑡 + 10-th frame,

however, we can observe a 1.0% phone accuracy improvement over the DNN baseline.

An additional improvement of 0.7% is obtained if 10 past predictions are used by

the correction DNN. This indicates that the contextual expansion of the prediction

information can be very helpful.

Table 4.2: TIMIT Phone Error Rate achieved with different prediction information
expansion. Target such as 𝑠𝑡+𝑛, means predicts the state of the 𝑡 + 10-th frame.

Model Target Context Expansion Dev Test

DNN - - 20.4% 22.2%
PAC-RNN (S) 𝑠𝑡+1 no 20.3% 22.3%
PAC-RNN (S) 𝑠𝑡+10 no 19.7% 21.2%
PAC-RNN (S) 𝑠𝑡+10 yes 19.2% 20.5%

4.4.3 Effect of Different Prediction Targets

In order to determine the best prediction target we compared the PAC-RNN with

different prediction targets, all with 10-frame contextual expansion, in Table 4.3.

From the table we can see that predicting a longer future (e.g., next phone) is better
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than predicting a shorter future (e.g., next state), and predicting a more meaningful

unit (e.g., using the next phone as the target) is better than predicting the states

over a fixed window size (e.g., the state of the 𝑡 + 10-th frame). The best result is

obtained by predicting the next phone. The PAC-RNN (S) outperforms the DNN

with 2.2% accuracy improvement while PAC-RNN (L) introduces an additional 0.2%

improvement on the core test set.

Table 4.3: TIMIT Phone Error Rate achieved using different prediction targets. All
the systems have 10 frames of expansion for prediction information.

Model Target Dev Test

DNN - 20.4% 22.2%
PAC-RNN (S) Next state symbol 19.8% 21.4%
PAC-RNN (S) State of the 𝑡 + 10-th frame 19.2% 20.5%
PAC-RNN (S) Next phoneme symbol 18.9% 20.0%
PAC-RNN (L) Next phoneme symbol 18.4% 19.8%

4.4.4 Effect of the Recurrent Loop

In this subsection we investigate the effect of the recurrent loop in the PAC-RNN. In

Table 4.4, the setup with the recurrent loop is the PAC-RNN we have described in

Section 4.3. In the setup with no recurrent loop, the connection from the correction

DNN back to the prediction DNN is removed, while the prediction DNN is still used

to provide prediction information to the correction DNN. From the table, we can

observe that including the recurrent loop is critical, and can achieve 1.8% accuracy

improvement over the system with no recurrent loop, which is only 0.4% better than

a DNN. We believe this is because long-range information can be exploited more

effectively with recurrent connections.

4.4.5 Effect of Optimizing the Prediction Criterion

To train the PAC-RNN we optimize a combined objective function that is an inter-

polation of the correction and prediction criteria as shown in Eq. 4.4. By adjusting
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Table 4.4: TIMIT Phone Error Rate achieved with or without recurrent loop.

Model With Recurrent Loop Dev Test

DNN 20.4% 22.2%
PAC-DNN (S) No 20.0% 21.8%
PAC-RNN (S) Yes 18.9% 20.0%

the interpolation weight 𝛼 we can change the relative importance of each criterion.

Table 4.5 summarizes the phone recognition accuracy achieved when the PAC-RNN

is trained with different interpolation weights. As expected, if we set 𝛼 to 1.0 to

remove the prediction criterion from the training objective function, the PAC-RNN

performs almost as well as the simple RNN and LSTM. If 𝛼 is set to a small value

(e.g., 0.6 in the table) such that the main criterion is not sufficiently emphasized, the

performance also degrades, but it remains better than the PAC-RNN trained without

the prediction criterion.

Table 4.5: TIMIT Phone Error Rate achieved with different interpolation weights.

Model Interpolation Weight Dev Test

DNN 20.4% 22.2%
LSTM 20.1% 21.7%
PAC-RNN (S) 1.0 (no prediction) 19.9% 21.6%
PAC-RNN (S) 0.8 18.9% 20.0%
PAC-RNN (S) 0.6 19.7% 21.0%

4.4.6 Improved TIMIT baseline

In this subsection, we further improved the baseline system to compare with the state-

of-the-art phoneic recognition system on TIMIT. The labels were from a triphone

HMM-GMM system from the default Kaldi [79] receipt. Speaker dependent Feature-

Space Maximum Likelihood Linear Regression (fMLLR) transforms are applied on top

of the MFCC features which is typically used to estimate speaker specific transforms

for speaker adaptation.2 We also delayed the output of LSTM by 5 frames as suggested
2fMLLR is also known as Global Constrained Maximum Likelihood Linear Regression (CMLLR)

in the literature [25, 78].
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Table 4.6: TIMIT Phone Error Rate achieved with different hybrid models.

Model Dev Test

DNN [74] - 20.7
BLSTM [35] 16.1 18.0

DNN 19.1 20.6
LSTM 17.8 18.9
PAC-RNN 16.7 17.3
PAC-RNN + LSTM 16.3 17.2

in [90] in order to add more context for the LSTM. From Table 4.6, we can observe that

now we have a more comparable DNN baseline with [74]. All the gains are consistent

with Table 4.1. Our best model was achieved by replacing the correction DNN with

a single layer LSTM model. Our model is even comparable with a bidirectional

LSTM model in [35] which usually gives 5% to 10% relative gains compared to a

unidirectional LSTM model.

4.5 PAC-RNNs for Low-Resource Language Speech

Recognition

The PAC-RNN model shows promising results on TIMIT in Section 4.4, but it was

unclear whether a similar gain could be achieved on real ASR tasks where the predic-

tion information might already be incorporated into the language model. Here, we

successfully apply the PAC-RNN to LVCSR on several low-resource languages. In ad-

dition, we study the effect of transfer learning for recurrent architectures. Recurrent

networks such as LSTMs [49] are known to require a large amount of training data in

order to perform well [90]. For low-resource ASR, multiple groups have incorporated

multilingual training in order to alleviate data limitation issues [40, 63, 17]. One

popular approach is multi-task training using DNNs. In a multi-task setup, a single

DNN is trained to generate outputs for multiple languages with some tied parame-

ters. This approach has been used for robust feature extraction via bottleneck (BN)

features [110, 122, 42, 72], or for classifiers in hybrid DNN-HMM approaches [53].
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In [60], Karafiát et al. found that using CMLLR transformed BN features as inputs

to a hybrid DNN could further improve ASR performance. However, we believe none

of this research has investigated recurrent networks for low-resource languages in a

multilingual scenario.

In the next following section, we apply PAC-RNNs to low-resource language speech

recognition.

4.5.1 Multilingual Systems

Our multilingual system is based on the multilingual framework in [122]. We extract

BN features using multilingual networks to train different hybrid neural network

architectures.

Stacked bottleneck (SBN) features

The BN features used in this chapter follow Section 2.3.2. An SBN is a hierarchical

architecture realized as a concatenation of two DNNs, each with its own bottleneck

layer. The outputs from the BN layer in the first DNN are used as the input features

for the second DNN, whose outputs at the BN layer are then used as the final features

for standard GMM-HMM training.

The inputs of the first layer consist of 23 critical-band energies obtained from a

Mel filter-bank. Each of the 23 dimensions are augmented with pitch and probability

of voicing [67] and multiplied across time by a Hamming window of length 11 frames.

A DCT is then applied for dimensionality reduction. The 0𝑡ℎ to 5𝑡ℎ coefficients are

retained, resulting in a feature of dimensionality (23+2)*6 = 150. The input features

of the second DNN are the outputs of the BN layer from the first DNN. Unlike [121],

speaker dependent fMLLR transforms are also applied to the output of the first BN.

Context expansion is done by concatenating frames with time offsets −10,−5, 0, 5, 10.

Thus, the overall time context seen by the second DNN is 31 frames. Both DNNs use

the same setup of 5 hidden sigmoid layers (1024 hidden units) and 1 linear BN layer

(80 hidden units). Both of them use tied context-dependent (CD) states as target
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Figure 4-2: We build three different systems using BN-CMLLR features: 1) stacked
bottleneck system (SBN), 2) DNN hybrid system using BN features, and 3) RNN
hybrid system using BN features.

outputs, which are generated by forced alignment from a GMM-HMM baseline. A

final PCA transform is applied to the second set of BN outputs to reduce the number

of dimensions to 30. Lastly, delta and delta-delta features are concatenated, resulting

in a final dimensionality of 90.

Bottleneck-CMLLR features in a hybrid system

In [60], the authors proposed a DNN hybrid system that used the first stage BN

features with speaker adaptation (BN-CMLLR). In this work, we follow a similar

approach by replacing the second stage DNN with recurrent architectures (LSTM

or PAC-RNN). The BN-CMLLR features were taken from a network trained in a

multilingual fashion and adapted to the target language. For the DNN and PAC-

RNN, these features were stacked in a context of 31(±15) frames and downsampled

by a factor of 5. Following [90], no context expansion is used for the LSTM. The

output state label is also delayed by 5 to utilize the information from the future. As

illustrated in Figure 4-2, we compare three different systems: SBN, BN in DNN, and
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BN in RNN.

Multilingual training and adaptation of SBN features

There are several methods for training multilingual DNNs. In [63, 40], a multilingual

phoneset is created, and all the phonemes from the source languages are mapped

to the set. The work in [40, 112] shows that a simpler scheme of concatenating

each language’s outputs in the softmax layer can perform just as well. Furthermore,

when concatenating language outputs, normalizing the softmax layer individually

within each language during training will yield slightly better results [42, 38]. In this

work, we use this method for training the multilingual DNN since it does not require

mapping of the phonesets and still provides state-of-the-art results.

When adapting the multilingual DNN to a new language, i.e., the target language,

there often exists a limited amount of training data in that language. Adapting the

multilingual DNN using data from the target language gives an additional gain over

the purely multilingual DNN. For hierarchical architectures, such as the SBN, our

previous work in [122] and an independent investigation in [41] seem to suggest that

the two DNNs in the SBN architecture behave differently in terms of adaptation.

The first DNN extracts more language independent cues from the acoustics, while

the second DNN is more language dependent and is more phonetically oriented. As

a consequence, our previous work [122] shows that using just the language closest

to the target language from the pool of source languages to train the second DNN

can serve as a better initialization model than the multilingual second DNN. The

closest language can be identified from just the acoustic data by training a Language

Identification (LID) system.

A flowchart of how an LID-based multilingual SBN-based ASR system can be

trained is shown in Fig. 4-3. We start by adapting the first DNN with data from

the target language. Instead of using the second multilingual DNN to initialize, we

train the second DNN from random initialization using the closest language’s data

and output targets. After the DNN converges, we then do a final adaptation to the

target language.
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Figure 4-3: Steps to adapt a multilingual SBN to a target language via the closest
language selected via LID. The first DNN is adpated from a multilingual first DNN.
BN features are extracted from the adapted DNN and used to train a new NN on
the closest language (selected by LID) from random initialization. The NN is finally
adapted to the target language.
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Multilingual training of BN-hybrid system

The input of the hybrid ASR system (DNN, LSTM or PAC-RNN) is the same as the

second DNN in the SBN system. During the adaptation stage, the softmax is replaced

by the target language state labels (phone labels for the PAC-RNN prediction model)

with random initialization while the hidden layers are initialized from the DNN,

LSTM or PAC-RNN which is trained using the closest language.

4.5.2 Recognition system

For each language, we used tied-state triphone CD-HMMs, with 2500 states and

18 Gaussian/state. Grapheme-based dictionaries were used for the target languages.

Note that for the languages we used from Babel, the difference between phonetic and

graphemic systems in WER are often less than 1% [65, 26]. All the output targets

were from CD states. We use 11 languages (FLP) as the source languages, namely

Cantonese, Vietnamese, Tagalog, Pashto, Turkish, Bengali, Assamese, Zulu, Tamil,

Haitian, and Lao. To train the multilingual SBN, we kept only the SIL frames that

appear 5 frames before and after actual speech. This reduced the total amount of

frames for the multilingual DNN to around 520 hours. We observed no loss in accuracy

from doing so, and it also reduced the training time significantly. Discriminative

training was done on the CD-HMMs using sMBR criterion [62]. The web data was

cleaned and filtered using techniques described in [120]. For language modeling,

n-gram LMs were created from training data transcripts and the web data. The LMs

were then combined using weighted interpolation. The vocabulary included all words

that appeared in the training transcripts, augmented with the top 30k most frequent

words from the web. We chose 30k words by looking at the rate of out-of-vocabulary

(OOV) reduction as we augmented the train vocabulary with frequent words from

the web. We report results on the 10-hour development set.

We consider two baseline hybrid systems: a DNN with three 1,024-unit hidden

layers, and a stacked LSTM with three layers each containing 512 cells. No gains

were observed by further increasing the model size of these baseline systems.
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In the PAC-RNN model, the prediction DNN has a 2,048-unit hidden layer and a

80-unit bottleneck layer. For the correction model, we have two systems: a DNN with

two 2048-unit hidden layers, or an LSTM with 1024 memory cells. The correction

model’s projection layer contains 500 units.

All models are randomly initialized without either generative or discriminative

pretaining. No momentum is used for the first epoch and a momentum of 0.9 is used

for all subsequent epochs. To train the DNN, a learning rate of 0.1 per mini-batch

is used for the first epoch and then increased to 1.0 at the second epoch, after which

it is kept the same until the development set training criterion no longer improves,

under which condition the learning rate is halved. A similar schedule is used to train

the LSTMs and PAC-RNNs except that all the learning rates are reduced to 1/10 of

that used in the DNN training.

We implemented the hybrid models using the computational network toolkit

(CNTK) [119]. The truncated BPTT [115] is used to update the model parameters.

We speed up the training as in Chapter 3. For decoding, we fed the posteriors gener-

ated by CNTK into the Kaldi ASR toolkit [79], which then generates the recognition

results.

4.5.3 PAC-RNN results with BN features

Table 4.7 summarizes the WERs achieved with different models evaluated in this

study. The first three rows are the results from SBN systems. Both the multilingual

and the closest language systems are adapted to the target language for the whole

stacked network. For the hybrid systems, the input is the BN features extracted from

the first DNN of the adapted multilingual SBN.

The DNN hybrid system outperforms the multilingual SBN but is very similar

to the closest language system. The LSTM improves upon the DNN by around 1%.

The PAC-RNN-DNN outperforms LSTM by another percent across all languages. By

simply replacing the correction model with a single layer LSTM, we observe further

improvements.
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Table 4.7: WER (%) results for each ASR system. SBN is the stacked bottleneck
system. The closest language of Cebuano, Kurmanji and Swahili are Tagalog, Turkish
and Zulu respectively based on our LID experiments.

Target language Cebuano Kurmanji Swahili
Closest language Tagalog Turkish Zulu

SBN models
Monolingual 73.5 86.2 65.8
Adapted multilingual 65.0 75.5 54.9
Closest language 63.7 75.0 54.2

Hybrid models
DNN 63.9 74.9 54.0
LSTM 63.0 74.0 53.0
PACRNN-DNN 62.1 72.9 52.1
PACRNN-LSTM 60.6 72.5 51.4

Hybrid models with closest language initialization
DNN 62.7 73.1 52.4
LSTM 61.3 72.5 52.2
PAC-RNN-DNN 60.8 71.8 51.6
PAC-RNN-LSTM 59.7 71.4 50.4

4.5.4 Effect of transfer learning on recurrent architectures

In this subsection we investigate the effect of the multilingual transfer learning for each

model. We first use the rich resource closest language (based on the LID prediction

shown in the table) to train DNN, LSTM and PAC-RNN models, and then adapt

them to the target language. The lower part of Table 4.7 summarizes the ASR

results. As shown, the LSTM models perform significantly better than the baseline

SBN system. Using the PAC-RNN model yields a noticeable improvement over the

LSTM. Similarly, the PAC-RNN-LSTM can further improve the results.

4.6 Summary

In this chapter, we explored a PAC-RNN model for low-resource language speech

recognition. The results on multiple languages demonstrated that the PAC-RNN

achieves better performance than DNNs and LSTMs. We also showed that by re-
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placing the correction model in the PAC-RNN with an LSTM could further enhance

the model. Moreover, the multilingual experiment results show that traditional DNN

transfer learning approaches can also be applied to the PAC-RNN architecture.

We believe that next-generation ASR systems will be described as dynamic sys-

tems that incorporate many connected components and recurrent feedback, and con-

stantly makes predictions, corrections, and adaptations. For example, the system

should be able to automatically identify multiple speakers in a mixed speech setting,

and then focus on a specific speaker by ignoring other speakers and noises. We believe

the PAC-RNN is the first step towards this direction. However, the first challenge to

further extend this framework on large scale dataset such as SWBD was the gradient

vanishing problem because the multi-subnetwork further increased the depth of the

network. We will try to address this issue in the next chapter.
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5
Optimized Structure to Ease

Gradient-based Training

5.1 Introduction

In the previous chapter, we described how we could add contextual information for

acoustic modeling using the recurrent neural network. As an extension of deep RNNs,

the multiple component/feedback loop presented in this thesis increased modeling

power, but also makes optimization was difficult due to the multiple layers of each

sub-network. This optimization issue arises because training deeper networks are not

as straightforward as simply adding layers due to the vanishing gradient problem.

Optimization of deep networks has proven to be considerably more challenging [50].

Research on initialization schemes, techniques for training networks in multiple stages,

or with temporary companion loss functions attached to some of the layers, have been

proposed to solve the vanishing gradient problem. However, these methods require

significant amounts of heuristics and hyperparameters tuning.

To address these issues, we present several novel architectures that enable the

training of networks with virtually arbitrary depth. The fundamental idea is to use

a learned gating mechanism for regulating information flow across different layers.

This gating mechanism, called highway connections, enables information flow across

several layers/components without attenuation. They alleviate the vanishing gradient

problem and enable deeper networks of LSTM RNNs.
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We first propose a highway LSTM model that adds “highway” connections between

different LSTM layers’ cells. This model can be improved by using dropout to control

the input of the highway connection. Inspired by the improvement from dropout, we

further present two other extensions of the DLSTM RNNs. The grid LSTM (GLSTM)

[57] uses separate LSTM blocks along both time and depth axes to improve modeling

power. The residual LSTM (RLSTM) RNNs, inspired by linearly augmented DNNs

[28], and residual CNNs, [44] contain direct links between lower-layer outputs and

higher-layer inputs in DLSTM RNNs. Both the GLSTM and RLSTM RNNs enable

us to train deeper models and achieve better accuracy.

5.2 Related Work

After independently developing highway LSTMs, we noticed that similar work had

been done in [102, 118, 57]. All of the work shares the same idea of adding gated linear

connections between different layers. The highway networks proposed in [102] adap-

tively carry some dimensions of the input directly to the output so that information

can flow across layers much more easily. However, their formulation is different from

ours, and their focus is on DNNs. The work in [118] shares the same idea and model

structure, while [57] is more general, and uses a generic form. However, their task

is based on text, e.g., machine translation, while our focus is on speech recognition.

Therefore, we also extend the work in [57] to the speech recognition task.

5.3 Model Description

It is reported in [90] that deep LSTM (DLSTM) RNNs help improve generalization

and often outperform single-layer LSTM RNNs. However, when the networks become

deeper or more complex, a degradation in accuracy is often observed. Such degra-

dation is not caused by overfitting [44] since the degradation also happens on the

training set. For example, in many ASR tasks, 3 to 5 LSTM layers are optimal in a

deep LSTM. However, further increasing the depth leads to higher WER. There are
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two possible solutions to this degradation problem:

1. to pretrain the network layer by layer, or,

2. to modify the network structure so that can be more easily and effectively

optimized.

In this section, we focus on the second approach and propose several architectures

that can directly feed information from lower layers to higher layers.

5.3.1 Highway Long Short-term Memory RNNs
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Figure 5-1: Highway Long Short-Term Memory RNNs. We add one more gate (as
illustrated in the red dashed-block), 𝑑𝑙+1

𝑡 , in (l+1)-layer to control how much infor-
mation can flow from the lower-layer cells.

The Highway LSTM (HLSTM) [124], as illustrated in Figure 5-1, improves upon

DLSTM RNNs. It has a direct connection (in the dotted red block) between the

memory cells c𝑙𝑡 in the lower layer 𝑙, and the memory cells c𝑙+1
𝑡 in the upper layer

𝑙 + 1. The carry gate controls how much information can flow from the lower-layer

cells directly to the upper-layer cells. The gate function at layer 𝑙 + 1 at time 𝑡 is

d
(𝑙+1)
𝑡 = 𝜎(b

(𝑙+1)
𝑑 + W𝑙+1

𝑥𝑑 x
(𝑙+1)
𝑡 + w𝑙+1

𝑐𝑑 ⊙ c
(𝑙+1)
𝑡−1 + w

(𝑙+1)
𝑙𝑑 ⊙ c𝑙𝑡), (5.1)
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where b
(𝑙+1)
𝑑 is a bias term, W(𝑙+1)

𝑥𝑑 is the weight matrix connecting the carry gate to

the input of this layer, w(𝐿+1)
𝑐𝑑 is a weight vector from the carry gate to the past cell

state in the current layer, w(𝐿+1)
𝑙𝑑 is a weight vector connecting the carry gate to the

lower layer memory cell, and d(𝑙+1) is the carry gate activation vectors at layer 𝑙 + 1.

Using the carry gate, an HLSTM RNN computes the cell state at layer (𝑙 + 1)

according to

c𝑙+1
𝑡 = d

(𝑙+1)
𝑡 ⊙ c𝑙𝑡 + f

(𝑙+1)
𝑡 ⊙ c

(𝑙+1)
𝑡−1

+ i
(𝑙+1)
𝑡 ⊙ tanh(W(𝑙+1)

𝑥𝑐 x
(𝑙+1)
𝑡 + W

(𝑙+1)
ℎ𝑐 h

(𝑙+1)
𝑡−1 + b𝑐), (5.2)

while all other equations are the same as those for the standard LSTM RNNs as

described in Eq. (2.10),(2.11),(2.13), and (2.14).

Conceptually, the highway connection is a multiplicative modification that is

analogies to the forget gate. Depending on the output of the carry gates, the highway

connection smoothly varies its behavior between that of a plain LSTM layer (no con-

nection) and that of direct linking (i.e., passing the cell memory from the previous

layer directly, without attenuation). The highway connection between cells in differ-

ent layers makes the influence of cells in one layer on the other layer more direct and

can alleviate the vanishing gradient problem when training deeper LSTM RNNs.

5.3.2 Residual LSTM RNNs

The concept of a residual network was proposed in [44], and is a special case of the

linearly augmented model described in [28]. It defines a building block

y = ℱ(x,W𝑖) + x (5.3)

where x and y are the input and output vectors of the layers considered. In this

study, we replace the convolutional and rectifier linear layer with an LSTM block as
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residual LSTM (RLSTM):

x𝑙+1 = LSTM𝑟(x𝑙) + x𝑙 (5.4)

Here 𝑟 indicates how many layers we want to skip and 𝑥𝑙 is the input to 𝑙-th LSTM

residual block. In [44], it was reported that it is important to skip more than one

layer. However, in our study we didn’t find it to be necessary.

5.3.3 Grid Long Short-Term Memory RNNs

The grid LSTM (GLSTM) RNN was first introduced in [57]. Unlike traditional LSTM

RNN models, which organize LSTM blocks as a temporal chain, grid LSTM RNN

models arrange LSTM blocks into multidimensional grids such that each grid contains

one set of LSTM blocks for each dimension, including the depth dimension. This

architecture introduces per-dimension gated linear dependencies between adjacent

cell states, which mitigates the vanishing gradient problem along all dimensions.

Here we consider a two-dimensional grid LSTM model for acoustic modeling,

which has time and depth dimensions respectively, as illustrated in Figure 5-2. The

computations in each grid are defined as follows:

x𝑡,𝑙 = [h𝐷
𝑡,𝑙−1;h

𝑇
𝑡−1,𝑙] (5.5)

(h𝑇
𝑡,𝑙, c

𝑇
𝑡,𝑙) = Time-LSTM(x𝑡,𝑙, c

𝑇
𝑡−1,𝑙,Θ

𝑇 ) (5.6)

(h𝐷
𝑡,𝑙, c

𝐷
𝑡,𝑙) = Depth-LSTM(x𝑡,𝑙, c

𝐷
𝑡,𝑙−1,Θ

𝐷) (5.7)

Note that we slightly change the notation here by using subscripts to denote both

time and depth, and by using superscripts to indicate a specific set of LSTM blocks.

For example, 𝑐𝑖𝑡,𝑙 and ℎ𝑖
𝑡,𝑙 are cell state, and cell output, respectively, at time 𝑡 and

layer 𝑙 of 𝑖-LSTM, while Θ𝑖 denotes all the parameters of 𝑖-LSTM. The cell output of

Depth-LSTM at the last layer, ℎ𝐷
𝑡,𝐿, is passed to the softmax layer for classification.

One last thing that needs to be addressed is 𝑐𝐷𝑡,0, for which the value is undeter-

mined. The easiest solution would be to set the value to zero, which would give a flat
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initialization of cell states regardless of the input value. Instead, we apply a linear

transform such that

c𝐷𝑡,0 = Vh𝐷
𝑡,0 (5.8)

which achieves better performance empirically.

Figure 5-2: The Grid LSTM arranges
LSTM blocks into multidimensional grids
such that each grid contains one set of
LSTM blocks for each dimension.

Figure 5-3: In the prioritized Grid
LSTM, the input to Depth-LSTM is
updated after Time-LSTM of the same
grid is processed.

5.3.4 Prioritized Grid Long Short-Term Memory RNNs

In Equation 5.7, we can observe that the cell output from Time-LSTM is not being

utilized for classification of the current time step. In other words, we would like

the depth dimension to know the output from other dimensions in the current grid

so that it is implicitly deeper regarding the number of transformations before being

used for classification. To achieve this objective, we slightly modify the formulation
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from Section 5.3.3 as follows:

x𝑇
𝑡,𝑙 = [h𝐷

𝑡,𝑙−1;h
𝑇
𝑡−1,𝑙] (5.9)

(h𝑇
𝑡,𝑙, c

𝑇
𝑡,𝑙) = Time-LSTM(x𝑇

𝑡,𝑙, c
𝑇
𝑡−1,𝑙,Θ

𝑇 ) (5.10)

x𝐷
𝑡,𝑙 = [h𝐷

𝑡,𝑙−1;h
𝑇
𝑡,𝑙] (5.11)

(h𝐷
𝑡,𝑙, c

𝐷
𝑡,𝑙) = Depth-LSTM(x𝐷

𝑡,𝑙, c
𝐷
𝑡,𝑙−1,Θ

𝐷) (5.12)

where the input to Depth-LSTM is updated after Time-LSTM of the same grid is

processed. We call this model the prioritized grid LSTM (pGLSTM), and illustrate it

in Figure 5-3. As opposed to non-prioritized grid LSTM (npGLSTM) in Figure 5-2,

h𝐷
𝑡,𝑙−1 is concatenated with updated hidden output, h𝑇

𝑡,𝑙, from the Time-LSTM, and

then, fed to the Depth-LSTM. We believe this prioritized version can better utilize

the information from all the time steps. Experiments in Section 5.4.6 compare these

two different grid LSTMs.

5.3.5 Bidirectional LSTM RNNs

The unidirectional LSTM RNNs we just described can only exploit past history. In

speech recognition, however, future contexts also carry information, and should be

utilized to enhance the acoustic models further. Bidirectional RNNs take advantage

of both past and future contexts by processing the data in both directions with two

separate hidden layers. It was shown in [36, 35, 14] that bidirectional LSTN RNNs

can indeed improve speech recognition results. In this section, we also extend HLSTM

RNNs from unidirectional to bidirectional. Note that the backward layer follows the

same equations as used for the forward layer except that 𝑡 − 1 is replaced by 𝑡 + 1

to exploit future frames and the model operates from 𝑡 = 𝑇 to 1. The output of the

forward and backward layers are concatenated to form the input to the next layer.

A vanilla BLSTM RNN has latency issues because it requires the entire input se-

quence at the decoding stage. Moreover, training a BLSTM is very slow, as described

in Section 3.4.4. Therefore, we apply the latency-controlled technique we developed
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in Section 3.4.4 to all the bidirectional versions of the network in this Chapter.

As described in Section 2.3.4, LSTM with a projection layer (LSTM(P)) can reduce

the computation but without performance degradation. Therefore, for all the LSTM

layer in the following section, we insert a projection layer to reduce the dimension.

5.4 Experiments

The performance of various models are evaluated using word error rate (WER) in

percent below. For the experiments conducted on the AMI meeting corpus, the SDM

eval set is used if not specified otherwise. Since we do not exclude overlapping speech

segments during model training, in addition to results on the full eval set, we also

show results on a subset that only contains non-overlapping speech segments, as in

[104].

5.4.1 Dataset

Our experiments to study the behavior of different LSTM variants were based on five

different speech corpora: AMI, HKUST, GALE Mandarin, Switchboard and Arabic

MGB. These corpora span a wide variety of configurations, ranging from 100 hours

to 1200 hours, include three languages, multiple accents, and recording under differ-

ent scenarios and sampling rates. For more details, readers are invited to refer to

Section 2.4.

5.4.2 Model Setup

We compared four RNN models: (1) LSTMP (baseline) (2) HLSTMP, (3) RLSTMP,

and (4) GLSTMP. For all the models, we follow the configurations reported in our

paper [124]. Each layer contains 1024 memory cells, and a 512-node linear projection

layer is added on top of each layer’s output. For RLSTM, we add shortcut connections

from each layer’s input to its output.

We first compare HLSTM with the baseline LSTM over different configurations,
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e.g., the number of layers on the AMI corpus to prove it can help train a deeper

network. Then we further evaluate more highway variants (RLSTM and GLSTM) on

different scale tasks (from 100hrs to 1200hrs). For our non-prioritized and prioritized

grid LSTM models (npGLSTM/pGLSTM), we chose the same configuration for both

time-LSTM and depth-LSTM as the baseline models.

5.4.3 Training

We use Kaldi [79] for feature extraction, decoding, and training of initial HMM-GMM

models. Maximum likelihood-criterion context-dependent speaker adapted acoustic

models with Mel-Frequency Cepstral Coefficient (MFCC) features are trained with

standard Kaldi recipes. Forced alignment is performed to generate frame-level labels

for neural network acoustic model training.

The Computational Network Toolkit (CNTK) [119] is used for the remaining

neural network training. As [89] suggests, all weights are randomly initialized from

the uniform distribution with range [−0.05, 0.05], and all biases are initialized to 0

without generative or discriminative pretraining [92]. All neural network models,

unless explicitly stated otherwise, are trained with a cross-entropy (CE) criterion,

using truncated back-propagation-through-time (BPTT) [115] for optimization, which

unrolls 20 frames and processes 40 utterances in parallel in each mini-batch. No

momentum is used for the first epoch, and a momentum of 0.9 is used for subsequent

epochs [123]. 𝐿2 constraint regularization [48] with a weight of 10−5 is applied.

For AMI, HKUST, SWBD and GALE Mandarin, ten percent of the training data

is held out as a validation set, which is used to control the learning rate. When no

gain is observed after an epoch, the learning rate is halved, and the model with the

lowest validation loss is reloaded. For Arabic MGB, all data is used for training,

and the learning rate is halved after each epoch; in addition, we use 4-GPU parallel

training with the model-averaging stochastic gradient descent (SGD) method [80].

Specifically, as [13] suggests, we start with a seed model trained with standard SGD

method for one epoch to achieve better performance.

To train the bidirectional model, the latency-controlled method described in Sec-
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tion 3.4.4 was applied. We set 𝑁𝑐 = 80 and 𝑁𝑟 = 20 and also processed 40 utterances

simultaneously. To train the recurrent model with the sMBR criterion, we adopted

the two-forward-pass method described in Section 3.4.5, and processed 40 utterances

simultaneously.

The input features for all models are 80-dimensional log Mel filterbank features

computed every 10 ms, with an additional 3-dimensional pitch features, unless ex-

plicitly stated. The output targets are context-dependent triphone states, of which

the numbers are determined by the last HMM-GMM training stage. Table 5.1 shows

the number of output targets in each dataset.

Table 5.1: Number of output targets in each dataset.

AMI HKUST GALE SWBD MGB

#states 3943 2825 4198 8802 3711

5.4.4 Highway LSTMP Results

The performance of the HLSTMP structure that can help train deeper networks is

evaluated below.

3-layer Highway (B)LSTMP

Table 5.2 gives the WER performance of the 3-layer LSTMP and BLSTMP RNNs,

as well as their highway versions, on the AMI corpus. The performance of the DNN

network is also listed for comparison. From the table, it is clear that the highway

version of the LSTMP RNNs consistently outperforms its non-highway companions,

though with a small margin.

Highway (B)LSTMP with dropout

Dropout can be applied to the highway connection to control its flow: a high dropout

rate essentially turns off the highway connection, and a small dropout rate, on the

other hand, keeps the connection alive. In our experiments, for early training stages,
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Table 5.2: Performance of highway (B)LSTMP RNNs on the AMI corpus. SDM setup
is adopted.

System #Layers with overlap no overlap

DNN 6 57.5 48.4
LSTMP 3 50.7 41.7
HLSTMP 3 50.4 41.2
BLSTMP 3 48.5 38.9
BHLSTMP 3 48.3 38.5

we use a small dropout rate of 0.1. We increase it to 0.8 after 5 epochs of training.

The performance of highway (B)LSTMP networks with dropout is shown in Table 5.3.

As we can see, dropout helps to bring down the WER further for highway networks.

The gain from dropout suggests that there is better way to control the information

flow of the highway connection. This observation motivates us investigate different

variants of highway connections such as RLSTMP and GLSTMP in Section 5.3.2 and

5.3.4.

Table 5.3: Performance of highway (B)LSTMP RNNs with dropout on the AMI
corpus. SDM setup is adopted.

System #Layers with overlap no overlap

LSTMP 3 50.7 41.7
HLSTMP + dropout 3 49.7 40.5

BLSTMP 3 48.5 38.9
BHLSTMP + dropout 3 47.5 37.9

Deeper highway LSTMP

When a network goes deeper, the training usually becomes more difficult. Table 5.4

compares the performance of shallow and deep networks. From the table, we can

see that for a normal LSTMP network, when it goes from 3 layers to 8 layers, the

recognition performance degrades dramatically. For the highway network, however,

the WER only increases a little. If we go even deeper, e.g. to 16 layers, normal

LSTMP training would diverge but the highway network can still be trained well.
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The table suggests that the highway connection between LSTM layers allows the

network to go much deeper than the normal LSTM networks. This also indicates

that the HLSTMP may gain more when we have much more data since we could

train much deeper models.

Table 5.4: Comparison of shallow and deep networks on the AMI corpus. The SDM
setup is adopted.

System #layers with overlap no overlap

LSTMP 3 50.7 41.7
LSTMP 8 52.6 43.8
LSTMP 16 N/A N/A

HLSTMP 3 50.4 41.2
HLSTMP 8 50.7 41.3
HLSTMP 16 50.7 41.2

5.4.5 Grid LSTMP Results

The performance of various models is reported in character error rate (CER) for

Chinese corpora, and word error rate (WER) for English and Arabic.

5.4.6 Prioritized/Non-Prioritized Grid LSTM

We first compare the two grid LSTM models along with baseline models on two

medium-sized datasets: HKUST and GALE Mandarin. The CER of the different

models are shown in Table 5.5. Both grid LSTM architectures outperform the vanilla

LSTM model, as well as the highway LSTM model. Specifically, a 3% to 5% relative

gain is achieved for the non-prioritized grid LSTM compared to the vanilla LSTM. The

result suggests that grid LSTM models are empirically better solutions for introducing

gated linear dependencies across the depth dimension.

Between the two grid architectures, the prioritized grid LSTM model consistently

shows better ASR performance, providing an additional 1% relative gain compared to

the non-prioritized model. This result supports our hypothesis that the LSTM whose
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output is fed into the final softmax layer should be prioritized in order to obtain more

recent information.

Table 5.5: CER comparisons between non-prioritized (npGLSTMP) and prioritized
Grid LSTMPs (pGLSTMP) on HKUST and GALE.

Model #layers HKUST GALE

LSTMP 3 33.29 23.96
HLSTMP 3 32.86 23.33
npGLSTMP 3 32.32 22.80
pGLSTMP 3 32.06 22.54

Comparisons with Alternative Deep LSTMs

We compared alternative deep LSTM architectures with the prioritized Grid LSTM on

the AMI corpus, when increasing model depth. Table 5.6 shows the detailed results.

When increasing the number of layers from 3 to 8, the vanilla LSTM deteriorates

significantly; on the other hand, the performance of the HLSTM only degrades slightly

and levels off after 8 layers.

In contrast, both the RLSTM and pGLSTM benefit from increasing the depth.

The pGLSTM consistently performs better than all the other models, and it is worth

noting that the 3-layer pGLSTM model achieves roughly the same accuracy as the

16-layer RLSTM model, while the latter takes much longer to train and much more

space. We argue that utilizing the vertical (depth) information with an LSTM is

essential for achieving good performance. We were not able to train a pGLSTM

model with 16 layers. Careful parameter initialization may be required.

Deeper Prioritized Grid LSTM

We conducted extensive experimentation to verify the effectiveness of the prioritized

Grid LSTMP on all four datasets. Table 5.7 summarizes the results of the baseline

models as well as the proposed models and includes references to other models tested

on the same dataset that is reported in the literature.
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Table 5.6: WER comparisons between deep LSTM, HLSTM, RLSTM, and GLSTM
models on the AMI corpus.

Model #layers #params with overlap no overlap

LSTMP 3 12M 50.7 41.7
LSTMP 8 36M 52.6 43.8

HLSTMP 3 14M 50.4 41.2
HLSTMP 8 40M 50.7 41.3
HLSTMP 16 82M 50.7 41.2

RLSTMP 3 12M 51.3 42.0
RLSTMP 8 36M 50.5 40.8
RLSTMP 16 74M 49.9 40.4

pGLSTMP 3 25M 49.8 40.5
pGLSTMP 8 72M 49.0 39.6

The performance of the pGLSTMP models is consistently superior to the baseline

models, with gains being observed when increasing the number of layers from 3 to

5 on all datasets.1 The 5 layer pGLSTMP models set new state-of-the-art results

on the HKUST, SWBD, and GALE datasets. As for AMI, the best result is the

state-of-the-art uni-directional recurrent model. As in Section 5.4.4, Table 5.3 shows

that the bi-directional version gives about 2% absolute error reduction. Therefore,

we further modify the pGLSTMP to be a latency-controlled bidirectional pGLSTMP

(LC-pBGLSTMP). We can see we got consistent gain over the bidirectional LSTMP

(BLSTMP) in the SWBD corpus from 11.7% to 10.8%. After sMBR training, our

result is 0.2% worse than previously published best number [81]. However, we didn’t

apply LF-MMI training and use i-vector as additional inputs as suggested in [81].

The GLSTMP can actually replace LSTMP in [81] and we believe further gain can

be observed.

1For the Grid LSTMP, 5-layer setup is more similar to the 10-layer setup in a regular DLSTMP
because we have two LSTMPs in a Grid LSTM.
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Table 5.7: WER comparisons on all four datasets using different hybrid models.
pGLSTMP is our proposed prioritized grid LSTMP. LC-BLSTMP is the latency-
controlled BLSTMP. The number inside the brackets is the results after sMBR train-
ing.

Model #L HKUST SWB GALE MGB

Stacked maxout LSTMPs [69] 3 33.89 - - -
HCLDNN [52] 11 - - 22.41 -
BLSTMP + LF-MMI [81] 3 - 10.3 (9.6) - -

LSTM 3 33.29 12.2 23.96 23.56
HLSTMP 3 32.86 - 23.33 23.32
HLSTMP 5 32.40 - 22.63 23.12

pGLSTMP 3 32.06 12.0 22.54 22.36
pGLSTMP 5 31.36 11.2 22.33 22.18
LC-BLSTMP (SMBR) 5 - 11.7(10.5) - -
LC-pBGLSTMP (SMBR) 5 - 10.8(9.8) - -

Prioritized Grid LSTM with Sequence Training

Finally, we perform sequence training for the prioritized Grid LSTM on the 1200 hour

Arabic MGB dataset. Detailed results are shown in Tables 5.8 and 5.7. The results

suggest that the prioritized Grid LSTMP model can largely benefit from sequence

training. Here an 8.8% relative improvement in WER is observed for sequence training

of the 3-layer model, while a slightly larger 9.3% relative improvement is observed in

a 5-layer model on MGB. In SWBD, we get new state-of-the-art results, 9.8%, on the

eval2000 test set in Table 5.7.

Table 5.8: Performance of sequence training using pGLSTM on MGB.

Model #layers MGB

pGLSTMP 3 22.36
pGLSTMP 5 22.18

pGLSTMP (sMBR) 3 20.40
pGLSTMP (sMBR) 5 20.11
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5.5 Summary

In this chapter, we have proposed the HLSTM model for ASR, with a focus on deeper

structure. Inspired by recent deeper architectures, we also explored the different

version of “highway” networks. The experimental results on AMI showed that:

∙ They all outperform traditional DLSTMP and allow us to train a deeper model.

∙ GLSTMP is the best choice if we do not need to go very deep.

∙ RLSTMP has more potential in a very deep setup than HLSTMP although it

does not perform well in a shallow configuration.

We also applied the highway structure to larger tasks. We found more gains can be

observed if we have more layers with more data.

Furthermore, the highway connection could be modified or extended in various

ways to other applications or types of data. For example, it can be combined with

deep convolutional networks. In the context of PAC-RNN, we can extend it as a

plug-in into more complex neural architectures that allow a gated information flow

between different neural components such as the prediction model and the correction

model in Section 4.3.
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6
Deep Neural Networks for

End-to-End Speech Recognition

6.1 Introduction

In the previous chapters, we described how one could improve hybrid NN-HMM sys-

tems by modifying the network structure. However, as mentioned, traditional hybrid

systems are complicated and composed of many individual components: pronuncia-

tion models, acoustic models, language models and text normalization. Each com-

ponent makes various modeling assumptions, which is problematic in that training

different modules separately with different criteria is probably not optimal for solving

the overall task. In previous chapters, DNN acoustic models are optimized towards

frame-level cross entropy, which requires a one-to-one mapping from the input se-

quence to the output state sequence. The fixed alignment is easy to train. However,

it has limited representational power when we consider more advanced neural archi-

tectures. For example, the vision community has observed that higher layers in a

neural network [66] usually represent higher level abstractions for object detection.

But for acoustic modeling, we have to keep the same resolution for each layer. Recent

work in this area attempts to rectify this disjoint training issue by designing models

that are trained end-to-end – from speech directly to transcripts. In this chapter,

we propose a new model in a sequence-to-sequence framework, which is inspired by

Chapter 5 and some recent advances from the vision community.
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The sequence-to-sequence (seq2seq) model with attention [5] has recently demon-

strated a promising new direction for ASR that entirely sidesteps the complicated

machinery developed for classical ASR [16, 12, 6, 7, 11]. It is able to do this because

it is not restricted by the classical independence assumptions of Hidden Markov Model

(HMM) [83] and Connectionist Temporal Classification (CTC) [32] models. As a re-

sult, a single end-to-end model can jointly accomplish the ASR task within one single

large neural network.

The foundational work on seq2seq models, however, has relied on simple neural

network encoder and decoder models using recurrent models with LSTMs [6, 11]

or GRUs [6]. However, their use of hierarchy in the encoders demonstrates that

better encoder networks in the model should lead to better results. In this chapter,

we significantly extend the state of the art in this area by developing very deep

hybrid convolutional and recurrent models, using recent developments in the vision

community.

CNNs [66] have been successfully applied to many ASR tasks [3, 88, 10]. Unlike

DNNs [47], CNNs explicitly exploit structural locality in the spectral feature space.

CNNs use shared weight filters and pooling to give the model better spectral and

temporal invariance properties, thus they typically yield better generalized and more

robust models compared to DNNs [85]. Recently, very deep CNNs architectures [98]

have also been shown to be successful in ASR [96, 95], using more non-linearities, but

fewer parameters. Such a strategy can lead to more expressive models with better

generalization.

While very deep CNNs have been successfully applied to ASR, recently there

have been several advancements in the computer vision community on very deep

CNNs [98, 105] that have not been explored in the speech community. We explore

and apply some of these techniques in our end-to-end speech model:

1. Network-in-Network (NiN) [70] increases network depth through the use of 1x1

convolutions. This allows us to increase the depth and expressive power of a

network while reducing the total number of parameters that would have been

needed otherwise to build such deeper models. NiN has seen great success in
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computer vision, building very deep models [105]. We show how to apply NiN

principles in hierarchical Recurrent Neural Networks (RNNs) [46].

2. Batch Normalization (BatchNorm) [54] normalizes each layer’s inputs to reduce

internal covariate shift. BatchNorm speeds up training and acts as a regularizer.

BatchNorm has also seen success in end-to-end CTC models [4]. The seq2seq

attention mechanism [5] produces a high variance in the gradient (especially

with random initialization); without BatchNorm we were unable to train the

deeper seq2seq models we demonstrate in this chapter. We extend previous work

and show how BatchNorm can be applied to seq2seq acoustic model encoders.

3. Residual Networks (ResNets) [44] learn a residual function of the input through

the usage of skip connections. ResNets allow us to train very deep networks

without suffering from poor optimization or generalization which typically hap-

pens when the network is trapped in local minima. We explore these skip

connections to build deeper acoustic encoders.

4. Convolutional LSTM (ConvLSTM) [97] uses convolutions to replace the inner

products within the LSTM unit. ConvLSTM allows us to maintain structural

representations in our cell state and output. Additionally, it allows us to add

more computation to the model while reducing the number of parameters for

better generalization. We show how ConvLSTMs can be beneficial and replace

LSTMs.

We are driven by the same motivation that led to the success of very deep networks

in vision [98, 105, 54, 44] – add depth of processing using more non-linearities and

expressive power, while keeping the number of parameters manageable, in effect in-

creasing the amount of computation per parameter. In this chapter, we use very deep

CNN techniques to significantly improve over previous shallow seq2seq speech recog-

nition models [6]. Our best model achieves a WER of 10.53%, where our baseline

achieves a WER of 14.76%. We present a detailed analysis on how each technique

improves the overall ASR performance in the following sections.
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6.2 Model

In this section, we will describe the details of each component of our model.

6.2.1 Sequence-to-Sequence Model

Sequence-to-Sequence (seq2seq) [103] model is a framework that encodes an input

sequence x of arbitrary length into some latent representation h, and uses h to de-

code an output sequence, y, of arbitrary length. Compared with hybrid NN-HMM

approaches, the seq2seq-based approach does not make any conditional independence

assumptions, and directly estimates the posterior 𝑝(y|x) based on the chain rule:

𝑝(y|x) =
∏︁

𝑡

𝑝(y𝑡|y1, · · · ,y𝑡−1,x), (6.1)

where 𝑝(y𝑡|y1, · · · ,y𝑡−1,x) is obtained by

𝑝(y𝑡|y1, · · · ,y𝑡−1,x) = Decoder(h𝑡−1,y𝑡−1) (6.2)

h𝑡 = Encoder(x). (6.3)

The encoder, Eq. (6.3), converts input feature vectors x into a framewise hidden

vector h𝑡 in an encoder network based on BLSTM, i.e., Encoder(𝑋) , BLSTM(𝑋).

A decoder network is another recurrent network conditioned on previous output y𝑡−1

and hidden vector h𝑡−1.

Attention

Attention [33] is a mechanism to locate and extract information from a memory

source. One implementation of attention is content-based attention [5], where there

is a content-based query, q and a memory source h. The content-based attention

mechanism includes three components:

∙ A e = DistanceMetric(q,h to computes computes energies between the query,

q, and all the elements of the memory source, h.
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∙ A 𝛼 = Normalize(𝑒) function to convert e into an alignment distribution over

h.

∙ A context vector c based on the alignment distribution 𝛼, and the memory

source.

In the original implementation of the seq2seq model with attention, the DistanceMet-

ric function is a MLP network, and Normalize is the softmax function. The context

vector is weighted sum of all the hidden representation, c =
∑︀

𝑡 𝛼𝑡h𝑡.

The seq2seq model with attention has been applied successfully to many appli-

cations, including machine translation [116], grapheme-to-phoneme conversion [117],

and speech recognition [12]. We will describe seq2seq model with attention for speech

recognition in the next section.

6.2.2 Listen, Attend and Spell

As illustrated in Figure 6-1, Listen, Attend and Spell (LAS) [12] is an attention-based

seq2seq model which learns to transcribe an audio sequence to a word sequence, one

character at a time. Let x = (𝑥1, . . . , 𝑥𝑇 ) be the input sequence of audio frames, and

y = (𝑦1, . . . , 𝑦𝑆) be the output sequence of characters. The LAS models each character

output 𝑦𝑖 using a conditional distribution over the previously emitted characters 𝑦<𝑖

and the input signal x. The probability of the entire output sequence is computed

using the chain rule of probabilities:

𝑃 (y|x) =
∏︁

𝑖

𝑃 (𝑦𝑖|x,y<i)

The LAS model consists of two sub-modules: the listener and the speller. The listener

is an acoustic model encoder and the speller is an attention-based character decoder.

The encoder (the Listen function) transforms the original signal x into a high level

representation h = (ℎ1, . . . , ℎ𝑈) with 𝑈 ≤ 𝑇 . The decoder (the AttendAndSpell func-
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We want to model each character output yi as a conditional distribution over the previous characters
y<i and the input signal x using the chain rule:

P (y|x) =
Y

i

P (yi|x, y<i) (1)

Our Listen, Attend and Spell (LAS) model consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder, whose key operation is Listen. The speller is an attention-
based character decoder, whose key operation is AttendAndSpell. The Listen function transforms
the original signal x into a high level representation h = (h1, . . . , hU ) with U  T , while the
AttendAndSpell function consumes h and produces a probability distribution over character se-
quences:

h = Listen(x) (2)
P (y|x) = AttendAndSpell(h,y) (3)

Figure 1 visualizes LAS with these two components. We provide more details of these components
in the following sections.

x1 x2 xT

h2 hUh1

x3 x4 x5 x6 x7 x8

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Long input sequence x is encoded with the pyramidal
BLSTM Listen into shorter sequence h

Listener

Grapheme characters yi are
modelled by the
CharacterDistribution

AttentionContext creates
context vector ci from h
and si

s1 s2

h h h

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
sequence x into high level features h, the speller is an attention-based decoder generating the y characters
from h.

3

Figure 6-1: Listen, Attend and Spell (LAS) model: the encoder (listerner) is a pyrami-
dal BLSTM encoding the input sequence x into hidden representation h, the decoder
(speller) is an attention-based decoder generating the characters from h. This figure
is copied from [12].

tion) consumes h and produces a probability distribution over character sequences:

h = Listen(x) (6.4)

𝑃 (y|x) = AttendAndSpell(h) (6.5)
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The LAS Listen function is a stacked Bidirectional Long-Short Term Memory (BLSTM)

[35] network with hierarchical subsampling, as described in [12]. In our work, we re-

place it with a network of very deep CNNs and BLSTMs. The AttendAndSpell is an

attention-based transducer [5], which generates one character 𝑦𝑖 at a time:

𝑠𝑖 = DecodeRNN([𝑦𝑖−1, 𝑐𝑖−1], 𝑠𝑖−1) (6.6)

𝑐𝑖 = AttentionContext(𝑠𝑖,h) (6.7)

𝑝(𝑦𝑖|x,y<i) = TokenDistribution(𝑠𝑖, 𝑐𝑖) (6.8)

The DecodeRNN function produces a transducer state 𝑠𝑖 as a function of the pre-

viously emitted token 𝑦𝑖−1, the previous attention context 𝑐𝑖−1, and the previous

transducer state 𝑠𝑖−1. In our implementation, DecodeRNN is an LSTM [49] function

without peephole connections.

The AttentionContext function generates 𝑐𝑖 with a content-based Multi-Layer

Perceptron (MLP) attention network [5]. Energies 𝑒𝑖 are computed as a function of

the encoder features h and current transducer state 𝑠𝑖. The energies are normalized

into an attention distribution 𝛼𝑖. The attention context 𝑐𝑖 is then created as an 𝛼𝑖

weighted linear sum over h:

𝑒𝑖,𝑗 = ⟨𝑣, tanh(𝜑(𝑠𝑖, ℎ𝑗))⟩ (6.9)

𝛼𝑖,𝑗 =
exp(𝑒𝑖,𝑗)∑︀
𝑗′ exp(𝑒𝑖,𝑗′)

(6.10)

𝑐𝑖 =
∑︁

𝑗

𝛼𝑖,𝑗ℎ𝑗 (6.11)

where 𝜑 is linear transform. The TokenDistribution function is an MLP function with

softmax outputs modelling the character distribution 𝑝(𝑦𝑖|x,y<𝑖).

This thesis will focused on the encoder part of seq2seq model.
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6.2.3 Network in Network

In our study, we add depth through NiN modules in the hierarchical subsampling

connections between LSTM layers. We introduce a projected subsampling layer,

wherein we simply concatenate two time frames to a single frame, project into a lower

dimension and apply BatchNorm and a rectified linear unit (ReLU) non-linearity to

replace the skip subsampling connections in [12]. Moreover, we further increase the

depth of the network by adding more NiN 1 × 1 convolution modules in between each

LSTM layer.

6.2.4 Convolutional Layers

Unlike fully connected layers, Convolutional Neural Networks (CNNs) take into ac-

count the input topology and are designed to reduce translational variance by us-

ing weight sharing with convolutional filters. CNNs have shown improvement over

traditional fully-connected deep neural networks on many ASR tasks [85, 10]. We

investigate the effect of convolutional layers in seq2seq models.

We can treat the filter-bank feature of one utterance as an image and do convo-

lutions over it. Let input feature x ∈ R𝑇x×𝐹x be a two dimensional matrix, where 𝑇x

denotes the context window width and 𝐹x denotes the number of frequency bands.

Suppose there are 𝐾 kernels with weight W1, W2, · · · , W𝐾 and bias 𝑏1, 𝑏2, · · · , 𝑏𝐾 .

We use 𝑘 to index kernels and the 𝑘-th kernel W𝑘 ∈ R𝑇𝑘×𝐹𝑘 . The activation (also

called a feature map) of the 𝑘-th kernel centered at the (𝑡, 𝑓)-position of the input

feature is

ℎ𝑘𝑡,𝑓 = 𝜃(

𝑇𝑘∑︁

𝑖=1

𝐹𝑘∑︁

𝑗=1

𝑥
𝑖+(𝑡−⌈𝑇𝑘

2
⌉),𝑗+(𝑡−⌈𝐹𝑘

2
⌉)𝑊𝑘𝑖,𝑗 + 𝑏𝑘), (6.12)

where 𝜃 is the activation function, which we set to be rectified linear units here. Note

that we set 𝑥𝑖′,𝑗′ = 0 if 𝑖′, 𝑗′ exceeds the boundary.

In a hybrid system, convolutions require the addition of a context window for each

frame, or a way to treat the full utterance as a single sample [95]. One advantage of the

seq2seq model is that the encoder can compute gradients over an entire utterance all
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at once. Moreover, strided convolutions are an essential element of CNNs. For LAS,

applying striding is also a natural way to reduce temporal resolution. For example,

when the stride is 2 then the filters jump 2 frequency bands (similar to “pixel” in a

image) at a time as we slide them around. This will produce smaller output volumes

spatially.

6.2.5 Batch Normalization

Batch normalization (BatchNorm) [54] is a technique to accelerate training and im-

prove generalization, which is widely used in the computer vision community. Given

a layer with output x, BatchNorm is implemented by normalizing each layer’s inputs:

BatchNorm(x) = 𝛾
x− E[x]

(Var[x] + 𝜖)
1
2

+ 𝛽 (6.13)

where 𝛾 and 𝛽 are learnable parameters. The standard formulation of BatchNorm for

CNNs can be readily applied to DNN acoustic models and cross-entropy training. For

our seq2seq model, since we construct a minibatch containing multiple utterances, we

follow the sequence-wise normalization [4]. For each output channel, we compute the

mean and variance statistics across all timesteps in the minibatch.

6.2.6 The Convolutional LSTM model

The Convolutional LSTM (ConvLSTM) was first introduced in [97]. Although the

fully connected LSTM layer has proven powerful for handling temporal correlations, it

cannot maintain structural locality and is more prone to overfitting. ConvLSTM is an

extension of FC-LSTM which has convolutional structures in both the input-to-state
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Figure 6-2: The Convolutional LSTM (ConvLSTM) maintains spectral structural
locality in its representation. We replace the inner product of the LSTM with convo-
lutions.

and state-to-state transitions:

i𝑡 = 𝜎(W𝑥𝑖 * x𝑡 + Wℎ𝑖 * h𝑡−1 + b𝑖)

f𝑡 = 𝜎(W𝑥𝑓 * x𝑡 + Wℎ𝑓 * h𝑡−1 + b𝑓 )

c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ tanh(W𝑥𝑐 * x𝑡 + Wℎ𝑐 * h𝑡−1 + b𝑐)

o𝑡 = 𝜎(W𝑥𝑜 * x𝑡 + Wℎ𝑜 * h𝑡−1 + b𝑜)

h𝑡 = o𝑡 ⊙ tanh(c𝑡) (6.14)

We apply these equations iteratively from 𝑡 = 1 to 𝑡 = 𝑇 , where 𝜎(*) is the logistic

sigmoid function, i𝑡, f𝑡,o𝑡, c𝑡 and h𝑡 are vectors to represent values of the input gate,

forget gate, output gate, cell activation, and cell output at time 𝑡, respectively. ⊙
denotes element-wise product of vectors. W* are the convolutional filter matrices con-
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necting different gates, and b* are the corresponding bias vectors. The key difference

is that * is now a convolution, while in a regular LSTM * is a matrix multiplication.

Figure 6-2 shows the internal structure of a convolutional LSTM. The state-to-state

and input-to-state transitions can be achieved by a convolutional operation (here we

ignore the multiple input/output channels). To ensure the attention mechanism can

find the relation between encoder output and the test embedding, FC-LSTM is still

necessary. However, we can use these ConvLSTMs to build deeper convolutional

LSTM networks before the FC-LSTM layers. We expect this type of layer to learn

better temporal representations compared to purely convolutional layers while being

less prone to overfitting than fully-connected-LSTM layers. We found bidirectional

convolutional LSTMs to consistently perform better than unidirectional layers. All

experiments reported in this chapter used bidirectional models; from here on we use

convLSTM to mean bidirectional convLSTM.

6.2.7 Residual Network

Deeper networks usually improve generalization and often outperform shallow net-

works. However, they tend to be harder to train and slower to converge when the

model becomes very deep. Several architectures have been investigated in Chapter

5 to enable training of very deep networks. As we mentioned in Chapter 5, the idea

behind these approaches is similar to the LSTM innovation – the introduction of

linear or gated linear dependence between adjacent layers in the NN model to solve

the vanishing gradient problem. One difference compared to Chapter 5 is that deep

LSTM models are very easy to overfit in a Seq2Seq model as we shown in Section

6.3.3, compared to a hybrid NN-HMM system. Instead, we use a residual CNN, to

train deeper networks.

A residual network [44] contains direct links between the lower layer outputs and

the higher layer inputs. It defines a building block:

y = ℱ(x,W𝑖) + x (6.15)
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Figure 6-3: Residual block for different layers. ResCNN is a CNN block with CNN
or ConvLSTM, Batch Normalization (BatchNorm) and ReLU non-linearities. The
ResLSTM is a LSTM block with residual connections.

where x and y are the input and output vectors of the layers considered. The function

ℱ can be one or more convolutional or convLSTM layers. The residual block for

different layers is illustrated in Figure 6-3. In our experiments, the convolutional

based residual block always has a skip connection. However, for the LSTM layers,

we did not find skip connections necessary as we also found in Chapter 5. All of

the layers use the identity shortcut, and we did not find projection shortcuts to be

helpful.

6.3 Experiments

We experimented with the Wall Street Journal (WSJ) ASR task. We used the stan-

dard configuration si284 dataset for training, dev93 for validation and eval92 for test
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evaluation sets. Our input features were 80 dimensional filterbanks computed ev-

ery 10ms with delta and delta-delta differences normalized by per speaker mean and

variance. The baseline EncodeRNN function is a 3 layer BLSTM with 256 LSTM

units per-direction (or 512 total) and 4 = 22 time factor reduction. The DecodeRNN

is a 1 layer LSTM with 256 LSTM units. All the weight matrices were initialized

with a uniform distribution 𝒰(−0.1, 0.1) and bias vectors of 0. For the convolutional

model, all the filter matrices were initialized with a truncated normal distribution

𝒩 (0, 0.1), and used 32 output channels. Gradient norm clipping to 1 was applied,

together with Gaussian weight noise 𝒩 (0, 0.075) and L2 weight decay 1e−5 [31]. We

used ADAM with the default hyperparameters described in [61]; however, we de-

cayed the learning rate from 1e−3 to 1e−4 after it converged. We used 10 GPU

workers for asynchronous SGD under the TensorFlow framework [2]. We monitored

the dev93 Word Error Rate (WER) until convergence, and report the corresponding

eval92 WER. The models took 𝑂(5) days to converge.

6.3.1 Acronyms for different types of layers

All the residual blocks follow the structure of Fig. 6-3. Here are the acronyms for

each component we use in the following subsections:

P / 2 subsampling projection layer.

C (f × t) convolutional layer with filter f and t under the frequency and time axes.

B batch normalization or (BatchNorm)

L bidirectional LSTM layer.

ResCNN residual block with convolutional layer inside.

ResConvLSTM residual block with convolutional LSTM layer inside.
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6.3.2 Network in Network for Hierarchical Connections

We first begin by investigating the acoustic encoder depth of the baseline model

without using any convolutional layers. Our baseline model follows [6] using the skip

connection technique in its time reduction. The baseline L × 3, or 3 layer BLSTM

acoustic encoder, model achieves a 14.76% WER.

When we simply increase the acoustic model encoder depth (i.e., to depth 8), the

model does not converge well and we suspect the network to be trapped in a poor

local minima. By using the projection subsampling layer as discussed in Section 6.2.3,

we improve our WER to 13.61%, or a 7.8% relative gain over the baseline.

We can further increase the depth of the network by adding more NiN 1 × 1 convo-

lution modules in between each LSTM layer. This improves our model’s performance

further to 12.88% WER, or a 12.7% relative improvement over the baseline. The

BatchNorm layers were critical, and without them, we found the model did not con-

verge well. Table 6.1 summarizes the results of applying network-in-network modules

in the hierarchical subsampling process.

Table 6.1: We build deeper encoder networks by adding NiN modules in between
LSTM layers.

Model WER

L × 3 14.76
L × 8 Diverged
(L + P / 2 + B + R) × 2 + L 13.61
(L + P / 2 + B + R + C(1×1) + BatchNorm + R) × 2 + L 12.88

6.3.3 Going Deeper with Convolutions and Residual Connec-

tions

In this subsection, we extend Section 6.3.2 and describe experiments in which we build

deeper encoders by stacking convolutional layers and residual blocks in the acoustic

encoder before the BLSTM. Unlike computer vision applications or truncated BPTT

training in ASR, seq2seq models need to handle very long utterances (i.e., >2000
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frames). If we simply stack a CNN before the BLSTMs, we quickly run out of GPU

memory for deep models and also have excessive computation times. Our strategy to

alleviate this problem is to apply striding in the first and second layer of the CNNs

to reduce the time dimensionality and memory footprint.

We found no gains by simply stacking additional ResLSTM blocks even up to 8

layers. However, we do find gains if we use convolutions. If we stack 2 additional

layers of 3 × 3 convolutions, our model improves to 11.80% WER, or a 20% relative

over the baseline. If we take this model and add 8 residual blocks (for a total of

(2 + (8)2 + 5) = 23 layers in the encoder), our model further improves to 11.11%

WER, or a 24.7% relative improvement over the baseline. We found that using 8

residual blocks slightly outperforms 4 residual blocks. Table 6.2 summarizes the

results of these experiments.

Table 6.2: We build deeper encoder networks by adding convolution and residual
network blocks. The NiN block equals (L + C (1x1) + B + R) × 2 + L).

Model WER

L × 3 14.76
NiN (from Section 6.3.2) 12.88

ResLSTM × 8 15.00
(C (3 × 3) / 2) × 2 + NiN 11.80
(C (3 × 3) / 2) × 2 + ResCNN × 4 + NiN 11.30
(C (3 × 3) / 2) × 2 + ResCNN × 8 + NiN 11.11

6.3.4 Convolutional LSTM Experiments

In this subsection, we investigate the effectiveness of the convolutional LSTM. Table

6.3 compares the effect of using convolutional LSTM layers. It can be observed that

a pure ConvLSTM performs much worse than the baseline — we still need the fully

connected LSTM1. However, replacing the ResConv block with ResConvLSTM as

shown in Figure 6-4 gives us an additional 7% relative gains. In our experiments, we

1We only use 32 output channels. Thus it can be improved if we increase the channel size.
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Figure 6-4: Our best model: includes two convolutional layers at the bottom, followed
by four residual blocks and LSTM NiN blocks. Each residual block contains one
convolutional LSTM layer and one convolutional layer.

always use 3×1 filters for ConvLSTM because the recurrent structure captures tem-

poral information, while the convolutions capture spectral structure. We conjecture

that the gain is because the convolutional recurrent state maintains spectral structure

and reduces overfitting.

Table 6.4 compares our WSJ results with other published end-to-end models. To

our knowledge, the previous best reported WER on WSJ without an LM was the

seq2seq model with Task Loss Estimation achieving 18.0% WER in [7]. Our baseline,

also a seq2seq model, achieved 14.76% WER. Our model is different from that of [7] in

that we did not use location-based priors on the attention model and we used weight

noise. Our best model, shown in Figure 6-4, achieves a WER of 10.53%.
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Table 6.3: Performance of models with convolutional LSTM layers. The NiN block
equals (L + C (1x1) + B + R) × 2 + L).

Model WER

L × 3 14.76
ConvLSTM × 3 24.23

(C (3×3)) × 2 + ResCNN × 4 + NiN 11.30
(C (3×3)) × 2 + ResConvLSTM (3× 1) × 4 + NiN 10.53

Table 6.4: Wall Street Journal test eval92 Word Error Rate (WER) results across
Connectionist Temporal Classification (CTC) and Sequence-to-sequence (seq2seq)
models. The models were decoded without a dictionary or language model.

Model WER

CTC (Graves et al., 2014) [34] 30.1
seq2seq (Bahdanau et al., 2016) [7] 18.0
seq2seq + deep convolutional (our work) 10.53

6.4 Summary

In this chapter, we explored very deep CNNs for end-to-end speech recognition. We

applied Network-in-Network principles to add depth and non-linearities to hierarchi-

cal RNNs. We also applied Batch Normalization and Residual connections to build

very deep convolutional towers to process the acoustic features. Finally, we also ex-

plored Convolutional LSTMs, wherein we replaced the inner product of LSTMs with

convolutions to maintain spectral structure in its representation. Together, we added

more expressive capacity to build a very deep model without substantially increasing

the number of parameters. On the WSJ ASR task, we obtained 10.5% WER without

a language model, an 8.5% absolute improvement over the previously published best

result [6]. Compared to chapter 5, the seq2seq model gains more from a very deep

structure. We believe this is because it has more constraints for the representation

power in a hybrid framework. This also the suggests seq2seq framework has more

potential to incorporate more information to bring down the word error rate further.
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7
Conclusions

7.1 Summary

In this thesis, I have explored the use of deep learning models for acoustic modeling

in automatic speech recognition. I have made contributions in four major areas.

1. I present several new algorithms to speed-up recurrent neural network training.

By combining these algorithms with a well-engineered deep learning framework,

we present the first flexible and large-scale system that allows researchers to

explore different neural architectures for automatic speech recognition. In par-

ticular, we propose an efficient batching algorithm to speed-up unidirectional

RNN training. We further introduce latency-controlled bidirectional LSTMs

(BLSTMs) which can exploit the entire input history while keeping latency un-

der control. Moreover, we present a two-forward-pass procedure to speed up

sequence-discriminative training when memory is the main constraint.

2. In the low-resource scenario, I propose a prediction-adaptation-correction RNN

(PAC-RNN). A PAC-RNN is comprised of a pair of neural networks in which a

correction network uses the auxiliary information given by a prediction network

to help estimate the state probability. The information from the correction

network is also used by the prediction network in a recurrent loop. Our model

outperforms other state-of-the-art neural networks (DNNs, LSTMs) on several

low-resource languages. Moreover, transfer learning from a language that is

similar to the target language can help improve performance further.
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3. I extend deep long short-term memory (DLSTM) recurrent neural networks by

introducing gated direct connections between memory cells in adjacent layers.

These direct links, called highway connections, enable unimpeded information

flow across different layers and thus alleviate the gradient vanishing problem

when building deeper LSTMs. We further introduce gridLSTMs which can ex-

ploit highway information more effectively. Experiments on different benchmark

datasets such as AMI, SWBD, HKUST, GALE Mandarin and Arabic MGB in-

dicate that we can train deeper LSTMs and achieve better improvement from

sequence training with highway LSTMs (HLSTMs). Our novel model obtains a

5% to 10% relative WER reduction on eval sets, outperforming state-of-the-art

NN models on various datasets.

4. I successfully train very deep convolutional networks to add more expressive

power and better generalization for end-to-end ASR models. I apply network-in-

network principles, batch normalization, residual connections, and convolutional

LSTMs to build very deep recurrent and convolutional structures. Our models

exploit the spectral structure in the feature space and add computational depth

without overfitting issues. I experiment with the WSJ ASR benchmark task and

achieve 10.5% word error rate without any dictionary or language model using

a 15 layer deep network, significantly outperforming state-of-the-art seq2seq

models.

7.2 Future Work and Directions

Several future research opportunities arise from the work presented in this thesis. We

briefly discuss a few of them below.

∙ Prediction framework using more auxiliary information In this thesis,

we only used information about the next phoneme in the PAC-RNN model.

We can further extend this prediction framework to utilize additional auxiliary

information such as speaking rate, duration, and word/syllable boundary.
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Predict the speaking rate The inherent speaking rate often varies across

talkers, and utterances. Evidence has already been shown that ASR perfor-

mance can be improved via data augmentation by perturbing the speaking rate

[76]. We believe that the PAC-RNN is a natural way to estimate speaking rate

in the prediction model, and can potentially use this information in the primary

acoustic model. Moreover, traditionally, we assume that the speaking rate is

fixed when we combine the acoustic score and language model score. However,

the interpolation weights should change based on the speaking rate. Therefore,

to combine the language model score based the predicted speaking rate may

also be a promising research direction to explore.

Predict the duration of acoustic units All research in this thesis was based

on frame-level features. It is well-known that this feature has limitation for

duration modeling. To eliminate these limitations, many techniques have been

developed. These techniques can be described in a unified framework named

the segmental model [75]. We believe that by predicting duration information

for the raw input as a binary mask, that segment-level features can be more

easily incorporated into neural network models.

Predict the word/syllable boundaries In all our experiments, we used a

fixed computational network graph. The best neural network structure may

not be static and may be a function of the input sequence. We believe the

predicted boundary information could help us control the unrolling behavior of

the network. For example, a predicted word boundary can force the acoustic

model to only learn the long-term dependency from the speech signal instead

of text by adding a forget gate, which we can reset when we become aware of a

new word boundary.

∙ Optimize the structure to reduce model parameters For good quality

recording conditions in English, ASR performance has already attained close

to human parity. However, it usually requires a large amount of computation
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which is not feasible in an online system. It is an interesting research topic to

optimize the model structure, to reduce the computation and latency. Evidence

has already been observed in [68] which proposes a simpler version of LSTM

but achieves similar performance for language modeling.

∙ More Data for seq2seq model Our seq2seq model has shown state-of-the-art

results on WSJ. However, the performance gap between our end-to-end model

and HMM based systems is still more than 2%. One hypothesis is that our

model is simply too powerful, and too easy to overfit. We believe our model

will perform better on larger datasets. Moreover, since the seq2seq model can

optimize the LM and AM jointly, we should leverage on the virtually unlim-

ited amount of acoustic-only data, and text-only data that we have. Possible

methods include pre-training with a generative model for both encoder and de-

coders. Evidence has already been shown in machine translation that this may

be a promising research direction [116, 43].
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Glossary of Acronyms

AM Acoustic Model. 3

AMI A English meeting recording corpus. 39

ASR Automatic Speech Recognition. 3

BatchNorm Batch Normalization. 97

BLSTM Bidirectional Long Short-Term Memory. 48

BN Bottleneck. 31

BN-CMLLR BN features with Constrained Maximum Likelihood Linear Regres-

sion. 71

BPTT Back-Propagation Through Time. 36

CD Context Dependent. 28

CE Cross Entropy. 29

CI Context Independent. 28

CMLLR Constrained Maximum Likelihood Linear Regression. 68

CN Computational Network. 44
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CNN Convolutional Neural Network. 35

CNTK Computational Network ToolKit. 22

ConvLSTM Convolutional LSTM. 97

CSC-BPTT Context-Sensitive-Chunk BPTT. 53

DAG Directed Acyclic Graph. 46

DLSTM Deep Long Short-Term Memory. 37

DNN Deep Neural Network. 3

FBANK Mel-Frequency Log-Filterbank. 64

FLP Full Language Pack. 39

fMLLR Feature-Space Maximum Likelihood Linear Regression. 68

GALE A Chinese broadcast conversation speech corpus. 40

GLSTM Grid LSTM. 83

GMM Gaussian Mixture Model. 21

GPU Graphical Processing Units. 30

HKUST A conversational telephone speech corpus from Mandarin speakers. 40

HLSTM Highway LSTM. 81

HMM Hidden Markov Model. 26

IARPA-Babel A multilingual corpus. 38

LAS Listen, Attend and Spell. 99

LC-BLSTM Latency-Controlled BLSTM. 53
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LID Language Identification. 72

LM Language Model. 26

LrSBN Low-Rank Stacked Bottleneck. 34

LSTM Long Short-Term Memory. 21

LSTMP Long Short-Term Memory with a Projection layer. 38

LVCSR Large-Vocabulary Continuous Speech Recognition. 37

MFCC Mel-frequency Cepstral Coecients. 25

MGB A modern arabic corpus used in this thesis. 40

ML Maximum Likelihood. 28

NiN Network-in-Network. 96

NN Neural Network. 21

npGLSTM non-Prioritized GLSTM. 85

OOV Out-of-Vocabulary. 74

PAC-RNN Prediction-Adaptation-Correction Recurrent Neural Network. 61

pGLSTM Prioritized GLSTM. 85

PLP Perceptual Linear Prediction. 25

ReLU Rectified Linear Unit. 102

ResNets Residual Network. 97

RLSTM Residual LSTM. 83

RNN Recurrent Neural Network. 35
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SBN Stacked Bottleneck. 33

SCC Strongly Connected Component. 49

seq2seq Sequence-to-Sequence. 96

SGD Stochastic Gradient Descent. 31

sMBR state-level Minimum Bayes Risk. 29

SWBD A English conversational based corpus. 39

TIMIT A phone recognition corpus. 38

WER Word Error Rate. 3

WFST Weighted Finite State Transducer. 27
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Cernockỳ. BUT babel system for spontaneous cantonese. In Interspeech, vol-
ume 13, pages 2589–2593, 2013.

[60] Martin Karafiát, Karel Veselỳ, Igor Szoke, Lukáš Burget, František Grézl, Mirko
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