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ABSTRACT

Long Short-Term Memory (LSTM) is a particular type of recurrent
neural network (RNN) that can model long term temporal dynam-
ics. Recently it has been shown that LSTM-RNNs can achieve
higher recognition accuracy than deep feed-forword neural net-
works (DNNs) in acoustic modelling. However, speaker adaption
for LSTM-RNN based acoustic models has not been well inves-
tigated. In this paper, we study the LSTM-RNN speaker-aware
training that incorporates the speaker information during model
training to normalise the speaker variability. We first present several
speaker-aware training architectures, and then empirically evaluate
three types of speaker representation: I-vectors, bottleneck speaker
vectors and speaking rate. Furthermore, to factorize the variability in
the acoustic signals caused by speakers and phonemes respectively,
we investigate the speaker-aware and phone-aware joint training
under the framework of multi-task learning. In AMI meeting speech
transcription task, speaker-aware training of LSTM-RNNs reduces
word error rates by 6.5% relative to a very strong LSTM-RNN
baseline, which uses FMLLR features.

Index Terms— speaker-aware training, LSTM-RNNs, speaker
adaptation, i-vector, speaking rate

1. INTRODUCTION

Deep learning has achieved tremendous success in acoustic mod-
elling. With multiple hidden layers, the hybrid neural network hid-
den Markov model (NN/HMM) [1] can obtain significant improve-
ment in terms of recognition accuracy compared to the conventional
Gaussian mixture models (GMMs) [2]. Previous studies mainly fo-
cus on the feed-forward neural networks using the acoustic features
from a fixed-size context window, while recently, the recurrent neu-
ral networks (RNNs) have been demonstrated to be able to achieve
higher recognition accuracy. The RNN has recurrent-connections on
its hidden layers, which is expected to capture much longer tempo-
ral dynamics. However, training an RNN turns to be difficult due to
the well-known gradient vanishing and exploding problems [3]. In
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this context, Long Short-Term Memory (LSTM) [4] is proposed to
overcome these problems by introducing separate gate functions to
control the flow of the information. For acoustic modelling, LSTM-
RNNs are reported to outperform the DNNs on the large vocabulary
tasks [5, 6].

However, a long standing problem in acoustic modelling is the
mismatch between training and test data caused by speakers and en-
vironmental differences. Although DNNs are more robust to the mis-
match compared to GMMs, significant performance degradation has
been observed [7]. There have been a number of studies to improve
the robustness of DNN-HMM acoustic models, which can be divided
into three categories [8]: transformation based adaptation [9, 10],
conservative training [11] and speaker-aware training [12, 13, 14].
In particular, speaker dependent linear transformations for input or
output layer were used for speaker adaptation in [9, 10], while in
[11], KL divergence based regularization was exploited to control
overfitting in DNN acoustic model adaptation. Finally, in [12, 13], a
speaker auxiliary vector was introduced to allow DNNs to normalise
the speaker variability automatically. However, most of these studies
have been limited to DNNs, and to our best knowledge, only Miao
and Metze [15] investigated speaker adaptation for LSTM-RNNs.

The approaches investigated in [15] fall in the category of
transformation based adaptation, where linear input feature transfor-
mation and hidden activation transformation were applied to adapt
LSTM-RNNs. In this work, we focus on the speaker-aware training
for LSTM-RNNs. We show in our study that this is not trivial.
Different from DNNs, LSTM-RNNs are dynamic systems that are
sensitive to a static input. To deal with this problem, we investigated
different model architectures in order to make the speaker-aware
training effective for LSTM-RNNs. We also evaluated these model
architectures with three different speaker representations, namely, I-
vector [16], bottleneck speaker vector (BSV) [17] and the speaking
rate. In addition, we managed to incorporate the phone informa-
tion in our adaptation network, which helped to further reduce the
word error rate. Our experiments were performed on the AMI
meeting speech transcription dataset, and we obtained 6.5% relative
improvement over a strong LSTM-RNN baseline.

2. SPEAKER-AWARE TRAINING ON LSTM-RNNS

2.1. LSTM-RNNs

Compared to the feedforward neural networks, RNNs have the ad-
vantage of learning complex temporal dynamics in sequential data.
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However, in practice, training RNNs to learn long-term temporal de-
pendency can be difficult due to the gradient vanishing and explod-
ing problem [3]. The LSTM architecture provides a solution that
partially overcomes the weakness of simple RNNs and achieves the-
state-of-the-art performance in speech recognition [5, 6]. More on
standard form of LSTM is presented in [4], while in [5], a projec-
tion layer is applied to project the memory cells’ outputs to a lower-
dimensional vector which is particularly effective for speech recog-
nition when the amount of training data is not abundant. In this work,
we used the same LSTM-projection (LSTMP) architecture.

2.2. Adaptation architectures for speaker-aware training

Speaker-aware training is an approach that incorporates the speaker
information into the network training process in order to normalise
the speaker variability. Typical speaker representations are I-vector
[16], bottleneck speaker vector (BSV) [17] and jointly trained
speaker-code [12]. For feed-forward neural networks, it usually
works well by simply concatenating the speaker representations
with the acoustic features. Similar approach may be applied for
LSTM-RNNs as shown in Figure 1(a). However, this approach may
not work well because speaker auxiliary vectors are constant for
a given speaker, adding a static vector into a dynamical system is
ineffective on ASR as shown in[18, 19].

Fig. 1. Adaptation structures on LSTM-RNNs

To solve this problem, two structures are explored. In figure
1(b), the auxiliary vector and acoustic feature pass through a non-
linear transformation first so that the input for LSTM-RNN becomes
different among frames. In figure 1(c), the auxiliary vector goes
through a shallow NN first and is then concatenated to the output of
the LSTM-RNN.

3. SPEAKER AUXILIARY VECTOR

In this paper, we investigate three kinds of auxiliary speaker rep-
resentations: i-vector, bottleneck speaker vector and speaking rate.

The methods to obtain these speaker representations are described
below.

3.1. I-vector

I-vector is a popular technique for speaker verification and recogni-
tion [16]. It can capture the most important information of a speaker
in a low-dimensional representation. Furthermore it has been shown
that i-vectors can be used in speaker-aware training on DNNs for
speech recognition [13, 20].

3.2. Bottleneck speaker vector

Bottleneck speaker vector, proposed in [7], has obtained competitive
performance to the i-vector based adaptation on DNNs. Figure 2(a)
is the standard network for extracting BSVs. It is a 3-layer DNN
trained to classify speakers. A bottleneck layer is set at the third layer
to extract the bottleneck vectors. To obtain the BSV, we averaged all
bottleneck vectors of a speaker and normalise its L2-norm to 1.

Motivated by the work in [21] which uses an ASR-DNN sys-
tem to integrate the speech content and to extract a more powerful
i-vector, two more structures are proposed to exploit phone informa-
tion when extracting BSV.

• Figure 2(b) shows the phone-aware training (PAT) used in this
paper. The posterior of a mono-phone based DNN is fed as
input to the speaker recognition network. Different from the
traditional speaker-aware training, in this work, these two net-
works are trained jointly. The criterion used for model opti-
mization is

E(θ) = λEmono(θ) + Espk(θ) (1)

where θ denotes model parameters and Emono(θ), Espk(θ) are
the cross-entropy for the mono-phone and speaker DNNs re-
spectively. λ is a mixing factor.

• Figure 2(c) illustrates another structure, in which the mono-
phone and speaker DNNs are trained jointly Eq. (1). Multi-
task joint-training, which optimizes more than one criteria
in model training, can yield better performance than normal
cross entropy training. In [22], triphones and trigraphemes
are used to train acoustic models. In [23] phone and speaker
joint training is conducted.

Note that the criteria used in previous two methods are the same.
However, the model architectures are different. In PAT, phone infor-
mation acts as an auxiliary information to help the network classify
speaker better. While in multi-task joint training, phone information
serves to regularize the network.

3.3. Speaking rate

It has been known that the speaking rate impacts the accuracy of au-
tomatic speech recognition (ASR). A relatively low or high speaking
rate usually increases the word error rate [24, 25]. The speaking rate
may influence the speech signal in two ways: on the temporal prop-
erties or on the spectrum distortion. In previous works, frame rate
normalization [26] was applied on GMM-HMM and speaking rate
assisted training was evaluated on DNN-HMM [27]. In this work,
speaking rate was used for speaker-aware training on LSTM-RNNs.
Considering that LSTM-RNNs are both dynamic systems and neural
networks, they may compensate for the speaking rate in both tempo-
ral properties and the spectrum distortion. The speaking rate is fed
into LSTM-RNNs with acoustic feature and is extracted as follows.
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Fig. 2. Structures for extracting bottleneck speaker vectors

• An alignment is generated with a baseline DNN system.

• The speaking rate is then calculated by dividing the number
of phones by the duration of all phones.

f(i) = N/

N∑
j=1

ti,j

where f(i) is the speaking rate for utterance i, ti,j is the du-
ration of phone j, and there are N phones in utterance i.

4. EXPERIMENT

Our experiments are conducted on AMI corpus, which contains
around 100 hours of meetings recorded in specifically equipped
instrumented meeting rooms at three sites in Europe (Edinburgh,
IDIAP, TNO) [28]. Acoustic signal is captured and synchronized by
multiple microphones including individual head microphones (IHM,
close-talk), lapel microphones, and one or more microphone arrays.
In this work, the IHM (close-talk) data are used. Our experiments
adopted the suggested AMI corpus partition that contains about 80
hours and 8 hours in training and evaluation sets respectively [29].
For fast turnarounds, we also selected 10000 utterances from the
training set and created a lighter set-up. The training procedures
and test sets are identical in the sub- and full-set experiments. For
decoding, the 50K-word AMI dictionary and a trigram language
model interpolated from the one created using the AMI training
transcripts and the Fisher English corpus were used.

4.1. Baseline set up

The GMM-HMM system was built using the standard Kaldi AMI
recipe [30]. 39-dimensional MFCC (plus deltas and double deltas)
features with CMVN was used to train the initial ML model. Then
7 frames of MFCCs were spliced and projected to 40 dimensions
with linear discriminant analysis (LDA). A maximum likelihood lin-
ear transform (MLLT) was estimated on the LDA features to gen-
erate the LDA+MLLT model. After that, speaker adaptive training
was performed with one FMLLR transform per speaker. 3962 tied-
states were used in GMM-HMM. FMLLR features were then used
for training DNN, LSTM-RNN, i-vector and BSV.

CNTK [31] was used to train the DNN and LSTM-RNN. The
DNN has 6 hidden layers each of which contains 2048 neurons. The
input feature for DNNs contains 11 frames (5 frames on each side

of the center frame). Cross-entropy (CE) was used. The learning
rate started from 0.1 per minibatch and changed to 1 for the second
epoch, then it was decayed by a factor of 0.5 when the cross entropy
on a cross-validation set between two consecutive epochs increases.

The LSTM-RNN has 3 projected LSTM layers which are fol-
lowed by the soft-max layer. Each LSTM layer has 1024 memory
cells and 512 output units in projection. Input to the LSTM-RNN
is a single acoustic frame with 5 frames shift, the truncated version
of BPTT was used for training LSTM-RNN[5]. 40 utterances were
processed in parallel and the BPTT truncation size was set to 20. To
ensure training stability, the gradient was clipped to the range of [-1,
1] when updating parameters.

Data set Model WER

Sub Set DNN 34.9
LSTM-RNN 32.4

Full Set DNN 26.5
LSTM-RNN 26.0

Table 1. WER (%) of DNNs and LSTM-RNN on AMI IHM condi-
tion

Table 1 shows the results of baseline DNNs and LSTM-RNNs
trained on the sub- and full-set. On both sets, the LSTM-RNN per-
forms better than the DNN, demonstrating its advantage in acoustic
modeling. However, the improvement becomes smaller when more
data was used, which probably because the FMLLR feature is not
so suitable for LSTM-RNNs. The transformation may break the in-
herent temporal dependency between neighbor frames and this also
indicates that other speaker adaptation methods exploration are nec-
essary for LSTM-RNNs.

4.2. Experiment on different structure for LSTM adaptation

Since the efficacy of i-vector for adaptation has been shown on
DNNs, we firstly choose i-vector as the speaker vector for speaker-
aware training on LSTM-RNNs. In this work, a 128 dimensional
i-vector was extracted for each speaker by using GMM-UBM (the
universal background model) with 2048 components. The i-vector
was length normalized to one. Three different structures presented in
Section 2 for speaker adaptation on LSTM-RNNs were investigated.

In Table 2, (a),(b),(c) are structures shown in Figure 1. These
structures did not perform according to our expectation. The
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Model Struct. WER
LSTMP — 32.4

+i-vector
(a) 31.1
(b) 33.2
(c) 34.5

LSTMP+DNN — 35.1

Table 2. WER (%) of different structures for LSTM-RNN adapta-
tion on AMI IHM Subset

straightforward structure gained the best performance, outperform-
ing all other structures. This is partly because the additional sigmoid
function introduced into LSTM-RNNs makes the network hard to
train well. We verified our conjecture using an LSTM-RNN fol-
lowed by a 1-hidden-layer DNN. This structure performed worser
than normal LSTM-RNNs. We will investigate ReLU and advanced
learning rate strategy in the future work.

4.3. Experiment on different BSVs for speaker adaptation

In this section, we compare the WER of the DNN and LSTM-RNN
adaptation using different bottleneck speaker vectors obtained by
standard training (ST), phone aware training (PAT) and multi-task
training (MT). The mixing factor λ for BSV-MT and BSV-PAT were
set to 0.1 in our experiments.

Model Struct. WER
DNN — 34.9

+i-vector — 34.4

+BSV
ST 34.6

PAT 34.7
MT 34.3

LSTMP — 32.4
+i-vector — 31.1

+BSV
ST 31.9

PAT 31.8
MT 31.7

Table 3. WER (%) of different BSV networks trained on AMI IHM
Subset

From Table 3, we can observe that using BSV feature can lead
to improvements on both DNN and LSTM-RNN systems. BSV
with multi-task training is slightly better than standard BSV on both
DNNs and LSTM-RNNs. On DNNs, it was even slightly better
than using i-vector. However, phone-aware training is not helpful
for BSV extraction on both DNN and LSTM models.

4.4. Experiment on different speaker auxiliary vectors

In this subsection we compare different speaker vectors. As shown
in Table 4, all auxiliary vectors achieved 1.5%-4% relative improve-
ment over the baseline LSTM-RNN model. Moreover these auxil-
iary vectors are complementary. The best performance is obtained
using the i-vector+BSV-MT+spk-rate setup. The WER is improved
from 32.4% to 30.6% (relative 6%).

4.5. Experiment on full set

Finally speaker-aware training on LSTM-RNNs is evaluated on the
AMI IHM full corpus. For adaptation on LSTM-RNNs, we adopt the

Feature WER
FMLLR 32.4
+i-vector 31.1

+BSV-MT 31.7
+spk-rate 31.9

+i-vector+BSV-MT 30.9
+i-vector+spk-rate 30.9

+i-vector+BSV-MT+spk-rate 30.6

Table 4. WER (%) of different auxiliary information on AMI IHM
Subset

best configurations discovered in the previous section, i.e., BSV-MT
and combining all auxiliary vectors.

Feature WER
FMLLR 26.0
+i-vector 24.3

+BSV-MT 25.0
+spk-rate 25.7

+i-vector+BSV-MT+spk-rate 24.3

Table 5. WER (%) of different auxiliary information on AMI IHM
Full set

From Table 5, we can see that for each auxiliary vector, the
adapted LSTM-RNN performed consistently better than the baseline
LSTM-RNN. However, when using all speaker representative vec-
tors together, no further improvement can be obtained. The reason
may be that the amount of speakers on full set is large enough to cap-
ture all variability, and on full set the LSTM-RNN model can encode
richer speaker variability by itself and thus the efficacy of speaker
adaptation decreases. Even under this condition the speaker-aware
trained LSTM-RNN still outperforms the baseline LSTM-RNN us-
ing FMLLR feature with 6.5% relative improvement.

5. CONCLUSION

In this paper, the speaker-aware training was studied on LSTM-
RNNs. A simple but effective structure was found for LSTM-RNNs
adaptation and two structures are proposed to incorporate phone in-
formation into BSV. In addition different auxiliary vectors were ex-
plored to test the efficiency for LSTM-RNN adaptation. Our exper-
iments with the AMI corpus show that adaptation with i-vector sig-
nificantly improves the performance of LSTM-RNN models and the
improvement also can be obtained by using BSV and speaking rate.
For the future work, we will focus on joint training of the speaker
information extractor and the speech recognition model.
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