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Abstract

Automatic speech recognition (ASR) decodes speech signals into text. While ASR can pro-
duce accurate word recognition in clean environments, system performance can degrade
dramatically when noise and reverberation are present. In this thesis, speech denoising
and model adaptation for robust speech recognition were studied, and four novel meth-
ods were introduced to improve ASR robustness.

First, we developed an ASR system using multi-channel information from microphone
arrays via accurate speaker tracking with Kalman filtering and subsequent beamforming.
The system was evaluated on the publicly available Reverb Challenge corpus, and placed
second (out of 49 submitted systems) in the recognition task on real data.

Second, we explored a speech feature denoising and dereverberation method via deep
denoising autoencoders (DDA). The method was evaluated on the CHiME2-WSJ0 corpus
and achieved a 16% to 25% absolute improvement in word error rate (WER) compared to
the baseline.

Third, we developed a method to incorporate heterogeneous multi-modal data with a
deep neural network (DNN) based acoustic model. Our experiments on a noisy vehicle-
based speech corpus demonstrated that WERs can be reduced by 6.3% relative to the
baseline system.

Finally, we explored the use of a low-dimensional environmentally-aware feature de-
rived from the total acoustic variability space. Two extraction methods are presented: one
via linear discriminant analysis (LDA) projection, and the other via a bottleneck deep neu-
ral network (BN-DNN). Our evaluations showed that by adapting ASR systems with the
proposed feature, ASR performance was significantly improved. We also demonstrated
that the proposed feature yielded promising results on environment identification tasks.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist
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Chapter 1
Introduction

With the advancement of technology, various machines have been invented and adopted

to ease human lives. Yet, the natural communication with these machines has been a col-

lective dream since their first existence. From prehistory to the digital age, speech com-

munication has been the dominant mode of human bonding and information exchange,

so it follows that speech would be extended to human-machine interaction.

The first step towards speech communication with machines is Automatic Speech

Recognition (ASR), which is the transcription of speech signals into word sequences. The

objective of ASR is to recognize human speech, such as words and sentences, using al-

gorithms executed by a computer. ASR is essentially a multi-class sequential pattern

recognition task. The features are usually a sequence of representative vectors that are

extracted from speech signals, and the classes are either words or sub-word units such as

phonemes.

In contrast to the development of the first speech synthesizer in 1936 by AT&T, the

first automatic speech recognizer, a simple digit recognizer, did not appear until 1952 [3].

By 1969, John Pierce of Bell Labs claimed that ASR would not be a reality for several

decades, however, the 1970s witnessed a significant theoretical breakthrough in speech

recognition - Hidden Markov Models (HMMs) [4]. Since then, the multidisciplinary field

of ASR has proceeded from its infancy to its coming of age and into a quickly growing

number of practical applications and commercial markets. HMMs were extensively in-

vestigated and became the most successful technique for acoustic modeling in speech

recognition for many decades. The maximum likelihood based Expectation Maximiza-

tion (EM) algorithm and the forward-backward (Baum-Welch) algorithm have been the

principal means by which HMMs are trained. Over the past few years the success of

deep neural networks (DNNs) has further boosted the recognition performance, and has

already reached human parity on the benchmark TIMIT corpus [5–7].
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CHAPTER 1. INTRODUCTION

� 1.1 Motivation

State-of-the-art ASR systems are known to perform well when the speech signals are cap-

tured in a noise-free environment, and using a close-talking microphone worn near the

mouth of the speaker. While speech technology has progressed to the point where com-

mercial systems have been deployed (office-place dictation software, smart-phone assis-

tants), a majority of our voice-based interactions occur in less than ideal conditions, thus

making ASR far from being a solved problem.

� 1.1.1 Rising Demand

There is a continuously growing demand for hands-free speech input for various appli-

cations [8,9]. One driving force behind this development is the increasing use of portable

devices such as smart-phones and tablets, as dictated by market demands for more so-

phisticated devices. The adoption of such devices has lead to a surge in data available to

industries and government, motivating investments in data analytics to improve services

and to meet market needs, which in turn fuels the demand for more sophisticated devices.

This trend is particularly visible in the domain of speech technology, where consumers

are expecting better speech-based interfaces not only on their portable devices, but also

in their cars and homes.

� 1.1.2 Challenges

Cars, homes, and other such environments often involve distant microphones in which

either safety or convenience preclude the use of a close-talking microphone. For exam-

ple, while operating a vehicle, the very act of putting on a microphone is distracting

and dangerous for the driver. The car interior is practically reflection-less1, but both the

running engine and the airflow over the car’s exterior introduce strong additive noise,

which significantly degrades system performance. Another example is in a living room,

where microphones may restrict the movement of users and overall detracts from the or-

ganic nature that is expected of speech communication. However, distant microphones

1due to cabin padding material absorbing sound, and small-space minimizes reverberation time.
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1.1. MOTIVATION

are usually embedded in devices themselves, in the walls, or ceiling, and are prone to

capturing additive and convolution distortions such echoes and reverberations.

Figure 1-1: Technology failures in current automatic speech recognition according to ex-
pert survey reported in [1]

In a recent survey, Fig. 1-1, users of speech and language systems were asked to iden-

tify where the current technology had failed. While several components in the framework

were pointed out, many of the informants identified the lack of robustness as a primary

failure of the technology [1].

In the context of this thesis, we consider robustness as an ASR system’s ability to

overcame challenges introduced by noisy environments. A lack of robustness in ASR

may be due to many factors, however, a major source comes from noise distortions [10].

It has been observed that ASR systems trained from clean speech usually degrade signif-

icantly when tested on noisy data [11]. When speech signals are corrupted by noise, the

corruption is propagated to the extracted speech features ultimately deteriorating ASR

performance. Given users’ sensitivities to poor ASR performance, it becomes necessary
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CHAPTER 1. INTRODUCTION

to address this problem in order to enable the deployment of ASR systems for everyday

use.

� 1.2 Scope of the Thesis

This thesis is focused on tackling the lack of robustness in distant-talking ASR systems

operating in various noisy environments. The performance degradation in these scenar-

ios is mainly due to the statistical mismatch between the noisy test speech features and

the clean-trained acoustic model of the ASR system. We investigated both feature-based

compensation methods as well as model-based compensation methods to combat this

mismatch. In particular, we were interested in those environments in which multi-modal

data existed, such as spatial data coming from a microphone array, and sensory data from

a noise source (e.g. engine, airflow). Effective solutions to several common distant speech

applications are provided in this thesis.

� 1.2.1 Contributions

The goal of this thesis is to improve the overall performance of ASR in noisy reverberant

environment. The main contributions in this thesis are

1. Built a multi-channel ASR system that is robust to noise by fusing multi-channel

information with speaker tracking and beamforming.

2. Developed a Deep Denoising Autoencoder based method for learning feature de-

noising transformations from parallel noisy and clean speech.

3. Provided an effective method to incorporate heterogeneous multi-modal data with

a DNN-based acoustic model and improved ASR performance.

4. Proposed a novel low-dimensional environmentally-aware feature derived from the

total acoustic variability space.
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� 1.3 Outline of this Thesis

In this thesis, four novel techniques are proposed to improve ASR performance in noisy

conditions, and will be discussed in the upcoming chapters as follows.

Chapter 2 reviews the existing literature related to the research work presented in this

thesis. In Chapter 3 , we propose an ASR system that improves front-end feature quality

by fusing multi-channel data using several techniques. Chapter 4 presents a front-end

denoising method called deep denoising autoencoder (DDA), which effectively learns a

stochastic mapping from noisy features to clean features. Chapter 5 introduces the idea

of a heterogeneous DNN, that harvests heterogeneous data, in parallel to speech, to im-

prove robustness. Chapter 6 proposes a novel environment-aware feature representation,

called an E-vector, derived from the total variability space, which can be used for noisy

environment adaptation.
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Chapter 2
ASR System Review

This chapter provides background on techniques used in ASR systems. Figure 2-1 depicts

a typical block diagram of a state-of-the-art ASR system. We first introduce signal pro-

cessing and conventional feature extractions in Section 2.1. Next acoustic modeling using

HMMs are discussed in Section 2.2. We cover both the most commonly used GMM-HMM

model, as well as the recently popular DNN-HMM model. Then we briefly present lan-

guage modeling, decoding, and the evaluation metric used in ASR systems in Section 2.3.

Finally, the current techniques and challenges for robust ASR are discussed in Section 2.4.

Figure 2-1: Block diagram of a general ASR system.

� 2.1 Pre-processing and Feature Extraction

Speech processing is the first stage in a speech recognition system. The aim of front-end

processing is to extract features that are optimal for the recognition task and (ideally)

invariant to irrelevant factors, such as speaker differences and environment distortions.

When speech is recorded by a microphone, the signal is first digitized and represented

by discrete amplitudes as a function of time given a fixed sampling rate. Most modern

speech recording devices have a default sampling rate of at least 16kHz for human speech,
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while the standard telephone speech coding method only supports 8kHz in order to save

transmission bandwidth. From the statistical learning point of view, with a high sampling

rate of 16kHz or 8kHz, it is difficult to process speech directly from the waveform. There-

fore, there have been a number of signal processing methods focusing on converting the

speech waveform to a short-time spectral representation. A spectral representation has

inherent advantages such as having lower dimensionality, yet preserving relevant pho-

netic information [12].

� 2.1.1 Common Speech Features

Mel-frequency cepstral coefficients (MFCCs) and perceptual linear prediction (PLP) co-

efficients are two commonly used speech feature representations in speech recognition

systems. They will be discussed in more detail in the following paragraphs.

Mel-frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are one of the widely used spectral represen-

tations for ASR and have become a standard front-end module for feature extraction in

most modern ASR systems. In order to compute MFCCs for a recorded speech signal x[t],

the following standard steps are applied. Figure 2-2 depicts the steps in the procedure.

First, the speech waveform is normalized and then pre-emphasised. A common pre-

processing approach is to apply mean and magnitude normalization:

xn[t] =
x[t]−mean(x[t])

max{x[t]} (2.1)

This is followed by a pre-emphasis filter:

xp[t] = xn[t]− 0.97xn[t] (2.2)

Then a short-time Fourier transform (STFT) is applied:

XSTFT[t, k] =
∞

∑
m=−∞

xp[t]w[t−m]e−2πmk/N (2.3)
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Figure 2-2: The MFCC feature extraction procedure

where w is the Hamming window, N is the number of points for the discrete Fourier

transform (DFT) and XSTFT[t, k] is the k-th spectral component at time t. For ASR, the

STFT is usually performed with a window size of 25ms, and an analysis shift of 10ms.

The most commonly used window is the Hamming window. In the following chapters,

each analysis is often referred as a speech frame.

Third, Mel-frequency spectral coefficients (MFSCs) are calculated. The Mel-frequency

filter is designed based on an approximation of the frequency response of the inner ear

[85]. The Mel-filter frequency response is shown in Figure 2-2. On each speech frame after

the STFT, a Mel-frequency filter is used to reduce the spectral resolution, and convert all
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frequency components according to the Mel-scale.

XMFSC[t, i] =
∑∞

k=−∞ |XSTFT[t, k]|2
|Mi|

(2.4)

Last, the Discrete Cosine Transform (DCT) is applied to the logarithm of the MFCSs to

further reduce the dimensionality of the spectral vector. Typically only the first 12 DCT

coefficients are kept.

XMFCC[t, i] =
∑M−1

k=0 10 log10(XMFSC[t, i]) cos(2π
M ki)

M
(2.5)

Perceptual Linear Prediction

PLP coefficients are another popular feature representation based on the short-time spec-

trum analysis. In PLP, the linear frequency of the power or magnitude spectrum is wrapped

onto another perceptually motivated scale, the Bark frequency scale, via:

fbark = 6 log

([
fHz

600
+ 1
]0.5

+
fHz

600

)
. (2.6)

Critical band filters spaced equally in the Bark frequency scale are used to filter the

power or magnitude spectrum. The output of these filters are non-linearly transformed,

based on an equal-loudness and intensity-loudness power law. Linear prediction (LP)

analysis is applied and the resulting LP coefficients are converted to cepstral coefficients

[13].

� 2.1.2 Feature Post-processing

The MFCC or PLP features discussed in the previous section are often referred to as static

features. Due to the conditional independence assumption in HMMs, if only static fea-

tures are used, dynamic information in speech will not be incorporated into recognition

systems. A simple way to address this limitation is to append dynamic features, such

as delta and delta-delta features, to the base, static, features. Delta features δxt can be
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computed using simple differences, e.g., ∆xt = xt − xt−1, or using a linear regression:

∆xt =
∑w

i=1 i(xt+i − xt−i)

2i2

where w is the window length. It is clear that this delta feature is a linear combination

of 2w + 1 static features. Higher order coefficients, such as delta-delta features, can be

calculated using the delta features in a similar way. In many state-of-the-art ASR systems,

a 13-dimensional MFCC static feature vector is concatenated with the first and the second

order derivatives, forming a feature vector of 39 elements.

� 2.2 Acoustic Modeling

The previous section discussed feature representations for speech signals. This section

will discuss acoustic modelling for speech recognition, in which statistical models are

used to calculate the probability of a sequence of observed feature vectors. HMMs are

the most widely used statistical model in the speech processing area. This section will

discuss the basic concept of HMMs and their application to speech recognition.

� 2.2.1 HMM

In HMM-based speech recognition, the observation vectors of a particular acoustic unit

(e.g., a word or a phone) are assumed to be generated by a finite state machine. At each

time instance, there is a hidden state. The hidden state can jump from the current state to

other states according to certain probabilities. An observation vector is also generated at

each time instance, according to a state-dependent output distribution.

As speech signals are sequences in time, left-to-right HMMs are often used to model

speech signals. Figure 2-3 shows an example of such an HMM with 3 emitting states.

Let O = {o1, ..., oT} be a sequence of observation vectors that is generated by this 3-state

left-to-right HMM, in which ot is the observation vector at time t and T is the length of the

speech sequence. The generation process starts from the first, non-emitting state, i.e., state

s1. At each time, the state can jump to the next state or stay at the current state according

to transition probabilities, aij. Here, aij denotes the probability of switching from state i
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Figure 2-3: Block diagram of the a three-state HMM system.

to j. Once an emitting state j (e.g., states s2 to s4 in Figure 2-3) is reached, an observation

vector is generated at the current time instant with a probability density bj(o). Note that

the entry and exit states in Figure 2-3 are non-emitting. It is clear that for the observation

vector sequence O with the length T, there is a state sequence s = [s1, ..., sT] with the

same length, where st is the state at time t. However, only O can be observed, while s

is hidden and needs to be inferred from the observations. The sequence of observation

vectors and the sequence of hidden states can be written together as O, s and will be

referred to as the complete data set. The parameters of an N-state HMM include the

state transition probability matrix A, and the state output probability distribution B. The

transition probability aij can be arranged into a state transition probability matrix A, with

its element at the jth row and the ith column defined as:

Aji = aij = P(st+1 = j|st = i).

Note that aij does not dependent on the time index t. To be a valid probability distribution,

each column of this matrix must satisfy:

N

∑
j=1

P(st+1 = j|st = i) =
N

∑
j=1

aij = 1; for i = 1, ..., N.
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Note that because of the use of the entry state, state s1, a1j specifies the initial state distri-

butions of emitting states j, j = 1, 2 ... N − 1. At each emitting state j, a state-dependent

output probability, bj(o) = p(o|s = j) is used to govern the observation generation pro-

cess, in which s is the current state. bj(o) can be a discrete distribution, which yields the so

called discrete HMM (DHMM). Alternatively, bj(o) can be a probability density function.

This yields the so called continuous density HMM (CDHMM). To use HMMs as acoustic

models for speech recognition, there are a few practical considerations, e.g., the choice of

acoustic units and state output probability distributions. These acoustic modelling tech-

niques are briefly reviewed in the following paragraphs.

The choice of acoustic units includes word and sub-word units. For speech recognition

tasks with a small recognition vocabulary (less than 1K words), e.g., in a digit recognition

task, HMMs are often used to model individual words. However, for speech recognition

tasks with a medium (1K-10K words) vocabulary to a large vocabulary (> 10K words),

it is not possible to collect sufficient training data for each word in the vocabulary. To

solve this problem, HMMs are normally used to model sub-word units. Sub-word units

are then composed to form word HMMs according to rules specified by a dictionary.

As an example, the composition of two sub-word unit (a and b) HMMs to form a word

(ab) HMM is illustrated in Figure 2-3. Note that in the figure, the non-emitting exit state

of model a and the entry state of model b have been removed while the last emitting

state of model a is connected to the first emitting state of model b. The entry state of

model a and the exit state of model b become the new entry and exit state of the newly

formed word model ab. The phone, which is a small speech segment that has distinct

perceptual properties, is often chosen as the sub-word unit. The number of phones is

normally significantly smaller than the number of words in a vocabulary. For example,

the number of phones in English is between 40 to 60, while typical state-of-the-art speech

recognition systems for English use a vocabulary which ranges from 20K to 64K words.

Given a phone set, it is possible to build one HMM for each phone, regardless of its con-

texts. This is referred to as a monophone system. However, the factorization from a word

HMM to context independent phone HMMs discards contextual information. Due to co-
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articulation, the pronunciation of a phone is influenced by the preceding and following

phones, and thus varies with respect to its context [14]. To model the variations caused

by context, context-dependent phone sets are normally used in large vocabulary speech

recognition systems. A triphone is a context-dependent phone which uses the immediate

left and right phone as the context for the phone in the centre position. For example, a

phone ’b’ in the context ’ey b l’ is usually denoted as a triphone ey-b+l, where ”-” denotes

the left context and ”+” denotes the right context. In this way, an isolated word ”able”

with silence ”sil” at the start and the end of the word, can be mapped to a sequence of

triphones as: sil-ey+b ey-b+l b-l+sil.

Using context-dependent triphone models significantly increases the number of acous-

tic units and thus requires a large amount of training data. Moreover, some triphones may

not exist in the training set. To solve this problem, parameter tying techniques are usu-

ally used. The most widely used parameter tying technique is state clustering [15]. The

basic idea of state clustering is to share the state output distributions between similar

acoustic units. Initially, in the untied system, each state of each HMM has a unique out-

put distribution. This gives 9 output distributions to be estimated. Clustering algorithms

(e.g., [15, 16]) can be used to cluster these 9 distributions into several groups. In this way,

a lower number of state distributions would need to be estimated. Observation vectors

belonging to the same group can be pooled together to estimate the parameters of one

distribution. This ensures there are sufficient training data for each of the clustered state

distributions.

There are generally two approaches that can be used for state clustering. One is a

bottom-up approach, in which clusters are built in a bottom-up fashion. Initially, every

un-tied distribution is a class. The most similar distributions are then merged and a new

distribution is generated. This process can be repeated until a pre-defined number of

classes is reached. The main problem with this approach is that it can not appropriately

handle unseen contexts which do not appear in the training data. This problem can be

addressed using the second, top-down, approach. Initially, all the states are grouped into

a single root node. At each node, a phonetic question about the context of states is asked
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to split the states within the current node into left and right children nodes. For example,

a question may ask whether the left context of the states in the current node is a nasal,

i.e., in the set ng-*, n-*, m-*; the states with a positive answer will be grouped into the

left childs node while the states with a negative answer will be grouped into the right

childs node. Many phonetic questions can be asked at each node. The best question

which maximizes the likelihood after splitting is selected. This process is repeated until

the amount of training data associated with the current node falls below a threshold.

Besides efficiency in clustering acoustic units, another advantage of using this top-down

clustering is that it can easily handle unseen contexts. For example, when a new triphone

is observed in test data, a series of phonetic questions can be asked to classify each state of

this triphone into a leaf node and synthesis a new HMM for this triphone. The phonetic

decision tree clustering method has been widely adopted in the most state-of-the-art ASR

systems and is also used in this thesis.

� 2.2.2 GMM-HMM System

A Gaussian Mixture Model (GMM) is a statistical generative model that can very effec-

tively model the static cepstral features, while an HMM is a statistical model that is able

to model the temporal dynamics of speech. Thus, the fusion of these two components

creates a model capable of describing both spectral and temporal characteristics of the

speech. The use of GMM-HMMs for speech modelling involves selecting an appropriate

structure. This decision is usually done expertly and depends on the type of modeled

speech units.

The typical GMM-HMM structure for sub-word units consists of 3 emitting states

{s1, s2, s3}, the entry and exit states. The model is fully described by the transition

matrix A = aij, which defines the probability of moving from state i to state j, and the

emitting functions bi(ot). The model usually lacks backward transitions as only forward

and state-repeating transitions are allowed. Each state is assigned its emitting function

bi(ot) which estimates the probability of the observation vector ot being generated by the

state i and can be expressed as:
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bi(ot) =
M

∑
m=1

cmN (ot; µim, ∑
im
) (2.7)

The set of acoustic model parameters ΘAM = {cm µim ∑im} are the weight, the mean

and the covariance matrix of a multivariate normal distribution N (ot; µim, ∑im). The

probability of generating the state sequence S = {s1, s2, ..., sk} is dependent only on

the transition probabilities and the observation probability for the frame at time t is de-

pendent only on the emission probability bi(ot) of the corresponding state i. The total

likelihood of generating the observed sequence of acoustic features O = [o1, o2, ..., oT] is

then expressed as

P(O|Θ) = ∑
s1, ..., sk

T

∏
t=1

ast|st−1
bst(ot) (2.8)

where ast|st−1
represents the state transition probability p(st|st−1). The described acoustic

model is fully defined by the set of acoustic model parameters Θ that need to be inferred

from the training data.

Several learning schemes already known in the machine learning field have been

adopted for this purpose, while many others have been proposed specifically for ASR.

Historically, the most common method for AM parameter estimation was based on Max-

imum Likelihood Estimation (MLE). However, this conventional approach has several

drawbacks, some of which arise from the conditional independence assumptions of HMMs

when used for modelling the human speech, and others from the assumptions of the MLE

itself. This fact can cause the MLE to yield sub-optimal results in terms of classification

accuracy. As a result, discriminative training algorithms have taken over as the principal

training algorithms. Their main advantage is the fact that they dont make any assump-

tions about the distribution of training data.

� 2.2.3 DNN-HMM hybrid system

A Deep Neural Network (DNN) is an M-layer network of coupled, stochastic binary units

where M is usually greater than two. It contains a set of visible units, and layers of hidden

units. For basic feed-forward DNNs, there are forward connections only between hidden
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units in adjacent layers, as well as between the visible and hidden units in the first hidden

layer. That is, there are no within layer connections.

Figure 2-4: An example of a DNN-HMM hybrid model with 4 hidden layers

Figure 2-4 illustrates an example of a hybrid DNN-HMM system with a feed-forward

architecture, where the temporal dynamics of speech are modelled by the HMM, and the

DNN is used to model the observation probabilities within a static frame. The actual

structure of the DNN in the figure is composed of an input, an output, and 4 hidden

layers with a different number of units in each layer.

A unit j in each hidden layer employs a non-linear activation function to map the total

sum of inputs from the preceding layer to the output that is sent to the next layer. The

unit input xj at the current layer is computed as a weighted linear combination as per

Eq. 2.9.

xj = bj + ∑
i

yiwij, yj =
1

1 + e−xj
(2.9)

where bj is the bias, yi is the output from the unit i in the preceding layer and wij is

the weight of a connection from unit i at the previous layer to unit j at the current layer.

The most common activation functions include the logistic (sigmoid) function, hyperbolic
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tangent, and a rectified linear (ReLu) function. The recognition experiments in this thesis

are conducted with a DNN-HMM system with a sigmoid activation function Eq. 2.9.

The output value of jth unit represents the probability P(j, o) that the observation vec-

tor o belongs to class j which can be done by using the softmax function according to

Eq. 2.10.

P(i|o) = e−xj

∑C
j=1 e−xj

(2.10)

Currently, the most popular DNN recognition frameworks are built to model HMM

states of context-dependent phones (called senones). This approach, also called continu-

ous density DNN-HMM, is very similar to previous state-of-the-art GMM-HMM systems

which contributed a lot to their rapid development since many previously developed pro-

cesses and methods were easily transferable to this newer framework. In the DNN-HMM,

the output layer of the DNN is trained to estimate the conditional state posterior proba-

bilities p(st = i|ot) given the observation ot. The most popular DNN training method is to

employ the error back-propagation algorithm in conjunction with a gradient descent opti-

mization method. However, the original algorithm suffers from the problem of vanishing

or exploding gradients, but that problem has been effectively solved by introducing im-

proved deep learning algorithms. This section only touches on the problems of DNN

training and does not elaborate on the details.

� 2.3 Language Modeling, Decoding, and Measurement

� 2.3.1 Language Modeling

The purpose of the Language Model (LM) is to estimate the probability of generating the

hypothesized word sequence P(W), which can be further decomposed using the chain

rule as:

P(W) =
n

∏
i=1

P(wi|w1, ..., wi−1) (2.11)

where P(wi|w1, ..., wi1) is the probability that word wi is spoken given the previously ut-

tered word sequence w1, ..., wi1. The past word sequence is also called the history. The
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purpose of the language model is to provide the recognizer with an adequate estimate

of P(wi|w1, ..., wi−1). However, it is practically unfeasible to create a model with a large

history given all possible word sequences. As a consequence, the current state-of-the-art

approach is to employ n-gram models which limit the history length down to n− 1 num-

ber of words. The recognition experiments presented in this thesis were done using a

tri-gram LM, which simplifies the formulated probability to the form of:

P(W) = P(w1)
n

∏
i=1

P(wi|wi−1) (2.12)

One metric to evaluate language models is to compute the perplexity on heldout data,

defined as:

Perplexity = 2−
1
n log2(P(W))

where n is the number of words in the heldout data, and P(W) is the probability of the

data estimated by the model.

� 2.3.2 Decoding

The final component of any speech recognizer is the decoding block, which combines

the probability scores of the AM and LM, and outputs the most likely word sequence Ŵ.

Although it is computationally unfeasible to search the whole recognition space for the

optimal solution, it can still be can be very effectively solved by utilizing the dynamic

programming and Viterbi algorithm. Their application in speech recognition greatly sim-

plifies the decoding process by utilizing the optimality principle which postulates that

the optimal path through a directed graph is equivalent to taking optimal partial paths

between the nodes. The optimality principle ensures that the likelihood for each state

at each stage t can be computed by means of a simple recursion. Besides the described

recursion, the Viterbi algorithm requires additional steps of recursion initialization, ter-

mination and path-backtracking. Another advantage of the algorithm is that it does not

need to keep track of all partial paths leading to stage t + 1. It is important to realize
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that the described procedure can be applied to both GMM-HMM as well as DNN-HMM

architectures

� 2.3.3 Error Measurement

Word Error Rate (WER) is the standard metric used to measure ASR performance. It

can be considered as the word-level edit distance from the ground truth transcription. It

is composed of three kinds of errors, substitution errors, insertion errors, and deletion

errors.

Substitution Error =
#of substitution errors

#of ground truth words

Insertion Error =
#of insertion errors

#of ground truth words

Deletion Error =
#of deletion errors

#of ground truth words

WER = Substitution Error + Insertion Error + Deletion Error

WER is often reported as a percentage. A perfect transcription will have 0% WER.

Note that since we can have insertions, the WER can be higher than 100%. One caveat

of the WER metric is that it weights all errors equally. A substitution of ”Sheet” with

”Cheat”, which sound very similar, counts the same as substituting ”Sheet” with ”Kit-

tens.” In this sense, under certain conditions, such as high WER, an increase in WER does

not necessarily mean a poorer system.

� 2.4 ASR robustness

The current ASR systems have been able to achieve satisfactory results under clean acous-

tic conditions with high quality signals. However, when the recordings come from a noisy

environment or the speech signal is distorted on its way from the talker to the micro-

phone, the system performance can drop significantly.
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� 2.4.1 Noise and Reverberation

From the signal processing point of view, the distorted clean speech signal has two as-

pects: additive distortion and convolutional distortion.

Additive distortion is represented by background noise and competing speech from

other speakers, if there is any. The electronic noise in recording equipment is usually

negligible in additive distortion.

Convolutional distortion comes from the acoustic and electroacoustic components in

the recording system. It is a joint outcome of the electroacoustic property of the micro-

phone used for recording, and the acoustic properties of the physical environment where

the recording takes place. The overall effect of convolutional distortion is usually ap-

proximated with a finite impulse response (FIR) filter h(n), which is frequently referred

to as the acoustic impulse response (AIR). When the electroacoustic distortion caused by

recording equipment is negligible, the convolutional distortion is mainly determined by

the room acoustics. Therefore the convolutional distortion is frequently referred to as the

reverberation which could be approximated by another FIR filter. Such an FIR filter is

usually referred to as the room impulse response (RIR), though it is not only dependent

on the room acoustic properties but also on the installation of microphone, the speaker

location in the room, and the direction in which the speaker is talking.

� 2.4.2 Robustness Techniques

Many methods have been proposed to combat performance degradation in distant ASR

systems. These can be classified into two approaches: a feature compensation approach

and a model adaptation approach.

A feature compensation approach modifies the noisy features to make them more sim-

ilar to the unobserved clean features during or after the feature extraction process. Such

methods include speech enhancement techniques that were originally designed to en-

hance speech signal for human listening [17,18], feature compensation techniques that try

to estimate clean features from noisy features [19, 20], feature normalization techniques

that normalize both clean and noisy features to a new space where the noise distortion
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is reduced [21, 22], and temporal filters that reduce the dissimilarity of features in the

modulation spectrum domain [23, 24], etc.

In contrast, the model adaptation approach adapts the clean-trained acoustic model

to better represent the noisy features. Examples of this approach include parallel model

composition (PMC) [25], maximum a posteriori adaptation (MAP) [26], maximum like-

lihood linear regression adaptation (MLLR) [27], statistical re-estimation (STAR) tech-

nique [28] and joint compensation of additive and convolutive noises (JAC) [29].

In recent years, research on robust speech recognition has achieved progress in both

the fields of front-end speech processing and acoustic models, mainly driven by multi-

disciplinary approaches combining ideas from signal processing and machine learning.

Promising techniques can be merged, combining ideas from methods in noise robustness

and novel ways for modeling noisy reverberant data.
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Chapter 3
Multi-channel Speech Processing for Robust ASR

As discussed in the previous chapter, speech signals captured by a microphone located

away from the user can be significantly corrupted by additive noise and reverberation.

One method of reducing the signal distortion and improving the quality of the signal is

to use multiple spatially-separated microphones rather than a single microphone. The

technique of processing signals captured by these multiple microphones is referred to as

array processing.

Array processing is a relatively mature field, developed initially to process narrow-

band signals for radar and sonar applications, and then later applied to broadband signals

such as speech. Microphone array processing methods have historically been designed

according to principles pertinent to signal enhancement applications instead of speech

recognition applications. These algorithms are usually concerned with generating the

optimal output waveform and as such, they process the array signals according to vari-

ous signal-level criteria, e.g. minimizing signal error or maximizing SNR. However, such

criteria do not necessarily result in an improvement for speech recognition applications.

As a result, traditional array processing schemes which are capable of producing high

quality output signals may not result in significant improvements in speech recognition

accuracy. Moreover, beamforming in microphone array processing systems need to know

an angle to form beam pattern towards, and the beamforming result is very sensitive to

this input angle. Therefore, accurate localization of the speaker is a critical step to the

function of a multi-channel ASR system. The angle of arrival calculated using the phase

difference between a pair of microphones at a particular time could deviate from the ac-

tual speaker angle by a lot, so advanced speaker localization techniques are in demand.

In this chapter1 , we propose a robust speech recognition system that improves ASR

performance using multi-channel information from microphone arrays. Figure 3-1 presents

1Portions of this work have been published in [30].
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Figure 3-1: Block diagram of the multi-channel speech recognition system.

a schematic diagram of our overall system. The first key part of our system is a dynamic

speaker tracking approach based on kalman filtering, which produces an accurate speaker

position for spatial signal beamforming. This will be discussed in Section 3.2. The second

key part of our system is beamforming, and it will be described in 3.3. We take up blind

speaker clustering in Section 3.4.2, and in Section 3.4 we present the evaluation of the

system on a publicly available, and well-known multi-channel corpus.
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� 3.1 Introduction

The fundamental idea behind array processing is illustrated with an example below. Let

us consider two acoustic sources s1 and s2 located a distance r1 and r2, respectively, from

a pair of microphones, m1 and m2. Source s1 is of equal distance from both microphones,

while source s2 is closer to microphone m2 than microphone m1. This configuration is

shown in Figure 3-2. We consider the output to be the sum of the signals received by the

two microphones. Because the path lengths between source s1 and the two microphones

are equal, signals generated by s1 will arrive in phase and their combination will amplify

the signal by a factor of two. However, the path lengths between source s2 and the two

microphones are different. This difference is dependent on the angle of incidence of the

source and the distance between the two microphones, as shown in Figure 3-2b. Because

of the difference in path lengths, signals generated by source s2 will arrive at the two

microphones somewhat out of phase and thus combining them will cause signal s2 to be

attenuated.

Figure 3-2: (a) Two acoustic sources propagating toward two microphones. The wave-
front of source s1 arrives at the two microphones simultaneously while the wavefront of
source s2 arrives at microphone m2 prior to m1. (b) The additional distance the source
travels to m1 can be determined from the angle of arrival θ and the distance between the
microphones d.
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We now expand this example to consider an arbitrary source x[n] at some location

(r, θ) from the center of an array of M microphones spaced linearly with an inter-element

spacing d. If the source is assumed to be located in the far-field, the combined output of

M microphones y[n] can be expressed as

y[n] =
M−1

∑
m=0

x[n−mτ] (3.1)

where the delay τ can be computed using the speed of sound v as

τ =
d cos(θ)

v
(3.2)

. When we let x[n] = δ[n], we get the impulse response of the system h[n] = y[n]. The

frequency response of h[n] can be obtained by taking its discrete Fourier transform using

3.1:

H(ω, θ) =
M−1

∑
m=0

e−2πω(mτ) =
M−1

∑
m=0

e−2πω(m d cos(θ)
v ) (3.3)

As Equation 3.3 indicates, the frequency response is dependent on the number of ele-

ments M, the microphone spacing d, the spectral frequency ω and the angle of incidence θ.

The spatial response can be visualized by plotting the magnitude of H(ω, θ) as a function

of θ while d, M, and ω are held fixed. Such a representation, plotted in polar coordinates,

is called a directivity pattern or beampattern.

By using an array of microphones rather than a single microphone, we are able to

achieve spatial selectivity, reinforcing sources propagating from a particular direction,

while attenuating sources propagating from other directions.

� 3.2 Speaker Tracking

In this section, we present our speaker tracking technique, which has two components.

First, time delays of arrival are estimated between pairs of microphones with a known

geometry. Subsequently, a Kalman filter is used to combine these measurements and

infer the position of the speaker.
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� 3.2.1 Time Delay of Arrival Estimation

Our speaker tracking system is based on estimation of time delay of arrival (TDOA) of the

speech signal on the direct path from the speaker’s mouth to unique pairs of microphones

in the microphone array. TDOA estimation is performed with the well-known phase trans-

form (PHAT) [31]

ρmn(τ) ,
1

2π

∫ π

−π

Ym(ejωτ)Y∗n (ejωτ)∣∣Ym(ejωτ)Y∗n (ejωτ)
∣∣ ejωτ dω, (3.4)

where Yn(ejωτ) denotes the short-time Fourier transform of the signal arriving at the nth

sensor in the array [32]. The definition of the PHAT in Eq. 3.4 follows directly from the

frequency domain calculation of the cross-correlation of two sequences. The normaliza-

tion term
∣∣Ym(ejωτ)Y∗n (ejωτ)

∣∣ in the denominator of the integrand is intended to weight all

frequencies equally. It has been shown that such a weighting leads to more robust TDOA

estimates in noisy and reverberant environments [33]. Once ρmn(τ) has been calculated,

the TDOA estimate is obtained from

τmn = max
τ

ρmn(τ). (3.5)

� 3.2.2 Kalman Filtering

Speaker tracking based on the maximum likelihood criterion [34] seeks to determine the

speaker’s position x by minimizing the error function

ε(x) =
S2−1

∑
s=0

[τ̂s − Ts(x)]
2

σ2
s

, (3.6)

where σ2
s denotes the error covariance associated with this observation, τ̂s is the observed

TDOA as in Eq. 3.4 and 3.5, and Ts(x) denotes the TDOAs predicted based on geometric

considerations.

Although Eq. 3.6 implies that we should find x minimizing the instantaneous error

criterion, we would be better advised to minimize such an error criterion over a series of

time instants. In so doing, we exploit the fact that the speaker’s position cannot change
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instantaneously; thus, both the present and past TDOA estimates are potentially useful in

estimating a speaker’s current position. Klee et al. [35] proposed a method to recursively

minimize the least square error position estimation criterion in Eq. 3.6 with a variant

of the extended Kalman filter (EKF). This was achieved by first associating the state xk of

the EKF with the speaker’s position at time k, and the kth observation with a vector of

TDOAs. In keeping with the formalism of the EKF, Klee et al. [35] then postulated a state

and observation equation,

xk = Fk|k−1xk−1 + uk−1, and (3.7)

yk = Hk|k−1(xk) + vk, (3.8)

respectively, where Fk|k−1 denotes the transition matrix, uk−1 denotes the process noise,

Hk|k−1(x) denotes the vector-valued observation function, and vk denotes the observation

noise. The process uk and observation vk noises are unknown, but both have zero-mean

Gaussian pdfs and known covariance matrices, Uk and Vk, respectively. Associating

Hk|k−1(x) with the TDOA function Ts(x) with one component per microphone pair, it is

straightforward to calculate the appropriate linearization about the current state estimate

required by the EKF [11, §10.2],

H̄k(x) , ∇xHk|k−1(x). (3.9)

By assumption Fk|k−1 is known, and the predicted state estimate is given by x̂k|k−1 =

Fk|k−1x̂k−1|k−1, where x̂k−1|k−1 is the state estimate from the prior time step. The innova-

tion is defined as

sk , yk −Hk|k−1

(
x̂k|k−1

)
.

The new filtered state estimate is obtained from

x̂k|k = x̂k|k−1 + Gk sk, (3.10)
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Figure 3-3: Predictor-corrector structure of the Kalman filter.

where Gk denotes the Kalman gain. A block diagram illustrating the prediction and cor-

rection steps in the state estimate update of a conventional Kalman filter is shown in

Figure 3-3.

� 3.3 Beamforming

Beamforming can then be used to mix multiple channels into one based on the speaker

tracking results. The beamforming component of our system is based on the super-

directive maximum negentropy (SDMN) beamformer [36, 37], which incorporates the

super-Gaussianity of speech into adaptive beamforming. It has been demonstrated through

ASR experiments on real array data that beamforming with the maximum negentropy

(MN) criterion is more robust than conventional techniques against reverberation [38].

This is due to the fact that MN beamforming strengthens the target signal by using re-

flected speech; hence MN beamforming is not susceptible to signal cancellation. The

post-filter used in our proposed system is a variant of the Wiener post-filter. One of the

earliest and best-known proposals for estimating these quantities was by Zelinksiet al.

[39], and a good survey of current techniques is given by Simmer et al. [40].

As shown in Figure 3-4, the SDMN beamformer has the generalized sidelobe canceller

(GSC) architecture. The processing of SDMN beamforming can be divided into an upper

branch and a lower branch. In the upper branch, the super-directive (SD) beamformer is

used for the quiescent vector wSD. The process in the lower branch involves multiplication

of the block matrix bB and active weight vector wa. The beamformer’s output for the array
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Figure 3-4: Configuration of the super-directive maximum negentropy (SDMN) beam-
former.

input vector x at frame k is obtained in the sub-band frequency domain as

Y(k, ω) = (wSD(k, ω)− B(k, ω)wa(k, ω))H x(k, ω),

where ω is the angular frequency.

Let us define the cross-correlation coefficient between the inputs of the m-th and n-th

sensors as

ρmn(ω) ,
E{Xm(ω)X∗n(ω)}√

E{|Xm(ω)|2} E{|Xn(ω)|2}
, (3.11)

where E{·} indicates the expectation operator. The super-directive design is then ob-

tained by replacing the spatial spectral matrix [11, §13.4] with the coherence matrix ΓN

corresponding to a diffuse noise field. The m-th and n-th component of the latter can be

expressed as

ΓN,m,n(ω) = sinc
(

ω dm,n

c

)
= ρmn(ω), (3.12)

where dm,n is the distance between the m-th and n-th elements of the array. Given the

array manifold vector d computed with the position estimate, the weight of the SD beam-

former can be expressed as

wSD =
(ΓN + σdI)−1 d

dH (ΓN + σdI)−1 d
, (3.13)
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where σd is an amount of diagonal loading and set to 0.01 for experiments. Notice that the

frequency and time indicies ω and k are omitted here for the sake of simplicity. The SD

beamformer has been proven to be more suitable than delay-and-sum (DS) and minimum

variance distortionless response (MVDR) beamformers in meeting room conditions [38,

41, 42].

Once the SD beamformer is fixed in the upper branch, the blocking matrix is con-

structed to satisfy the orthogonal condition BHwSD = 0. Such a blocking matrix can be,

for example, obtained with the modified Gram-Schmidt [43]. This orthogonality implies

that the distortionless constraint for the direction of interest will be maintained for any

choice of the active weight vector. In contrast to normal practice, the SD-MN beamformer

seeks the active weight vector that maximizes the negentropy of the beamformer’s out-

put. Assuming that the speech subband samples can be modeled with the generalized

Gaussian distribution (GGD) with shape parameter f , we can express the beamformer’s

negentropy as

J(Y) = log(πσ2
Y) + 1

−
[
log{2πΓ(2/ f )B2

f σ̂Y/ f }+ 2/ f
]

, (3.14)

where

σ2
Y = E{|Y|2},

σ̂Y =
1

B f

(
f
2

)1/ f
E
{
|Y| f

}1/ f
,

B f =
√

Γ(2/ f )/Γ(4/ f ),

and Γ(·) is the gamma function.

� 3.4 Evaluation

In this section, experiments are conducted to evaluate the performance of the proposed

multi-channel ASR system. The experiment details and the results are described in the

following sections.
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� 3.4.1 Data

The multi-channel data we used for this work was the Reverb Challenge corpus [44].

The Reverb Challenge corpus is a well known multi-channel speech corpus in the field

of distant speech recognition. It consists of a training set, a development test set, and

a test set. The development test set and the test set each consist of two different parts,

namely simulated data (SimData) and real recordings (RealData). The 8-channel dataset

assumes scenarios in which an utterance spoken by a single spatially stationary speaker

in a reverberant room is captured with eight-channel circular microphone arrays (Fig. 3-

5), all of which were provided as 8-channel recordings at a sampling frequency of 16 kHz.

The datasets are available through the challenge webpage [45], and the specifications of

the challenge data are detailed in [44].

Figure 3-5: 8-channel microphone array used in the reverb challenge dataset

An overview of the datasets is given in Fig. 3-6. Details of each one are given in the

following paragraphs.

SimData

SimData is comprised of reverberant utterances generated based on the WSJCAM0 cor-

pus [46]. These utterances were artificially distorted by convolving clean WSJCAM0 sig-

nals with measured room impulse responses (RIRs) and subsequently adding measured

stationary ambient noise signals with a signal-to-noise ratio (SNR) of 20 dB. SimData sim-
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Figure 3-6: Overview of the datasets in the REVERB challenge. Average durations of
utterances in training and test sets are about 7.5 and 6.9 s, respectively.

ulated six different reverberation conditions: three rooms with different volumes (small,

medium, and large) and two distances between a speaker and a microphone array (near

∼50 cm and far ∼200 cm). Hereafter, the rooms are referred to as room1, room2, and

room3. The reverberation times (i.e., T60) of room1, room2, and room3 are about 0.3,

0.6, and 0.7 s, respectively. The direct-to-reverberation ratios (i.e., D50) for room1 near

and far, room2 near and far, and room3 near and far conditions are 99, 98, 95, 79, 97,

and 81%, respectively. D50 refers to the percentage of the energy of the direct path plus

early reflections up to 50 ms, relative to the total energy of the RIR. The RIRs and added

noise were recorded in the corresponding reverberant room at the same position with

the same microphone array, an 8-ch circular array with a diameter of 20 cm. The array
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is equipped with omni-directional microphones. The recorded noise was stationary dif-

fuse background noise, which was mainly caused by the air conditioning systems in the

rooms, and thus has relatively large energy at lower frequencies.

RealData

RealData, which is comprised of utterances from the MC-WSJ-AV corpus [42], consists of

utterances spoken by human speakers in a noisy and reverberant room. Consequently the

sound source cannot be regarded as completely spatially stationary due to the speakers

head movements. The room used for the RealData recording is different from the rooms

used for SimData. The rooms reverberation time was about 0.7 s [42]. The recordings

contain some stationary ambient noise, which was mainly caused by the air conditioning

systems. RealData contains two reverberation conditions: one room and two distances

between the speaker and the microphone array (near ∼100 cm and far ∼250 cm). The

recordings were measured with an array whose geometry is identical as that used for

SimData. The text prompts of the utterances used in RealData and in part of SimData are

the same. Therefore, we can use the same language and acoustic models for both SimData

and RealData. For both SimData and RealData, we assumed that the speakers stay in the

same room for each test condition. However, within each condition, the relative speaker’s

microphone position changes from utterance to utterance.

The training dataset consists of (i) a clean training set taken from the original WSJ-

CAM0 training set and (ii) a multi-condition (MC) training set, which was generated from

the clean WSJCAM0 training data by convolving the clean utterances with 24 measured

room impulse responses and adding recorded background noise at an SNR of 20 dB. The

reverberation times of the measured impulse responses for this dataset range roughly

from 0.2s to 0.8s. Different recording rooms were used for the training, development, and

evaluation sets.
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� 3.4.2 System Specifications

Speaker tracking

The primary free parameters in our speaker tracking component are Uk and Vk, the

known covariances matrices of the process and observation noises, uk and vk, respec-

tively. In our system, we set Uk = σ2
uI and Vk = σ2

v I, and then tuned σ2
u and σ2

v to provide

the lowest tracking error, which required a multi-channel speech corpus with ground

truth speaker positions. This requirement was found in the IDIAP corpus collected by

Lathoud et al. [47].

Shown in Figure 3-7 is a plot of radial tracking error in radians as a function of σ2
u and

σ2
v . This study led us to choose the final parameters of σ2

u = 0.1 and σ2
v = 1× 10−8 for our

experiment.

log
 δ v

2 

log δu 2 

Tracking error 
        (radians) 

x  

Figure 3-7: Speaker tracking error vs. process and observation noise parameters. The ’x’
mark denotes our resulting choice of the parameter values.
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Beamforming

For beamforming, the shape parameter of the GGD is trained with the clean WSJCAM0

data of the clean training set based on the maximum likelihood criterion as described

in [37].

In order to avoid large weights, we apply the regularization term to the optimization

criterion. The modified optimization criterion can be written as

J (Y) = J(Y)− α|wa|2. (3.15)

where α is set to 0.01 for the experiments.

Due to the absence of a closed-form solution with respect to wa, we have to resort

to the gradient-based numerical optimization algorithm. Upon taking the partial devia-

tion of 3.15 with respect to wa, we can obtain gradient information required for such a

numerical optimization algorithm:

∂J (Y)
∂w∗a

= E
[{

1
σ2

Y
− f |Y| f−2

2
(

B f σ̂Y
) f

}
BHxY∗ − αwa

]
(3.16)

We use the Polak-Ribière conjugate gradient algorithm to find the solution. The post-

filter used in our system is a variant of the Wiener post-filter. One of the earliest and

best-known proposals for estimating these quantities was by [39].

As shown in the system diagram 3-1, after beamforming, the best output waveform

possible is generated, which then gets treated as a single-channel input to the recognizer.

Feature extraction

The feature extraction of our ASR system is based on cepstral features estimated with a

warped minimum variance distortionless response [48] (MVDR) spectral envelope of model

order 30. Due to the properties of the warped MVDR, neither the Mel-filterbank nor any

other filterbank was needed. The warped MVDR provides an increased resolution in low-

frequency regions relative to the conventional Mel-filterbank. The MVDR also models

spectral peaks more accurately than spectral valleys, which leads to improved robustness
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in the presence of noise. Front-end analysis involved extracting 20 cepstral coefficients per

frame of speech and performing global cepstral mean subtraction (CMS) with variance

normalization. The final features were obtained by concatenating 15 consecutive frames

of cepstral features together, then performing Linear Discriminative Analysis (LDA) to

obtain a feature of length 42.

Unsupervised Speaker Clustering

In this section, we present our approach for grouping single-speaker speech utterances

into speaker-specific clusters. We start by computing supervectors, then applying factor

analysis to generate i-vectors. We then train an LDA matrix based projection from the

i-vectors to a speaker-discriminant subspace. The process is discussed in detail below.

A core feature of our approach lies in the approximation of speaker-conditional statis-

tics, and training the LDA parameters for finding the optimal discriminative subspace.

Figure 3-8 shows the block diagram of the speaker clustering system.

Speaker Clustering 

GMM 
UBM LDA 

Speaker 
labels 

Training 
data 

Factor 
analysis 

GMM 
UBM 

i-vectors 

Clustering

Utterance classes for  
Speaker Adaptation 

Evaluation 
data 

super- 
vectors 

LDA Factor 
analysis 

i-vectors 
super- 
vectors 

trained LDA 
projection 

mfcc  
features 

mfcc  
features 

Figure 3-8: Block diagram of the speaker clustering algorithm.
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For each utterance, a GMM with 512 mixtures is adapted, given appropriate front-

end features (39-dimensional MFCC features) [49]. We denote the GMM mean com-

ponents, which are speaker-dependent, as supervectors M. The Universal Background

Model (UBM) [49] is a large GMM trained over all utterances to represent the speaker-

independent distribution of features. We denote the UBM mean components, which are

speaker-independent, as UBM vector m.

Speaker clusters are generated by applying the K-means clustering algorithm to this

discriminant subspace, where the Euclidean distance reflects inter-speaker differences.

According to Total Variability Factor Analysis [50], given an utterance, the supervector

M can be rewritten as follows:

M = m + Tw (3.17)

The key assumption in factor analysis is that the GMM supervector of the speaker- and

channel-dependent M for a given utterance can be broken down into the sum of two

supervectors where supervector m is the speaker- and session-independent supervector

taken from a UBM, T is a rectangular matrix of low rank that defines the variability space

and w is a low-dimensional (90-dimensional in our system) random vector with a nor-

mally distributed prior N (0, 1). These new vectors w are refered to as identity vectors or

i-vectors for short [50].

The i-vectors w obtained from factor analysis contain both speaker and channel de-

pendent information. To extract the speaker-discriminant subspace, LDA is applied to

map the i-vectors to a 10-dimensional subspace. We trained our LDA projection on the

simulated training data and applied the projection matrix on the evaluation set to perform

unsupervised dimensionality reduction.

After LDA, the K-means algorithm is next applied on the subspace vectors, for finding

the speaker clusters. K-means is a widely used clustering algorithm formulated based

on a formal objective function [51]. Namely, given a set of N observation samples in

mathbbRD, and the number of clusters K, the objective is to determine a set of K points

in RD, the means, so as to minimize the mean squared distance from each data point to
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its nearest mean. For SimData and RealData experiments, we used 40 and 20 clusters

respectively.

Acoustic Model

Our system is based on two acoustic models. The first model was trained on the clean

WSJCAM0 [46] and WSJ0 corpora. Training consisted of conventional HMM training,

with three passes of forward-backward training followed by Gaussian splitting and more

training [52]; this was followed by speaker-adapted training (SAT) [11, §8.1.3].

To train the second acoustic model, we first took the WSJ0 and WSJCAM0 corpora

and “dirtied” through convolution with the multi-channel room impulse responses and

addition of the multi-channel noise provided with the Reverb Challenge data. These dirty

multi-channel streams were then used for speaker tracking followed by beamforming.

Once we had produced the final processed single stream of data, they were once more

used first for conventional HMM training and then for speaker-adapted training.

For the first pass of the system, we trained the acoustic model with noisy speech pro-

cessed with SD beamforming, described in Section 3.3. For the adapted passes, we used

acoustic models trained based on clean WSJ0 and WSJCAM0 corpora as described in Sec-

tion 3.4.2. Our final system employed the noisy acoustic model in the first pass and then

switched to the clean acoustic model in the adapted passes. Additionally, our system used

the feature-space noise adaptation method based on factorized transforms [53]. Feature-

space noise adaptation was performed by cascading two linear transforms: (1) noise-

adapted constrained maximum likelihood linear regression (CMLLR) transform [54] esti-

mated with all the speakers globally and (2) speaker-dependent CMLLR transform com-

puted with speech from each speaker or cluster.

Recognition and Adaptation Passes

We performed four decoding passes on the waveforms obtained from beamforming. Each

pass of decoding used a different acoustic model or speaker adaptation scheme. For all

passes save the first unadapted pass, speaker adaptation parameters were estimated us-

ing the word lattices generated during the prior pass, as in Uebel et al. [55].
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A description of the four decoding passes follows: 1) Decode with the unadapted,

conventional ML acoustic model. 2) Estimate vocal tract length normalization (VTLN)

[56] parameters and CMLLR for each speaker, then re-decode with the conventional ML

acoustic model. 3) Estimate VTLN, CMLLR, and maximum likelihood linear regression

(MLLR) [57] parameters for each speaker, then redecode with the conventional model.

4) Estimate VTLN, CMLLR, MLLR parameters for each speaker, then redecode with the

ML-SAT model.

All passes used the full tri-gram LM for the 5,000 word WSJ task, which was made

possible through the fast-on-the-fly composition algorithm described in [58].

� 3.5 Results and Conclusions

SimData RealData
Room1 Room2 Room3 Ave. Room1 Ave.

Baseline System Near Far Near Far Near Far Near Far
1 (clean) 18.1 28.4 43.0 82.2 53.5 88.0 52.2 89.7 87.3 88.5
2 (clean)+CMLLR 14.8 18.9 24.7 64.6 33.8 78.5 39.2 82.3 80.8 81.5
3 (multi) 20.6 21.2 23.7 38.7 28.1 44.9 29.5 58.5 55.4 57.0
4 (multi)+CMLLR 16.2 18.7 20.5 32.5 24.8 38.9 25.3 50.1 47.6 48.9

Table 3.1: Baseline WER (%) on the Reverb dataset

Table 3.1 presents the baseline system performance. The Baseline systems are pro-

vided by the Reverb Challenge [59] [45] which are triphone GMM-HMM recognizers

based on HTK. Baseline 1 is trained on clean training data without CMLLR adaptation.

Baseline 2 is trained on clean training data with CMLLR adaptation. Baseline 3 is trained

on multi-condition training data without CMLLR adaptation, and Baseline 4 is trained

on multi-condition training data with CMLLR adaptation. For the rest of this chapter, we

use the best performing baseline - Baseline 4 - as our baseline model.

WER of the Proposed System

Table 3.2 presents the word error rates (WERs) obtained with our systems on the reverb

datasets and compares it with the baseline result.
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SimData RealData
Room1 Room2 Room3 Ave. Room1 Ave.

System Near Far Near Far Near Far Near Far
Baseline 16.2 18.7 20.5 32.5 24.8 38.9 25.3 50.1 47.6 48.9
Proposed 8.44 8.91 9.99 13.19 10.77 20.17 11.91 16.74 19.51 18.13

Table 3.2: WER (%) of the proposed system on the Reverb dataset

We can see that our multi-channel system reduced the relative WER by 48%, 52%, 51%,

59%, 56.7% and 48% respectively for the six scenarios in SimData. Our system reduced

the WER by 66.6% and 59% respectively for the two scenarios in RealData. Although

we use a baseline that has already achieved high recognition performance with unpro-

cessed distant speech, we obtained a large additional improvement using the proposed

multi-channel front-end (up to 66.6% relative WER reduction). With the proposed sys-

tem, ranked second among the 49 ASR systems submitted to the RealData component of

the 2014 Reverb Challenge [60].

The Effect of Array Processing

To better understand the gains brought by our system, we provide further comparisons

and analysis in the next paragraphs.

Table 3.3 demonstrates the effectiveness of the array processing component in our sys-

tem. The results obtained with a single channel is provided as a contrast to our system’s

results. Both systems used the same acoustic, language model, and adaptation methods.

We can see that the array processing component - speaker tracking and beamforming

- significantly improved the ASR performance when going from a single-channel to an

eight-channel setup.

We also built a system with conventional SD beamforming, to facilitate comparisons

with the SDMN beamforming used in our proposed system. The results in Table 3.4

suggests that the beamforming method with the maximum negentropy criterion is more

robust against reverberation. This is due to the fact that MN beamforming enhances the

target signal by manipulating its weights so as to delay and account for reflections [38].
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SimData RealData
Room1 Room2 Room3 Ave. Room1 Ave.

System Near Far Near Far Near Far Near Far
Proposed 8.44 8.91 9.99 13.19 10.77 20.17 11.91 16.74 19.51 18.13
Contrast 1 14.8 16.27 17.7 31.54 20.11 40.65 23.51 43.28 44.47 43.88

Table 3.3: The effect of the array processing component: comparison between the pro-
posed system with and without front-end array processing. Contrast System is a single
channel (SC) system.

SimData RealData
Room1 Room2 Room3 Ave. Room1 Ave.

System Near Far Near Far Near Far Near Far
Proposed 8.44 8.91 9.99 13.19 10.77 20.17 11.91 16.74 19.51 18.13
Contrast 2 8.73 9.49 10.69 15.39 15.72 29.54 14.92 18.75 21.03 19.89

Table 3.4: The effect of beamforming method: proposed system uses SDMN beamforming
and contrast system uses conventional SD beamforming.

The Effect of Speaker Adaptation

Table 3.5 shows a WERs obtained without the application of our speaker adaptation

method. The proposed system used speaker labels produced by the K-means cluster-

ing algorithm on i-vectors. For reference, we also show WERs obtained using the true

speaker identities. We observed that adaptation using the speaker labels created by the

proposed method reduced WERs by 5.3% absolute and 1.6% absolute, for the SimData

and RealData, respectively.

Simulated Data Real Data
Room 1 Room 2 Room 3 Room 1

System Near Far Near Far Near Far Ave. Near Far Ave.
Proposed 8.44 8.91 9.99 13.19 10.77 20.17 11.91 15.97 18.67 17.33
Contrast 3 13.23 15.12 14.77 20.97 14.92 24.65 17.27 17.45 20.42 18.94

Oracle 7.74 8.68 9 .33 12.81 9.54 19.74 11.31 13.41 15.06 14.50

Table 3.5: Comparison of the ASR performance with and without speaker adaptation.
Oracle system uses the true speaker labels for adaptation.
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It is also seen from Table 3.5 that the use of the true speaker labels yielded a reduc-

tion in error rate of approximately 1.0% absolute for the simulated data; the reduction

was larger, approximately 4.5% absolute for the real data. This difference in behavior is

ascribed to the fact that the simulated WSJCAM0 training data, which was used to esti-

mate the LDA transformation on the i-vectors prior to K-means clustering, matched the

simulated evaluation set much better than the real evaluation set. Hence, the separation

of speaker classes was better for the simulated data than for the real data.
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Chapter 4
Deep Learning based Front End Denoising:

Deep Denoising Autoencoder

In the previous chapter, we presented a robust speech recognition system that improves

system performance by utilizing multi-channel information. From this chapter on, we

focus mainly on single channel systems and demonstrate how to boost system robustness

in this scenario.

The major problem in distant-talking speech recognition, as discussed in the previous

chapters, is the corruption of speech signals by both interfering sounds and reverbera-

tion caused by the far speaker-to-microphone distance. Since the beginnings of speech

recognition research, a range of techniques have been developed to combat additive and

convolutional noise. These methods focused on generating robust features based on tra-

ditional signal processing techniques [23, 61–64].

Along with the growing popularity of DNN-HMMs for ASR, are the use of DNN

based methods to generate robust speech features. For example, Sainath et al. explored

deep bottleneck autoencoders to produce features for GMM-HMM based ASR systems

[65]. Vinyals et al. investigated the effectiveness of DNNs for detecting articulatory fea-

tures, which combined with MFCC features were used for ASR tasks [66].

In this chapter, we describe an alternative front-end method for robust feature genera-

tion via deep denoising autoencoders (DDAs)1. The proposed DDA framework involved

layers of affine+sigmoid encoding followed by affine decoding to recover speech features

from noisy reverberant speech features. The DDA was fine-tuned with clean features,

which resulted in learning a stochastic mapping from noisy to clean features.

Denoising autoencoders (DAs) have been explored by Vincent et al. and Bengio [68,

69], and were stacked to form stacked denoising autoencoder (SDA) to generate robust

1Portions of this work have been published in [67].
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features for images [70]. Meanwhile, Ishii et al. applied DAs to reconstruct clean speech

spectra from reverberant speech [59].

Our work is differentiated by a) denoising at the feature level, b) mapping multiple

frames of noisy features directly to a single frame output of features, and c) a training

procedure that utilized decoder layers that were asymmetric with respect to the encoder

layers.

� 4.1 Background

A distorted speech signal has two aspects: additive distortion and the convolutional dis-

tortion. We denote the clean speech signal as x[n] where n is the discrete sampling index,

then the distant speech recording signal y[n] can be written as:

y[n] = x[n]h[n] + v[n] (4.1)

where h[n] is the convolutional distortion (commonly referred to as reverberation), and

v[n] is the additive distortion (referred to as noise).

� 4.1.1 Reverberation

For a speech recognition system in a reverberant space, where speech is captured with one

or more distant microphones, the wavefront of the speech signal is repeatedly reflected

off the walls and other objects in the space. These reflections, perceived as reverberation,

alter the acoustic characteristics of the original speech. The speech signals captured by the

microphones are fed into the recognizer, whose processing steps are usually grouped into

two broad units: the front end and the back end. The goal of reverberant speech recogni-

tion is to correctly transcribe speech corrupted by reverberation regardless of the severity

of the reverberation. The question that immediately arises is: ”Why do we need funda-

mentally new techniques for handling reverberation? To answer this question, this section

describes the fundamental problem in reverberant speech recognition and discusses the

properties of reverberation that can be leveraged to overcome the problem.
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Figure 4-1: Log Mel-frequency filterbank features corresponding to the utterance ”four,
two, seven” in dB color scale, extracted from (a) clean and (b) reverberant speech.

The effect of reverberation on feature vector sequences is illustrated in Figure 4.1.1,

which compares clean and reverberant log Mel-frequency filterbank features extracted

from an utterance ”four, two, seven”. Each log Mel-frequency filterbank feature is a

frequency-warped and dimension-reduced version of each spectral bin obtained by short-

time Fourier transform (STFT). As can be seen from the figure, energies from past frames

get carried over and attenuates to current and later frames, causing aliasing in the spectra.

The room impulse response can be divided into three portions as shown in Figure

4.1.1. After the arrival of the direct sound, several strong reflections, called early re-

flections, occur within 50 ms. After that comes a series of numerous indistinguishable

reflections, called late reverberations. The characteristics of the early reflections depend

strongly on the positions of the speaker and microphone. By contrast, the magnitude
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Figure 4-2: Room impulse response generated by the image method [2]. Room impulse
responses actually measured in rooms are usually noisier due to microphone characteris-
tics, band limitation with analog-to-digital conversion, and measurement errors.

of the late reverberation decays approximately exponentially and the decay rate is inde-

pendent of the positions. The time required for the late reverberation to decay by 60 dB

relative to the level of direct sound is called the reverberation time T60 . For typical office

and home environments, the reverberation time ranges from 200 ms to 1,000 ms.

� 4.2 Autoencoder

In this section, we begin with the simple notion of encoder-decoder models that retain

information and progress to formally introduce the traditional autoencoder paradigm

from this more general vantage point.

� 4.2.1 Introduction

We are interested in learning a (possibly stochastic) mapping from input X to a novel

representation Y. To make this more precise, let us restrict ourselves to parameterized

mappings q(Y|X) = q(Y|X; θ) with parameters θ representing what we want to learn.
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First we give an operational definition of a “good” representation as one that will be

useful for addressing tasks of interest, in the sense that it will improve system perfor-

mance compared to a baseline. Based on the objective measure typically used to assess

algorithm performance, this might be phrased as ”A good representation is one that will

yield a better performing classifier”. Final classification performance will typically be

used to objectively compare algorithms. However, if a lesson is to be learned from the

recent breakthroughs in deep learning training techniques, it is that the error signal from

a single narrowly defined classification task should not be the only, nor primary criterion

used to guide the learning of representations. For example, it has been shown experi-

mentally that beginning by optimizing with an unsupervised criterion, oblivious of the

specific classification problem, can greatly help in eventually achieving superior perfor-

mance for that classification problem . It can also be argued that the capacity for humans

to quickly become proficient in new tasks builds on much of what they have learned prior

to confronting the new task.

One natural criterion that we may expect any good representation to meet, at least to

some degree, is to retain a significant amount of information about the input. It can be

expressed in information-theoretic terms as maximizing the mutual information I(X; Y)

between an input random variable X and its higher level representation Y. This is the

infomax principle put forward by Linsker (1989) [71].

Mutual information can be decomposed into an entropy and a conditional entropy

term in two different ways. A first possible decomposition is I(X; Y) = H(Y)H(Y|X)

which lead Bell and Sejnowski (1995) to their infomax approach to Independent Compo-

nent Analysis [72]. Here we will start from another decomposition: I(X; Y) = H(X)H(X|Y).
Since observed input X comes from an unknown distribution q(X) on which θ has no in-

fluence, this makes H(X) an unknown constant. Thus the infomax principle reduces to:

argmax
θ

I(X; Y) = argmax
θ

−H(X|Y)

= argmax
θ

Eq(X,Y)[log q(X|Y)]
(4.2)
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Now for any distribution p(X|Y) we will have

Eq(X,Y)[log p(X|Y)] ≤ Eq(X,Y)[log q(X|Y)] (4.3)

as can be shown starting from the property that for any two distributions p and q we

have Kullback-Leibler (KL) divergence DKL(q||p) ≥ 0, and in particular DKL(q(X|Y =

y)||p(X|Y = y)) ≥ 0.

Let us consider a parametric distribution p(X|Y; θ′), parameterized by θ′, and the fol-

lowing optimization:

max
θ,θ′

Eq(X,Y;θ)[log p(X|Y; θ′)]. (4.4)

From Equation 4.3, we see that this corresponds to maximizing a lower bound on H(X|Y)
and thus on the mutual information. We would end up maximizing the exact mutual

information provided that there exists a θ′ such that q(X|Y) = p(X|Y; θ′).

If, as is done in infomax ICA, we further restrict ourselves to a deterministic mapping

from X to Y, that is, representation Y is to be computed by a parameterized function

Y = fθ(X) or equivalently q(Y|X; θ) = δ(Y − fθ(X)) (where δ denotes Dirac-delta), then

this optimization can be written:

max
θ,θ′

Eq(X)[log p(X|Y = fθ(X); θ′)]. (4.5)

This again corresponds to maximizing a lower bound on the mutual information.

Since q(X) is unknown, but we have samples from it, the empirical average over the

training samples can be used instead as an unbiased estimate (i.e., replacing Eq(X) by

Eq0(X)

max
θ,θ′

Eq0(X)[log p(X|Y = fθ(X); θ′)]. (4.6)

We will see in the next section that this equation corresponds to the reconstruction error

criterion used to train autoencoders.
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� 4.2.2 Traditional Autoencoder

Autoencoders consist of an encoder and a decoder. The encoder is the deterministic map-

ping fθ that transforms an n-dimensional input vector x into a hidden representation y.

For traditional autoencoders, the typical form is an affine mapping followed by a non-

linearity:

fθ(x) = s(Wx + b),

with parameter set θ = {W, b}, where W is a d× d weight matrix and b is an offset vector

of dimensionality d. The resulting hidden representation y is then mapped back to a re-

constructed d-dimensional vector z in input space, with z = g′θ(y).This mapping is called

the decoder. Its typical form is an affine mapping optionally followed by a squashing

non-linearity, that is, either

gθ′(y) = W′y + b′,

or

gθ′(y) = s(W′y + b′).

with appropriately sized parameters θ′ = {W′, b′}. In general, z is not to be interpreted as

an exact reconstruction of x, but rather in probabilistic terms as the parameters (typically

the mean) of a distribution p(X|Z = z) that may generate x with high probability. This

yields an associated reconstruction error to be optimized with respect to loss L(x, z) =

−log p(x|z). For real-valued x, this requires X|z ∼ N (z, σ2I), which yields L(x, z) =

C(σ2)||x− z||2, where C(σ2) denotes a constant that depends only on σ2 and thus can be

ignored for the optimization. This is the squared error objective found in most traditional

autoencoders. In this setting, due to the Gaussian interpretation, it is more natural not

to use a squashing nonlinearity in the decoder. For the rest of this work, we used an

affine+sigmoid encoder and an affine decoder with squared error loss.

� 4.2.3 Denoising Autoencoder

The denoising autoencoder (DA) is a variant of the basic autoencoder. Figure 4-3 shows

a standard structure of a denoising autoencoder.
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Figure 4-3: Denoising Autoencoder. x̂ is a corrupted version of x, fθ encodes x̂ to y while
gθ′ decodes y to z. The reconstruction error LH(x, z) is measured between x and z.

A DA is trained to reconstruct a clean input x from a corrupted version of it. The

corrupted input x̃ is mapped, as with the basic autoencoder, to a hidden representation

fθ(x̃) = sigmoid(Wx̃ + b) from which we reconstruct a z = gθ′(y) = (W′y + b′). Instead

of minimizing the loss function L(x̃, z) between the input and the output, parameters θ

and θ′ are trained to minimize the average reconstruction error over a clean training set,

that is, to have z as close as possible to the uncorrupted input x, with L(x, z) ∝ ||x −
z||2. Denoising autoencoder experiments in computer vision, noise, and corruption were

often artificially generated, e.g. by setting some values to zero, so that the denoising

autoencoder learns the noise pattern. However in the speech field, the corrupted speech

features already exist, and we can use the close-talking microphone speech features to

represent the non-corrupted (clean) version.

� 4.3 Deep Denoising Autoencoder

By using multiple layers of encoders and decoders, the DA can form a deep architecture

and become a Deep Denoising Autoencoder (DDA). Note that since we used an affine

decoder without nonlinearity, one can easily join the layers of decoders to form one single

decoder layer. The system work flow is illustrated in Figure 4.3. Specifically, with parallel

clean and noisy speech data available, a DDA can be pre-trained on noisy reverberant

speech features and fine-tuned by clean speech features. The rich nonlinear structure

in the DDA can be used to learn an efficient transfer function which removes noise in

speech while keeping enough phonetically discriminative information to generate good

reconstructed features.
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Figure 4-4: Deep Denoising Autoencoder Architecture. This figure gives an example of a
DDA containing two encoder layers, with 1000 nodes in the first layer and 500 nodes in
the second.

Due to the reverberations, information from previous frames is leaked to the current

frame, and with the presence of noise, adjacent frame features become less independent.

Note that for our speech denoising and dereverberation task, x̃ is not of the same dimen-

sion as x. We use concatenated features from contiguous frames as x̃ to encode, and use

only the corresponding center frame feature from the clean speech as x. The surrounding

frames in x̃ provide context for denoising and dereverberating the input data.

� 4.3.1 Training DDA for Robust ASR

Pre-training

Instead of initializing hidden weights with little guidance, we perform pre-training by

adopting an efficient approximation learning algorithm proposed by Hinton et al. called

67



CHAPTER 4. DEEP LEARNING BASED FRONT END DENOISING:
DEEP DENOISING AUTOENCODER

one-step contrastive divergence (CD-1) [73]. The generative pre-training not only requires

no supervised information, but can also put all hidden weights into a proper range which

can be used to avoid converging to local optima in the supervised back-propagation based

fine-tuning.

Figure 4-5(a) illustrates the pre-training of our DDA. Pre-training consists of learning

a stack of restricted Boltzmann machines (RBMs), each having only one layer of feature

detectors. After learning one RBM, the status of the learned hidden units given the train-

ing data can be used as feature vectors for the second RBM layer. The CD-1 method can

be used to learn the second RBM in the same fashion. Then, the status of the hidden units

of the second RBM can be used as the feature vectors for the third RBM, and so on. This

layer-by-layer learning can be repeated for many times. After pre-training, the RBMs are

unrolled to create a deep autoencoder, which is then fine-tuned using back-propagation

of error derivatives [74].

1000 

15*39 

W1 

500 

1000 

W2 

RBM 1 

RBM 2 

Unrolling 
 

(a) Pre-training

39 

500 

1000 

15*39 

W2 , ε2 

W1 , ε1 

W3 , ε3 

Encoder 

Decoder 

(b) Fine-Tuning

Figure 4-5: Pre-training consists of learning a stack of restricted Boltzmann machines
(RBMs). After pre-training, the RBMs are unrolled to create a deep autoencoder, which is
then fine-tuned using back-propagation of error derivatives.
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Fine-tuning

Figure 4-5(b) demonstrates the fine-tuning state of a DDA. The goal of back-propagation

fine-tuning is to minimize the squared error loss on the entire dataset between the recon-

structed and clean vectors, and is defined as follows:

F =
U

∑
i=1
||xi − zi||2 (4.7)

where U is the total number of training cases, zi is the i-th reconstructed feature vector,

and xi is the corresponding clean feature vector. Suppose we have a DDA with M hidden

layers and a decoder layer with N outputs (e.g., 39). By taking partial derivatives, the

gradient of weights for the decode layer are

∂F
∂Wl

=
U

∑
i=1

[Zl(i)El(i)]Tvi
l (4.8)

where each vi
l represents the output of the l-th hidden layer for the i-th input. and the

gradients for the bias are
∂F
∂bl

=
U

∑
i=1

[Zl(i)El(i)]T (4.9)

where Z is the transfer function and E is the error function. For the decoder layer

ZM+1(i) = 1 (4.10)

EM+1(i) = xi − zi. (4.11)

For the l-th hidden layer (l ∈ [1..M]),

Zl(i) = (Wlvi
l + ffll) · (1−Wlvi

l − ffll) (4.12)

El(i) = WlZl(i)El+1(i) (4.13)
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After calculating these gradients, stochastic gradient descent (SGD) is used to update the

parameters [69].

� 4.4 Evaluation

To evaluate the effectiveness of the proposed framework, experiments were conducted.

The data corpus used for experimentation and the system specifications are presented in

the following sections.

� 4.4.1 Dataset

ChiME2-WSJ0 is a 5K-vocabulary task in a reverberant and noisy environment, whose

utterances are taken from the Wall Street Journal database (WSJ0). The training data set

(si tr s) contains 7,138 utterances from 83 speakers, the evaluation data set (si et 05) con-

tains 330 utterances from 12 speakers (Nov’92), and the development set (si dt 05) con-

tains 409 utterances from 10 speakers. Acoustic models were trained using si tr s and

some of the parameters (e.g., language model weights) were tuned based on the WERs of

si dt 05. This database simulates a realistic environment. We used the type of data called

Isolated, which was created as follows: First, clean speech was convolved with binaural

room impulse responses corresponding to a frontal position at a distance of 2m from the

microphones in a family living room. Second, real-world noises recorded in the same

room were added, with the noise excerpts selected to obtain signal-to-noise ratios (SNRs)

of -6, 3, 0, 3, 6, and 9 dB without rescaling. Noises were non-stationary such as other

speakers, utterances, home noises, or background music.

� 4.4.2 Experimental Setup

A DDA was first trained on the training set. Next, raw test speech features were processed

by the trained DDA. An acoustic model was retrained using the processed features, and

the retrained model was utilized for ASR.

70



4.4. EVALUATION

Acoustic features

Both the clean and noisy reverberant speech waveforms were parameterized into a se-

quence of standard 39-dimensional Mel-frequency cepstral coefficient (MFCC) vectors:

12 Mel-cepstral coefficients processed by cepstral mean normalization (CMN), plus loga-

rithmic frame energy and delta and acceleration coefficients. The MFCCs were extracted

from 25ms time frames with a step size of 10ms. Prior to feature extraction, the input

binaural signals were down-mixed to mono by averaging the two channels together. Al-

though this down-mixing operation lead to a small degradation in WER, we decided to

use it in order to focus on the evaluation of the front-end processing technique.

DDA Configuration

All DDA configurations had an input layer with 15*39 units and an affine encoder output

layer with 39 units. The pre-training in each configuration was set to stop at the 25th

iteration with a learning rate of 0.004 and a batch size of 256. The fine-tuning using back-

propagation was set to stop at the 50th iteration using the line search stochastic gradient

decent method with a batch size of 256.

Acoustic Model

The HMM/GMM training followed the recipe in [75]. The number of phonemes was 41:

39 phones plus 1 silence (sil) and 1 short pause (sp) model. The output distributions of

sp and sil had their parameters tied. The number of clustered triphone HMM states was

1,860 and was relatively smaller than the conventional setup (more than 2,000 states).

Each HMM had three output states with a left-to-right topology with self-loops and no

skip. Each HMM state was represented by a GMM with 8 components for phoneme-based

HMMs and 16 for silence-based HMMs. The standard WSJ 5K non-verbalized closed bi-

gram language model was used. We only re-estimated the HMM/GMM parameters from

a clean speech acoustic model, and did not change the model topology for simplicity.

Decoding was performed using HVite with a pruning threshold [76].
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� 4.4.3 Results and Comparison

This section presents the experimental results and analysis on the performance of our

proposed DDA denoising method. We first start by varying the DDA configurations to

find the appropriate size of the network.

Influence of Number of Layers, Hidden Units per Layer

Table 4.1 presents the results for several DDA configurations and their resulting average

WER over 6 SNR scenarios. In the first column, 500 indicates a DDA that had one encoder

layer with 500 hidden units, while 500x500 denotes a DDA with two hidden layers each

of which had 500 hidden units.

As we observe in Table 1, the average WER is not very sensitive to the DDA configura-

tions. Following this exploration, we utilized the top performing configuration (500x500)

for the next set of experiments.

DDA Average WER
500 35.7%

500x500 34.0%
1000x1000 34.5%

500x500x500 34.2%

Table 4.1: WER vs. different DDA configurations.

Comparison of WER Improvement

Table 4.2 and 4.3 report the results of the system trained on the ChiME2-WSJ0 dataset,

as a function of the SNR. The denoising autocoder had two encoder layers with 500

nodes each, had 15x39 input nodes, and emitted a 39-dimensional output. The subse-

quent HMM-GMM training followed the recipe in [75]. We compared the WER with and

without the proposed front-end processing. We found that across the six SNR scenarios,

the proposed method improved the ASR accuracy by 16.7%, 19.9%, 25.0%, 22.9%, 21.8%,

and 20.5% respectively in absolute difference. The baseline system was trained on match-

ing noisy reverberant data with the exact same settings. These results shows the impact of

front-end denoising and dereverberation on improving ASR performance. The improve-
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ment is most dramatic in the 0 dB and 3 dB cases. This should be affected by the fact

that we did not train a separate DDA for various SNR degrees. Thus the feature mapping

generalize well on the middle range cases compared to the extremely high or low SNR

cases.

WER
SNR Baseline using Using proposed DDA

MFCC features reconstructed feature
-6dB 70.4% 53.8%
-3dB 63.1% 44.2%
0dB 58.4% 33.4%
3dB 51.1% 28.2%
6dB 45.3% 23.5%
9dB 41.7% 21.2%

Table 4.2: WER under different SNRs with and without the proposed DDA on MFCC
features.

WER
SNR Baseline using Using proposed DDA

PLP features reconstructed feature
-6dB 72.7% 55.6%
-3dB 64.5% 45.9%
0dB 58.9% 35.0%
3dB 52.7% 29.6%
6dB 46.8% 24.7%
9dB 42.5% 22.3%

Table 4.3: WER under different SNRs with and without the proposed DDA on PLP fea-
tures

In comparing our results against those obtained by the participants of the CHiME

Challenge [77], ours was among the top two. We note that the CHiME challenge partic-

ipants employed strategies at the spatial signal, feature, and model levels while we only

focus on the front-end feature denoising part [77] . If we were to combine our proposed

method with advanced acoustic model and back-end techniques, we anticipate that the

results would most likely have improved futher.
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Comparison with Other DDA Structures

A variant of our proposed DDA front-end is a symmetric feature mapping from the

spliced features to the spliced features. For each frame, there will be multiple result-

ing reconstructed features. The final reconstructed output takes an average over these

multiple copies. Table 4.4 compares this DDA variant with our proposed model.

WER
SNR Averaging DDA proposed DDA
-6dB 60.37% 53.75%
-3dB 52.10% 44.21%
0dB 46.84% 33.37%
3dB 41.07% 28.19%
6dB 35.72% 23.52%
9dB 30.26% 21.22%

Table 4.4: Comparison between the proposed DDA architecture and averaging DDA
architecture. Denoising is performed on MFCC features and the recognition settings are
the same for both systems.

� 4.5 Summary

In this chapter we presented a front-end speech feature denoising and dereverberation

method based on DDAs. The proposed framework is unsupervised and learns a stochas-

tic mapping from the corrupted features to the clean ones. We also showed how to train

an asymmetric denoising autoencoder to learn from adjacent frames and demonstrated

that this improved ASR system performance in the domain of reverberant ASR using the

5K noisy reverberant CHiME-WSJ0 corpus. Our presented method showed a 16% to 25%

absolute improvement compared to the baseline. Our results were also among the top

two for task 2 compared to the second CHiME Challenge in 2013, and without using any

backend technique.

Since this feature denoising method does not preclude the use of many other front-end

or back-end methods, this approach can be combined together with various other front-

end techniques such as array speech processing, in addition to back-end model adapta-
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tion methods. Our presented method is language independent, making it applicable to

large vocabulary tasks, and languages beyond English.
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Chapter 5
Harvesting Additional Information for

Robustness: Heterogenous DNN

Most ASR systems incorporate only a single source of information about their input,

namely, features and transformations derived from the speech signal. However, in many

applications (such as vehicle-based speech recognition), sensor data and other environ-

mental information are often available to complement audio information.

In the previous two chapters, we pursued ASR robustness from a feature-based per-

spective, that is, to reconstruct features and compensate noise distortions in the feature

domain. We now investigate a model-based approach for robust ASR by training a noise-

adaptive acoustic model. In this chapter, we present methods that show how non-speech

data sources can be used to improve DNN-HMM ASR systems, and specifically explore

this in the context of a vehicle-based ASR task1.

� 5.1 DNN-based Acoustic Model

Using neural networks as acoustic models for HMM-based speech recognition was intro-

duced over 20 years ago [79, 80]. Much of this original work developed the basic ideas

of hybrid DNN-HMM systems which are used in modern, state-of-the-art ASR systems.

However, until much more recently, neural networks were not a standard component in

the highest performing ASR systems. Computational constraints and the amount of avail-

able training data severely limited the pace at which it was possible to make progress on

neural network research for speech recognition.

A DNN is a multi-layer perceptron with many hidden layers between its inputs and

outputs. In a modern DNN hidden Markov model (HMM) hybrid system, the DNN

is trained to provide posterior probability estimates for context-dependent HMM states.

1Portions of this work have been published in [78].
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Starting with a visible input x, each hidden layer models the posterior probabilities of a

set of binary hidden variables h, given the input visible variables, while the output layer

models the class posterior probabilities. The output y for the class si is given by

y(si) , P(si|x) (5.1)

The networks are trained by optimizing a given training objective function using the

standard error back-propagation procedure. For a given objective L(x, s), the network

weights are updated by

(Wl,j, bl,j)← (Wl,j, bl,j) + α
∂L(x, s)

∂(Wl,j, bl,j)
(5.2)

where l denotes the l-th layer, and j denotes the j-th node in each layer. α is the learning

rate.

The state emission likelihoods p(x|s) are obtained via Bayes’ rule using the posterior

probabilities computed by the DNN p(s|x) and the class priors p(s).

p(x|s) ∝
p(s|x)
p(s)

(5.3)

� 5.1.1 Training Criterion

The default choice for DNN acoustic models is the cross entropy loss function, which

corresponds to maximizing the likelihood of the observed label given the input. The

cross entropy loss function does not consider each utterance in its entirety. Instead it is

defined over individual samples of acoustic input x and senone label y. The cross entropy

objective function for a single training pair (x, y) is:

−
K

∑
k=1

1{y = k} log ŷk (5.4)

where K is the number of output classes, and ŷk is the probability that the model assigns

to the input example taking on label k.
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Cross entropy is the standard choice when training DNNs for classification tasks, but

it ignores the DNN as a component of the larger ASR system. To account for more as-

pects of the overall system, discriminative loss functions were introduced for ASR tasks.

Discriminative loss functions were initially developed for GMM acoustic models [81, 82],

but were recently applied to DNN acoustic model training [83]. Discriminative training

of DNN acoustic models begins with standard cross entropy training to achieve a strong

initial solution. The discriminative loss function is used either as a second step, or addi-

tively combined with the standard cross entropy function. We can view discriminative

training as a task-specific loss function which produces a DNN acoustic model to better

act as a sub-component of the overall ASR system.

Nowadays, DNNs have become a competitive alternative to GMMs [84]. DNNs pro-

vide an interesting path forward for acoustic modeling as neural networks offer a direct

path for increasing representational capacity, provided it is possible to find a good set

of DNN parameters. For the rest of this chapter, we investigate DNNs that incorporate

heterogeneous information for improving ASR robustness.

� 5.2 Harvesting Heterogeneous Information

Many researchers have reported different ways of using DNNs to augment ASR robust-

ness. For example, noise-aware training (NAT) was proposed in [85] to improve noise

robustness of DNN-based ASR systems. It uses a crude estimate of noise obtained by

averaging the first and the last few frames of each utterance as input to the DNN acoustic

model. Similarly, [86] uses speech separation to obtain a more accurate estimate of noise.

In the above prior work, the additional features are generally derived from the speech

signals, and there are limited studies on utilizing existing environmental information.

In this section, we explore DNNs using features extracted from available heteroge-

neous data, in addition to the features derived from speech signals. In many ASR tasks,

e.g., vehicle-based speech recognition and robotic communication systems, various data

from the motor sensors, devices and camera sensors, are available, all of which may pro-

vide additional clues for ASR. We propose a DNN-based method to incorporate such
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information by augmenting the input speech features with additional features extracted

from the heterogeneous data.

Specifically, vehicle-based speech recognition is a perfect example for such research:

it is a noisy reverberant environment, with distant talking from the driver or other pas-

sengers, and what’s more, it has a large amount of heterogeneous data from modalities

beyond just speech. Our approach will be presented via a vehicle-based speech recogni-

tion setting.

� 5.2.1 Heterogeneous Data

The heterogeneous data we explored included engine speed, HVAC fan status, wiper sta-

tus, vehicle type, signal light status, and many others. These data can all be automatically

reported by the vehicle in real time in parallel with the audio, and require no human

supervision. Table 5.1 lists the values of the additional data used in our experiments.

Data Type Values
speed real-valued 0 MPH, 35 MPH, 65 MPH

acceleration real-valued ∈ R(−∞, ∞)
cabin volume real-valued 15000, 17000, ..

wiper status On/Off
window status Up/Down

signal light status On/Off
weather status Rain/No rain

vehicle type categorical Fiesta, Escape, Mustang, Focus..
ac fan categorical Off/Low/Mid/High

Table 5.1: A list of a subset of the available heterogeneous data

� 5.2.2 Feature pre-processing

In order to fit this information into the DNN model, pre-processing was conducted on

these data. All real-valued feature vectors were normalized globally to zero mean and

unit variance, while all status feature vectors were mapped to binaries of 0/1. Therefore,

speed was normalized globally to zero mean and unit variance. AC fan status and wiper

status were mapped to binary values. Vehicle types were mapped to five distinct values

according to the size of the vehicle model, and further normalized globally to zero mean
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and unit variance. For categorial features, we experimented with one-hot encoding, e.g.,

[0 0 1], [0 1 0], [1 0 0]. These extracted additional features were concatenated with the

spliced corresponding speech features.

� 5.2.3 Heterogeneous DNN

Background noise and acoustic scenes contain certain acoustic distortion factors of the

speech signals. However, such a relationship is highly nonlinear. Because the DNN is

composed of multiple layers of nonlinear processing, the network has the capacity to

learn and model this relationship directly from the data. It also allows an easy way of

combining diverse features, including both discrete and continuous features.

For the DNN with heterogeneous data, the input speech features are computed as

in the conventional system. However, these features are now augmented with various

combinations of additional features computed from the heterogeneous data, by concate-

nating the speech features with the additional features. The features are augmented for

both training and decoding.

Figure 5-1 gives a diagram of our DNN framework that incorporates additional fea-

tures. The speech features are derived from speech signals, while the additional features

are provided by various sources of sensor information, e.g., camera sensor, motion sen-

sor, speed sensor, fan power etc. As discussed in Section 2.2, in our experiment, these

additional features include vehicle speed, HVAC fan status, windshield wiper status, and

vehicle type. Thus, the DNN’s input is a super vector with the additional features ap-

pended to the speech features. At time t, the input is given by

v0t = [xt−τ, ..., xt−1, xt, xt+1, ..., xt+τ, ct]. (5.5)

Each observation is propagated forward through the network, starting with the lowest

layer v0 . The output variables of each layer become the input variables of the next layer.

In the final layer, the class posterior probabilities are computed using a softmax layer.

Specifically, instead of 440 MFCC-LDA-MLLT-fMLLR speech features, the DNN input

layer had 440 speech features and n-dimensional additional features c as input, where n
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softmax output layer (3158 outputs) 

hidden layer (1024 neurons) 

hidden layer (1024 neurons) 

hidden layer (1024 neurons) 

hidden layer (1024 neurons) 

input layer (440+n inputs) 

compute 
speech 
features x 

compute 
additional 
features c 

splicing  
± 5 frames   

input audio         parallel heterogeneous data 

440-dimensional n-dimensional 

Figure 5-1: Diagram of the proposed Heterogeneous DNN system.

was the number of additional features used. During training and testing, these additional

features were extracted at the frame level from the parallel heterogeneous data provided

by the vehicles.

� 5.2.4 Feature Selection

We were interested in evaluating the effectiveness of the additional features we extracted

from the heterogeneous information and selecting the best performing subsets. Com-
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parison of feature subsets amounts to a combinatorial problem (there are 2k − 1 possible

subsets for k variables), which becomes computationally infeasible, even for moderate

input size. Branch and Bound exploration allows reducing the search for monotonic cri-

teria [87], however, the complexity of these procedures is still prohibitive in most cases.

Due to these limitations, we adopted the common (albeit sub-optimal) search method,

forward feature selection.

The forward feature selection procedure begins by evaluating all feature subsets which

consist of only one input attribute. In other words, we started by measuring the Leave-

One-Out Cross Validation (LOOCV) error of the one-component subsets, X1, X2, ..., XM,

where M was the input dimensionality; so that we could find the best individual feature,

X1.

Next, forward selection finds the best subset consisting of two components, X(1) and

one other feature from the remaining M-1 input attributes. Hence, there are a total of

M− 1 pairs. Lets assume X2 is the other attribute in the best pair besides X1. Afterwards,

the input subsets with three, four, and more features are evaluated. According to for-

ward selection, the best subset with m features is the m-tuple consisting of X1, X2, ..., Xm,

while overall the best feature set is the winner out of all the M steps. Assuming the cost

of a LOOCV evaluation with i features is C(i), then the computational cost of forward

selection searching for a feature subset of size m out of M total input attributes will be

M ∗ C(1) + (M− 1) ∗ C(2) + ... + (M−m + 1) ∗ C(m).

� 5.3 Evaluation

To evaluate the performance of our proposed approach, experiments were conducted.

The system specifications as well as results are presented in detail in this section.

� 5.3.1 Dataset

We evaluated the proposed method on a 30-hour 2K-vocabulary dataset collected by the

Ford Motor Company in actual driving, reverberant, and noisy environments. The ut-
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terances were recorded in vehicles of varying body styles (e.g., small, medium, large car,

SUV, pick-up truck) with talkers (drivers) of varying gender, age, and dialects, under

different ambient noise conditions (blower on/off, road surface rough/smooth, vehicle

speed 0-65 MPH, windshield wipers on/off, vehicle windows open/closed, etc.). For our

experiments, the data were randomly partitioned into three sets with non-overlapping

speakers. The training set contained 17,183 utterances from 90 speakers, the develop-

ment set contained 2,773 utterances from 14 speakers, and the evaluation set contained

1,763 utterances from 9 speakers. The OOV rate was 5.03%. Except the speakers, all other

recording conditions were found in all three data sets.

� 5.3.2 Speech Features

fMLLR

d × (d + 1)

MLLT

d × dd × 117

splicing LDA

MFCC

13 × 1

features
d × 1

Figure 1: Generation of our baseline/Type I features

performance of GMM-based systems usually deteriorates with
the investigated features.

The rest of the paper is organized as follows. In Section 2,
we describe our DNN training setup. In Section 3, we provide
details of the four types of features that we investigated. In
Section 4, we discuss our experimental setup, and present the
results in Section 5. Finally, we conclude in Section 6.

2. Our DNN training setup
Most of the details of our DNN setup are based on [10]. The
neural networks had 4 hidden layers. The output layer is a soft-
max layer, and the outputs represent the log-posterior of the out-
put labels, which correspond to context-dependent HMM states
(there were about 2600 states in our experiments). The input
features are either the standard 40-dimensional features in the
baseline case, or various higher-dimensional features that we
describe in this paper. The number of neurons in the hidden
layer is the same for all hidden layers, and is computed in order
to give a specified total number of DNN parameters (typically
in the millions, e.g. 10 million for a large system trained on
100 hours of data). The nonlinearities in the hidden layers are
sigmoid functions whose range is between zero and one. The
objective function is the cross-entropy criterion, i.e. for each
frame, the log-probability of the correct class. The alignment
of context-dependent states to frames derives from the GMM
baseline systems and is left fixed during training.

The connection weights were randomly initialized with a
normal distribution multiplied by 0.1, and the biases of the sig-
moid units were initialized by sampling uniformly from the in-
terval [-4.1,-3.9]2. The learning rate was decided by the “new-
bob” algorithm: for the first epoch, we used 0.008 as the learn-
ing rate, and this was kept fixed as long as the increment in
cross-validation frame accuracy in a single epoch was higher
than 0.5%. For the subsequent epochs, the learning rate was
halved; this was repeated until the increase in cross-validation
accuracy per epoch is less than a stopping threshold, of 0.1%.
The weights are updated using mini-batches of size 256 frames;
the gradients are summed over each mini-batch.

For these experiments we used conventional CPUs rather
than GPUs, with the matrix operations parallelized over multi-
ple cores (between 4 and 20) using Intel’s MKL implementa-
tion of BLAS. Training on 109 hours of Switchboard telephone
speech data took about a week for the sizes of network we used
(around 10 million parameters).

3. Investigated Features
3.1. Baseline/Type-I features
Figure 1 shows the generation of Type-I features. The dimen-
sion of the final features supplied as the input to the DNN is de-
noted as d. The baseline features correspond to d=40. The fea-
tures are derived by processing the conventional 13-dimensional
MFCCs. The steps are as follows:

2It has been found that where training data is plentiful, pre-training
does not seem to be necessary [11] and conventional random initializa-
tion [1] will suffice. In this work we do not use pre-training.

- Cepstral mean subtraction is applied on a per speaker basis.
- The resulting 13-dimensional features are spliced across ±4
frames to produce 117 dimensional vectors.

- Then LDA [4] is used to reduce the dimensionality to d. The
context-dependent HMM states are used as classes for the
LDA estimation.

- We apply MLLT [12] (also known as global STC [6]). It is
a feature orthogonalizing transform that makes the features
more accurately modeled by diagonal-covariance Gaussians.

- Then, global fMLLR [7] (also known as global CMLLR) is
applied to normalize inter-speaker variability.

In our experiments fMLLR is applied both during training and
test, which is known as SAT. In some cases, the results are also
shown when it is applied only during test.

3.2. Type-II features
The main concern with our Type-I features is that as we increase
the dimension of the features, we also (quadratically) increase
the number of parameters in the fMLLR transforms. As a con-
sequence the speaker-specific data might become in-sufficient
for reliable estimation of the parameters when d becomes large
(e.g., 80 or more). In addition, Type-I features require training
of the HMM/GMMs in the higher dimensional space which can
be problematic. Our Type-II features (Figure 2) are designed
to avoid the above problems by applying speaker adaptation to
only the first 40 coefficients of the LDA features, and passing
some of the remaining dimensions directly to the neural net-
work while bypassing MLLT and fMLLR. It also avoids the
training of the HMM/GMMs in the higher-dimensional space.

3.3. Type-III features
Another way to increase the dimension of the features, while
keeping the dimension of fMLLR matrices 40 × 41, is to splice
the baseline 40-dimensional speaker adapted features again
across time and use them as the input to the DNN (Figure 3).
The Type-III features are most closely related to the previous
work in this area [13, 11].

3.4. Type-IV features
The Type-IV features (Figure 3) consist of our baseline 40-
dimensional speaker adapted features that have been spliced
again, followed by de-correlation and dimensionality reduction
using another LDA. We use a variable window size in this case
(typically ±4 frames) and the LDA is estimated using the state
alignments obtained from the baseline SAT model.

We do not believe that the dimensionality reduction pro-
vided by this LDA is something very useful; rather the whiten-
ing effect on the features will be favorable for the DNN training.
The LDAwould work as a pre-conditioner of the data, making it
possible to set higher learning rates leading to a faster learning,
especially when pre-training is not used.

4. Experimental setup
The experimental results are reported with the acoustic models
trained on a 109-hour subset of the Switchboard Part I training

39x1 
MFCC	

 40x351	

 40x40	

 40x41	



40x1 
features	

 ± 4 frames	



Figure 5-2: Generation of baseline speech features.

As shown in Figure 5-2, the speech waveforms were first parameterized into a con-

ventional sequence of 39-dimensional MFCC vectors based on a 25ms Hamming window,

and computed every 10ms. Cepstral mean subtraction was applied on a per speaker basis.

The MFCCs were then spliced across 9 frames to produce 351 dimensional vectors. LDA

was used to reduce the dimensionality to 40 by using context-dependent HMM states

as classes for LDA estimation.An MLLT was then applied to the MFCC-LDA features to

better orthogonalize the data [88]. Finally, global fMLLR was then applied to normal-

ize inter-speaker variability [61]. In our experiments, fMLLR was applied both during

training and test (also known as speaker-adaptive training (SAT)) [89].
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� 5.3.3 Baseline DNN-HMMs

Experiment Setup

For the baseline speech-only system, we first flat-start trained 26 context-independent

monophone acoustic models using MFCC features, then used these models to bootstrap

the training of a context-dependent triphone GMM-HMM system. The triphone GMM-

HMM system was then retrained by MFCC-LDA-MLLT features. The resulting models

contained 3,158 tied triphone states, and 90K Gaussians. This GMM-HMM system was

then used to generate fMLLR feature transforms for training and test speakers. The re-

sulting transformed features were input to the DNN. We use the Kaldi toolkit for these

experiments [90]. For decoding, a trigram language model with modified Good-Turing

smoothing was used. The trigram language model was generated from the 27-hour train-

ing data using the sriLM toolkit [91]. The perplexity of the trigram search LM on the

Ford development text was 14. Given that we had a small vocabulary task, experiments

showed that results using a quadgram LM do not differ much from that of a trigram LM.

Therefore, trigram LM was used for all following experiments.

The DNN baseline was trained on the fMLLR transformed MFCC-LDA-MLLT fea-

tures, except that the features were globally normalized to have zero mean and unit vari-

ance. The fMLLR transforms were the same as those estimated for the GMM-HMM sys-

tem during training and testing. The DNN had 4 hidden layers, where each hidden layer

had 1024 units, and 3,158 output units. The input to the network consisted of 11 stacked

frames (5 frames on each side of the current frame). We performed pre-training using

one-step contrastive divergence [73], whereby each layer was learned one at a time, with

subsequent layers being stacked on top of the pre-trained lower layers.

After learning one RBM, the status of the learned hidden units given the training data

can be used as feature vectors for the second RBM layer. The CD-1 method can be used

to learn the second RBM in the same fashion. Then, the status of the hidden units of the

second RBM can be used as the feature vectors for the third RBM, etc. This layer-by-layer

learning can be repeated many times.
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For the DNNs in this work, we used two different loss objectives. One was Cross En-

tropy (CE), which minimizes frame error. The other was sequence-discriminative training

using state-level minimum Bayes risk (sMBR) criterion.

The state emission likelihoods were obtained via Bayes rule using the posterior prob-

abilities computed by the DNN and the class priors. First we trained the 4-layer DNN us-

ing back propagation with CE objective function. After calculating the gradients for this

loss objective, stochastic gradient descent (SGD) was used to update the network param-

eters [69]. For SGD, we used minibatches of 256 frames, and an exponentially decaying

schedule that started with an initial learning rate of 0.008 and halved the rate when the

improvement in frame accuracy on a cross-validation set between two successive epochs

fell below 0.5%. The optimization terminated when the frame accuracy increased by less

than 0.1%. Cross-validation was done on a set of 180 utterances that were held out from

the training data.

The resulting DNN was then used for sequence training. We used the state-level mini-

mum Bayes risk (sMBR) criterion for the sequence-discriminative training. After calculat-

ing the gradients for this loss objective, SGD was used to update the network parameters.

The SGD back propagation parameters were the same as with the DNN-CE baseline.

Baseline Results

The ASR performance on the evaluation set is shown in Table 5.2. We observed an 0.5%

absolute improvement with discriminative training versus cross entropy. Both baseline

systems will be used in the next section.

Baseline systems WER
DNN-CE 7.0%

DNN-sequence 6.5%

Table 5.2: WER of baseline systems using CE training, followed by sequence training.

� 5.3.4 Heterogeneous DNN-HMMs

In this section we present the experimental results of our proposed Heterogeneous DNN-

HMM system. DNNs augmented with different combinations of the additional features
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were trained. For each distinct additional feature combination, we trained a separate

DNN. The network configurations and training/decoding procedures remained the same

as in Section 5.3.1.

Table 5.3 provides the baseline WER results, as well as results from our proposed sys-

tem using different additional feature combinations. Our experiments show that systems

with an increasing number of additional features improved WERs. Here we only list

the results from seven feature combination candidates that improved WER the most in

Table 5.3.

System Additional Feature WER WERR
GMM (Baseline) 11.86 -
DNN (Baseline) 7.04 -

+ speed 6.71 4.7
+ ac fan 6.72 4.5
+ wiper 6.81 3.3
+ vehicle 6.89 2.1
+ speed, ac fan 6.63 5.8
+ speed, ac fan, wiper 6.61 6.1

DNN+sMBR (Baseline) 6.53 -
+ speed 6.46 1.1
+ ac fan 6.45 1.2
+ wiper 6.29 3.7
+ vehicle 6.42 1.7
+ speed, ac fan 6.19 5.2
+ speed, ac fan, wiper 6.22 4.7

Table 5.3: Word error rate (WER) and Word error reduction rate (WERR) of the proposed
systems with additional features.

We observed that speed provides the lowest WER among the individual additional

features. This might be related to the fact that speed is a dominant contributor to noise.

With more additional features included, the WER continues to drop. The complete ad-

ditional feature set of speed, ac fan, wiper status and vehicle type gave the lowest WER

among all additional feature combinations. This demonstrates that having such informa-

tion is helpful for noise robustness, and that the DNNs are able to learn useful relation-
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ships between the additional heterogeneous features and noisy speech features, which

enables the model to generate more accurate posterior probabilities.

Table 5.4 displays a comparison between the performance of the baseline systems

against our systems that include additional features. The additional features used here

were c = (speed, ac f an, wiper, vehicle). We compared the WER with and without the ad-

ditional features. We can see that WER was reduced by 6.3% relative to the the DNN-CE

baseline. WER was reduced by 5.5% relative to the DNN-sequence baseline. The absolute

gain doesn’t seem to be huge due to our comparatively small baseline WER, but the 6.3%

comparative gain suggests that if this approach is used on a larger-vocabulary task, the

absolute gain might be more substantial.

without AFs with AFs WERR
DNN-CE 7.0% 6.6% 6.3%
DNN-sequence 6.5% 6.2% 5.5%

Table 5.4: WER comparison of with v.s. without the additional features, and the Word
error reduction rate (WERR).

To further demonstrate the effectiveness of the heterogeneous data, in Table 5.5 we

provide the noise-adaptive training (NAT) results using signal-to-noise ratios (SNRs) de-

rived from speech signals. SNRs were computed using the NIST metric. The results

demonstrate that the additional features we used outperformed the SNRs computed from

the the speech signals in both CE and sequence training cases. This indicates that the het-

erogeneous data contained richer information about the environment than the SNRs com-

puted from the speech signals. These additional features are better alternatives to SNR

for noise-adaptive training or environment-aware training. Moreover, the additional fea-

tures and SNRs were not exclusive. It could be that using them jointly would lead to a

better adaptation scenario.

with AFs with SNR
DNN-CE 6.60% 6.91%

DNN-sequence 6.17% 6.51%

Table 5.5: WER comparison of using additional features vs. using SNRs
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We also compared the impact of model depth and size on the performance. Table [to

be inserted] shows the experimental results obtained from different model sizes.

� 5.4 Summary

We have shown that DNNs can adapt to environment characteristics if we augment stan-

dard acoustic features by appending features extracted from heterogeneous data. The

DNN learns useful relationships between these heterogeneous data and noisy speech fea-

tures, which enables the model to generate more accurate posterior probabilities. This

was motivated by the success of noise-aware training where SNRs had been found to be

useful for noise robustness because it served to characterize the noise level.

Our experiments demonstrated that WER could be reduced by 6.3% relatively with

the additional features compared to the baseline DNN-HMM hybrid system. Moreover,

this outperformed the improvement brought by noise-aware training using SNRs, by a

large margin. This indicates that the heterogeneous data contained richer information

about the environment than the SNRs. If other heterogeneous data and representations

contained similar information about the environment, then they can possibly also be used

to do environment-adaptation of DNN-HMM system in the same way, for better ASR

robustness.

This framework can also be generalized to incorporate other features, both continuous

and discrete, for various ASR tasks. For example, visual information, acoustic sensor

data, and machine status can be explored using this approach. Moreover, different DNN

structures can also be investigated, by feeding the additional features at different layer

levels in the network.
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Chapter 6
E-vector: Blind Feature for Noise Robustness via

Bottleneck DNN

In the previous chapter, we investigated how to build a noise-aware model that was able

to adapt to the environment by harvesting heterogeneous data. The results showed sig-

nificant improvements over the conventional model. However, it has a drawback that

occurs when the type or dimensionality of the feature extracted from the heterogeneous

data changes. The model, once trained, is fixed to a specific number of heterogeneous

feature vectors, and thus is not flexible enough to deal with missing features, or accom-

modate a different feature dimensionality.

In this chapter, we propose an alternative method from the feature-based perspective,

to generate a novel environment-aware feature that can be used for adaptation1. Once

trained, feature generation does not rely on the supply of any additional information, and

thus is independent of feature dimensionality or even the type of the additional features.

It is derived from an i-vector, and we refer to it as an e-vector.

In contrast to the i-vector’s success and popularity in speaker related tasks, there has

been little research on its usefulness in channel and environment applications. i-vectors

are extracted in a way that makes no distinction between channel and speaker variability.

Inspired by this fact, we propose features derived from i-vectors in the total variability

space to capture environmental variability only.

Methods for extracting the proposed environment-aware feature will be described,

and the effectiveness of the proposed feature will be evaluated using the same multi-

modal vehicle-based speech corpus as the previous chapter. Additionally, we also found

that the proposed feature can be applied to blind noise condition classification.

1Portions of this work have been published in [92].
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The rest of this chapter is organized as follows. Section 6.1 briefly introduces i-vectors.

Next, the e-vector is proposed in Section 6.2, and two extraction methods are presented.

We evaluate e-vector adaptation in Section 6.3, and e-vector environment identification

in Section 6.4. We conclude with Section 6.5.

� 6.1 Introduction

i-vectors have been extracted by factor analysis, and have demonstrated success for speaker

recognition and verification [50, 93, 94]. Recently, the i-vector method has been success-

fully applied to speaker and channel adaptation in speech recognition.

To compute the i-vector, suppose we are given recordings that consist of the speech

of a single speaker. Each recording is assumed to be represented by a Gaussian mixture

model (GMM), and principal components analysis is applied to the GMM supervectors.

Thus, the basic assumption is that all utterance supervectors are confined to a low dimen-

sional subspace of the GMM supervector space so that each utterance supervector can be

specified by a small number of coordinates. For a given recording, these coordinates of

the corresponding supervector define the i-vector representation. The i-vector approach

models supervector adaptation to a given sequence of frames in a low dimensional space

called the total variability space. In the i-vector framework, each speech utterance can be

represented by a GMM supervector, which is assumed to be generated as follows:

s = m + Tw

where s is the supervector defined by an adapted universal background model (UBM),

m is the speaker independent and channel independent supervector, T is a rectangular

matrix of low rank, and w is a random vector having a standard normal distribution

prior N(0, 1). The i-vector is a Maximum A Posteriori (MAP) point estimate of the latent

variable w adapting the UBM (supervector m) to a given recording.
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� 6.2 E-vector Extraction Method

Inspired by i-vectors, we propose to extract a feature in the total variability space, which

we refer to as e-vectors, that specifically captures the environmental noise variability.

One way of focusing on the environment related information in an i-vector is via a

dimensionality reduction method, e.g., LDA. We refer to the environmental feature ob-

tained by this method as an LDA-evector.

We also propose a second method to extract environmental features from i-vectors,

by training a bottleneck neural network (BN-NN). Both methods will be described in the

following section.

� 6.2.1 LDA-based Projections

The i-vector representation we obtained so far is speaker and channel dependent. In

order to compensate the within class inter-speaker variability and the session variability,

a supervised dimensionality reduction (LDA), can be used to find a low dimensional

channel-dependent subspace.

Figure 6-1: Evector extraction via LDA using noise labels.

The idea behind this approach is to seek new orthogonal axes to better discriminate

among different noise environments. The axes found must satisfy the requirement of
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maximizing noise condition variance but minimizing within class variance. The within

class variance Sw and between class variance Sb can be written as

Sb =
C

∑
c=1

(
ic − i

) (
ic − i

)t

Sw =
C

∑
c=1

1
nc

nc

∑
n=1

(
ic
n − i

) (
ic
n − i

)t
(6.1)

where i is the mean of i-vectors for each class, C is the number of classes, and nc is the

number of utterances for each class.

In the case of i-vectors, the speaker population mean vector is equal to the null vector

since, in factor analysis, these i-vectors have a standard normal distribution, which has a

zero mean vector. This maximization is used to define a projection matrix A composed of

the best eigenvectors (those with highest eigenvalues) of the general eigenvalue equation:

Sbv = ΛSwv, (6.2)

where Λ is the diagonal matrix of eigenvalues. The i-vectors are then submitted to the

projection matrix obtained from LDA.

After the projection matrix is trained, the same LDA projection will be applied on

all training, development, and evaluation sets. Figure 6-1 depicts an overview of this

process.

� 6.2.2 BN-NN based

A Bottleneck Neural-Network (BN-NN) refers to a particular topology of a NN, such that

one of the hidden layers has a significantly lower dimensionality than the surrounding

layers. It is assumed that such a layer, referred to as the bottleneck layer, compresses

the information needed for mapping the NN input to the NN output. A bottleneck fea-

ture vector is the vector of values at the bottleneck layer, as a by-product of forwarding

a primary input feature vector through the BN-NN. In other words, after a BN-NN is
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Figure 6-2: BN-evector extraction via bottleneck DNN using noise labels.

trained for its primary task, the bottleneck layer is declared to be the output layer and all

succeeding layers are ignored.

In 2011, Yu and Seltzer applied a DNN for extracting BN features, with the bottleneck

being a small hidden layer placed in the middle of the network [95]. Bottleneck features

have shown success in speaker adaptation and language identification [96, 97].

Following Sainath et al. we applied a low-rank approximation to the weights of the

softmax layer of the network. This was done by replacing the usual softmax layer weights

by a linear layer with a small number of hidden units, followed by a softmax layer. More

specifically, a new BN output layer with r linear hidden units was inserted into the last

weight matrix with a hidden layer of size h, and a softmax layer with s state posterior

outputs. This changes the number of parameters from h ∗ s to r ∗ (h + s). There are two
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benefits of using this method. First, it ensures the best achievable frame accuracy even

with a relatively small r. Second, the linearity of the output for the BN layer prevents any

loss of information when we treat the DNN as a feature extractor.

The configuration for our BN-NN was 487x1024x1024xMxN, where M was the size of

the bottleneck, and N was the number of targets. One of the key questions is what targets

to train the BN features on. Since our goal was to obtain a bottleneck feature that was able

to separate different noise conditions, the noise conditions were used as the targets.

Instead of a single bottleneck layer for all mixed noise conditions, our proposed BN-

NN structure extracted separate BN-evectors for each individual noise condition, with the

concatenated BN-evector as the final bottleneck feature output. The extraction method is

given in Figure 6-2. The bottleneck layers shared the same weights for the preceding

hidden layers, and each had its own softmax output with corresponding noise condition

targets. Once we trained the BN-evector extracting network using a certain noise envi-

ronment label, we used the same network to generate a BN-evector for the eval set.

� 6.3 ASR Environment Adaptation using E-vector

To evaluate the effectiveness of the proposed e-vector, we performed environment adap-

tation experiments by augmenting an ASR system with an e-vector.

� 6.3.1 Experiment Setup

I-vector Extraction

For this work, an i-vector extractor of dimension 92 was trained, using a UBM consist-

ing of 512 mixtures. The features used to train the UBM was a 40 dimensional LDA-

transformed feature of nine stacked MFCC frames of dimension 13. We trained the i-

vector and the underlying UBM using the same training set utterances.

Acoustic Model

For recognition, a hybrid DNN-HMM was used as our acoustic model. The network

configurations and training/decoding procedures remained the same as in Chapter 5.

The speech features were also extracted in the same way. The fMLLR-adapted [61] MFCC-
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LDA-MLLT features were used, and fMLLR was applied both during training and test.

For completion, the baseline results are presented in Table 6.1 on the vehicle test corpus.

Model WER (%)
GMM 11.86

hybrid DNN-CE 7.04
hybrid DNN-sMBR 6.53

Table 6.1: ASR baseline WER.

� 6.3.2 LDA-evector Adaptation

The LDA-evectors were extracted by first training the LDA projection matrix for each cor-

responding noise condition. In our modeling, each class was made up of all the recordings

of each noise condition. After training, all i-vectors were transformed using the learnt

projections for each noise condition.

Using the LDA-evector generated, the system was adapted as follows. The speech fea-

tures were derived from speech signals in the same way as the baseline model. The DNN

acoustic models input was a supervector with the e-vector appended to the speech fea-

tures. In this way, the e-vector provides conditioning information about the background

environment.

Results

LDA Projection Label used Evector dim WER
speed 2 6.3
hvac fan 1 5.8
wiper 1 6.3
vehicle type 4 5.9
speed+hvac fan 5 5.7
speed+hvac fan+wiper 11 5.5
speed+hvac fan+wiper+vihecle type 20 5.5

Table 6.2: ASR WER using LDA-evectors

The results of environment adaptation using LDA-evector are displayed in Table 6.2.

Our experiments show that augmenting the system with e-vectors extracted from dif-

ferent noise targets improved recognition accuracies. Here we only list the results from
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seven feature combination candidates that improved WER the most in Table 6.2. We can

see that the model trained with the LDA-evector extracted from {speed, hvac fan, wiper,

vehicle type} improved the relative WER by 16% compared to the DNN-sMBR baseline,

reducing the WER from 6.5% to as low as 5.5%.

� 6.3.3 BN-evector Adaptation

The results of environment adaptation using the BN-evector are displayed in Table 6.3.

We can see that a 17% relative improvement is achieved, reducing WER from 6.5% to

as low as 5.4%. Comparing the results in Table 6.2 and Table 6.3, we observe that the

BN-evector performs slightly better than the LDA-evector.

BN-NN output target BN-evector dim WER
speed 10 6.3
hvac fan 10 5.7
wiper 10 6.1
vehicle 10 5.8
speed+hvac fan 20 5.7
speed+hvac fan+wiper 30 5.5
speed+hvac fan+wiper+vehicle type 40 5.4

Table 6.3: ASR WER using BN-evectors

BN-NN output target BN-evector dim WER

speed
2 6.3
5 6.28

10 6.28

hvac fan
2 5.76
5 5.74

10 5.74

wiper
2 6.17
5 6.14

10 6.14

vehicle
2 5.94
5 5.82

10 5.81

Table 6.4: The effect of the size of the BN Layer.
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We also investigated the effect of the size of the bottleneck in the BN-NN, which di-

rectly influences the dimensionality of the resulting BN-evector. Results in Table 6.4 show

that the performance gain stops increasing at around 10. In Table 6.3 and the rest of this

chapter, we keep our BN size to be 10 for each noise condition.

� 6.3.4 Comparison and Fusion

To better understand the performance, in Table 6.5 we evaluated the WER obtained by

augmenting the original acoustic features with raw i-vectors. We can see that i-vector

adaptation gives a 2.5% relative improvement. We also varied the i-vector dimensionality

to evaluate its effect, and found that 92-dimensions gave the best performance, although

this effect was very mininal.

I-vector dim WER(%)
92 6.37
50 6.38

Table 6.5: ASR WER using raw i-vectors, with different i-vector dimensionalities.

Table 6.6 compares the improvement brought by i-vector adaptation versus e-vector

adaptation. Both the LDA-evector and BN-evector outperformed the i-vector by a large

margin. This indicates that the e-vector was able to capture accurate information about

the noise environment. The reason that the i-vector was not as good might be due to

redundancy in the non-environmental information given the with speech features and

could lead to a biased adaptation.

System WER(%)
baseline 6.5
+i-vector 6.3
+LDA-evector 5.5
+BN-evector 5.4

Table 6.6: ASR WER comparison using i-vector and proposed e-vectors.

Table 6.7 reports the ASR performance of concatenating i-vectors and e-vectors for

adaptation. The fusion result is slightly better than using the i-vector or e-vector individ-

ually. This indicates that the i-vector and the e-vector are complementary, although the

99



CHAPTER 6. E-VECTOR: BLIND FEATURE FOR NOISE ROBUSTNESS VIA BOTTLENECK
DNN

e-vector is trained from an i-vector. In practice, the i-vector and e-vector can be used in

conjunction with each other to achieve better adaptation results.

System WER(%)
baseline 6.5
+ivector+LDA-evector 5.4
+ivector+BN-evector 5.3

Table 6.7: ASR WER fusing i-vector and e-vector.

� 6.4 E-vector for Noise Environment Identification

In the previous section, we demonstrated the effectiveness of using e-vector for envi-

ronment adaptation. This indicates that the e-vector characterized the underlying noise

conditions.

Visualization

As we can see from the scatter plot 6-3, trained from the speed target, the e-vector tended

to separate according to the underlying speed condition.

In this section, we are interested in evaluating its usefulness in identifying different

noise conditions.

Preliminary Study

We used the trained BN network to extract BN-evectors from the eval audio files, and

then use the BN-evector to blindly classify certain noise condition of the corresponding

audio. Classification was done using an SVM classifier with a Radial Basis Function ker-

nel. The LIBSVM toolkit was used for training and testing [98]. Table 6.8 reports the

classification equal error rate (EER) on the speed condition using a BN-evector. Table 6.9

reports the classification accuracy on hvac fan status using a BN-evector. Table 6.10 re-

ports the classification accuracy on wiper status using a BN-evector. Table 6.11 reports the

classification accuracy on vehicle type using a BN-evector. We can see that BN-evector is

capable of classifying different noise conditions. Similar results can be observed in Ta-

bles 6.12, 6.13, 6.14, and 6.15.
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Figure 6-3: A low dimensional projection of an LDA-evector, color-coded by the underly-
ing recording’s speed condition, 0/35/65 MPH respectively.

BN-evector extracted with labels classification accuracy (%)
speed 80.5
speed+hvac fan 81

Table 6.8: Speed classification accuracy using BN-evector.

BN-evector extracted with labels classification accuracy (%)
hvac fan 83.5
speed+hvac fan 84.5

Table 6.9: hvac fan status classification accuracy using BN-evector.

BN-evector extracted with labels classification accuracy (%)
wiper 82
wiper+speed fan 82.5
wiper+speed+hvac fan 83.5

Table 6.10: Wiper status classification accuracy using BN-evector.
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BN-evector extracted with labels classification accuracy (%)
vehicle 78.5
vehicle+speed 79.0
vehicle+hvac fan 79.9

Table 6.11: Vehicle type classification accuracy using BN-evector.

LDA-evector extracted with labels classification accuracy (%)
speed 78.8
speed+hvac fan 79.7

Table 6.12: Speed classification accuracy using LDA-evector.

LDA-evector extracted with labels classification accuracy (%)
hvac fan 81.3
speed+hvac fan 82.2

Table 6.13: hvac fan status classification accuracy using LDA-evector.

LDA-evector extracted with labels classification accuracy (%)
wiper 80.1
wiper+speed fan 80.4
wiper+speed+hvac fan 81.2

Table 6.14: Wiper status classification accuracy using LDA-evector.

LDA-evector extracted with labels classification accuracy (%)
vehicle 77.6
vehicle+speed 78.3
vehicle+hvac fan 79.2

Table 6.15: Vehicle type classification accuracy using LDA-evector.

Results show that the both the LDA-evector and BN-evector are able to identify most

of the noise conditions correctly. This indicates that the e-vectors contain useful informa-

tion about the noise environment. We also observe that, in all four experiments, classifi-

cation accuracy is improved using e-vectors training with more noise labels.

� 6.5 Summary

In this chapter, we presented a novel feature representation trained from i-vector, which

we refer to as e-vector, that specifically captures the channel and environment variabil-
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ity. We have given two e-vector extraction methods, one via an LDA projection, and the

other via a modified Bottleneck DNN. Our experiments on environment adaptation us-

ing the proposed e-vectors brought a 17% relative WER improvement on real-recorded

noisy corpora. This outperformed raw i-vector adaptation improvement by a large mar-

gin. We also showed that the result can be further improved when fusing i-vectors and

e-vectors together. The extracted environment features can also be applied to the blind

environment classification problem, and our experiment demonstrated the capability of

separating noise conditions using the proposed e-vector.
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