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Abstract

The goal of this thesis is to explore various strategies for incorporating contextual
information into a segment-based speech recognition system, while maintaining com-
putational costs at a level acceptable for implementation in a real-time system. The
latter is achieved by using context-independent models in the search, while context-
dependent models are reserved for re-scoring the hypotheses proposed by the context-
independent system.

Within this framework, several types of context-dependent sub-word units were
evaluated, including word-dependent, biphone, and triphone units. In each case,
deleted interpolation was used to compensate for the lack of training data for the mod-
els. Other types of context-dependent modeling, such as context-dependent boundary
modeling and \o�set" modeling, were also used successfully in the re-scoring pass.

The evaluation of the system was performed using the Resource Management
task. Context-dependent segment models were able to reduce the error rate of the
context-independent system by more than twenty percent, and context-dependent
boundary models were able to reduce the word error rate by more than a third. A
straight-forward combination of context-dependent segment models and boundary
models leads to further reductions in error rate.

So that it can be incorporated easily into existing and future systems, the code
for re-sorting N -best lists has been implemented as an object in Sapphire, a frame-
work for specifying the con�guration of a speech recognition system using a scripting
language. It is currently being tested on Jupiter, a real-time telephone based weather
information system under development here at SLS.
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Chapter 1

Context-Dependent Modeling

1.1 Introduction

Modern speech recognition systems typically classify speech into sub-word units that
loosely correspond to phonemes. These phonetic units are, at least in theory, inde-
pendent of task and vocabulary, and because they constitute a small set, each one can
be well-trained with a reasonable amount of data. In practice, however, the acoustic
realization of a phoneme varies greatly depending on its context, and speech recogni-
tion systems can bene�t by choosing units that more explicitly model such contextual
e�ects.

The goal of this thesis is to comparatively evaluate some strategies for modeling
the e�ects of phonetic context, using a segment-based speech recognition system as a
basis. The next section provides, by way of an overview of previous research on the
topic, an introduction to several of the issues involved, followed by an outline of the
remaining chapters of this thesis and a more precise statement of its objectives.

1.2 Previous Research

Kai-Fu Lee, in his description of the SPHINX system [17], presents a clear summary
of the search for a good unit of speech, including a discussion of most of the units
considered in this thesis. He frames the choice of speech unit in terms of a tradeo�
between trainability and speci�city: more speci�c acoustic models will, all else being
equal, perform better than more general models, but because of their speci�city they
are likely to occur very rarely and are therefore di�cult to train well. Very general
models, on the other hand, can be well-trained, but are less likely to provide a good
match to any particular token.

Since the goal of speech recognition is to recognize the words a person speaks,
the most obvious choice of speech unit is the word itself. In fact, word models have
been applied fairly successfully in small-vocabulary systems to problems such as the
connected-digit recognition task [24]. Unfortunately, word models do not generalize
well to larger vocabulary tasks, since the data used to train one word can not be
shared by others. A more linguistically appealing unit of speech is the phoneme,

11



Figure 1-1: A spectrogram of the utterance \Two plus seven is less than ten." Notice
the variation in the realizations of the three examples of the phoneme /eh/: the �rst,
in the word \seven," exhibits formants (shown in the spectrogram as dark horizontal
bands) that drop near the end of the phoneme as a result of the labial fricative /v/
that follows it; the second /eh/, in the word \less," has a second formant that is being
\pulled down" by the /l/ on the left; and the third /eh/, in the word \ten," has �rst
and third formants that are hardly visible due to energy lost in nasal cavities that
have opened up in anticipation of the �nal /n/. If such variations can be predicted
from context (as is believed to be the case), then speech recognition systems that
do so will embody a much more precise model of what is actually occuring during
natural speech than those that do not.
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since a small set of units covers all possible utterances. This generality allows data to
be shared across words, but at the same time forces each acoustic model to account for
all the di�erent possible realizations of a phoneme. Acoustic models can handle the
variability within a phoneme implicitly if they are constructed as mixtures of several
simpler component models. Previous research, however, has shown that superior
performance can be obtained by handling the variation explicitly. Gender or speaker-
dependent models, for example, create a separate model for each gender or speaker.
Similarly, context-dependent models create a separate model for each context.

Many types of context-dependent models have been proposed in the literature.
\Word-dependent" phone models, �rst proposed by Chow et al in 1986 [3], consider
the context of a phone to be the word in which it occurs. Kai-Fu Lee applied such
models in the SPHINX system to a small set of 42 \function words", such as of, the,
and with, which accounted for almost 50% of the errors in the SPHINX system on the
Resource Management task [17]. Adding these models to the context-independent
system reduced the error rate by more than 25%, signi�cantly decreasing the number
of errors in both function words and non-function words.

More commonly used are phone models that are conditioned on the identity of the
neighboring phones. A left biphone is dependent on the preceding phone, while a right
biphone is dependent on the following phone. A triphone model depends on both the
left and the right context. Such models were �rst proposed by Bahl et al in 1980 [1],
and since then have been shown many times to improve the performance of various
systems [26, 18]. The concept has even been extended to the use of quinphones which
take into account the identity of the two following and preceding phones [29].

The aforementioned models all adhere to the same basic paradigm: the data
that normally would contribute to the construction of just one model are grouped
according to context, thus creating a separate model for each context. Unfortunately,
if the number of possible contexts is large, the amount of data available to each model
will be small.

This problem, known as the sparse data problem, can be dealt with in several ways.
The simplest technique is to train models only for those units for which su�cient
training data are available [16]. A more sophisticated (but not necessarily better)
approach is to merge together contexts that have similar e�ects, thereby not only
increasing the amount of training data per model, but also reducing the number of
models that must be applied during recognition. The choice of models to be combined
can be made either a priori (e.g., using the linguistic knowledge of an expert [19]) or
automatically (e.g., using decision trees to split the data according to context [14],
unsupervised clustering algorithms to merge the models themselves [17], or other
methods).

Even after taking the above precautions, context-dependent models may still per-
form poorly on new data, especially if they have been trained from only a few exam-
ples. A technique known as \deleted interpolation" aleviates this problem by creating
models as a linear combination of context-dependent and context-independent mod-
els. The extent to which each component contributes to the �nal model is calculated
from the performance of each model on data that was \deleted" from the training
set. This strategy was �rst applied to hidden Markov models by Jelinek and Mercer
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in 1980 [13] and has been described more recently by Huang et al [11].
Yet another issue raised by the use of context-dependent models is computational

complexity, which can grow signi�cantly if, during the search, the recognizer must
postulate and test all possible contexts for a given region of speech. The \N -best
search paradigm" [2] addresses this issue by using the standard recognizer to produce
a list of the top N hypotheses, which are then re-evaluated and re-ranked using more
sophisticated modeling techniques.

Most previous research has been performed on systems based on the use of hidden
Markov models (HMM's) to perform recognition. The work presented in this thesis
is based on SUMMIT [7], a segment-based continuous speech recognition system de-
veloped by the Spoken Language Systems group at MIT. Currently, the system used
for real-time demonstrations and ongoing research is context-independent, although
in the past context-dependent models have been used for evaluation purposes [22, 8].
The Sapphire framework [9] allows speech recognition systems to be constructed as
a set of dependencies between individually con�gured components, and is used as a
development platform for the systems described in this thesis. Evaluations are per-
formed on the Resource Management task [23], which has been used extensively to
evaluate the performance of several edgling context-dependent systems [18, 15].

1.3 Thesis Objectives

The goal of this thesis is to evaluate di�erent strategies for modeling contextual
e�ects in a segment-based speech recognition system. Included in the evaluation
are traditional methods such as word-dependent, biphone, and triphone modeling,
as well as some more unusual approaches such as boundary modeling and context
normalization techniques (o�set models). In all cases, the basic approach is to use
context-independent acoustic models to generate a list of hypotheses, which are then
re-evaluated and re-ranked using context-dependent models.

The next chapter describes the components of the SUMMIT system relevant to
this thesis, including an explanation of the Viterbi search, the A* search, and the algo-
rithm used to re-score the hypotheses of the N -best list. Also included is a description
of how the re-scoring algorithm is incorporated into the Sapphire framework.

Chapter 3 describes the context-independent baseline system and the Resource
Management task. Some preliminary experimental results are presented for the base-
line system, as well as some analysis which suggests that the system has the potential
to achieve much higher performance, if it can somehow correctly select the best al-
ternative from those in the N -best list.

Chapter 4 introduces the technique of deleted interpolation, including a descrip-
tion of how it is applied to the models used in this thesis.

Chapter 5 evaluates the performance of word-dependent, biphone, and triphone
models, both with and without deleted interpolation. The performance of word-
dependent models in the Viterbi is compared with their performance in the resort
pass, and results from some experiments with the backo� strategy are given.

Boundary models, described in Chapter 6, account for contextual e�ects by explic-
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itly modeling the region of speech surrounding the transitions from one phonetic unit
to another. Their use in the Viterbi search actually achieves the highest performance
documented in this thesis, when combined with the word-dependent models in the
resorting pass.

Finally, Chapter 8 summarizes the lessons derived from this thesis and presents
some suggestions for future work in this area.
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Chapter 2

The Search

2.1 Introduction

The goal of the search in a segment-based recognizer is to �nd the most likely word
sequence, given the following information:

� the possible segmentations of the utterance and the measurement vector for
each segment,

� acoustic phonetic models, which estimate the likelihood of a measurement vec-
tor, given the identity of the phonetic unit,

� a language model, which estimates the probability of a sequence of words, and

� a pronunciation network, which describes the possible pronunciations of words
in terms of the set of phonetic units being used.

This chapter describes each of these four components separately, and then de-
scribes how the search combines them together to produce the �nal word sequence.

2.2 Components of the Search

2.2.1 Segmentation

The goal of the segmenter is to divide the signal into regions of speech called segments,
in order to constrain the space to be searched by the recognizer. From a linguistic
point of view, the segments are intended to correspond to phonetic units. From a
signal processing point of view, a segment corresponds to a region of speech where the
spectral properties of the signal are relatively constant, while the boundaries between
segments correspond to regions of spectral change. The segment-based approach to
speech recognition is inspired partly by the visual representation of speech presented
by the spectrogram, such as the one shown in Figure 1-1, which clearly exhibits sharp
divisions between relatively constant regions of speech. Below the spectrogram is a
representation of the segmentation network proposed by the segmenter, in which the
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dark segments correspond to those eventually chosen by the recognizer to correspond
to the most likely word sequence. The phonetic and word labels at the bottom are
those associated with the path represented by the dark segments.

The segmenter used in this thesis operates heuristically, postulating boundaries at
regions where the rate of change of the spectral features reaches a local maximum, and
building the segment network S from the possible combinations of these boundaries.
Since it is very di�cult for the recognizer to later recover from a missed segment, the
segmenter intentionally over-generates, postulating an average of seven segments for
every one that is eventually included in the recognition output [7].

Mathematically, the segment network S is a directed graph, where the nodes in the
graph represente the boundaries postulated by the segmenter and an edge connects
node ni to node nj if and only if there is a segment starting at boundary bi and ending
at boundary bj. The Viterbi search will eventually consider all possible paths through
the segment network that start with the �rst boundary and end with the last.

A measurement vector xi is calculated based on the frame-based observations
contained within each segment si [7]. The measurements used in this thesis are a
set of 40 proposed by Muzumdar [20]. They consist of averages of MFCC values
over parts of the segment, derivatives of MFCC values at the beginning and end of
the segment, and the log of the duration of the segment (see Appendix A). From
this point onward, the measurement vectors and the segment network are the only
information the recognizer has about the signal | gone forever are the frames and
their individual MFCC values.

2.2.2 Acoustic Phonetic Models

Acoustic phonetic models are probability density functions over the space of possible
measurement vectors, conditioned on the identity of the phonetic unit. A separate
acoustic model is created for each phonetic unit, and each is assumed to be inde-
pendent of the others. Therefore, the following discussion will refer to one particular
model, that for the hypothetical phonetic unit /�/, with the understanding that all
others are de�ned similarly.

The acoustic models used in this thesis are mixtures of diagonal Gaussian models,
of the following form:

p(x j �) =
MX

i=1

wipi(x j �);

where M is the number of mixtures in the model, x is a measurement vector, and
each pi(x) is a multivariate normal probability density function with no o�-diagonal
covariance terms, whose value is scaled by a weight wi. To score an acoustic model
p(x j �) is to compute the weighted sum of the component density functions at the
given measurement vector x. Note that this score is not a probability, but rather sim-
ply the value of the function evaluated at the measurement vector x.1 For pragmatic

1To speak of probability one must consider a range of possible vectors, over which the PDF is
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reasons, the log of the value is used during computation, resulting in what is known
as a log likelihood score for the given measurement vector.

The acoustic model for the phonetic unit /�/ is trained from previously recorded
and transcribed speech data. More speci�cally, it is trained from the set X� of mea-
surement vectors corresponding to segments that, in the training data, were labeled
with the phonetic unit /�/.

The training procedure is as follows:

1. Divide the segments in X� into M mutually exclusive subsets, X�1 : : :X�M ,
using the k-means clustering algorithm [5].

2. For each cluster X�i, compute the sample mean ��i and variance �2
�i of the

vectors in that cluster.

3. Construct, for each cluster X�i, a diagonal Gaussian model pi(x j �), using the
sample mean and variance as its parameters, pi(x j �) � N(��i; �

2
�iI): Estimate

the weight of each cluster wi as the fraction of the total number of feature
vectors included in that cluster.

4. Re-estimate the mixture parameters by iteratively applying the EM algorithm
until the total log prob of the data converges [5].

2.2.3 The Language Model

The language model assigns a probability P to a sequence of words w1w2 : : : wk. For
practical reasons, most language models do not consider the entire word sequence at
once, but rather estimate the probability of each successive word by considering only
the previous few words. An n-gram, for example, conditions the probability of a word
on the identity of the previous n � 1 words. A bigram conditions the probability of
each successive word only on the previous word, as follows:

P (w1w2 : : : wk) �
kX

i=1

P (wi j wi�1):

The language model for the Resource Management task is a word-pair grammar,
which de�nes for each word in the vocabulary a set of words that are allowed to follow
it. This model is not probabilistic, so in order to incorporate it into the probabilistic
framework of SUMMIT, it was �rst converted to a bigram model. The issues involved
in this process are subtle, and are explained in more detail in Appendix B.

2.2.4 The Pronunciation Network

The pronunciation network de�nes the possible pronunciations of each word in terms
of the available set of phonetic units, as well as the possible transitions from one word

integrated; the true probability of any particular measurement vector is precisely zero.
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to another. Alternative pronunciations are expressed as a directed graph, in which
the arcs are labeled with phonetic units (see Figure 2-1). In the work described in this
thesis, the arcs in the graph are unweighted, and thus the model is not probabilistic.
Analogous to the case of the word-pair language model, such a pronunciation network
could be made probabilistic by considering the network to represent a �rst order
Markov process, in which the probability of each phonetic unit depends only on the
previous unit. These probabilities could be estimated from training data or adjusted
by hand.

1 2
/ah/

3
/v/

/h#/
4/dcl/

5
/dh/

/dh/

6
/iy/

/ah/

Figure 2-1: Part of a pronunciation network spanning the word sequence \of the."

The structure of the graph is usually fairly simple within a word, but the transi-
tions between words can be fairly complex, since the phonetic context at the end of
one word inuence those at the beginning of the next. Since, in a large vocabulary
system, a word can be followed by many other words, at word boundaries the graph
has a very high degree of branching. This complexity, along with the associated
computational costs, make the direct inclusion of context-dependent models into the
Viterbi search di�cult. In fact, many systems that include context-dependent models
apply them only within words and not across word boundaries [16]. Those that do
apply context-dependent models across word boundaries typically make simplifying
assumptions about the extent of cross-word phonetic e�ects, allowing the acoustic
models themselves to implicitly account for such e�ects.

2.3 The Viterbi Search

The Viterbi search has a complicated purpose. It must �nd paths through the segment
network, assigning to each segment a phonetic label, such that the sequence of labels
forms a legal sentence according to the pronunciation network. Of these paths, it
must �nd the one with the highest likelihood score, where the likelihood of a path
is a combination of the likelihood of the individual pairings of phonetic labels with
segments and the likelihood of the entire word sequence according to the language
model.

This task is accomplished by casting the search in terms of a new graph, referred
to as the Viterbi lattice, which captures the constraints of both the segmentation
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/ah/

/v/

/dcl/

/dh/

/iy/

/dh/

/ah/

b1 b3b2 b4 b5

s5s4s3

s2

s1

(1,1)

(2,3)
/ah/

/v/

/dh/

/ah/

/iy/

/v/

/dh/

/ah/

/dh/

Figure 2-2: A sample Viterbi lattice, illustrating several concepts. An edge connects
lattice nodes (1,1) and (2,3) because 1) there is an arc in the pronunciation network
between the �rst and the second node, and 2) there is a segment between the �rst
and the third boundaries. The edge is labeled with the phonetic unit /ah/, and its
score is the score of the measurement vector for segment s2 according to the acoustic
model for /ah/. (Note that not all possible edges are shown.) Of the two paths that
end at node (5; 5), only the one with the higher score will be maintained.
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network and the pronunciation network2. Figure 2-2 shows a part of an example
Viterbi lattice. Columns in the lattice correspond to boundaries between segments.
Rows correspond to nodes in the pronunciation network. There is an edge in the
Viterbi lattice from node (i; j) to node (k; l) if and only if:

� there is an arc, labeled with a phonetic unit =�=, from node i to node k in the
pronunciation network, and

� there is a segment s (with associated measurement vector x) starting at bound-
ary j and ending at boundary l.

This edge is labeled with the phonetic unit =�=, and its weight is the log likelihood
score given by the acoustic model p(x j �).

In a graph that obeys these constraints, any path that starts at the �rst boundary
and ends at the last will have traversed the segment network completely, accounting
for the entire speech signal, and will also have generated a legal path of equal length
through the pronunciation network. The goal of the Viterbi search is to �nd the
highest scoring such path, where the score for a path is the sum of the edge weights
along that path.

The Viterbi search accomplishes this goal by considering one boundary at a time,
proceeding from the �rst to the last. (The graph is not built in its entirety at the
beginning, but rather is constructed as necessary as the search progresses.) To assist
the search as it progresses, nodes in the Viterbi lattice are labeled with the score of
the highest scoring partial path terminating at that node, as well as a pointer to the
previous node in that path. At each boundary, the search considers all the segments
that arrive at that boundary from some previous boundary. For each segment, say
from boundary j to boundary l, there is a set of labeled edges in the Viterbi lattice
that join the nodes in column j with nodes in column l. For each edge, if the score of
the node at the start boundary, plus the acoustic model score of the segment across
that edge, is greater than the score of the node at the end boundary (or if this node is
not yet active), then the score at the end node is updated to reect this new, better
partial path. When such a link is created, a back pointer from the destination node
to the source node must be maintained so that, when the search is �nished, the full
path can be recovered. Figure 2-3 summarizes the algorithm described above.

This sort of search is possible only because the edges in the Viterbi lattice all have
the same direction. Once all edges that arrive at a boundary have been considered,
the nodes for that boundary will never again be updated, as the search will have
proceeded past it in time, never to return. This property suggests a method of pruning
the search, which is essential for reducing the cost of the computation. Pruning occurs
when, once a boundary has been completely updated, any node along that boundary
whose score falls below some threshold is removed from the lattice. As a result,
the search is no longer theoretically admissible (i.e., guaranteed to �nd the optimal

2Mathematically, the Viterbi lattice is the graph intersection of the pronunciation network and
the segment network.
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for each boundary bto in the utterance
let best score(bto) = �1
for each segment s that terminates at boundary bto
let x be the measurement vector for segment s
let bfrom be the starting boundary of segment s
for each node nto in the pronunciation network
for each pronunciation arc a arriving at node nto
let nfrom be the source node of arc a
if (nfrom; bfrom) has not been pruned from the Viterbi lattice
let � be the label on arc a
let acoustic score = p(x j �)
if (score(nfrom; bfrom) + acoustic score > score(nto; bto))

score(nto; bto) = score(nfrom; bfrom) + acoustic score
make a back pointer from (nto; bto) to (nfrom; bfrom)
if score(nto; bto) > best score(bto)
let best score(bto) = score(nto; bto)

for each node nto in the pronunciation network
if best score(bto)� score(nto; bto) > thresh

prune node (nto; bto) from the Viterbi lattice

Figure 2-3: A more concise description of the (simpli�ed) Viterbi algorithm.
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path), since it is conceivable that a partial path starting from a pruned node might
in fact have turned out to be the best one, but in practice pruning at an appropriate
threshold reduces computation costs without signi�cantly increasing the error rate.

Finally, because the search only considers a small part of the lattice at any given
time, it can operate time-synchronously, processing each boundary as it arrives from
the segmenter. This sort of pipelining is one of the primary advantages of the Viterbi
search, since it allows the recognizer to keep up with the speaker. More general search
algorithms that do not take advantage of the particular properties of the search space
might fail in this regard.

2.4 The A* Search

A drawback of the Viterbi search is that, by keeping alive only the best partial
path to each node, there is no information about other paths that might have been
competitive but not optimal. This drawback becomes more severe if, as is often the
case, more sophisticated natural language processing is to take place in a later stage of
processing. Furthermore, the Viterbi makes decisions based only on local information.
What if the best path from the Viterbi search makes no sense from a linguistic point
of view? The system would like to be able to consider the next-best alternative.

Before understanding how this goal is achieved in the current system, it is im-
portant to �rst understand the basic algorithm employed by an A* search [28]. A*
search is a modi�ed form of best-�rst search, where the score of a given partial path
is a combination of the distance along the path so far and an estimate of the re-
maining distance to the �nal destination. For example, in �nding the shortest route
from Boston to New York and using the straight-line distance as an estimate of the
remaining distance, the A* search will avoid exploring routes to the north of Boston
until those to the south have been proven untenable. A simple best-�rst search, on
the other hand, would extend partial paths in an ever-expanding circle around Boston
until �nally arriving at one that eventually hits New York. In an A* search in which
the goal is to �nd the path of minimal score (as in the above example), the �rst path
to arrive at the destination is guaranteed to be the best one, so long as the estimate
of the remaining distance is an underestimate.

In SUMMIT, the goal of the A* search is to search backward through the Viterbi
lattice (after the Viterbi search has �nished), using the score at each node in the
lattice as an estimate of the remaining score [27]. Since the goal is to �nd paths of
maximum score, the estimate used must be an overestimate. In this case it clearly is,
since the Viterbi search has guaranteed that any node in the lattice is marked with
the score of the best partial path up to that node, and that no path with a higher
score exists.

As presented here, however, the A* search does not solve the problem described
above, for two reasons:

1. In the case of two competing partial paths arriving at the same node, the lesser
is pruned, as in the Viterbi search. Maintaining such paths would allow the
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discovery of the N-best paths, but would lead to an explosion in the size of the
search.

2. The system is only interested in paths that di�er in their word sequence. Two
paths that di�er in the particular nodes they traverse but produce the same
word sequence are no di�erent from a practical point of view.

The goal of the system, therefore, is to produce the top N most likely word
sequences, not simply the top N paths through the lattice. This goal is accomplished
by a combination of A* and Viterbi searches as follows [10]: The A* search traverses
the Viterbi lattice backward, extending path hypotheses by one word at a time, using
the score from the forward Viterbi search at each node as an overestimate of the
remaining score. In the case where two paths covering the same word sequence arrive
at the same boundary in the lattice, the inferior path is pruned away. During the
search, however, many paths encoding the same word sequence might exist at any
given time, since they might terminate at di�erent boundaries. Since all complete
paths must end at the �rst boundary, no two complete paths will contain the same
word sequence, and thus the A* search is able to generate, in decreasing order of
score, a list of the top N distinct paths through the lattice.

The extension of a partial path by an entire word is accomplished by a mini back-
ward Viterbi search. A partial path is extended backward by one word by activating
only those nodes in the lattice belonging to the new word and performing a Viterbi
search backward through the lattice as far as possible. Each backward search ter-
minates promptly because, as in the Viterbi search, partial paths that di�er from
the best path by a large enough score are pruned. Once the backward Viterbi has
�nished, the original partial path is extended by one word to create new paths, one
for every terminating boundary.

2.5 Resorting the N-best List

The output of the A* search is a ranked list of the N best scoring paths through the
Viterbi lattice, where each path represents a unique word sequence. The next stage
of processing re-scores each hypothesis using more re�ned acoustic models, and then
re-ranks the hypotheses according to their new scores. The correct answer, if it is
present in the N -best list, should achieve a higher likelihood score (using the more
re�ned models) than the competing hypotheses, and will thus be placed in the �rst
position in the list.

The re-scoring algorithm is fairly simple. For each segment in each path, identify
the context-dependent model that applies to it, and increment the total score for
the path by the di�erence between the score of the context-dependent model and
the score of the context-independent model. In the case that no context-dependent
model applies to a segment, skip it. In theory, when a context-dependent model
does apply to a segment, the context-dependent model should score better than the
context-independent model in cases where the context is assumed correctly, worse
otherwise.
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-398.5504 74.7509 draw the chart of siberian sea
-406.4904 74.1970 add the chart of siberian sea
-409.4144 76.4126 can the chart of siberian sea
-415.1426 75.1856 turn the chart of siberian sea
-420.1019 76.9099 count the chart of siberian sea

Figure 2-4: A re-sorted N -best list. The �rst value is the score given by the resorting
procedure, while the second is the original score from the A* search. Notice that the
correct hypothesis (in bold) was originally fourth in the N -best list according to its
score from the A* search.

The alternative to re-scoring the hypotheses of the N -best list is to use the more
sophisticated models in the �rst place, during the Viterbi or A* search. This approach
can be di�cult for two reasons. The �rst is computational: more sophisticated models
are often more speci�c models, of which there are many, and scoring so many models
for each segment of speech may be prohibitively expensive from a computational point
of view. The second is epistemological: the more sophisticated models may require
knowledge of the context surrounding a segment, which can not be known during the
search, since the future path is as-of-yet undetermined. This second problem could
be overcome in the search by postulating all contexts that are possible at any given
moment, but this strategy leads back to the �rst problem, that of computational cost.

2.6 A Note about the Antiphone

The framework described above for comparing the likelihood of alternative paths
through the Viterbi lattice is awed (from a probabilistic point of view) in that it
compares likelihoods that are calculated over di�erent observation spaces. That is,
two hypotheses that span the same speech signal but traverse di�erent paths through
the segment network are represented by di�erent sets of feature vectors. For example,
although the two paths shown in Figure 2-2 that end at node (5; 5) both cover the same
acoustics, one is represented by a series of four measurement vectors, while the other
is represented by only three. To say that one of the paths is more likely than the other
is misleading. More precisely speaking, one path can be said to be more likely than
the other only with respect to its segmentation. Since the alternative segmentations of
an utterance are not probabilistic, this comparison is not valid without some further
mechanism.

This problem was apparent many years ago [21, 22], but has only recently been
addressed in a theoretically satisfying manner [7]. The solution involves considering
the observation space to be not only the segments taken by a path, but also those
not taken by the path. Doing so requires the creation of an antiphone model, which
is trained from all segments that in the training data do not map to a phonetic unit.
In practice, this means that whenever one considers the likelihood of a phonetic unit
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for a segment, one must actually take the ratio of the likelihood of that phonetic unit
to the likelihood of the antiphone unit. Otherwise, the components of the system
interact as previously described.

2.7 Implementation in Sapphire

One of the goals of this thesis was not only to experiment with di�erent types of
context-dependent modeling techniques, but also to implement the code in such a
way that the bene�ts, if any, would be available to others who wish to take advantage
of them. The Sapphire framework, developed here at MIT [9], provides a common
mechanism whereby di�erent components of the recognizer can be speci�ed as objects
which can communicate with one another by established protocols. The procedure
described above for re-scoring the hypotheses of the N -best list has been implemented
as a Sapphire object, which �ts nicely into the existing structure of SUMMIT for
several reasons. First, the context-dependent models are applied as a distinct stage in
the processing, independent of the implementation of previous stages. Incorporating
context-dependent models directly into the Viterbi search, for example, would not
enjoy such an advantage. Second, the application of context-dependent models is
the last stage of recognition, and therefore is relatively free from the demands of
later stages. (A change in the output of the classi�ers, on the other hand, would
wreak havoc in the Viterbi and A* searches.) Finally, its output, an N -best list, is
of the same form as the output of the A* search, which was previously the last stage
of recognition, and thus any components, such as natural language processing, that
depend on the output of the A* search will function without change on the output of
the resorting module.

The following is an example of the Tcl code that speci�es the con�guration of the
Sapphire object that handles the context-dependent re-scoring procedure:

s_resort resort \

-astar_parent astar \

-ci_parent seg_scores \

-cd_parent cd_seg_scores \

-type TRIPHONE

This code instructs Sapphire to create a new object, called resort, that is a
child of three parents: an A* object called astar and two classi�er objects called
seg_scores and cd_seg_scores, all of which are Sapphire objects declared previ-
ously in the �le. These objects are parents of the resort object because resort

requires their output before it can begin its own computation. The fourth argument,
-type, on the other hand, is simply an argument which tells the resort object what
type of context-dependent modeling to perform. In this case the models are to be
applied as triphone models, but more complicated schemes might be possible, such
as backo� strategies or other means of combination.
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Sapphire forces the resort object to wait until its parents have completed their
computation before proceeding. The only signi�cant computation performed by the
resort object is the scoring of context-dependent models, once for every segment
in every path. Since, by the nature of the N -best list, the paths are for the most
part identical, in the majority of cases these scores will be available directly from a
cache that is maintained for such purposes, avoiding the need to re-compute them.
Therefore, the most signi�cant cost of using context-dependent models is the memory
required to store them.

Finally, the resort object includes an output method that returns the re-sorted
N -best list. This method has the same interface as that provided by the A* object,
and thus can be used by any existing system that previously depended upon the
output of the A* search. The full Sapphire speci�cation of the recognizer used in this
thesis is presented in Appendix D.
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Chapter 3

Experimental Framework

3.1 Introduction

The research described in this thesis is driven by the goal of improving the perfor-
mance of the recognizer. It is necessary, therefore, to characterize the performance of
the current system, in order to establish a reference point against which progress can
be measured. This chapter presents the details of the context-independent baseline
con�guration, as well some results it achieves on the test data that will be used to
evaluate all systems. First, however, is a description of the corpus that forms the
basis of the experiments reported in this thesis.

3.2 Resource Management

The DARPA Resource Management database was designed to provide a set of bench-
mark materials to train, test, and evaluate speech recognition systems [23]. The
domain is the management of naval resources, and the utterances are queries a user
might make to a computer system containing information about the location and
state of various naval resources.1 The data consist of read speech, where the sen-
tences have been generated by a hand-crafted �nite state grammar with a vocabulary
of 997 words. Also provided is a word pair grammar (derived from the �nite state
grammar) which has a test set perplexity of approximately 60 (see Appendix B).

The Resource Management task is a useful framework for experimentation for
two main reasons: �rst, it is a reasonably realistic simulation of the sorts of tasks
we hope to accomplish with speech recognition; and second, as a result of annual
DARPA evaluations, many papers have been published regarding performance on the
task, including the gains reported by various systems as a result of incorporating
context-dependent models [18, 15]. (See Table 3-1.)

The data in the Resource Management corpus are divided into separate sets for
training and testing. Standard practice is to train on a 109-speaker training set,

1For example, \How many vessels are in Indian ocean?" and, for the fricative inclined, \Does
sassafras have the largest fuel capacity of all Siberian Sea submarines?"
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System Con�guration % Error

HTK V1.4 (Woodland & Young '93 [30]) triphone HMM 4.1
SPHINX (Huang et al. '91 [12]) GD triphone HMM 3.8

SUMMIT (Hazen '97, work in progress) CI + bounds 3.8

Table 3-1: The best results in the literature published for Resource Management's
Feb. 1989 evaluation. (The error rates of 3.8% are actually for a slightly di�erent,
but harder test set.)

which I will call train109. This set contains a total of 3990 utterances, 2880 of which
are from 72 speakers (40 utterances per speaker) and 1110 of which are from the
remaining 37 speakers (30 utterances per speaker). Each speaker also recorded two
\speaker-adaptation" utterances, which are not included in the training set. 78 of
the speakers are male, and 31 are female.

The development test data used in the experiments described in this thesis are
the data released for o�cial evaluation purposes in February of 1989 (test89). The
data consist of 300 utterances from 10 speakers, none of which is represented in the
training data.

3.3 The Baseline Con�guration

The baseline system classi�es segments into one of 60 context-independent classes,
corresponding to the units used to transcribe the TIMIT database [6], with the ex-
ception of /eng/. The majority of the experiments described in this thesis involve
subdividing these classes into several according to context. Otherwise, in most cases,
the con�guration of the system remains as described below.

The measurements used throughout this thesis are 39 averages and derivatives of
MFCC values across various portions of the segment, plus the log of the duration
of the segment. They are due to Muzumdar [20] and are described more exactly
in Appendix A. The acoustic models are mixtures of diagonal Gaussian models,
with a maximum of 30 mixtures per model and a minimum of 25 training tokens
per mixture.2 In the case of the 60 context-independent classes, all but three (em,
en, and zh) have su�cient training data to create all 30 mixtures. In the case of
context-dependent models, very rarely does the number of mixtures approach the
upper bound.

The language model is the bigram representation of the word-pair grammar, as
described in Appendix B. This language model has a test-set perplexity of 62.26
on the 1989 evaluation set. The pronunciation network is created automatically by
the application of rules to the baseform pronunciations for each word. There are no

2That is, the number of mixtures used to represent a class is either 30 or the number of mixtures
possible with 25 tokens per mixture, whichever is smaller.
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weights on arcs of the pronunciation network, and so all paths through the network
are assigned equal likelihood.

The Viterbi search and the A* search are both characterized by pruning thresh-
olds. Typically, the Viterbi threshold is �xed at 15:0 and the A* threshold at 30:0.
Increasing either threshold decreases the amount of pruning, increases computation
cost, and (usually) improves performance. The values presented here are used because
they provide su�cient pruning to approach real-time performance, without sacri�cing
a great deal of accuracy.

The recognizer includes a variety of other con�gurable parameters, but these are
held constant throughout the thesis and do not warrant discussion here.

3.4 Baseline Performance

Most of the experiments performed in this thesis evaluate models trained on the 109-
speaker training set and tested on the 10-speaker 1989 evaluation set. As discussed
in Appendix C, in order to accurately assess the performance of the system, it is
necessary to run multiple trials. In the following experiment, 15 sets of context-
independent models were trained on the 109-speaker training set. Each was evaluated
on the 1989 test-set, yielding an average word error rate of 13.7%.

Trial Word Error Rate Substitutions Insertions Deletions

1 14.4 % 9.8 % 2.4 % 2.3 %
2 13.1 % 8.7 % 1.9 % 2.5 %
3 12.8 % 8.7 % 1.9 % 2.2 %
4 14.3 % 9.8 % 2.1 % 2.4 %
5 13.9 % 9.5 % 1.9 % 2.5 %
6 13.7 % 9.3 % 2.1 % 2.4 %
7 13.8 % 9.8 % 1.7 % 2.3 %
8 13.2 % 9.1 % 1.9 % 2.2 %
9 13.7 % 9.4 % 2.0 % 2.3 %
10 13.5 % 8.9 % 2.0 % 2.6 %
11 13.9 % 9.7 % 1.8 % 2.3 %
12 13.7 % 9.3 % 2.0 % 2.4 %
13 13.9 % 9.3 % 2.0 % 2.5 %
14 13.9 % 9.5 % 2.2 % 2.2 %
15 13.7 % 9.4 % 1.8 % 2.4 %

mean 13.7 % 9.35 % 1.98 % 2.37 %
range 1.60 % 1.10 % 0.70 % 0.40 %

uncertainty 0.21 % 0.19 % 0.09 % 0.06 %

Table 3-2: Baseline results for context-independent models on test89.
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The word error rate is the sum of the substitutions, insertions, and deletions. The
uncertainty in the measurement of the word error rate is calculated as described in
Appendix C. In this case, for example, if one were to perform an in�nite number
of experiments, the word error rate averaged over all experiments would di�er from
13.70% by more than 0.21% with a probability of 0.05. The range of possible results,
however, is quite large (1.6%), clearly demonstrating the necessity of performing
multiple experiments3.

Note that the results presented here are not competitive with those published
in the literature (Table 3-1). The reason is that the system presented above was
designed not to maximize performance, but rather to provide a solid baseline with
respect to which further enhancements can be evaluated. Performance can nominally
be improved by increasing the number of measurements per segment, the number
of mixtures per model, or the pruning thesholds of the Viterbi and A* searches.
Futhermore, corrective training could be used to optimize weights on the arcs of the
pronunciation network, and other parameters throughout the system could be tuned
by hand. Doing so, however, would provide little bene�t to the value of comparative
experimentation and would be contrary to the goal of designing a system that keeps
computational costs within the range acceptable in a real-time system.

3.5 N-best Performance

The strategy of re-scoring the hypotheses of the N -best list is worthless if the top
N choices do not include the correct answer, or at least utterances that are \more"
correct than the �rst choice. Furthermore, one would like to know what value of N
should be used. Is the correct answer almost always within the top 10 hypotheses?
Within the top 100? What is the word error rate that we could achieve if we could
choose the best among the hypothesis from the N -best list?

An experiment was designed to answer these questions. The �rst step was to
compute N -best lists of size N = 100 for each of the 300 utterances in the 1989 test
set, using a set of models trained on the 109-speaker training set. Then, for each
value of N between 1 and 100, two statistics were calculated:

1. the word error rate across all 300 utterances, where each utterance is represented
by the best among the top N hypotheses, and

2. the sentence error rate on the same data; that is, the percent of utterances for
which the correct answer is not included as one of the top N hypotheses.

Figure 3-1 is a plot of the two statistics, which shows that a great deal of improve-
ment is possible if the recognizer can learn to extract the best among the hypotheses
represented in the N -best list. (Table 3-3 gives the exact values.) In some ways, this
problem is much simpler than the original problem presented to the recognizer, due

3All results published in this thesis are calculated as the average of several trials (usually 15),
and the word error rate is typically accurate to within 0.25%
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Figure 3-1: A plot of word and sentence error rate for an N -best list as a function of
N . The upper curve is sentence error rate.
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to the severely constrained search space embodied in the N -best list. In others, it is
more di�cult, since the di�erences between alternatives in the N -best list are often
very slight, hinging on only a few segments of speech. But precisely because of the
constraints imposed by the limited number of possibilities, the recognizer can a�ord
to apply more computationally intensive techniques than during the �rst pass. One
such technique is to use context-dependent acoustic models, the results of which are
presented in the remaining chapters of this thesis.

N Word Error Rate Sentence Error Rate

1 13.7 % 54.3 %
2 10.6 % 41.0 %
10 5.1 % 20.3 %
25 3.9 % 16.0 %
50 3.2 % 13.0 %
100 3.0 % 11.7 %

Table 3-3: Word and sentence error rate on test89 as the length of the N -best list
increases.
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Chapter 4

Deleted Interpolation

4.1 Introduction

The training of context-dependent models is hindered by what is known as the \sparse
data problem." That is, for very speci�c contexts, it is unlikely that there will be
enough examples to train robust models; on the other hand, more general contexts
lack the speci�city that was the original goal of building context-dependent models.
One solution to this tradeo� involves a technique called deleted interpolation [13], in
which speci�c models are interpolated with more general models according to their
performance on unseen data. This chapter introduces the concept of deleted inter-
polation and describes its implementation within a segment-based speech recognition
system.

4.2 Deleted Interpolation

Given a particular context-dependent model PCD(�) and its associated context-independent
model PCI(�), an interpolated model PDI(�) can be created as a linear combination of
the two as follows [11]:

PDI(�) = �PCD(�) + (1� �)PCI(�): (4.1)

The goal is to interpolate the two component models such that the resulting model
approximates the context-dependent model (� � 1) when it is well-trained but \backs
o�" to the context-independent model (� � 0) otherwise. Deleted interpolation is a
technique for estimating the values of � by measuring the ability of each model to
predict unseen data. The basic procedure is as follows [11]:

1. Partition the training set T into two disjoint sets, T1 and T2, such that T =
T1 [ T2.

2. Train both the context-dependent model PCD(T1)(�) and the context-independent
model PCI(T1)(�) on the data in T1.
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3. Given the models trained in the previous step, estimate the value of � for each
model using the \held-out" data in T2. (See Equation 4.2 below.)

4. Train both the context-dependent model PCD(T )(�) and the context-independent
model PCI(T )(�) on the entire training set T .

5. Use the value of � calculated in step 3 to create the deleted interpolation model
PDI(T )(�) as a linear combination of the models trained by the previous step, as
per Equation 4.1.

In Step 3, the value of � for the model is initially set to 0:5 and then iteratively
re-calculated, according to the following formula, until it converges:

�0 =
1

N

NX

i=1

�PCD(T1)(xi)

�PCD(T1)(xi) + (1� �)PCI(T1)(xi)
: (4.2)

In Equation 4.2 the xi are the N measurement vectors in T2 representing the
segments for which the context-dependent model is applicable. An extension to the
basic method (known as \jack-kni�ng") rotates T2 through the training data [11]. In
other words, the training set T is partitioned into M disjoint sets T1 : : : TM , and the
calculation of � is performed over the entire training set, applying to each feature
vector x 2 Tj the models trained on T � Tj:

�0 =
1

N

MX

j=1

NjX

i=1

�PCD(T �Tj)(xi;j)

�PCD(T �Tj)(xi;j) + (1� �)PCI(T �Tj)(xi;j)
;

where Nj is the number of vectors in Tj, and xi;j is the ith feature vector in set Tj.
In general, one can combine more than two distributions together in a similar

manner [11]. In the case of J distributions P1(�) : : : PJ(�), let � = �1 : : : �J such that
PDI(�) is de�ned according to the following formula (a generalization of Equation 4.1):

PDI(�) =
JX

j=1

�jPJ(�);

where the values of � are forced to sum to one:

JX

j=1

�j = 1:

The values for �j are solved by a formula that is a generalization of the two model
case (Equation 4.2):

�0j =
1

N

NX

i=1

�jPj(xi)

PDI(�) :

In this way, for example, one might consider interpolating a triphone model with
both left and right biphone models and with the context-independent model.
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4.3 Incorporation Into SUMMIT

The method described above for interpolating models is applicable regardless of
the underlying nature of the original probability density functions themselves. In
SUMMIT, however, the acoustic models are mixtures of diagonal Gaussian models,
and therefore a new interpolated model of the same form can be constructed directly
from the component models.

An acoustic model in SUMMIT, for the phonetic unit =�=, is of the form:

p(x j �) =
MX

i=1

wipi(x j �);

where M is the number of mixtures in the model, x is a measurement vector, and
each pi(x) is a multivariate normal probability density function with no o�-diagonal
covariance terms (see Section 2.2.2).

A new model, pDI(x j �), which interpolates component models p1(x j �) : : : pJ(x j
�) with interpolation parameters �1 : : : �J , can be created as follows:

pDI(x j �) =
JX

j=1

MjX

i=1

�jwi;jpi;j(x j �)

where wi;j and pi;j(x j �) refer to the ith mixture component of the jth model in
the interpolation. The resulting model, just like its components, is a mixture of M
diagonal Gaussian models, where

M =
JX

j=1

Mj:

4.4 Chapter Summary

Deleted interpolation, as described above, provides a mathematical framework for
compensating for the fact that some models will not perform well due to a lack of
training samples. This is accomplished by creating, for each context, a new model
that is a linear combination of the model for that context and the context-independent
model. Th weights used to perform the interpolation are determined automatically
by a procedure which measures the relative ability of each component model to pre-
dict unseen data. The following chapter will demonstrate the use of deleted inter-
polation with context-dependent segment models such as biphones, triphones, and
word-dependent phone models.
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Chapter 5

Traditional Context-Dependent

Models

5.1 Introduction

The traditional strategy for modeling context-dependency has been to change the
unit being modeled from phone to phone-in-context [18]. The context might be the
word in which the phone occurs, as in the case of word-dependent phonetic models, or
the phones immediately preceding or following the phone, as in the case of biphone
and triphone models. Whatever the context, the issues involved with the creation
and use of such models are largely the same. The following sections describe the
motivation behind the use of such models, followed by a presentation of the experi-
mental framework used to evaluate the performance of systems that incorporate such
models. Finally, some results are given that summarize the performance when such
models are used to resort the N -best list output by the context-independent system.

5.2 Word-Dependent Models

One of the simplest forms of context-dependent modeling considers the context of
a phone to be the identity of the word in which it occurs, creating phone-in-word

models by training, for each phone, a separate model for each word in which it
occurs [3]. For example, rather than having just one model for the phone /ae/, as in
the context-independent case, there would be many such models, one for each word
in the vocabulary that contains an /ae/.

This strategy is unsatisfying in that it does not capture the underlying cause of
the variability in the pronunciation of phones. Although it is true that the same
phone may be realized di�erently in di�erent words, the di�erence derives not from
the fact that the words are di�erent, but rather from the di�erences in the phonetic
context surrounding the unit in question. Presumably, two phones with the same
surrounding context will be realized similarly, whether or not they occur in the same
word.

On the other hand, the naivete of word-dependent modeling is also part of its
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strength. Whereas context-dependent models typically account only for contextual
e�ects from adjacent phones, word-dependent models can implicitly capture more far-
reaching contextual e�ects, as well as other inuences whose source might be more
di�cult to ascertain. In other words, word-dependent models can capture contextual
e�ects that are not well understood precisely because they make few assumptions
about the source of the variability.

5.3 Biphone and Triphone Models

Biphones and triphones are the most commonly used type of context-dependent
model. A left biphone is dependent on the identity of the preceding phone, while
a right biphone is dependent on the identity of the following phone. A triphone model
is conditioned on the identities of both the preceding phone and the following phone.

The primary motivation behind such models is that the variation observed in the
realization of a phone is thought to be due largely to the co-articulatory inuences
of its neighbors. A model trained only from examples that occur in a particular
phonetic context is sheltered from this sort of variability, and thus should be able to
more e�ectively discriminate itself from similar classes.

One advantage of triphones, over word-dependent models at least, is that they
are independent of vocabulary and that, presumably, as the vocabulary size grows,
the number of triphone models required should remain relatively constant, while
the number of word-dependent models will continue to increase. This distinction is
analagous to that between phone and word-based acoustic models discussed in the
section on previous research.

5.4 Basic Experiments

The purpose of the following experiments is to compare the performance of a system
that includes context-dependent models with that of the context-independent baseline
system, keeping all other factors constant. In each case, whether the models be word-
dependent or biphone or triphone models, the procedure for selecting, training, and
testing a set of models is essentially the same.

5.4.1 Choosing a Set of Models

The above strategies work by partitioning the data normally reserved for a single
model into many non-overlapping subsets. Because the number of possible contexts
is large, the amount of data for any one context is likely to be very small. In fact, for
the word-dependent models, 53% of the contexts that occur in the training data are
represented by fewer than ten examples. Even worse, 2,495 of the contexts that are
possible in the pronunciation network are not represented at all in the training data.
This is known as the sparse data problem, and one must have a strategy for resolving
it.
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A common strategy, at least in the case of triphones, is to merge contexts, creating
what are known as generalized triphone models [18]. For the sake of simplicity I have
chosen not to do so, and to pursue instead the straightforward strategy of creating
models only for those contexts that occur a su�cient number of times in the training
data. A su�cient number, in the following experiments, is either 50 or 25.

The set of all possible word-dependent models is the set of all phone/word com-
binations that occur in the pronunciation network.1 In the Resource Management
task, the pronunciation network allows 11,473 phone-in-word combinations, of which
8,978 occur at least once in the training data. 1,665 contexts occur at least 25 times
in the training data, and only 690 occur at least 50 times. The statistics are similar
for the biphones and triphones, and are summarized in Table 5-1.

Number of Contexts in Train109
Model Type Total 25 or More Times 50 or More Times

Context-Independent 60 60 60
Word-Dependent 8978 1665 699

Biphone 1589 860 633
Triphone 9239 1662 882

Table 5-1: The number of contexts represented in the training data for each type of
context-dependent model, with cut-o�s of either 25 or 50 training tokens.

5.4.2 Training

Once the set of models has been determined, they are trained by the same procedure
that is used to train the context-independent models, the only di�erence being the
labeling of the data in the training set, which must be modi�ed to reect the context
of each phone. Segments labeled with contexts not to be included in the �nal set of
models are ignored. Each set of models is trained on the 109-speaker training set,
which is the set typically used to train models evaluated in the literature.

5.4.3 Testing

The test-set coverage of a set of models is de�ned as the fraction of segments in
the test data to which the models can be applied. In the case of context-independent
models, the test-set coverage is 100%, since every segment in the test set is classi�ed as
belonging to one of the 60 context-independent phonetic classes. Triphones, biphones,
and word-dependent models, on the other hand, do not account for every segment in
the test-set, since many of the possible models of each type were removed from the
model set because of a lack of training data.

1Others may occur in real speech, but their exclusion from the pronunciation network implicitly
precludes them from being considered during recognition.
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Table 5-2 summarizes the coverage of each type of context-dependent model on
the Feb. 1989 10-speaker test set.

Test-Set Coverage
Type of Model 25+ Models 50+ Models

Context-Independent 100.0 % 100.0 %
Word-Dependent 68.6 % 51.2 %

Triphone 77.3 % 63.4 %
Biphone 96.8 % 92.9 %

Table 5-2: Test-Set Coverage of context-dependent models.

The most signi�cant result is that the biphone models enjoy a very high coverage
of the test set, despite using fewer models than either the triphones or the word-
dependent models.

5.4.4 Results

Table 5-3 summarizes the performance achieved by each type of context-dependent
model on the utterances in the 10-speaker 1989 test set. Each experiment was re-
peated 15 times, and the results given in the table are the averages of the results of
each trial, accurate to within 0.25% word error rate.

Word Error Rate
Type of Model 25+ Models 50+ Models

Context-Independent 13.70 % 13.70 %
Word-Dependent 12.27 % 12.25 %
Left-Biphone 11.61 % 12.11 %
Right-Biphone 10.75 % 10.85 %

Triphone 12.11 % 13.24 %

Table 5-3: Summary of the performance of several di�erent types of context-
dependent models.

There are several interesting observations to be made regarding these results. First
and foremost, the right biphone models perform signi�cantly better than any other
type of model. The fact that the 25+ performance is not signi�cantly better than the
50+ performance is not surprising, since the extra 227 models account for an increase
of less than four percent in the test-set coverage. What is surprising is the fact that
the right biphone models perform so much better than the left biphones, despite the
fact that both account for the same fraction of the test data. This result can be taken
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to suggest that anticipatory co-articulation is more signi�cant than the inuence of
the previous phone.

A second interesting observation is that the word-dependent models, despite su�er-
ing from a particularly low test-set coverage, perform remarkably well. (Another way
to look at it is that the triphone models perform particularly poorly when only those
with 50 or more examples are used.) The lack of improvement in the word-dependent
models, however, from the 50+ case to the 25+ case, is puzzling, and suggests that
many of the 25+ models might be poorly trained. This problem, in fact, probably
plagues, to a varying extent, all of the models described in this section. The tech-
nique of deleted interpolation, introduced in the next chapter, aleviates this problem
by smoothing context-dependent models with their more general context-independent
counterparts. See Table 5-4 for a summary of the performance of these models when
they have �rst been interpolated with context-independent models.

5.5 Incorporating Deleted Interpolation

The purpose of this experiment is to measure the e�ect of deleted interpolation on
the context-dependent models described in the previous chapter. The models were
interpolated with context-independent models according to the procedure described
above, using the jack-kni�ng technique to take advantage of the entire set of training
data. The models were then tested on the February 1989 test set, using exactly the
same procedure as before. As usual, the results presented in the table below are
actually the average taken over 15 independent trials, and are accurate to within
0.25%.

Type Non-Interpolated Interpolated
of Model 25+ Models 50+ Models 25+ Models 50+ Models

Context-Indep. 13.70 % 13.70 % 13.70 % 13.70 %
Word-Dependent 12.27 % 12.25 % 10.71 % (12.7 %) 11.42 % (6.8 %)
Left-Biphone 11.61 % 12.11 % 11.13 % (4.1 %) 11.15 % (7.9 %)
Right-Biphone 10.75 % 10.85 % 10.65 % (0.9 %) 11.12 % (-2.5 %)

Triphone 12.11 % 13.24 % 10.99 % (9.2 %) 11.74 % (11.3 %)

Table 5-4: Summary of the performance of several di�erent types of context-
dependent models. For comparison purposes, the �rst two columns are the results
from Table 5-3, and the last two columns are the results of the same models, after
being interpolated with context-independent models. The numbers in parentheses
are the percent reduction in word error rate as a result of interpolation.

The e�ect of deleted interpolation on a set of models appears to be to suppress
the inuence of the bad among them while encouraging the good. Perhaps the best
example of this e�ect the performance of the 25+ word-dependent models, which
by rights of increased coverage should perform better than their 50+ counterparts.
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This improvement due to increased coverage is only seen with the help of deleted
interpolation.

Another interesting result is that the interpolated word-dependent models, despite
their lack of coverage, outperform the triphone models, suggesting that there is value
in their ability to capture contextual e�ects speci�c to particular words.

Finally, the most disappointing result is the decrease in performance of the right
biphone models as a result of the application of deleted interpolation, though the
di�erence is not terribly signi�cant. This example serves as a reminder that, although
deleted interpolation tries to maximize the performance of models on unseen data
from the training set, there are never any guarantees regarding the performance on
entirely new data.

5.5.1 Generalized Deleted Interpolation

Typically, deleted interpolation is applied to a combination of speci�c models, such
as triphones, with general models, such as context-independent models. As described
in Section 4.2, it is possible to interpolate more than two kinds of models together.
One possibility is to interpolate triphone models not only with context-independent
models, but also with left and right biphone models, leaving to the deleted interpo-
lation the task of determining which component models are valuable and which are
not. As before, examining the weights given by the deleted interpolation can provide
us with some insights into the relative value of various types of context-dependent
models.

Table 5-5 summarizes the results of experiments where the triphone models were
interpolated with context-independent and biphone models, in various combinations.

TRI RB LB CI Word Error Rate

X 13.24 %
X X 11.74 %
X X X X 11.77 %
X X X 11.76 %

X X X 12.07 %

Table 5-5: Results of experiments in which triphone models were interpolated with left
and right biphone models and context-independent models, in various combinations.
In no case did the word error rate improve over the simple interpolation with the
context-independent models only.

The last row of the table indicates an interesting experiment where triphone mod-
els are created as an interpolated combination of biphone models and the context-
independent model, but without including the triphone model itself. Mathematically,
there is nothing special about this case, since the procedure simply evaluates the rela-
tive performance of the component models (whatever they might be) on the segments
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that apply to the interpolated model. This strategy would be ideal for the creation
of triphones that are poorly represented by the training data, except for the fact that
the triphone must appear relatively frequently in order to serve as a basis for the
estimation of the interpolation weights. In any case, the performance is surprisingly
good in this case, though worse than cases that do include the triphone model itself.

The overall results of this experiment show that interpolation with the context-
independent models is su�cient, and that adding intermediate types of models to the
interpolation does not signi�cantly change the results.

5.6 Back-o� Strategies

As discussed previously, the method used in this thesis to choose each set of context-
dependent models does not guarantee complete coverage of the tokens in the test set.
In fact, triphone models chosen with the 50+ criterion cover only 63.4% of the test
data|no wonder they do not perform as well as the biphone models, which achieve
a test-set coverage of 92.9%. Presumably, triphone models are better models, on the
tokens to which they do apply, than the biphone models. Their drawback is a lack of
coverage.

Table 5-6 is an attempt to quantify the notion that a model's true worth must
somehow take into account its test-set coverage. The table gives, for each type of
model, the percent decrease in word error rate from the baseline system, as well as
this percentage divided by the test-set coverage for that type of model. The latter can
be regarded as a metric of the \per-token" improvement provided by a set of context-
dependent models. The numbers given are for the interpolated version of each type
of model, which, except in the case of the right biphones (50+), are superior to the
non-interpolated versions.

Models # Models Coverage Reduction Adj. Reduction

LB (25+) 860 96.8 % 18.76 % 19.38 %
LB (50+) 633 92.9 % 18.61 % 20.04 %
RB (50+) 633 92.9 % 18.83 % 20.27 %
RB (25+) 860 96.8 % 22.26 % 23.00 %
TRI (50+) 882 63.4 % 14.31 % 22.57 %
TRI (25+) 1662 77.3 % 19.78 % 25.59 %
WD (25+) 1665 68.6 % 21.82 % 31.81 %
WD (50+) 690 51.2 % 16.64 % 32.50 %

WD+TRI (25+) 1127 40.5 % 14.53 % 35.87 %
WD+TRI (50+) 544 31.0 % 11.17 % 36.03 %

Table 5-6: Percent reduction in word error rate, adjusted to account for test-set
coverage. The model sets are all interpolated with the context-independent models.
(The last two rows refer to triphone-in-word models, not previously discussed.)
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As expected, the most speci�c models (triphone-in-word) yield the highest ad-
justed reduction in word error rate, while the least-speci�c models, the biphones,
yield the least adjusted improvement. An interesting comparison is between the
word-dependent models and the triphone models, both of which have similar cover-
age statistics. The word-dependent models exhibit clearly superior performance than
the triphones, presumably because they can capture coarticulatory e�ects that are
speci�c to the word in question, including e�ects from phones more distant than the
immediate neighbors.

The backo� strategy is based on the assumption that one would like to use, when-
ever possible, the most speci�c model available. Whenever a very speci�c model is
not applicable to a segment, the algorithm substitutes a less speci�c model, and so
on, until �nding some type of model that applies to the segment, or, if none is found,
skipping the segment. The order of application suggested by the table is �rst to use
the triphone-in-word models, followed by the word-dependent models, followed by
the triphone models, the right biphone models, and �nally the left biphone models.
The results of several experiments using di�erent possible orderings are summarized
in Table 5-7.

Models # Models Word Error Rate Reduction

WD+TRI, WD, TRI, RB, LB 3382 11.11 % 18.9 %
WD+TRI, TRI, RB, LB 2692 10.93 % 20.2 %

WD, TRI, RB, LB 2838 11.13 % 18.8 %
WD+TRI, WD, RB, LB 2500 10.86 % 20.7 %

Table 5-7: The results of various combinations of backo� strategies. The performance
is essentially the same for all combinations, and does not represent an improvement
over the increased coverage that can be obtained by decreasing the required number
of tokens per model.

5.7 Performance in the Viterbi Search

The results presented in this chapter have shown that context-dependent segment
models can decrease the word-error rate of the baseline system when used to re-
score the hypotheses of the N -best list. However, even the best possible re-sorting
mechanism is doomed to some level of failure, since 11.7% of the N -best lists do
not even include the correct answer. Perhaps a better strategy would have been to
apply the context-dependent segment models directly in the Viterbi search to avoid
accidentally pruning away the correct answer.

In the following experiments word-dependent models have been evaluated directly
in the Viterbi search. Word-dependent models, rather than triphone or biphone mod-
els, were chosen for this experiment because with such models the context is known
unambiguously during the search. More speci�cally, the labels in the pronunciation
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network can be replaced by inspection of the network itself, whereas in the case of
biphone and triphone models, the context of a given arc in the pronunciation network
is not known until the search is in progress. Right biphone and triphone models suf-
fer from the further inconvenience that the right context is not available during the
search, making their application impossible without a signi�cant increase in compu-
tation costs.

Type of Model Viterbi Resort

Context-Independent 13.70 % 13.70 %
WD+25 (interpolated) 10.65 % 10.71 %
WD+50 (interpolated) 11.05 % 11.42 %

Table 5-8: A comparison of the performance of word-dependent models in the Viterbi
search and in the re-sorting pass. Performance is slightly better in the Viterbi search,
though the di�erences are not very statistically signi�cant (each result is signi�cant
to within 0.25%).

Table 5-8 summarizes the results of a comparison between the performance of the
word-dependent models in the Viterbi search with their performance in the resorting
pass. In these experiments, although there is a slight edge in performance in the
Viterbi search, the di�erences are not very signi�cant compared to the uncertainty in
the measurement of the word error rate.

5.8 Chapter Summary

This chapter presented results from several experiments using context-dependent seg-
ment models. The most important conclusions are summarized by the following
statements:

� Right-biphone models signi�cantly outperform left-biphone and triphone mod-
els.

� Deleted interpolation with context-independent models improves performance.

� Context-dependent segment models achieve similar performance when used in
the Viterbi search as when used to resort the hypotheses of the N -best list.

� The di�erences in performance among the di�erent types of models can be at-
tributed in part to the di�erences in their coverage of the test-set, but applying
a backo� strategy from more to less speci�c models does not improve perfor-
mance.

The following chapters will present results for boundary models and o�set models,
both of which are alternative ways of capturing the e�ects of phonetic context.
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Chapter 6

Boundary Models

6.1 Introduction

The segmentation stage that precedes classi�cation actually works by proposing likely
boundaries between segments, and from these boundaries the segment network is
created. Traditionally, models have been trained from measurements calculated for
each segment, but in theory there is no reason they should not be trained from
measurements calculated at each boundary. Furthermore, the measurements taken
at a boundary need not be the same as those taken within a segment, and can be
designed speci�cally to capture the salient features that distinguish among di�erent
types of boundaries. As an added bene�t, recognition based on boundary models
does not su�er from the same observation space disparities that plague the segment
modeling strategy, since all paths include the same number of boundaries, so long as
boundaries within a segment are included as well as those between segments.

6.2 Boundary Models

There are two types of boundary models: internal boundary models and transition
boundary models. The former are trained from examples of those boundaries that, in
the forced path, were not chosen by the search to be the endpoint of a segment. That
is, they are the boundaries that were proposed by the segmenter but that, after the
search, were found to be internal to some segment. The transition boundaries are the
remaining ones, those that in the forced path were chosen to separate two segments
from one another.

Boundary models are in some sense inherently context-dependent, since the mod-
els are conditioned on the identity of the two segments surrounding the boundary.
More strictly speaking, however, the boundary models considered here are context
independent, since they depend only on the identity of the boundary under consid-
eration, and not on any neighboring boundaries or more distant segments, just as
context-independent segment models depend only on the identity of the segment in
question.

Boundary models do, however, share with context-dependent segment models the
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explicit modeling of co-articulatory e�ects, as they directly measure the features asso-
ciated with the transition taken by the vocal tract from one phone to another. They
also �t well within the re-scoring framework developed in this thesis for context-
dependent models, since boundary models can be scored at a much lower cost in the
resorting pass than in the Viterbi search.

The primary di�culty in training transition boundary models is the same one
that arises when training context-dependent models: the sparse data problem. If the
segments are divided into N distinct classes, then the number of possible types of
transitions from one segment to another is N2, which severely reduces the amount
of training data available for each one. In practice, of course, the number is much
lower, but still the problem remains that the training data may provide few, if any,
examples of transitions that might occur in the test data.

The possible solutions to the problem are much the same as those for context
dependent models. Various strategies include data-driven clustering of similar models,
the a priori combination of classes by an expert, and the interpolation of poorly
trained models with well trained ones. The following sections will explain the details
of the two strategies implemented in this thesis.

6.3 Basic Experiments

The purpose of the following experiments is to evaluate the performance of a system
that uses boundary models in addition to the normal context-independent segment
models. Unlike context-dependent segment models, boundary models can be included
in the Viterbi search, and therefore the following experiments the boundary models
will be evaluated both in the Viterbi search and as a method for re-sorting the N -best
list.

6.3.1 Choosing a Set of Models

Of the 3600 theoretically possible transitions from one phone to another, fewer than
half (1589) occur in the training set. Of these, only 634 are represented by 50 or
more examples. Those that did not occur in the training set (but still may in the test
data) must be accounted for somehow. In the following experiments, two di�erent
strategies have been adopted for dealing with such cases.

The �rst is simple, and involves training one model for each transition that occurs
su�ciently often (50 times or more) in the training data, plus one additional \catch-
all" model trained from all remaining transitions that actually occur in the training
data. In the 109-speaker training set for Resource Management, 634 transitions occur
at least 50 times. Since the de�nition of the pronunciation network allows a total of
2168 transitions, the \catch-all" model covers the remaining 1534 transitions that
do not occur with su�cient frequency. Many of these, of course, do not appear at
all in the training data, but the \catch-all" model must cover them in case they
arise during testing. Although at �rst glance it appears that the \catch-all" model
accounts for the majority of transitions, it actually represents only seven percent of
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the transitions that occur in the training data, due to the relative infrequency of most
of these transitions.

The second strategy is to group transitions together that share a common place
of articulation. One such grouping, for example, might include all transitions from
some type of silence to another, or between front vowels and retroexed phones. The
particular groupings used in this thesis are those suggested by T.J. Hazen (work in
progress), using a priori linguistic knowledge, resulting in a set of 547 models covering
a total of 2838 types of internal and transition boundaries.1 The following are some
examples of how transitions between similar places of articulation have been grouped
together:

� t(r!l) t(r!el) t(er!l) t(er!el) t(axr!l) t(axr!el)

� t(ey!bcl) t(iy!bcl) t(ih!bcl) t(ix!bcl) t(ay!bcl) t(oy!bcl)

� t(h#!f) t(iwt!f) t(pcl!f) t(tcl!f) t(kcl!f) t(dcl!f) t(gcl!f) t(bcl!f)
t(q!f)

� i(ih) t(ih!ih) t(ih!ix) t(ix!ih) i(ix) t(ix!ix)

In the last example, internal boundary models are grouped with transition bound-
ary models. The reasoning is that a transition between a vowel and itself, if it ever
occurs, is likely to be very similar to boundaries postulated by the segmenter within
a segment of that vowel. Furthermore, since /ix/ is more or less simply a shorter real-
ization of /ih/, any transition that is possible between /ih/ and itself can be grouped
with those between /ih/ and /ix/.

Both strategies ensure that the set of boundary models created is such that in the
test set every boundary that occurs is covered by some model. In the case of context-
dependent segment models, complete coverage was not so important, since the scores
of the context-dependent models were normalized by the context-independent scores
in the re-scoring algorithm. In the case of boundary models, however, scores for each
boundary are simply added to the total score for the path. If coverage were not 100%,
paths with more boundaries covered by the model set would score better than paths
with less frequent boundaries.

6.3.2 Training

The set of measurements used to represent a boundary is a set of eight averages of
the �rst 14 MFCC's over successive speech windows 5, 10, 20, and 40 msec. long,
symmetric about the boundary. PCA was used to normalize the feature space and
reduce the dimensionality to 50 [7].

The training of boundary models follows exactly the same pattern as that for
segment models, the only di�erence being that, in many cases, one model is trained

1It is not necessary to cover all 3600 possible transitions, because many of these are disallowed
by the pronunciation network, and will never be considered during the search.
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to represent many di�erent types of boundaries. (The \catch-all" model, for example,
corresponds to any of 1534 di�erent classes of transition boundaries.) In these cases,
the model is trained from the set of measurement vectors collected from all of the
boundaries included in the model de�nition.

6.3.3 Testing

The purpose of the following experiments is the following:

� to compare the performance of the two strategies presented above for choosing
the set of boundary models, and

� to compare the performance of the boundary models in the resorting pass with
their performance in the Viterbi search.

One set of boundary models was trained according to each strategy and then
tested both in the Viterbi search and in the resorting phase. As usual, in order to
calculate the statistical signi�cance of the results, multiple trials of each experiment
were performed, and the �nal averages are accurate to within 0.25%.

Boundary models are incorporated into the Viterbi search simply by adding to
the score of a segment the score for the boundary model joining the previous segment
to it. Since the Viterbi search maintains only one partial path up to any given node
in the Viterbi lattice, the identity of the previous segment, and thus the boundary
between the two, is known unambiguously. Finally, the sum of the scores of the
internal boundary models is also included in the score for a given segment.

Resorting according to boundary models is even simpler. Each path in the N -best
list includes the sequence of boundaries traversed by that path, and the new score
for a path is simply the original score plus the sum of the boundary scores along that
path. The �nal score assigned to a path is the same as would have been assigned it
had the boundary models been used directly in the Viterbi search.

6.3.4 Results

Table 6-1 summarizes the results from the experiments described above. The most
important observation is that the addition of boundary models provides a phenomenal
gain in performance over the use of segment models alone. A near �fty percent
reduction in the word error rate is far more signi�cant than any results achieved by
the use of context-dependent segment models.

The second result of interest is that the performance of the boundary models is
signi�cantly better when they are included directly in the Viterbi search than when
they are used to resort the N -best list. In fact, the best results achieved in this thesis
have come from the use of boundary models directly in the Viterbi search.

Finally, the \catch-all" models (25+) outperform the set of models de�ned by
Hazen, though the di�erences are not very signi�cant. In future experiments, I have
chosen to use the \catch-all" strategy for reasons of simplicity.
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Re-Score Results Viterbi Results
Model Set prune = 15 prune = 30 prune = 30 prune = 50

Context-Independent 13.70 % 13.16 % 13.16 % 13.17 %
Catch-All (50+) 8.59 % (37.3 %) 7.43 % (43.5 %) 5.98 % 5.39 %
Catch-All (25+) 8.19 % (40.2 %) 7.03 % (48.7 %) 5.77 % 5.13 %

Hazen 8.52 % (37.8 %) 7.33 % (44.3 %) 5.95 % 5.04 %

Table 6-1: Summary of results from boundary model experiments. The numbers in
parentheses are the percent reduction in word error rate achieved by the re-scoring
over the results of the context-independent system. For comparison purposes, results
are also presented for the 25+ version of the catch-all models, de�ned similarly to
the 50+ models described above, except that only 25 examples are required to make
a separate model.

6.4 Combining Boundary and Segment Models

The use of either boundary models or context-dependent segment models results in
signi�cant performance gains with respect to the context-independent system. Since
the two types of models can be applied fairly independently, presumably a combina-
tion of the two would result in higher performance than either one can achieve alone.
The experiments described in this section explore three possible combinations:

1. Use the boundary models in the Viterbi and A* searches and context-dependent
segment models to re-score the N -best list.

2. Use context-dependent segment models in the Viterbi and A* search and bound-
ary models to re-score the N -best list.

3. Use both boundary models and context-dependent segment models in the re-
sorting pass.

The context-dependent segment models are the interpolated, word-dependent
phone models that occur 25 times or more in the 109-speaker training set. The
boundary models were chosen according to the 50+ \catch-all" strategy, as described
in Section 6.3.1. In all three experiments, the combination of the models is achieved
in a straight-forward manner, applying each sort of model as if it were independent
of the other2. In the case where both models are used to re-score the N -best list, the
contributions from the boundary models and the context-dependent segment models
are simply added together.

Table 6-2 summarizes the results. The row identi�es the models used in the �rst
two recognition passes (Viterbi and A* searches), and the column identi�es the models

2One could imagine other alternatives|for example, making models of the boundaries between
word-dependent phonetic units|but this is not what was done.
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Type of Model(s) Used in Resort Pass
Viterbi and A* None Boundary Word-Dep Both

Context-Independent 13.70 % 8.59 % 10.71 % 8.00 %
Word-Dependent 10.65 % 7.55 % { {

Boundary 5.93 % { 5.47 % {

Table 6-2: Word error rates resulting from the possible combinations of boundary
models with word-dependent models.

used to resort the N -best list. In all cases the combination of the two types of models
yields better performance than either type alone. As expected, the use of bound-
ary models in the Viterbi and A* searches, followed by the use of word-dependent
phones to resort the N -best list, provides the lowest word error rate of all, presumably
because the boundary models when used in the Viterbi search provide such a good
starting point for resorting. Unfortunately, in the course of these experiments, it was
discovered that the use of boundary models in the A* search often causes the search
to consume an inordinate amount of computation on some of the utterances, making
the use of boundary models in the �rst pass impractical in these cases. The problem
can probably be overcome with an appropriate implementation, but as it stands the
most practical alternative for a real-time system is to combine the two types of models
in the resorting pass.

6.5 Chapter Summary

In the experiments described in this chapter, acoustic models of the boundaries pro-
posed by the recognizer (rather than the segments) were added to the baseline system,
with impressive gains in performance. The most signi�cant improvements came from
the use of boundary models in the Viterbi search, although the reduction in error
rate by their application in the resort pass far surpassed that achieved by the context-
dependent segment models. In particular, the experiments evaluated two strategies for
creating models to cover every possible transition, one in which boundaries with pho-
netically similar contexts were clustered together, and another in which a threshold
was used to determine which boundaries to train, while the others were automatically
merged into one class. Finally, some results were presented that demonstrate that
the use of boundary models and context-dependent segment models together yields
better performance than either strategy alone.
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Chapter 7

O�set Models

7.1 Introduction

Up to this point, the context-dependent models considered in this thesis have been of
the same form, in which the training data for each context-independent phonetic unit
are divided into sub-classes based on the identity of the surrounding context. Each
of these sub-classes is then trained (and applied during recognition) as if it were a
phonetic unit unto itself. In e�ect, the standard algorithm reduces to using a larger
set of phonetic units, relying on the apparent identity of the context as a fast way of
ruling out most of them.

This paradigm is unsatisfying because, although it is motivated by the goal of cap-
turing the co-articulatory e�ects of the surrounding context, it makes no attempt to
explicitly model these e�ects. This de�ciency is most evident in the word-dependent
phone models, where all pretense at understanding the cause of the contextual vari-
ation is abandoned.

The strategy presented in this chapter, based on work by Phillips et al [22] here
at MIT, is a tentative step toward building more advanced context-dependent models
that learn how to compensate for co-articulatory e�ects by applying transformations
to the measurement vectors themselves.

The basic idea behind \o�set" modeling is that the e�ects of context can be
approximated as a translation of the measurement vector, which can be applied in
reverse during testing to \undo" the e�ects of context. The remainder of this chapter
presents the mathematical framework for this technique, describes the procedure by
which it is applied in SUMMIT, and presents experimental results that document its
performance.

7.2 Mathematical Framework

As before, since each phonetic unit is treated independently, the following descrip-
tions are for the hypothetical phonetic unit �, with the understanding that all other
phonetic units are treated equally.
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The \ideal" measurement vector x� is calculated as an average over the measure-
ment vectors X� that apply to the phonetic unit �:

x� =
1

j X� j
X

x2X�

x (7.1)

Similarly, if C is the set of contexts that can apply to a phonetic unit, then the
set X� can be partitioned into non-overlapping subsets as follows:

X� =
[

c2C

X�;c

where X�;c is the set of measurement vectors that apply to � in the context c. Then,
for each context, the ideal measurement vector for that context can be calculated just
as in Equation 7.1.

x�;c =
1

j X�;c j
X

x2X�;c

x

Given the ideal measurement vector both for the phonetic unit as a whole and
for each context, the \e�ect" of each context c, represented by the translation vector
t�;c, can be estimated as the di�erence between the two ideal measurement vectors:

t�;c = x� � x�;c
If the context of a measurement vector x is known to be c, then one can compensate

for the e�ects of context by applying the translation in reverse, as follows:

x0 = x+ t�;c

Applying this transformation to the measurement vectors in the training set X�
yields a new training set X 0

� of measurement vectors that have been adjusted to
\compensate" for contextual e�ects. From this new training set, the new acoustic
model p0(x j �) can be trained as described in Section 2.2.2. To apply this model
during testing to a measurement vector x in context c, the vector must �rst be
adjusted by adding to it the appropriate translation vector.

7.3 Application in SUMMIT

The application of o�set models requires two separate components: 1) the o�set
vectors for each context-dependent unit, and 2) the context-independent phonetic
models that have been trained from translated measurement vectors. The procedure
for creating these two components is summarized in the following steps:

1. Calculate the \ideal" measurement vector for each context-independent pho-
netic unit as the average of the measurement vectors labeled with that unit.
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2. Similarly, calculate the \ideal" measurement vector for each context as the
average of the measurement vectors in the training data to which that context
applies.

3. Calculate a translation vector for each context as the di�erence between the
ideal vector of the phonetic unit and the ideal vector of the context itself.

4. Adjust each measurement vector in the training data by adding to it the transla-
tion vector corresponding to its context. This adjustment is intended to \un-do"
the co-articulatory inuences of the surrounding context.

5. Train a new set of context-independent models from the training set of adjusted
measurement vectors.

The following procedure is followed when applying o�set models during recognition
to score a segment:

1. Determine the context of the segment and add the translation vector for that
context to the measurement vector for the segment.

2. Score the segment with the appropriate adjusted context-independent model.

Just as in the case of normal context-dependent models, the application of o�set
models takes place in the resorting stage, so that the recognizer can take advantage
of the knowledge of the surrounding context.

7.4 Experimental Results

7.4.1 Basic Experiments

The contexts that can be de�ned for o�set modeling are the same as those that can
be used by traditional techniques, including word-dependent, biphone, and triphone
contexts. One advantage of o�set models, however, is that for each context only a
single vector must be trained, without estimating the shape of a probability distribu-
tion. Another is that the memory required to store o�set vectors is signi�cantly less
than that required to store a similar number of acoustic models. For these reasons,
the threshold for the number of tokens required to train an o�set vector can be much
lower than that required to successfully train acoustic models.

The experiments summarized in Table 7-1 follow the procedure described above,
with di�erent ways of de�ning the context and di�erent thresholds for the number of
tokens required to train an o�set vector.

7.4.2 Modeling Unseen Triphones

One interesting possibility that arises with the use of o�set models is that independent
contextual e�ects can be modeled as a sum of the translations due to each context.
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Type of Model Min # Tokens Coverage Word Error Rate

Word-Dependent 50 51.2 % 12.35 %
Word-Dependent 10 85.2 % 11.84 %
Right-Biphone 50 92.9 % 11.87 %
Right-Biphone 10 99.1 % 11.04 %
Left-Biphone 10 99.1 % 12.26 %
Triphone 2 97.5 % 11.24 %

Table 7-1: Summary of the performance of several variations of the o�set model
strategy.

For example, one might estimate the contextual e�ects of a triphone context to be
the sum of the e�ects of the left context and the right context. By doing so, one can
predict the contextual e�ects of unseen triphones, as long as translation vectors for
both the left and the right contexts have been calculated.

In the following experiment, the translation vectors for the left and right biphones
with a minimum of 10 examples in the training data were added together in all possible
combinations to produce translation vectors for the resulting triphones. These vectors
were then used to adjust the training data, as per the normal procedure, in order to
create new context-independent models. These models were evaluated in the resorting
pass, just as in the �rst experiment. Table 7-2 provides a summary of the results.

Type of Model # Models Coverage Word Error Rate

Left-Biphone (10+) 1105 99.1 % 12.26 %
Right-Biphone (10+) 1105 99.1 % 11.04 %
Normal Triphone (2+) 7127 97.5 % 11.24 %
Triphone Combination 22767 98.1 % 12.23 %

Table 7-2: The performance of triphone models, both in the normal case and as a
combination of left and right biphone models.

Unfortunately, the simple combination of left and right contexts yielded the per-
formance of the worse of the two. In most cases, it is probably the case that either
the right or the left context dominates the co-articulatory e�ects, and that it is inap-
propriate to imagine that both apply independently to any one token.

7.4.3 Context-Dependent O�set Models

Finally, instead of measuring the expected di�erence between context-dependent and
context-independent phonetic units, one could measure a similar di�erence between
two types of context-dependent units, where one of the types is more general than the
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other. In the following experiments, two di�erent sets of o�set vectors were trained.
The �rst set contained o�set vectors between triphone and context-independent pho-
netic units, and the second between triphone and right-biphone contexts. These o�set
vectors were applied separately to two identical sets of training data, and from these
two sets of data were trained two sets of right-biphone models. During recognition,
the application of such models follows the procedure described above, whereby the
o�set vector is applied depending on the triphone context and the appropriate right-
biphone model (trained from data adjusted by the same o�set vectors) is applied.
Unfortunately, none of these more complicated strategies yields performance that is
superior to the normal procedure of training o�set vectors.

Table 7-3 provides a summary of the results.

Type of O�set Type of Model Word Error Rate

Triphone=)CI CI 11.24 %
Triphone=)CI Right-Biphone 11.61 %

Triphone=)Right-Biphone Right-Biphone 11.62 %

Table 7-3: Performance of right biphone models when tested on data adjusted ac-
cording to o�set vectors. The �rst row is the normal case, where o�sets between
triphone contexts and context-independent units are used to train adjusted context-
independent models, which are applied in the resorting pass as usual. The second
row uses the same o�set vectors, but instead trains right-biphone models from the ad-
justed training data, applying these right biphones in the resorting pass. Finally, the
third row trains o�set vectors between triphone and right biphone contexts, applies
these o�sets to the training data, from which are trained right biphone models. These
o�sets and their corresponding right biphone models are applied in the resorting pass
as per the usual procedure.

7.5 Chapter Summary

The o�set strategy makes several assumptions, all of which are invalid, in order to
make the formulation mathematically tractable.

1. That each phonetic unit has an \ideal" realization that it would adhere to in
the absence of contextual e�ects (one possible interpretation of the phonemic
theory of speech). Furthermore, that this ideal realization can be estimated as
the average over all examples in the training set.

2. That the co-articulatory inuences of neighboring phonetic units can be repre-
sented as a transformation applied to measurement vectors. Futhermore, that
this transformation takes the form of an additive o�set to the measurement
vector in question.
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3. Finally, that this o�set depends only on the identities of the surrounding pho-
netic units, and not on the values of any measurement vectors.

Because of these simpli�cations, the potential for success as a result of the ap-
plication of such models is limited. Furthermore, there is no technique analagous to
deleted interpolation to increase the robustness of the individual o�set estimations.
The most promising result of the o�set model investigations is that, despite their sim-
plicity, they were able to reduce the error rate of the context-independent system by
almost twenty percent, demonstrating that the goal of reversing the e�ects of context
is tangible, and that perhaps more sophisticated techniques might enjoy substantial
success.
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Chapter 8

Conclusions and Future Work

8.1 Thesis Overview

This thesis explored the use of context-dependent models to re-score and re-rank the
hypotheses of a context-independent recognizer. Part of the motivation behind such
a strategy, as opposed to incorporating context-dependent models directly into the
Viterbi search, was to reduce computational costs by constraining the search space
over which the context-dependent models are required to operate. Further incentive
came from experimental results which showed that the correct answer, though not
the recognizer's top choice, was in fact among the alternative hypotheses. In the
case of Resource Management, for instance, the correct answer is within the top 100
hypotheses for 88.3 % of the test utterances, but occurs as the top choice in only
45.7% of them.

Several standard types of context-dependent models were discussed, including
word-dependent phone models, left and right biphone models, and triphone models.
Instead of combining poorly trained models together to obtain complete coverage, a
simple count-threshold was used to select the contexts to be covered, ignoring those
with insu�cient training data. Deleted interpolation was used to combine the context-
dependent models with the more robust context-independent models. This technique
was shown, in general to improve the performance of the system.

Of the context-dependent models, the most successful were the word-dependent
models and the right biphone models, both of which were able to reduce the word
error rate of the context-independent system by over twenty percent. More surprising,
however, was the performance of boundary models, which in the resort pass were able
to reduce the word error rate by more than forty percent. When included directly in
the Viterbi search, boundary models were able to achieve a reduction in error rate
over the baseline system of more than 60 percent, although at a signi�cant cost in
computation.
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8.2 Future Work

The most impressive results that the SUMMIT recognizer has been able to obtain on
the Resource Management task come from the use of boundary models, along with
context-independent models, in the Viterbi and A* searches. At present, the compu-
tational cost of doing so is not exhorbitant for most utterances, but on a small fraction
of utterances the computation required to recognize the utterance is exhorbitant, for
reasons that are not well understood. The computational cost for the majority of
utterances, as well as the few unruly ones, can probably be reduced signi�cantly
by changes to the implementation, which at the moment is fairly memory intensive.
In addition to simple data structure modi�cations, more intelligent algorithms that
detect cases where the search space becomes intractable would be very helpful.

More sophisticated techniques for combining together several evaluations of a
recognition hypothesis are needed. Fisher's linear discriminant provides a mechanism
for determining the signi�cance to attach to each evaluation, but more sophisticated
classi�ers might be more useful. Especially interesting would be methods that exam-
ine only regions of speech where two hypotheses di�er in order to determine which
of the two is superior, rather than evaluating each hypothesis independently from all
the others.

Finally, the right approach to context-dependent modeling probably has more to
do with o�set models than with traditional techniques. If phonetic theory is to be
accepted, whereby speech is a concatenation of basic units which, unfortunately, are
distorted by their own phonetic context, then the obvious approach is to somehow
un-do the e�ects of this distortion and go back to the use of context-independent
models. The o�set model is a �rst attempt to do something of this sort, but the
assumption that the distortion takes the form of a linear o�set really hampers its po-
tential for success (though surprisingly it actually performs quite well). Furthermore,
trying to predict the distortion caused by phonetic context from only the identity of
the surrounding phones is bound to be extremely di�cult, especially in light of the
fact that the phonetic units being used are extremely broad. The best approach, I
think, would be to try to train a function that takes the measurement vectors of the
surrounding phones as input and produces as output the measurement vector that
would have been pronounced were there no co-articulatory e�ects present.
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Appendix A

Segment Measurements

The measurement vectors calculated for every segment consist of 40 components, 39
of which are averages or derivatives of MFCC values over portions of the segment.
The last component is the log of the duration of the segment. These measurements
are the forty dimensional set described by Manish Muzumdar in his Master's the-
sis [20]. These features were found to provide a compact vector with good phonetic
classi�cation performance. The following table details the exact form of the measure-
ments:

Components Operation Portion of Segment MFCC Values

1{8 average �rst 30% 0{7
9{22 average middle 60% 0{13
23{28 average last 30% 0{5
29{31 derivative �rst frame 0{2
32{39 derivative last frame 0{7
40 log duration entire segment X

Table A-1: De�nition of the 40 measurements taken for each segment in the experi-
ments described in this thesis.

The �rst eight components of the measurement vector are the averages, taken over
the frames in the �rst 30% of the segment, of the values of the �rst eight MFCC's
(coe�cients zero through seven). Similarly for the next twenty components. Com-
ponents 29 through 39 are derivatives calculated from a 40 msec. window centered
either at the beginning or the end of the segment. Thus, the measurements for a given
segment actually extend to frames in adjacent segments. Finally, the 40th component
is simply the log of the duration of the segment.
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Appendix B

Language Modeling in the

Resource Management Task

B.1 Introduction

The language model de�ned by the Resource Management task is a word pair gram-
mar (WPG) which speci�es, for each word in the vocabulary, the set of words that
can immediately follow it. Unlike an n-gram model, a word pair grammar is not
probabilistic; rather, it simply accepts or rejects sentences according to whether or
not they obey the word pair constraints. This lack of probabilistic rigor is problem-
atic for speech recognition systems that are grounded in a statistical framework. This
chapter explores some of the issues concerning the word pair grammar of the Resource
Management task and its interpretation as a probabilistic model.

B.2 Perplexity

Perplexity is commonly used to measure the complexity of language models. In order
to compare the results of di�erent speech recognition systems, it is often helpful to
know the perplexity of the task. In general, tasks with higher perplexity will result
in lower recognition performance on any given system.

B.2.1 Test-Set Perplexity

A statistical language model de�nes a probability Q(w1 : : : wn) for all word sequences
w1 : : : wn. The test-set perplexity is de�ned for a given word sequence w1 : : : wn and a
given language model Q as follows [25]:

L = 2K;

where K, the average per word log probability, is given by

K = � 1
n
lg [Q(w1 : : : wn)]:
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In the case of a bigram language model, the equation for test-set perplexity can
be re-written as

K = � 1
n

nX

i=1

lg[Q(wi j wi�1)]:

Note that the de�nition of test-set perplexity requires both a language model Q(�)
and a test set w1 : : : wn. To speak of the test-set perplexity of a language model alone
is misleading. When presenting results, the test-set perplexity and the recognition
performance should be evaluated on the same set of utterances.

B.2.2 Language Model Perplexity

If the test set w1 : : : wn is obtained from a well behaved source with probability
P (w1 : : : wn), then the average per word logprob converges to its expected value with
large n:

lim
n!1

� 1
n

X

w1:::wn

P (wi : : : wn)lg[Q(wi : : : wn)] = lim
n!1
� 1
n
lg[Q(wi : : : wn)]:

If the language model truly characterizes the source (that is, P = Q), then the
expected value of the test-set perplexity is given by 2H , where H is the entropy of the
source language itself [25]:

H = lim
n!1
� 1
n

X

w1:::wn

P (wi : : : wn)lg[P (wi : : : wn)]:

The value 2H is called the language model perplexity, which di�ers from the test-
set perplexity in that it is a characteristic of the language model itself, regardless of
any given test-set. The two measures are related as follows: if the language model
Q(�) were used to generate sentences, the test-set perplexity of those sentences would
converge to the language model perplexity as the number of sentences increases.

Normally, the language model used by the recognizer does not match the source
model generating the sentences (i.e. Q 6= P ). In this case, the expected test-set
perplexity will be larger than the language model perplexity 2H for any n [25].

For a bigram language model, the language model perplexity can be calculated
directly from the model as follows [31]:

H = � X
w1;w2

Q(w1; w2)lg[Q(w2 j w2)]:

B.3 The Word Pair Grammar

A word pair grammar can be implemented by a �nite state automaton, where each
state in the automaton corresponds to a word in the grammar, and where a transition
is possible between two states if and only if the second state corresponds to one of the
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words that can follow (according to the grammar) the word corresponding to the �rst
state. Note that word pair grammars are a subset of the class of regular languages
(the set of languages that can be accepted by �nite state automata).

In order to characterize the word pair grammar in terms of perplexity, it must �rst
be converted to a probabilistic language model. Since the grammar itself provides
constraints based only on the current word, it seems reasonable to make the Markov
assumption that the conditional probability of a given word in a sequence depends
only upon the previous word. Furthermore, in the absence of additional information,
it is assumed that all words that can legally follow another word are equally likely to
do so.

Making these assumptions transforms the �nite state automaton described above
into a �rst order Markov process, where for any given state with M transitions, the
probability for each transition leaving that state is 1

M
. Instead of simply accepting or

rejecting input sentences, the model now assigns a non-zero probability to accepted
sentences. This probability is calculated as the product of the transition probabilities
along the state sequence taken by the model in accepting that sentence.

These transition probabilities are the conditional probabilities of a bigram lan-
guage model, and are su�cient to calculate the test-set perplexity of the model or
to apply the model during recognition. To calculate the language model perplexity,
however, we need the unigram probabilities of the words as well. Assuming that the
Markov process is ergodic and contains no periodic states (almost certainly the case
for a realistic grammar), then the unigram probability of each word is the limiting-
state probability of the state corresponding to that word in the Markov model. The
limiting state probabilities obey the following relationships [4]:

Pj =
NX

i=1

(Pi � Pij)
NX

i=1

Pi = 1:

where N is the number of states in the model, Pj is the limiting state probability
for state j, and Pij is the probability of a transition to state j given state i.

In words, the probability of being in state j is equal to the sum (over all possible
states i) of the probability of being in state i and then transitioning to state j. The
sum of all limiting-state probabilities Pi is one (by the de�nition of probability).

The limiting state probabilities of a Markov model can be computed by �rst ini-
tializing the values arbitrarily, and then repeatedly re-calculating the values according
to the formula given above until they converge to a �xed-point. (After each step the
values must be normalized so that they obey the constraint that they sum to one.)
Figure B-1 is a more precise description of the algorithm:

B.4 Measuring Perplexity

Three di�erent bigrams were created to simulate the word pair language model.
Bigram-A assigns a \probability" P (wj j wi) = 1 for each word pair < wi; wj >
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for i 1 to N
Pi =

1
N

repeat
for j  1 to N

P 0
j  0
for i 1 to N

P 0
j  P 0

j + (Pi � Pij)
sum 0
for j  1 to N

sum sum+ P 0
j

change 0
for j  1 to N

P 0
j = P 0

j=sum
change change+ (P 0

j � Pj)
2

Pj = P 0
j

until change < �

Figure B-1: The algorithm for computing the limiting state probabilities of a Markov
model.

in the grammar and P (wj j wi) = 0 for each word pair < wi; wj > that does not
occur in the grammar. This \bigram" is not probabilistic, since the conditional prob-
abilities are not normalized to sum to one, but it simulates the word pair grammar
during recognition by assigning an equal score to all legal competing word sequences
while still excluding illegal sequences.

Bigram-B assumes (falsely) that every word has equal unigram probability Pj =
1
N

and that, given a word, all M words that can legally follow are equally likely with
probability Pij =

1
M
. Bigram-C is identical to Bigram-B except that the unigram

probabilities are calculated by solving for the limiting state probabilities as described
in section B.3.

For each of the three bigrams, both the language model perplexity and the test-set
perplexity were calculated. (For Bigram-A and the word pair grammar these values
are nonsensical since the models are not probabilistic.) In addition, the baseline
recognition system was tested on the 1989 test set (test89) using each bigram. The
results are presented in Table B-1.

Bigram-B and Bigram-C yield the same results because they di�er only in the
unigram probabilities, which do not factor into the calculation of test-set perplexity,
nor into the language model score computed during recognition. The di�erences
in performance between the word-pair grammar and Bigram-A are the results of
di�erences in the way the recognizer chooses the best alternative in the case of a tie,
which is more likely to happen in these cases due to the fact that these grammars
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Language Language Model Test-Set Word
Model Perplexity Perplexity Error Rate

Word Pair { { 84.2 %
Bigram-A { { 84.3 %
Bigram-B 16.637 62.257 86.3 %
Bigram-C 41.548 62.257 86.3 %

Table B-1: A comparison of three interpretations of the word pair grammar.

assign an equal score to all sentences. The following is an example of such a case:

Reference Sentence: Are there four submarines?

Recognizer Hypothesis: Are there for submarines?

B.5 Conclusion

Part of the motivation for exploring the issues regarding the perplexity of the word
pair grammar arose from the fact that in the Resource Management literature the
language model is consistently referred to as the \perplexity 60 word pair grammar,"
despite the contradiction inherent in speaking of the perplexity of a non-probabilistic
model. Moreover, as the results displayed in Table B-1 indicate, the language model
itself cannot be said to have perplexity 60 (in fact, 41.5 seems most reasonable), nor
can test-set perplexity values be given without reference to speci�c data. Finally, it is
not clear from published results whether recognizers were evaluated using a language
model that enforces the word pair constraint directly or using a bigram (such as
Bigram-C) that interprets the word pair grammar in a probabilistic framework. The
performance of the two strategies di�er, and for the 1989 DARPA evaluation, my
baseline results suggest that the latter (using a bigram) provides better performance.
For the sake of maintaining a probabilistic framework, Bigram-C has been used as
the default language model in the experiments described in this thesis.
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Appendix C

Nondeterminism in the SUMMIT

Recognizer

C.1 Introduction

The SUMMIT recognizer is nondeterministic1 due to the clustering procedure used
to create the mixture Gaussian acoustic models. This chapter explains the basis for
this nondeterminism, explores the theoretical consequences of it, and presents some
experimental results that demonstrate the sort of variation in performance exhibited
by the system. Finally, a solid probabilistic framework is developed for interpreting
the results presented throughout the thesis.

C.2 Mixture Gaussian Models

The acoustic models are continuous probability density functions, one per phonetic
unit, that approximate the probability of an observed feature vector, given the identity
of the phonetic unit. Although in theory the density functions may be of any form,
those used in this thesis work are mixtures of several component densities, each of
which is a diagonal Gaussian probability density function. For a given phonetic unit
�, a mixture of M components approximates the probability of a feature vector x by

p(x j �) =
MX

i=1

wipi(x j �);

The training procedure �rst clusters the training examples of � into M clus-
ters, uses each cluster to estimate the parameters of each component, and then uses
maximum likelihood estimation to successively re�ne the initial estimates of the pa-
rameters. In the case of a mixture of diagonal Gaussian models, for example, the

1That is, the system appears to be nondeterministic to the user, who observes varying results
despite running identically con�gured experiments on the same data. In reality, the system is
deterministic, but its behavior is dependent on inputs that the user can not control nor predict, thus
providing the illusion of randomness.
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parameter vector for a given component is simply the mean and the variance of the
measurement vectors belonging to the cluster associated with that component. The
mixture weight !i for a given component is estimated as the fraction of examples in
the entire model that belong to the ith cluster.

C.3 Clustering

The space of possible clustering procedures is overwhelming [5]. Choosing one requires
making a series of di�cult decisions, from the distance metric to be used to the
criterion function that decides what constitutes a cluster. The system described
in this thesis uses a Euclidean distance metric and an agglomerative (bottom-up)
clustering procedure known as k-means clustering. The algorithm divides the data
into M clusters, C1; : : : ; CM , as follows [31]:

1. Select M data samples to serve as the initial cluster means.

2. Assign each data sample to the cluster with the closest mean.

3. Recompute the mean for each of the M clusters.

4. Repeat steps 2 and 3 until the change in distortion (average distance of the data
samples to their associated cluster means) falls below some threshold.

The nondeterminism in the system arises from Step 1, where the initialM cluster
means are chosen randomly from the set of available data samples. A di�erence in
initial values leads to a di�erence in the �nal assignment of data samples to clusters,
which in turn leads to a di�erence in the shape of the resulting acoustic model and a
variation in the performance of the system during testing.

C.4 Handling Variability

As explained above, di�erent sets of models can di�er in performance, even when
the models are con�gured identically and trained on the same data. This variation
is not such a problem in and of itself; more problematic is the di�culty that arises
when comparing the performance of models trained on the same data but con�gured
di�erently. For example, suppose I change the feature set and want to measure the
e�ect on performance. I train a new set of models using the new feature set and
measure its performance, only to �nd that the resulting word accuracy is half a
percent worse than before. How can I know whether this di�erence is due to the
change in the feature set or to the random variation that I can expect whenever I
train a set of models?
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Test Set No. Utterances Mean Variance Range

dev 1200 87.31 % 0.12 1.6 %
test89 300 85.86 % 0.31 2.6 %

Table C-1: Statistics of the variation encountered when 50 model sets, each trained
under the same conditions on the same data, are tested on two di�erent test sets.

C.4.1 Experimental Observations

To answer the above question, the �rst step is to �nd out what kind of variability we
can expect from the system under identical conditions. An experiment was performed
whereby 50 di�erent sets of models were created, each trained on the same data
under identical conditions, and then evaluated on two di�erent test sets. The results
are summarized in Table C-1. Most striking is the range of performance possible,
more than two and a half percent over a set of 300 utterances. A di�erence of 1:5
percent corresponds to a ten percent reduction in the error rate, which normally would
be considered quite a signi�cant result. Clearly, when comparing di�erent systems,
performance di�erences of less than a few percent will have to be evaluated more
carefully.

A second notable result is the di�erence in range between the evaluations on
the dev set and those on test89. The dev set, which contains four times as many
utterances as test89, has only 40 percent the variance. Similarly, we might expect
that a larger training set would also narrow the range in performance.

C.4.2 Error Estimation

Looking at Table C-1, we can be reasonably con�dent that test89 is \harder" than
the dev set, at least for this con�guration of the recognizer. Our con�dence stems
from the fact that we ran many experiments, and we expect that if we ran many
more, we would still �nd that on average our models perform worse on test89 than
on the dev set. But how con�dent are we? In general, how many experiments do we
have to run to be able to state with con�dence that we believe the results?

The answer derives from basic probability theory, though taking advantage of
the theory requires making some assumptions. The basic idea is to consider the set
of experimental results y1; : : : ; yn to be a set of independent, identically distributed
random variables. The sample mean Mn of these random variables is related to the
distribution for y as follows [4]:

Mn =
y1 + y2 + : : :+ yn

n

E(Mn) =
nE(y)

n
= E(y)
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�2
Mn

=
n�2

y

n2
=

�2
y

n

Applying the Chebyshev inequality to Mn yields the following weak upper bound
on the probability that a measured value of Mn will di�er from the true expected
value of y by more than some o�set � [4]:

Prob[jMn � E(Mn) j� �] � (
�2
y

n�2
)2

Unfortunately, this bound is rather weak, but it can be tightened signi�cantly by
assuming that the random variables obey a normal distribution2. If so, then knowing
the form of the PDF forMn, we can easily calculate the probability of error using the
following formula:

Prob[jMn � E(Mn) j� �] = 1� 2�(
��pn
�y

);

where �() is the unit normal PDF, which is evaluated by consulting a table.
The above formula can be rearranged to solve for any one of the many parameters,
assuming that the others are �xed. For example, for the 50 experiments run on test89,
if we �x our level of con�dence at 0.95, using the value of �y calculated from the data,
we get a value of � = 0:15. In other words, the probability that the expected value of
the accuracy of a set of models on test89 is within 0:15% of the sample mean 85:86%
is 0:95. That is, we can be 95% sure that the true mean (i.e., the value we would �nd
if we ran an in�nite number of experiments) is between 85:71% and 86:01%.

C.5 Cross Correlations

One might be tempted, from the above results, to train many sets of models, evaluate
them all on the dev set, and then use only the best set of models for testing on the
test set. Indeed, at this point we don't know whether this strategy is likely to work
or not. The answer depends on whether the variation in the models is a reection
on their fundamental \goodness" or simply a measure of their coincidental alignment
with a given test set. This question can be resolved by measuring the correlation

coe�cient (or normalized covariance) between the values recorded for each of the two
test sets. The correlation coe�cient for two random variables x and y is de�ned as
follows:

2This assumption is clearly false in this case, since the number of choices for randomly seeding
the clustering algorithm is �nite. However, according to the central limit theorem, as n ! 1 the
PDF for the sample mean will approach the Gaussian PDF, regardless of the form of the PDF of
the random variables, so the assumption may not be so bad after all (see Figure C-1).
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Figure C-1: A histogram of the results of 50 di�erent sets of models evaluated on
test89, as described in Table C-1. Overlayed is a Gaussian distribution with the
sample mean and sample variance as its parameters.

�xy = E[(
x� E(x)

�x
)(
y � E(y)

�y
)]

A correlation coe�cient of zero implies that the two random variables are com-
pletely independent, whereas a coe�cient of one implies that they are completely
dependent. Evaluating the results of the above experiment yields a correlation co-
e�cient of 0:217. This result is somewhat ambiguous, showing that there is some
correlation, but not much. In general, it can not be assumed that unusually good
performance (due to probabilistic uctuations) on one set of data will lead to partic-
ularly good performance on another set.

C.6 Conclusions

This nondeterminism in the recognizer seems to be a real hassle: why not design the
system to exclude the possibility? This could surely be done, either by choosing a
di�erent clustering algorithm, or even by simply modifying the existing one to always
pick a prede�ned set of starting points. Unfortunately, this sort of solution would not
solve the problem, because although the results would be deterministic, there would
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be no guarantee that they are particularly good results.
The real problem lies not in the randomized k-means seeding that introduces

nondeterminism, but rather the inherent randomness in the choice of training and
test data. The kind of variability observed by training and testing multiple models
under identical conditions is the same kind one would observe if one trained and
tested identical sets of models on di�erent subsets of the data. On average, \better"
models will perform better, regardless of the division between training and test data.
Unfortunately, any one particular division might lead to results where one set of
models performs better than another, despite being in fact a \worse" set of models.

But this problem is also a blessing. By forcing us to recognize the inherent non-
determinism in the speech recognition system, we are forced into running multiple
experiments in order to minimize the uncertainty in the measurements. If we did
not do so, we might, for example, reject an incremental improvement because it hap-
pened, on one particular trial, to generate worse results. Or, more likely, we might
incorrectly view a large (1-2 percent) improvement in results as a sure-�re indication
that the models have improved, when in fact they might not have changed at all. By
requiring us to explicitly measure the uncertainty in the results, the nondeterministic
nature of the recognizer has in fact strengthened the scienti�c legitimacy of our work.
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Appendix D

Sapphire Con�guration Files

The following is an example of a Sapphire con�guration �le used in this thesis. It
demonstrates the power of the Sapphire framework by using control-ow statements
in Tcl to con�gure the recognizer according to the availability of input arguments.
For example, if no boundary models are included in the arguments, then they are not
used by the Viterbi search; otherwise, they are. Thus, the recognizer can con�gure
itself appropriately by infering the intentions of the user by the arguments provided.

# Recognized variables are:

#

# -bpcs (boundary pcs file)

# -spcs (segment pcs file)

# -bmodels (boundary models file)

# -smodels (segment models file)

# -sweights (segment weights file)

# -blabels (boundary labels file)

# -slabels (segment labels file)

# -cd_smodels (CD segment models file)

# -cd_slabels (CD segment labels file)

# -lex (pronunciation network)

# -bigram (viterbi bigram file)

# -as_ngram (astar ngram file)

# -vprune (viterbi pruning threshold)

# -aprune (A* pruning threshold)

# -nbest (N for the N-best list)

# -type (type of CD modeling to perform)

# set defaults

set_if_unset bpcs None

set_if_unset spcs None

set_if_unset bmodels None
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set_if_unset smodels None

set_if_unset blabels None

set_if_unset slabels None

set_if_unset sweights None

set_if_unset cd_smodels None

set_if_unset cd_slabels None

set_if_unset lex None

set_if_unset bigram None

set_if_unset as_ngram None

set_if_unset nbest None

set_if_unset vprune None

set_if_unset aprune None

set_if_unset type None

set_if_unset server_client_order 0

if {[info command w] == ""} {

s_waveform w

}

s_transform_waveform tw \

-waveform w \

-normalize yes \

-removedc yes \

-preemphasis 0.97

s_stft stft \

-waveform tw \

-framedurationms 5.0 \

-preemphasis 0.0 \

-dft 256

s_mfsc_from_spectrum mfsc \

-spectrum stft

s_rotate_spectrum mfcc \

-spectrum mfsc \

-type cepstrum \

-numout 14

s_segment_from_mfcc segs \

-mfcc mfcc

s_spectrum_mean_norm mfcc \

-spectrum unnorm_mfcc \
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-steptime 0.5

# Segment measurements

source "40.srec"

# Diagonalized measurements

s_pcs rot_meas \

-parent $seg_meas \

-pcsfile $spcs

# Segment Classifiers

s_classifier seg_scores \

-type "mixture_diagonal_gaussian" \

-parent rot_meas \

-labelsfile $slabels \

-modelsfile $smodels

-random_seed $random_seed \

-weightsfile $sweights

if {$cd_slabels != "None"} {

puts "Computing CD measurements for $cd_smodels"

s_classifier cd_seg_scores \

-type "mixture_diagonal_gaussian" \

-labelsfile $cd_slabels \

-parent rot_meas \

-modelsfile $cd_smodels \

}

# Boundary Classifiers

if {$blabels != "None"} {

puts "Computing boundary measurements for $blabels"

source "112.brec"

s_pcs rot_bound_meas \

-parent $bound_meas \

-trpooled yes \

-trcorrelation yes \

-labelsfile $blabels \

-pcsfile $bpcs \

-numout 50

s_classifier bound_scores \
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-type "mixture_diagonal_gaussian" \

-labelsfile $blabels \

-parent rot_bound_meas \

-expscale 0.5 \

-mindatapoints $bnumdims \

-maxmix 30 \

-modelsfile $bmodels

}

if {$vprune != "None"} {

if {$bmodels != "None"} {

puts "Running Viterbi with boundary models"

s_viterbi viterbi \

-bounds segs \

-segs segs \

-boundstype bounds \

-segstype segs \

-segmentscores seg_scores \

-boundaryscores bound_scores \

-ngramdef 0.0 \

-printpaths 1 \

-backtrace yes \

-disableins yes \

-disabledel yes \

-prune $vprune \

-bcdfile $lex \

-ngramfile $bigram

} else {

puts "Running Viterbi without boundary models"

s_viterbi viterbi \

-bounds segs \

-segs segs \

-boundstype bounds \

-segstype segs \

-segmentscores seg_scores \

-ngramdef 0.02 \

-printpaths 1 \

-backtrace no \

-sortnodes yes \
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-disableins yes \

-disabledel yes \

-prune $vprune \

-bcdfile $lex \

-ngramfile $bigram

}

} else {

puts "No vprune specified: assuming bare-bones Viterbi for training"

if {$blabels != "None"} {

puts "Training boundary models"

s_viterbi viterbi \

-boundaryscores bound_scores

} else {

puts "Training seg models"

s_viterbi viterbi \

-segmentscores seg_scores

}

}

if {$nbest != "None"} {

puts "Performing A* search"

s_astar astar \

-parent viterbi \

-thresh $aprune \

-ngramfile $as_ngram \

-nbest $nbest

}

if {$type != "None"} {

puts "Resorting using type $type"

if {$bmodels != "None"} {

puts "resorting with boundary models $bmodels"
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if {$cd_smodels != "None"} {

puts "Resorting with CD models $cd_smodels"

# resort with both CD models and boundary models

s_resort resort \

-astar_parent astar \

-ci_parent seg_scores \

-cd_parent cd_seg_scores \

-bound_parent bound_scores \

-type $type

} else {

# resort with only the boundary models

s_resort resort \

-astar_parent astar \

-ci_parent seg_scores \

-bound_parent bound_scores \

-type $type

}

} else { # $bmodels == None

if {$cd_smodels != "None"} {

puts "Resorting with CD models $cd_smodels"

s_resort resort \

-astar_parent astar \

-ci_parent seg_scores \

-cd_parent cd_seg_scores \

-type $type

} else {

puts "Resort type $type specified, but no CD or bound models -- not resorting"

}

}

}
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