
Building Personal Software with Reactive Databases

by

Geoffrey Litt

B.S., Yale University (2014)
S.M., Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

©2023 Geoffrey Litt. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Geoffrey Litt
Department of Electrical Engineering and Computer Science
August 30, 2023

Certified by: Daniel Jackson
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Building Personal Software with Reactive Databases

by

Geoffrey Litt

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Spreadsheets and relational databases can simplify the creation of a variety of soft-
ware, particularly for end-users who are less familiar with programming. This thesis
extends techniques from those tools in three novel ways. First, we show how existing
real-world web applications can be extended without doing traditional programming,
using a spreadsheet view. Second, we show how text documents can be gradually en-
riched into personal software tools using similar techniques. Finally, we demonstrate
a new reactive relational data architecture for building complex applications with
rich interactions and stringent performance requirements. Together, these projects
empower both end users and application developers with simpler tools for developing
software.

3

4

Acknowledgments

None of the research in this thesis would have been possible without the support of

an incredible community of collaborators, friends, and mentors. I’m grateful to:

My advisor Daniel Jackson, who has supported me through my research journey

and taught me so much, including how to think crisply, how to write well, how to grow

an idea, and how to turn any bureaucratic hurdle into a fun intellectual challenge.

Grad school has been a great experience because of him.

My thesis committee members Rob Miller and David Karger, for great discussions

and useful feedback.

Josh Pollock, for all the good times and wide-ranging discussions in G-708, and

for teaching me so much about diagrams and layout. Nicholas Schiefer, for being my

closest grad school collaborator and a great friend. Johannes Schickling, for showing

me the value of relentless focus and good API design.

Collaborators at Ink & Switch—Peter van Hardenberg, Paul Sonnentag, Max

Schoening, Paul Shen, Alexander Obenauer, James Lindenbaum, Szymon Kaliski,

Martin Kleppmann, Marcel Goethals, Orion Henry, Adam Wiggins, Rae McKelvey,

and Blaine Cook—for deeply influencing my ideas, values, and process.

Jonathan Edwards, Clemens Klokmose, Shriram Krishnamurthi, Sanjay Sarma,

Arvind Satyanarayan, and Alex Warth, for wisdom and mentorship.

Glen Chiacchieri, for inspiring me to do research in end-user programming and

helping me get started.

Andrés Cuervo, Josh Horowitz, Steve Krouse, Kevin Lynagh, Slim Lim, Omar

Rizwan, Mary Rose Cook, Amelia Wattenberger, Daniel Windham, and all of my

computing friends, for helpful advice and energizing discussions online and in person.

MIT friends: Sam Broner, Crystal Lee, Alex Lew, Jonathan Zong, and everyone

in MIT HCI, for helping to make grad school fun and engaging.

The wonderful UROPs I had the opportunity to work with: Kathryn Jin, Kapaya

Katongo, Gloria Lin, Tyler Millis, and Jessica Quaye.

Santiago Perez de Rosso, for sharing advice early on in my PhD.

5

The National Science Foundation Graduate Research Fellowships Program (NSF

GRFP), the NSF SaTC Program (Award 1801399), Ink & Switch, and RelationalAI

for supporting parts of the research in this thesis.

Yoshiki Schmitz, who inspired me and so many others with his fountain of bril-

liance, and left us too soon.

My parents Misako and David, my brother Henry, and my whole family for sup-

porting my dreams.

And above all, my wife Maggie, who convinced me that I could do this in the first

place, and believed in me the whole way.

6

Contents

1 Introduction 19

1.1 Background . 20

1.1.1 Direct manipulation / desktop metaphor 20

1.1.2 Spreadsheets . 21

1.1.3 Low-code database platforms 22

1.1.4 Reactive databases . 24

1.2 Contributions . 28

1.2.1 Wildcard: extending web applications 28

1.2.2 Potluck: enriching text documents 31

1.2.3 Riffle: building reactive relational applications 32

1.2.4 Shared themes . 35

2 Design dimensions for reactive databases 41

2.1 Introduction . 41

2.2 A simple model of state and views . 42

2.2.1 View model . 44

2.3 Properties of shared state . 45

2.3.1 Reactive . 45

2.3.2 Unified . 45

2.3.3 Extensible . 47

2.3.4 Concurrent . 48

2.3.5 Flexible data model . 49

2.4 Conclusion . 49

7

3 Wildcard: Customizing Existing Websites 51

3.1 Introduction . 51

3.2 Example Scenario . 53

3.3 System Architecture . 56

3.3.1 Table Adapters . 57

3.3.2 Query Engine . 61

3.3.3 Table Editor . 61

3.4 Vision . 62

3.4.1 Decoupling Data from Applications 62

3.4.2 Customization by Direct Manipulation 63

3.4.3 Semantic Wrappers . 65

3.5 Related Work . 67

3.5.1 Customization Tools . 67

3.5.2 Spreadsheets and Visual Query Interfaces 68

3.6 Evaluation: Experience & Limitations 69

3.6.1 Range of Customizations . 70

3.6.2 Viability of Scraping . 74

3.7 Conclusion and Future Work . 75

4 Potluck: Gradually Enriching Text Notes 77

4.1 Introduction . 77

4.2 Background . 81

4.2.1 The rigidity of apps . 81

4.2.2 The flexibility of documents 82

4.2.3 Gradual enrichment . 84

4.3 Related Work . 84

4.3.1 Text documents as user interfaces 84

4.3.2 Data detectors . 85

4.4 Potluck: an environment for dynamic documents 87

4.4.1 Extracting data with searches 89

8

4.4.2 Running live computations . 89

4.4.3 Adding annotations . 90

4.4.4 Reusing searches . 91

4.4.5 Other features . 92

4.5 Evaluation: Experience & Limitations 95

4.5.1 Versatility . 95

4.5.2 Tool composition . 95

4.5.3 Potluck vs. spreadsheets . 96

4.5.4 Challenges of parsing . 98

4.5.5 State and UI in text . 99

4.5.6 Limitations . 99

4.6 Future Work . 101

4.7 Conclusion . 102

5 Riffle: Reactive Relational State for Local-First Applications 105

5.1 Introduction . 105

5.2 Background . 107

5.3 Related work . 110

5.4 Key Concepts . 113

5.4.1 Reactive relational queries . 113

5.4.2 Synchronous transactional updates 115

5.5 System Implementation . 118

5.5.1 Relational Database Backend 118

5.5.2 View Framework . 119

5.5.3 Reactivity Algorithm . 119

5.5.4 Query languages . 120

5.5.5 Dynamic query generation . 120

5.5.6 Query scope . 120

5.5.7 Local component state . 121

5.5.8 Performance architecture . 121

9

5.5.9 Debugger . 122

5.6 A simple example: Todo List App . 122

5.7 Evaluation: Experience & Limitations 125

5.7.1 Case study: Music Application 125

5.7.2 Heuristic evaluation . 136

5.7.3 Limitations . 137

5.8 Future work . 139

5.9 Conclusion . 140

6 Conclusion 143

6.1 Key Ideas . 143

6.2 Future Work . 144

6.2.1 Towards data-centric interoperability 144

6.2.2 The role of AI . 146

6.3 Conclusion . 149

10

List of Figures

1-1 Command language vs direct manipulation for navigating a filesystem 20

1-2 A spreadsheet provides a unified substrate for both user input and

domain data. 22

1-3 Airtable demonstrates common features of reactive database tools. . . 25

1-4 Object Spreadsheets [54] provides a spreadsheet-style interface with a

hierarchical view of a relational data model, bound to a UI 27

1-5 SIEUFERD [5] allows the user to specify relational joins, sorting, and

spreadsheet-style formulas, all in a direct manipulation editor. 27

1-6 Wildcard enables the user to edit an existing website through a table

view. 29

1-7 Customizing Hacker News by interacting with a table view 30

1-8 Left: the Potluck user interface with a text note and reactive tables.

Right: use cases including managing a cash register, tracking plant

watering schedules, and running a meeting agenda 32

1-9 An overview of the Riffle architecture. The UI visualizes the results of a

reactive graph of relational queries on a persistent client-side relational

database. The dataflow loop runs synchronously on the UI thread,

supporting fast, transactional reactivity. In the background, the local

relational database is synchronized with other data sources over the

Internet. 33

1-10 Examples of some of the SQL queries and view definitions used to

power key features of the Overtone music manager application built in

Riffle. 34

11

1-11 An overview of how Wildcard, Potluck and Riffle make use of shared

state in different contexts . 36

2-1 Coordinating two views through shared state with unidirectional dataflow 43

2-2 A view 𝑣𝑛 can depend on a view model 𝑠𝑛 in addition to the shared

state: 𝑣𝑛 = 𝑓𝑛(𝑆, 𝑠𝑛) . 44

2-3 Using Wildcard to customize Hacker News entails adding a table view

of the articles in the webpage, new state for annotating the articles,

and new computed columns for calculating read times. 47

2-4 Three forms of extensibility: adding state, adding derived computed

results, and adding a new view . 48

3-1 An overview of data-driven customization 52

3-2 Customizing Hacker News by interacting with a table view 54

3-3 The table adapter architecture . 56

3-4 Source code for the Hacker News scraper. Some details removed for

brevity. 59

3-5 Sorting the used sellers page on Amazon by total price, including fees.

The original page doesn’t have sorting, and doesn’t show the combined

price. 71

3-6 Organizing takeout restaurants on Uber Eats by delivery ETA and price 72

3-7 Taking notes on Instacart grocery items, after sorting them by price . 73

3-8 Using a custom text editor widget to edit a blog post on Blogger. The

text is synchronized with the Blogger editor through a table cell. . . . 73

4-1 The Potluck interaction model forms a loop: extract data from text,

compute with that data, and then display results back in the text. . . 78

4-2 A coffee recipe in Potluck, with a slider for scaling the number of servings 79

4-3 Potluck documents can help with running a cash register, planning a

meeting agenda, and tracking a plant watering schedule. 80

12

4-4 Beyond the core recipe functionality, Paprika’s sidebar has extra fea-

tures for Groceries, Pantry, Meals, and Menus 82

4-5 Each meal plan entry in Paprika must be assigned to a specific date

on the calendar, with no room for ambiguity. 83

4-6 Text documents are a single versatile medium for recording all kinds

of information. 83

4-7 Coda supports enriching text documents with interactive computation 85

4-8 A reactive document by Bret Victor explaining a tax policy change.

The user can edit values by dragging, and other dependent values in

the text automatically update. 86

4-9 A data detector in macOS enables right-clicking on a phone number

to add it to contacts or make a phone call. 86

4-10 Creating an interactive quantity scaler for a coffee recipe in Potluck . 88

4-11 Potluck offers several annotation locations: above the text, next to the

text, or replacing the text. 90

4-12 It’s more convenient to follow a recipe when the quantities are shown

inline in the directions. 93

4-13 A spatial query that finds the quantity of an ingredient in the directions. 94

4-14 The same unit conversion computation, in Potluck on the left and a

Notion Table on the right . 97

4-15 A pizza dough recipe that computes flour and water amounts based on

input parameters . 97

4-16 Text notes often contain implicit structure and relationships expressed

through a personal micro-syntax. 98

4-17 Showing a calendar view of a workout note in Potluck 101

4-18 Extracting the ingredients from a recipe using GPT-3 102

13

5-1 An overview of the Riffle architecture. The UI visualizes the results of a

reactive graph of relational queries on a persistent client-side relational

database. The dataflow loop runs synchronously on the UI thread,

supporting fast, transactional reactivity. In the background, the local

relational database is synchronized with other data sources over the

Internet. 106

5-2 A comparison of different approaches to managing reactive UI state.

Riffle simplifies reactive dataflow by offering a single performant reac-

tive loop for managing the entire state of a user interface, including

both UI state and domain state. 112

5-3 In a single-page web application, user interactions frequently incur net-

work latency and leave the UI in a temporarily inconsistent state. In

contrast, Riffle’s local-first architecture and synchronous transactional

updates enable faster responses. The UI can respond to the interaction

immediately without showing inconsistent loading states because the

data was synchronized to the client before the user explicitly requested

it, and database queries are efficiently updated within 16ms. 116

5-4 Implementation architecture: The Riffle library sits between React (for

view templating) and SKDB (for all data storage and queries) 118

5-5 The Riffle debugger shows a live view of the data in the underlying

database. Other tabs (not shown) include the current reactive queries

and an interactive SQL console. 123

5-6 TodoMVC includes a simple example of a dynamic SQL query. The

currently active filter setting is queried from a table using a SQL query.

A JavaScript query then turns that value into a filter clause in a SQL

string, which in turn queries the todos table to produce the final filtered

data for the view. 126

5-7 Examples of a SQL query and view definition used in the Overtone

music manager. 128

5-8 A debugger that shows recent updates in the Riffle reactive graph . . 131

14

6-1 Haiku OS stores a list of contacts using structured attributes on files,

enabling them to be managed through a generic database view 145

6-2 A spreadsheet table generated by GPT-3 after the user typed “double

the quantities” . 147

15

16

List of Tables

3.1 A list of customizations that we have implemented using Wildcard. . 69

5.1 Time taken to update materialized view in response to inserting 1 new

track (ms) . 136

17

18

Chapter 1

Introduction

The research in this thesis originated from a simple question: “why can’t making apps
be as easy as using a spreadsheet?” Working at an education technology startup, I
had seen how non-programmers were able to use spreadsheets to create simple tools
specialized to their unique needs. Internally, our operations staff could make metrics
dashboards and project plans using spreadsheets; in the school districts we worked
with, principals and teachers could create attendance trackers and curriculum plans.
And yet, for these people, the idea of making even a small modification to a rich
web application seemed completely daunting—and rightfully so, given the complexity
of the tools typically used to build such applications today. I observed how this
gap created a power dynamic where programmers were able to strongly influence
the direction of our software, but other stakeholders were mostly relegated to filing
feedback requests. In a world where software increasingly defines how our systems
operate, it felt wrong for so many people to be excluded from building and customizing
their own tools.

In this thesis, we1 present three systems which each contribute to allowing everyone
to create and edit software with the ease of using a spreadsheet, by drawing on a rich
vein of prior work on direct manipulation interfaces, spreadsheets, and databases. In
Wildcard, we show how users can use a spreadsheet-like reactive table interface to
extend and modify the behavior of an existing web application, like reorganizing the
prioritization of articles on a news site. In Potluck, we show how reactive formulas
can be layered over text notes to enrich them with interactive behavior, like scaling
ingredients in a recipe. Finally, in Riffle we demonstrate how the simple reactivity
model from spreadsheets can scale to help developers build complex high-end user
experiences, like a music library manager.

Throughout all these tools, the patterns of fast reactive updates, live views of
data, and direct manipulation interactions enable simpler approaches to specifying
computational behavior than traditional programming tools can offer. These projects
contribute towards a future where the creation and tailoring of software is not limited
to a programmer elite, but is democratized for all.

1Each of the systems presented in this thesis was developed together with collaborators; see
footnotes at beginning of Chapters 3, 4 and 5 for more details.

19

Figure 1-1: Command language vs direct manipulation for navigating a filesystem

1.1 Background

This thesis draws on three areas of work with a deep history in computing—direct
manipulation interfaces, spreadsheets, and low-code database toolkits—as well as
more recent work that combines influences from these areas. In this section we present
a brief overview of this landscape.

1.1.1 Direct manipulation / desktop metaphor

A turning point in the history of interactive computing was the invention of direct
manipulation [73]. In the early days of interactive computing, users would issue
obscure commands in a terminal, which would operate on an opaque system state
hidden from the user. In direct manipulation, this “complex command language
syntax” is instead replaced by “visibility of the object of interest” — providing a more
natural metaphor for viewing and modifying the relevant state of the system.

Take the simple example of manipulating files in a filesystem (Figure 1-1). In
a terminal, the state is hidden by default; the user must issue commands to query
system state, such as ls to list files in a directory or cd to change directories. The
user must remember the syntax for these commands, as well as relevant arguments
like filenames. In contrast, in a visual file navigator such as Finder in Mac OS, the
user can always see a visual representation of the system state. The system provides
multiple views which are each useful for different tasks: a table for seeing a dense
view of metadata across files, a desktop for spatially organizing file icons, and more.
The user can take actions like switching directories or moving files by clicking on icons
and menus which reveal the possible space of actions and make it easy to visually
select objects to act on.

Of course, the views available on a desktop OS go beyond the generic views in the
file navigator—applications running on the OS provide more domain-specific views

20

which are specialized to particular tasks. For example, a textual code file can be
opened in a text editor like vim, or in an IDE like Visual Studio Code. Each applica-
tion provides different visualizations and edit actions over the data; for example, vim
supports programmable macros for editing text, while Visual Studio Code displays
syntactic and semantic hints about the meaning of the code.

One key property of the desktop filesystem is that it decouples data from appli-
cations. The filesystem makes the same shared data available across different tools,
which enables useful workflows such as collaborators editing the same data in their
preferred editors (e.g., each programmer on a team using their own preferred code ed-
itor), or passing the same file between tools that handle different parts of a workflow.
We take this property for granted on filesystems, but it is not universal: modern web
and mobile platforms silo data within individual applications by default, creating a
much tighter coupling between the underlying data and a particular way of viewing
and editing that data. One theme of this thesis is that liberating data from a default
application view and allowing alternate representations of that data, as the desktop
filesystem does, is a powerful technique for empowering users to tailor their computing
experiences to their specific needs.

1.1.2 Spreadsheets

Another canonical example of a direct manipulation interface is the spreadsheet. In
a spreadsheet, the main information shown on the screen is the domain data that
the user cares about, such as sales figures or course offerings. The user can easily
view and navigate by performing visual selections, and can perform edits via “rapid,
reversible, incremental actions” [73].

In addition to supporting these basic direct manipulation interactions, spread-
sheets are a famously successful example of an environment for end-user program-
ming : supporting people in programming to complete a specific personal task, rather
than to create software for broader public use [41]. Spreadsheet formula languages
provide an easy on-ramp to specifying computations by using a stateless functional
programming model. They include built-in functions like SUM and AVERAGE which map
to common tasks in the domains like accounting that users care about. Formulas are
always written in terms of a single cell with concrete data, and abstraction is achieved
by copy-pasting formulas with relative references between cells. All of these qualities
make the spreadsheet more user-friendly than traditional programming environments
that typically require writing abstract commands without visibility of concrete data.

Another critical design element of spreadsheets is fast reactivity. The user defines
formulas with inputs from other cells in the sheet; dependencies between computations
are automatically tracked, and downstream values are instantly updated whenever
data or formulas change. Reactivity enables a declarative interface, since the user can
focus on the higher-level structure of their computation without needing to tediously
think about propagating change between computations.

There is one more powerful aspect of spreadsheets that is often overlooked: a
spreadsheet provides a unified data substrate that can store all data relevant to the
user’s problem, including both “domain state” related to the domain at hand, as

21

Figure 1-2: A spreadsheet provides a unified substrate for both user input and domain
data.

well as “input state” resulting from user interactions. For example: a spreadsheet
projecting user growth for a startup might contain past user signup data—stored
data which the user is unlikely to edit—as well as input cells like an expected future
growth rate, which the user edits to control the simulation (Figure 1-2).

The unified data substrate is easy to take for granted in spreadsheets, but it offers
a number of benefits which are surprisingly difficult to achieve in other application
development platforms like multi-tier web applications. In a spreadsheet, the user
can be assured that all values in the sheet are always up to date, since changes
to either the input state or the domain state flow through the same fast reactivity
model. Because user input is treated as just another form of data, it is easily persisted
alongside domain data. The results of a simulation run can be shared in a spreadsheet
file which contains the relevant inputs; alternate scenarios can be saved by creating
duplicates of the sheet with new inputs. In the Riffle system, we explore these benefits
in more depth and explore how to bring them to full-fledged application development.

Despite the widespread success of spreadsheets, they also have limitations that
prevent certain kinds of usage patterns. Spreadsheets encourage flat, denormalized
data representations, and have limited tools for representing complex datasets with
associations between different kinds of records. Spreadsheets also lack support for
building custom interactive interfaces over a dataset, such as a form view for entering
a new record, or a report that groups and aggregates data. Next, we turn to another
kind of tool which specializes in precisely these kinds of more advanced features:
low-code database platforms.

1.1.3 Low-code database platforms

The relational model [21] has several key benefits that have made it a popular way
of representing state in computing for many decades. It is flexible and relatively
agnostic to how queries are shaped, since normalized data stored in tables can be
efficiently queried in many different ways. It provides an abstract data model which

22

is decoupled from the specifics of how the data is actually stored. It also has a
global model where all data in a database can be queried together with a single
query language, rather than encapsulating data behind object APIs. And decades of
research into relational query languages like SQL has resulted in databases that can
efficiently execute declarative relational queries.

Many software applications consist primarily of Create, Read, Update, and Delete
(CRUD) operations over a relational database. A CRUD app typically lets users see
lists of records (commonly with query options like sorting, filtering, grouping, and
joining across tables), see details of individual records, use forms to create and edit
records. These basic CRUD operations, when layered over a relational model of the
domain at hand, can help manage data in a vast variety of domains. For example,
a course catalog app, a customer relationship management app, and a bug tracker
might all primarily consist of CRUD operations.

Such applications can be built by professional software teams using frameworks like
Ruby on Rails, but there are significant drawbacks in cost and complexity. Building
a modern CRUD application requires grappling with the complexity of a vast array
of technologies: databases, backend web server programs, designing APIs, building
rich frontend applications in JavaScript, and more. This process is cost-prohibitive
for building smaller tools; a task like managing personal chores, or handling logistics
for an amateur sports team, or assembling playlists for a dance session, often cannot
justify the development and maintenance costs of building a fully custom application.
And even if such an application can be built from scratch, it will often be missing
key functionality or polish.

In response to these challenges, a variety of “low-code” interfaces have aimed to
enable users to build these kinds of CRUD applications while avoiding the full com-
plexity of traditional programming. Examples of commercial products in this category
include FileMaker, Microsoft Access, and Retool. Enterprise resource planning sys-
tems like SAP, which handle enormous databases with complex configuration, also
arguably fit qualify as low-code database platforms. All of these products offer vi-
sual GUI tools which can manage schemas and data and create forms with custom
layout and validations. They enable end-user developers to visually author views of
individual records, as well as construct aggregated reports over parts of the database.
Together, these features make it more efficient to build many parts of a typical CRUD
application than using traditional code.

At the same time, these tools for constructing database-backed CRUD apps are
often lacking in several areas relative to spreadsheets. First, fast reactivity is often not
present—in many CRUD application architectures, updates propagate more slowly
and often require manual refreshes to propagate between views. Also, direct manipu-
lation is less pervasive than in spreadsheets—for example, complex database queries
must be authored as SQL code, rather than by directly manipulating the data.

In the next section, we explore more recent work which aims to improve on these
limitations by marrying the best parts of database toolkits and spreadsheets.

23

1.1.4 Reactive databases

As we have described above, spreadsheets and low-code database toolkits have been
a part of interactive computing for decades. More recently, a number of systems
have explored combining the best aspects of both. This work has used terms such
as spreadsheet-driven applications [8] and visual query systems [5]; we refer to this
broad category of ideas as reactive database tools, because they combine ideas from
database toolkits with the reactive computing model from spreadsheets.2

While it is difficult to define an exact boundary for what constitutes a reactive
database system, a useful illustrative example is Airtable, a popular commercial end
user programming platform used for tasks like project management, CRM, and mar-
keting planning. It allows users to visually define relational schemas, with column
types ranging from general ones like text, numbers, and dates to more specific ones
like emails and phone numbers. Users can edit the data and the schema in a web
browser using a generic table editor UI.

Like a spreadsheet, the table view in Airtable puts data in the foreground and
provides direct manipulation interactions to edit the data and schema as well as
specify computations. A major difference is that the underlying data model is not
a freeform 2D grid, but is instead a relational schema with strict column types and
explicitly modeled relationships between entities. Using this table view, users can
specify views (i.e., queries) over tables—including sorting, filtering, grouping, and
selecting subsets of columns—all using direct manipulation interactions. They can
also add computed columns, which contain formulas that compute derived values.
Unlike a spreadsheet, the formulas are automatically applied once per record in the
table; there is no need to manually copy the formula to every row. Like a spreadsheet,
computed values update reactively when underlying data changes. This table view
is a sort of hybrid between a spreadsheet and a database. The enforced relational
structure prohibits many common uses of spreadsheets, e.g. for constructing arbitrary
data layouts in a 2D grid, while the structure simultaneously makes it easier to enforce
data integrity and perform rich queries without making mistakes. Figure 1-3 shows
some of the key features of the Airtable table view.

In addition to the table editor view, Airtable comes with several built-in user
interfaces for editing and visualizing the data in the relational database. One par-
ticularly important kind of view is forms for collecting user input that adds rows to
the database. Other views include calendars, maps, galleries of cards, kanban boards,
timelines, and Gantt charts, which are all fairly generic views which can apply to
many domains. All of these views update automatically and reactively when the
underlying data changes. In addition, users have tools to visually define their own
custom item view layouts and simple interactive UIs on top of the database.

Airtable shows some of the key characteristics of the genre of reactive databases:
a structured data model, a table view that supports viewing, editing and querying the

2We avoid using the word spreadsheet in our name for this category because the term carries
connotations of a freeform 2D grid without a data schema and with only scalar formulas. Many of
the tools in this category enforce a stricter schema on the data and support creating formulas that
automatically apply to multiple records.

24

Figure 1-3: Airtable demonstrates common features of reactive database tools.

25

data; a scalar formula language for computing derived columns on the table; other
rich views over the tabular data; and reactive updates throughout the entire tool.
Similar tools have appeared in other popular commercial products like Coda, Notion,
and Glide, making this set of features almost a kind of common standard for modern
end-user programming interfaces.

Beyond this foundational set of features, a variety of research projects have ex-
plored related and adjacent ideas in this space that push the boundaries of the ap-
proach.

Two projects that enable the creation of interfaces over structured databases are
Exhibit and SIEUFERD. Exhibit [33] contributes a framework for easily publishing
interactive pages that let users navigate and query structured datasets made up of
objects with simple property-value pairs. It supports both simple table views as well
as richer views like maps and timelines, and offers a smooth gradient from declarative
HTML views to more custom JavaScript logic. Exhibit demonstrates the power of
generic tools and views for querying and visualizing data from any domain. However,
it does not aim to cover the full range of use cases for a full-fledged CRUD ap-
plication, instead prioritizing simpler ways of navigating and querying information.
SIEUFERD [5] proposes an interface that can support a very wide range of queries
over a relational database—including joins, aggregations, and scalar formulas—all via
direct manipulation of the data, and without writing SQL by hand (Figure 1-5). In
a sense, it can be seen as an extension of the reactive table concept from Airtable
to a much more expressive set of queries. However, SIEUFERD does not support
updating the data or the schema.

Several other projects originate closer to the perspective of spreadsheets. Quilt
[8] uses spreadsheets most directly: it offers a model for building spreadsheet-driven
web applications composed of an HTML view bound to a web-based spreadsheet,
which can contain both scalar values and tables of data, and which also defines reac-
tive computations. Gneiss [18] takes a similar approach, driving an interactive web
application interface from a reactive spreadsheet editor that stores data and defines
computations. Object Spreadsheets [54] takes a related approach but goes beyond
the standard spreadsheet model, proposing a new computational model and formula
language that combines the simplicity of spreadsheets with a more structured tabu-
lar data model (Figure 1-4). It offers techniques for handling nested tables, as well
as using a spreadsheet-style interface to lay out a user interface. Finally, Mavo [78]
weaves spreadsheet-style reactive computations directly into HTML view definitions.
A key difference from most of the other systems listed above is that Mavo defines the
data schema directly based on the shape of the user interface, foregoing a separate
step for data definitions or a separate spreadsheet interface for raw data editing.

These projects differ along many dimensions: the breadth of rich interactive be-
havior, spanning from simple table views to full-blown applications; the amount of
structure imposed upon the data, ranging from strict relational schemas to freeform
spreadsheet data; and the degree of separation between the data definitions and the
user interface. Yet they all illuminate aspects of a shared path: making it easier for
people to author interactive data-centric applications by using techniques inspired by
spreadsheets and databases. Key themes that appear in these projects include direct

26

Figure 1-4: Object Spreadsheets [54] provides a spreadsheet-style interface with a
hierarchical view of a relational data model, bound to a UI

Figure 1-5: SIEUFERD [5] allows the user to specify relational joins, sorting, and
spreadsheet-style formulas, all in a direct manipulation editor.

27

manipulation views of system data, pure functional formulas for scalar computations,
automatic propagation of reactive updates, and relational data modeling. All of these
ideas make prominent appearances in the systems we propose.

1.2 Contributions
In this thesis, we build on these ideas of reactive databases and propose three systems
that empower end users to create and modify personal software in new ways:

• Wildcard enables end users to customize existing web applications through a
reactive table

• Potluck supports end users in turning text notes into personal interactive tools
through a reactive table

• Riffle supports developers in building sophisticated user interfaces based on a
reactive relational data model, with a live table debugger view

These systems illustrate how ideas from spreadsheets and databases can be brought
into new contexts, granting new abilities to developers and end users alike. The
spreadsheet-like reactive table view serves as a generic user interface with familiar
affordances that people can use to view/edit state and specify computations across
all of these different contexts. The overall approach is both conceptually simple and
practically useful—through many concrete examples, we show that our systems can
support the creation of many software customizations and tools in real-world situa-
tions. In this section we introduce the main ideas of Wildcard, Potluck, and Riffle,
as well as shared themes among them.

1.2.1 Wildcard: extending web applications

When people want to achieve more tailored behavior in their software, it is often more
convenient to tweak an existing piece of software than to build a custom application
from scratch. Building a new application would require tediously rebuilding all the
functionality of the existing tool, whereas extending and modifying the existing ap-
plication, in theory, might only require a minor change. This gap between rebuilding
and customizing becomes especially clear if the desired change to an existing appli-
cation is relatively small in scope: changing the color of a button, or sorting a list of
results in a different order.

Many tools have aimed to simplify this process of end users customizing and
extending existing software. Some systems aim to offer friendly natural language
syntax for writing scripts, such as Chickenfoot [14] and Coscripter [45] for the web, and
Applescript [22] for desktop. There have also been visual programming environments
for customization that forego traditional textual syntax, such as Automator for Mac,
Shortcuts for iOS, and Zapier for wiring together web APIs. Although these tools
do succeed in simplifying some challenging aspects of programming like rigid syntax,
they still maintain a relatively traditional view of scripting: specifying sequences of
imperative instructions in a command language.

28

https://support.apple.com/guide/automator/welcome/mac
https://apps.apple.com/us/app/shortcuts/id915249334
https://zapier.com/

Application UI

Data is synchronized live in both directions

User manipulates table to

customize the application

User continues to use

original application UI

End user

Table view of
data in the application

Figure 1-6: Wildcard enables the user to edit an existing website through a table
view.

In Wildcard (Chapter 3), we take a different approach. Inspired by principles
of direct manipulation and reactive databases, we introduce a reactive table view as
an interactive debugger that shows a view of the data underlying a website. Data is
scraped out of websites by site-specific adapter code, and bidirectionally synchronized
with the reactive table view. The user can then use the table view to manipulate the
data in various ways: they can edit values, sort and filter, add annotations in new
columns, and write formula computations. All of these interactions are synchronized
from the table view to the original website view—sorting and filtering apply to the
items in the original UI, and annotations appear in appropriate places within the UI.
The reactive table serves as a mediating interface for editing the application (Figure 1-
6). The user never writes the kind of imperative code that would be found in a typical
browser extension or end-user scripting tools; instead, they achieve the customization
through direct manipulation and writing small functional formulas.

As an example of a customization that Wildcard enables, see Figure 1-7. First,
the user sorts the list of articles on Hacker News in a different order by clicking on
the table header for the desired column. Then, they add expected read times for each
article to the web UI, by adding a new column to the table and adding a spreadsheet
formula. The new sort order is applied to the page and the read times are displayed
next to each article.

The table interactions here are not novel—in fact, they are explicitly intended
to be familiar to anyone who has used a spreadsheet, or a reactive table UI like
Airtable or SIEUFERD. The innovation lies in tying this reactive database interface
to a website DOM so it can be used to customize existing applications, even though
the original developer did not in fact expose such an interface.

You may notice a bit of irony in this approach: many websites are in fact built
on top of relational databases, and we are essentially reconstructing a fake view that
database by scraping data in the user interface. One way to think of Wildcard is
as precisely this—a simulation of a desirable future where every web application is
built using reactive databases that are exposed to the user for modification. The fact
that Wildcard works with existing websites is the key strength and motivating idea
of the project, but it is also the source of most of its limitations. For example, often
websites contain data in a backend server that is not available in the UI, and therefore
cannot be scraped for access in the Wildcard table view. More ambitiously, we might

29

Figure 1-7: Customizing Hacker News by interacting with a table view

30

imagine websites actually being built from the ground up on top of a unified reactive
database that can be exposed to the user; later we explore this direction in depth
with Riffle.

1.2.2 Potluck: enriching text documents

The ability to customize an existing application, as in Wildcard, brings a certain
amount of malleability to a user’s software experience. And yet, that workflow also
starts from the assumption that someone is already using a software application to
complete a task.

In practice, many uses of computers fall between the cracks of formal applications.
In fact, many times people simply use computers to record data, without needing to
perform any computations at all. Joel Spolsky relates a story from his time on the
Microsoft Excel team3:

[We] visited dozens of Excel customers, and did not see anyone using
Excel to actually perform what you would call “calculations.” Almost all
of them were using Excel because it was a convenient way to create a
table. . . Most Excel users never enter a formula. They use Excel when
they need a table. The gridlines are the most important feature of Excel,
not recalc.

The fact that many users do not create formulas should not be seen as a failure.
Rather, it is a success that people are able to easily store information in their desired
format, and then are optionally able to add structure and computations if needed.
We call this workflow gradual enrichment. The freeform 2D grid of spreadsheets is
critical to enabling gradual enrichment; it also avoids the many pitfalls [71] of forcing
people to represent data in formal ways (e.g., specifying strict schemas) too early in
their thought process.

In Potluck (Chapter 4), we explore gradual enrichment in the context of a common
kind of data which is even more unstructured and flexible than a spreadsheet grid:
text notes. Users can start by writing text notes, and then gradually enrich them into
interactive applications by extracting structured data from the text into a series of
reactive tables. Users can add columns in the tables where they code computations
using JavaScript. The results of the computations can be displayed in the original
text note as annotation overlays. The system also supports restyling the text based on
computational results, as well as inserting basic interactive widgets into the flow of the
text. The entire system supports fast reactivity, so updates to the text immediately
result in updates to the annotations.

This small set of simple primitives supports building utilities in a variety of per-
sonal domains. Potluck documents can scale ingredients in a recipe, create interactive
timers to measure baking times or workouts, keep track of deadlines for household
chores, and perform basic math to support managing a cash register in a document.
For examples of such documents, see Figure 1-8.

3https://www.joelonsoftware.com/2012/01/06/how-trello-is-different/

31

Figure 1-8: Left: the Potluck user interface with a text note and reactive tables.
Right: use cases including managing a cash register, tracking plant watering schedules,
and running a meeting agenda

The freeform nature of text provides a number of interesting opportunities and
challenges. Extracting well-structured data from text requires an ergonomic language
for specifying patterns, as well as building in live feedback that encourages users to
lightly structure their text in ways that will be amenable to later structuring. We
also found that text provides a capable substrate for recording both domain state and
UI state, as well as designing primitive user interface layouts within the flow of the
text.

1.2.3 Riffle: building reactive relational applications

Many reactive database tools prioritize simplicity over power in order to make it
easier for less sophisticated users to successfully build applications within certain
constraints. For example, these systems are often limited in the amount of data
they can manage, the performance they can achieve, the richness of queries that are
available, and the ability to customize visual design. These constraints make sense
for ensuring a low barrier to entry, but also make it challenging to build complex
applications with more demanding requirements.

On the other hand, the tools used by professional application developers offer a
higher ceiling, but in exchange sacrifice much of the simplicity of reactive database
tools. In a typical multi-tier web application architecture, developers must manually
wrangle copies of data across many layers with different representations and query
languages, manually reasoning about maintaining reactive dependencies across pro-
cess and network boundaries.

Riffle (Chapter 5) aims to bridge the gap between these two ways of building
software, bringing the simplicity of “building an application in a spreadsheet” to rich
applications with complex design and performance requirements. We apply ideas
from reactive databases to provide a novel approach to state management we call the
reactive relational model, which combines spreadsheet-like reactivity with the ability
to easily specify relational queries. All application and UI state is stored in a local

32

Figure 1-9: An overview of the Riffle architecture. The UI visualizes the results of
a reactive graph of relational queries on a persistent client-side relational database.
The dataflow loop runs synchronously on the UI thread, supporting fast, transactional
reactivity. In the background, the local relational database is synchronized with other
data sources over the Internet.

client-side relational datastore, connected to a user interface by fast reactive bindings
(Figure 1-9). In the background, the client-side store can be synchronized across
devices via a network connection.

An essential benefit of this architecture is that it makes it more convenient to
build web applications by removing many of the typical intermediate layers in the
stack. It also enables the developer to build their entire application out of declarative
relational queries, which are automatically maintained reactively. Because all domain
state and UI state is managed in a single relational database which can be queried
together, the developer benefits from a simplified mental model, and the end-user
benefits from fast reactivity and consistent UI throughout the application, just like
in a spreadsheet.

Riffle also has a live table debugger view which visualizes the state of the un-
derlying database as well as the currently running reactive queries and their results,
and also enables the user to prototype relational queries live. As with other reactive
database systems, the goal is to provide visibility into the system through familiar
interactions with a table view. Once an application has been built using the reactive
relational model, the table debugger view fits naturally on top.

As a case study evaluation, we have used Riffle to build a music manager ap-
plication called Overtone, which enables users to browse and play music collections
synchronized from cloud services such as Spotify. Overtone demonstrates how Riffle
can support the construction of an application with a rich data schema and relatively
large amounts of data (Figure 1-10). The reactive relational model enables a simple
conceptual model for the developer, and fast consistent interactions for the end-user.

33

Figure 1-10: Examples of some of the SQL queries and view definitions used to power
key features of the Overtone music manager application built in Riffle.

34

1.2.4 Shared themes

While Wildcard, Potluck and Riffle solve different concrete problems, they all share
a similar underlying structure. In each system, state is shared between a relational
representation and some other representation like a user interface or a text document.
A reactive table view gives users direct access to the relational representation, letting
them view and edit the data directly, as well as specify computations over that data.
Figure 1-11 summarizes these similarities.

In this section, we explore some shared themes found across all of these projects.

Reactive databases in new places

One important finding is that providing a direct manipulation view of the underlying
state in a system helps both developers and users more easily see and modify that
state. Benson’s PhD thesis [7] touches on this point:

One way to think about spreadsheet-backed applications. . . is to think
of the spreadsheet as a model with a debugging interface attached. The
common Model-View programming pattern does not make any statements
about the role of the model, apart from its role as the broker of data.
Spreadsheets. . . [turn] it from [a] programmatic concept into one that is
also user-facing for both the developer and the end-user. This means
that all data and computation is visible, editable, and debugable in a
well known environment, not hidden behind controller code and database
APIs.

In all of our systems, we find evidence for the effectiveness of this approach.
Making state visible turns many customizations that would have required complex
commands over opaque state into a simple matter of direct manipulation. Further-
more, the reactive table provides a particularly useful form of visibility because it is
a familiar and generic UI that can be used with any dataset with a relational struc-
ture. This versatility rewards investment in making the table UI usable, and rewards
investment by users in learning how to use it well. These same qualities can be seen
in other generic UIs like text editors which reward deep investment by both their
developers and users.

Notably, in all three of our systems, the table view is not new or interesting—in
fact, we have intentionally kept it familiar! The novelty lies in bringing that familiar
view to new contexts, by creating underlying data models that can be visualized
through that view.4

For example, in Wildcard, much of the difficulty lies in extracting tabular data
representations from web pages and setting up machinery to bidirectionally synchro-
nize that data representation with the original page. Once that underlying model has

4Innovation in the table view itself is still useful, but is kept out of scope for our investigations.
One example of improving the table view is Bakke’s work [5] on specifying a wider variety of relational
queries through direct manipulation of a nested table view.

35

Figure 1-11: An overview of how Wildcard, Potluck and Riffle make use of shared
state in different contexts

36

been established, it is straightforward to add a standard table view UI that visual-
izes the tabular data, and we can also add a standard spreadsheet formula language
to support computations. Similarly, in Riffle, the novel contribution is architecting
an entire user interface around reactive relational state; once this model has been
established, it is trivial to build a simple debugger.

Our projects have demonstrated that reactive databases can be applied in many
different contexts. What makes the pattern so versatile? A large part of the answer
is that the relational model is flexible enough to represent a wide variety of data.
Also, a flat table is a useful visualization for many kinds of information; It affords
very dense overviews and allows for easily comparing the same column across many
records.

The power of fast reactivity

Reactivity is a powerful tool for simplifying both users’ and developers’ mental mod-
els. It is one of the best examples of declarative programming: specifying the desired
end result rather than the details of how to compute it. Users can focus on writing
equations that should hold as data changes, rather than reasoning about the im-
perative details of propagating change. The power of this “value rule” to simplify
programming has been known for decades in the context of spreadsheets [36].

One reason it is so valuable for systems to provide reactivity as a foundation
is that reactivity is an example of what Ousterhout calls a “narrow but deep” fea-
ture [66]. The API contract provided by automatic change propagation is easy to
understand, but actually implementing it efficiently can be complicated. As a re-
sult, providing reactive synchronization as a built-in platform feature can drastically
reduce the amount of work that developers need to think about.

Here are two concrete examples from our projects. First, consider the reactive
guarantee provided by Wildcard. A typical browser extension includes imperative
code for scraping data from the DOM and making changes to the DOM. The developer
must consider issues like how to trigger scraping at the right time in the page lifecycle,
or how to handle changes to the DOM that are made by other scripts. In contrast,
Wildcard provides a reactive guarantee: the data in the table view is always up to
date with the page, and vice versa. The developer does not need to think about how
to propagate changes between the table view and the page; they can simply focus on
writing the data and computations they want to see.

Second, consider the Riffle project. UI developers have already realized the value
of reactivity (see, e.g., early work on UI frameworks like Garnet [60], as well as
modern frameworks like React.js), but most approaches offer incomplete reactivity.
Traditional application development often involves manually writing logic to fetch
data from a server (or local persistence) and synchronize changes back up, which
requires tedious work by developers and easily leads to errors. In contrast, in Riffle,
developers can simply write queries and the reactive engine ensures the user interface
remains up-to-date with the most recent data.

37

Semantic wrappers

A critical bottleneck for people creating personalized computing tools is extracting
structured data from less structured sources. For example, scraping data from web-
sites or authoring regular expressions to parse structure from text are notoriously
challenging tasks, especially for users without much programming experience. Our
work suggests several strategies for overcoming this bottleneck.

One straightforward solution is for a less skilled user to delegate the task of ex-
tracting structured data to a more skilled expert; this is the approach we take in
Wildcard, where skilled programmers write site-specific adapter code, and then users
can build customizations on top of those adapters. This strategy follows in a long
tradition of collaborative end-user programming; for example, Nardi finds that spread-
sheet users often cooperate across skill levels, with experts performing a particularly
difficult portion of a task [61]. An important assumption made by this strategy is
that the extracted data is general enough to support many different kinds of uses and
customizations; we find in Wildcard that this assumption often holds true, although
sometimes the data to extract depends heavily on the use case.

Another strategy is to promote more reuse and composition in languages for ex-
tracting data. For example, Potluck proposes a simple language which allows for com-
posing together smaller named patterns into larger ones; this accommodates system-
defined patterns for primitive data types, which can be composed into larger patterns
by end users.

One lesson learned from Wildcard and Potluck is that synchronizing data bidi-
rectionally introduces many concerns that aren’t present in a one-off one-way data
extraction process. For example, bidirectional sync requires making decisions about
how edits to a data table should be reflected back in the original webpage or text
document.

Looking forward, recent developments in large language models (LLMs) have
opened new possibilities for data extraction. Most obviously, LLMs have proven
capable at performing a wide variety of structured data extraction tasks from text
and other unstructured inputs, which could make it easier to specify scraping logic.
LLMs could also assist with authoring or verifying code for performing these tasks.
We do not explore these abilities in depth in this thesis, but we briefly discuss future
possibilities in Chapter 6.

Towards data-centric interoperability

In today’s popular cloud and mobile architectures, data is typically siloed inside
of individual applications, and can only be accessed through first-party application
clients. This is a stark contrast to the interoperable architecture provided by desktop
filesystems, which allow the same file to be edited by multiple tools, and give users
more ownership over their data.

There have been a variety of efforts to improve this situation; for example, Tim
Berners-Lee has led the SOLID project [52], which aims to give users more control
and ownership over their data. However, actually achieving progress towards greater

38

interoperability is challenging, because it requires convincing developers to build soft-
ware with a fundamentally new data architecture, while simultaneously convincing
users to use software such software. There is a chicken-and-egg cold problem.

The projects in this thesis each contribute a different idea for how to make incre-
mental progress towards a future where data is more decoupled from applications:

• In Wildcard, we avoid the need for developers to change the behavior, by giving
users tools to customize existing software from the outside. We simulate a world
where data is decoupled from applications and can be visualized in a reactive
table view, using browser extension technology and web scraping.

• In Potluck, we start from an existing common data format: text notes. We
then leverage that format as a shared substrate on top of which multiple com-
putational tools can coexist. This approach doesn’t require convincing anyone
to adopt a new data format.

• Riffle helps developers build better apps with a simpler model, even if those
developers don’t value openness and interoperability. However, at the same
time, it lays a foundation for achieving those end goals, by having data locally
on-device in a fast reactive database that could be shared by multiple tools.

The systems in this thesis target a variety of goals and users, ranging from end
users making small customizations to developers building complex applications from
scratch. However, these goals are not separate; they all form part of one continuum.
In 1984, Alan Kay envisioned [37] building complex applications like a word processor
using familiar, accessible tools like a spreadsheet and paint tool—not because every
user would be expected to create their own word processor from scratch, but so that
users might encounter a somewhat familiar interface when they decided to “open the
hood” of the software they already use to make a small tweak. This idea suggests
that making programming easier can benefit both experts building tools from scratch
and end-users modifying those tools for their own needs.

Our systems each contribute different ways of helping users open the hood and
make changes. Wildcard simulates a simple spreadsheet environment on top of web
applications which are in fact often implemented with vastly more complex archi-
tectures. In contrast, Riffle offers a new perspective on how to build applications
from the ground up with a simpler conceptual model—which helps developers build
applications from scratch, but also may provide a stronger foundation for end users
to understand and modify the applications they use. Overall, our work shows how
declarative approaches to representing application logic, together with direct manip-
ulation views of underlying state, can help both developers building applications as
well as end users customizing them.

39

40

Chapter 2

Design dimensions for reactive
databases

Shared state between views is a key component of the systems presented in this thesis.
In Riffle, UI components coordinate over a shared reactive database; in Wildcard, a
website UI and a table view coordinate over a shared tabular dataset; in Potluck, a
text buffer and a table view are synchronized.

In this chapter, we explore some general considerations involved in designing a
shared state abstraction across these varying contexts. First, we present a simple
model for thinking about the relationship between multiple views coordinating over
shared state. Then, we introduce five properties of a shared state abstraction:

• Reactive. To what extent do updates propagate automatically?
• Unified. What proportion of state is managed inside a single shared store?
• Extensible. How easy is it to extend the shared state with new computations

or views?
• Concurrent. Can multiple clients simultaneously read/write to the shared

data?
• Flexible data model. Does the data representation support different shapes

of data and access patterns?

Together, these properties define the characteristics of a given shared state model,
and the kinds of view composition that are possible over the shared state.

2.1 Introduction
Shared state is everywhere. The idea of coordinating multiple visual interfaces through
an underlying shared datastore appears in a huge variety of places throughout com-
puting. It appears in familiar everyday settings, like desktop applications sharing a
filesystem, or Airtable components sharing a database. It also appears in more spec-
ulative research projects like Webstrates [40], where tools are synchronized through
a shared DOM; Dynamicland1, where programs share a reactive database tied to a

1https://dynamicland.org/

41

physical space; and Solid [52], where applications share a personal datastore “pod”
controlled by the user.

While these examples occur in very different contexts, at different scales and with
different particulars of implementation, there is a simple unifying idea underlying all
of them: sharing a state object between multiple components is a convenient and
powerful pattern for coordination. This is one of the key ideas that makes it useful
to build software with reactive databases. At the same time, the implementations
of shared state in these systems have important differences which impose meaningful
limitations on the kinds of composition that are possible through a given state layer.

We have become so familiar with these limitations that we may not even think
twice about them. Consider a small example. Sometimes, when I open an email on
my phone, I would like a convenient way to see the same email opened on my desktop
email client, so I can easily transition to editing on a bigger screen. Unfortunately,
this turns out to be a challenging feature to build, because while the phone and
desktop client are both connected to a shared email server, the state representing
which email is currently selected is stored only within the client, and not on the
server. In this architecture, the choices made about where to store different pieces of
state have limited the kinds of composition that are convenient to provide.

This individual example may seem like a minor inconvenience, but it illustrates a
broader point: the choices we make about designing and implementing shared state
abstractions affect the way we can compose tools. We can also imagine designing
new implementations of shared state which make different tradeoffs and open up new
ways of building, customizing, and interoperating between software applications.

In this section, we develop a simple, general model of shared state, and describe
a set of key design dimensions that help define the kinds of composition that are
possible on top of a given state abstraction. Our model is very general, since it is
meant to describe a broad variety of systems at different scales. In some cases, the
shared state is being accessed within the same device; in others, it might be accessed
across a network. In some cases the shared state is an enormous database, in others
it may be a tiny in-memory register. Nevertheless, there are common themes across
these contexts that are still useful to analyze.

2.2 A simple model of state and views

As a basic foundation, we start with a common paradigm in modern UI engineering
called unidirectional dataflow, where we represent our view as a pure function of some
underlying state. We can define a state 𝑆, a function 𝑓 mapping the state to a view,
and then finally the view itself: 𝑣 = 𝑓(𝑆). For example, 𝑆 might contain a list of
tracks in a music library, and 𝑣 might be an HTML representation of those tracks
displayed in a table.

In unidirectional dataflow, when the user interacts with the view, the view does
not directly update—for example, editing the name of a track in an input field does
not directly cause a DOM update. Instead, the view expresses an intent to update
the underlying state. The UI framework then performs this update to the underlying

42

Figure 2-1: Coordinating two views through shared state with unidirectional dataflow

state (perhaps with some scheduling, e.g. batching together multiple updates), and
recomputes any views dependent on that state: 𝑣′ = 𝑓(𝑆 ′). To minimize interaction
latencies, incremental computation techniques are often used at various stages of this
pipeline to efficiently compute the contents of the new view without starting over
from scratch.

The reason this model is called unidirectional is that the view did not directly
update itself; the update flowed through a loop, first updating the underlying state,
which in turn triggered the view to reflect the new state. Structuring the dataflow in
this way provides a key advantage: the developer never needs to worry about whether
the state and the view have diverged from one another, because the underlying model
guarantees that the equation 𝑣1 = 𝑓(𝑆) is always maintained. 𝑆 also serves as a
single source of truth for state; so there is never any confusion about reconciling two
different copies of state.

This basic pattern of coordinating state between views applies to many concrete
architectures. React.js is a well-known example of a view framework that popularized
unidirectional dataflow in the web community. Elm is another example of a web
framework that uses similar ideas. Even a server-side PHP app can be viewed as a
form of unidirectional dataflow at a coarser granularity: an HTML page can request
updates by posting HTTP requests to a server; the server then re-renders a view to
reflect the new underlying state.

The same unidirectional dataflow pattern easily accommodates multiple views
over the same shared state. We can define multiple views each with their own view
function: 𝑣𝑛 = 𝑓𝑛(𝑆) (Figure 2-1). When the user interacts with either view, an
update is triggered on the shared 𝑆.

Coordinating multiple views through the same shared state provides the key ben-
efit of consistency: We can always be sure that both views are representing the same
state, since any update must flow through the shared 𝑆. At the same time, the two
views have no dependencies on one another, and there is no need to coordinate di-

43

Figure 2-2: A view 𝑣𝑛 can depend on a view model 𝑠𝑛 in addition to the shared state:
𝑣𝑛 = 𝑓𝑛(𝑆, 𝑠𝑛)

rectly between the views, e.g. by calling events back and forth; coordination can be
achieved through shared state.

This pattern can apply at different architectural scales with different latencies.
For example, we might want to show a list of emails in an inbox and a detail view of
a single email within an email client—in this case, the shared state is a local database
of emails, and the views are UI widgets within the same application. At a larger
scale, we might want to use two different email clients to manage the same collection
of emails stored on a server—here, the shared state is the server-side collection of
emails, and the views are different clients running on different devices.

2.2.1 View model

Many user interfaces have some state which is more closely associated with the view
than the underlying domain model. For example, in an email client, this view state
might include the currently selected email, the scroll position within an email, or even
the hover state of a button.

A common way to handle such state is to extend the pattern above with a view
model : separate state associated with the view. We can represent this by giving each
view 𝑣𝑛 its own separate state object 𝑠𝑛. The view function now takes two inputs:
𝑣𝑛 = 𝑓𝑛(𝑆, 𝑠𝑛). (Figure 2-2). Some interactions from the view 𝑣𝑛 update the shared
𝑆, whereas others will update the private 𝑠𝑛.

A view model can be a useful abstraction for indicating the roles of different pieces
of state. However, creating strong infrastructure boundaries between the view model
state and other domain state can make it harder to coordinate state updates across
the two kinds of state. In Riffle (Chapter 5), we demonstrate the benefits of managing
view model and domain model state within a single unified model.

44

2.3 Properties of shared state

We next describe several properties which help characterize any given system where
multiple views operate over some shared state, including the systems developed in
this thesis.

2.3.1 Reactive

A user interface is reactive if updates to the system’s state automatically result in
corresponding updates to downstream views. A spreadsheet is one example of a
reactive interface. In contrast, a traditional server-rendered app web is not reactive;
even if the data in the database changes, the user must actively refresh the page to
request an updated view.

Reactivity with live feedback enables more powerful forms of composition through
a shared state mechanism. For example, consider editing the same text document in
two instances of the Google Docs editor—each keystroke appears reactively across
the editors, so users can collaborate in realtime on a shared document across their
respective editors. In contrast, if two processes are editing the same text file on a
desktop filesystem, often a text editor GUI will not reactively display updates to the
file; the user must manually reload the file from disk.

One important component of reactivity is latency: faster reactivity enables more
unified experiences. Typically, a tightly coupled set of components within a sin-
gle application has lower latency and more reactivity than components spanning
across multiple different applications (e.g. multiple applications coordinating through
a filesystem). However, this correlation is not a law of nature; it is possible for an
open-ended, interoperable system to support fast reactivity across more loosely cou-
pled components. One example of this principle in action is Webstrates [40], which
allows multiple UI views to coordinate through a shared, synchronized DOM tree in
a browser.

Reactivity is an essential component of all of the systems presented in this thesis.
In Wildcard and Potluck, reactive synchronization of a text document or a web UI
with a table view is essential for providing immediate feedback about how updates are
reflected across the two views. In Riffle, we develop a uniquely comprehensive reac-
tivity model where the dataflow loop passes through a persistent database, extending
the benefits of unidirectional dataflow beyond their typical limits.

2.3.2 Unified

Earlier we discussed how some architectures incorporate a view model : state associ-
ated with the view (and usually local to each view), separate from a shared domain
model. Having private view models for each view results in a less unified datastore
because there is state that is not shared between all views. There are some reason-
able justifications for this kind of fragmentation. One reason is to separate concerns
between view state and domain state. Network latency may also motivate the split:

45

if domain state is slow to update across a network, we must manage view model state
(e.g., the text in a text box) in some separate way that provides lower latency.

However, a different approach is to combine all state in the system into a single
shared store. We refer to this a unified approach to state management: managing all
state in a single shared place. Instead of each view 𝑣𝑛 having its own private state
𝑠𝑛, we combine all state for the system into the shared state 𝑆.

Of course, it is still important to have some way to associate view-model state
with individual views or parts of views; we can achieve this by keying parts of the
state within 𝑆 on identifiers for the views. The key difference is that these keyed
pieces of state are still all managed in a unified system.

At first glance, it may seem as though we have simply removed a useful separation
of concerns by unifying state. So what have we gained from this approach?

Managing all state in a single database simplifies the architecture in a number of
ways, which are all exemplified in Riffle:

• We can query all the state together using one language; for example, we can
write SQL queries that span across UI and domain state.

• We can query it transactionally, avoiding mismatches between UI state and
domain state.

• Requirements like persistence or sharing can be treated more uniformly across
all state—if we want to persist UI state or share it with other users, we can
simply flip a configuration switch, instead of needing to migrate state to an
entirely different system.

• We can use a single debugger to view and manipulate all state in the system.

There is another more subtle benefit to unified state management: it supports
extensibility and makes it easier for other tools to manipulate any state. By con-
struction, all views 𝑣𝑛 depend solely on the shared state 𝑆. This means that any tool
which can edit 𝑆 can drive any kind of change in any view, solely by editing data, and
without needing to directly interact with the view itself. For example, an automation
that enters text into a text box, or changes the sort order of a list in a UI, can be
built by writing a program that edits 𝑆, without needing to click buttons or simulate
keystrokes.

This ability to control a view through a shared state representation makes ap-
pearances in all three systems described in this thesis. In Riffle, an external process
writing to a Riffle database can control UI state like the play/pause state of a track
in a music player. In Wildcard, a table debugger view is used to control the sorting
and filtering of a webpage UI. (In this case, we simulate a unified state model on top
of an existing website). In Potluck, most state is unified within a text file, so any
process which can manipulate the text—such as an automated script, or even manual
text operations like cut/copy/paste—can manipulate any of the state in the system.

One challenge with a unified state model is preserving modularity. If all com-
ponents can read and write to the same global shared state, this makes it easier to
introduce undesirable coupling between those components. Our experience with Riffle
has been that this challenge can be managed by coding conventions (e.g. being careful

46

Figure 2-3: Using Wildcard to customize Hacker News entails adding a table view of
the articles in the webpage, new state for annotating the articles, and new computed
columns for calculating read times.

about editing the “private state” of a view component stored in a global database),
and the benefits gained from a unified store outweigh the costs.

2.3.3 Extensible

Extensibility is a key property for supporting open-ended use and customization. As
a simple example, a desktop filesystem is an extensible system, since any application
running on the operating system can manipulate the files on the computer. If a user
wants a different view of the data in some application, there is always a possibility
of opening the saved file in another application. (In practice this may be difficult
depending on the file format, but at least the data can be technically accessed.)

In contrast, cloud applications tend to be less extensible. By default, the user can
only interact with first-party views created by the application’s developers. Some-
times a public API may exist that allows for the creation of third-party views, but
often such APIs are limited in scope.

Using other views to access shared data is only one kind of extensibility though!
To see why, consider the Wildcard workflow for adding read times and annotations to
Hacker News articles, and then sorting the website by read times, shown in Figure 3-2.

Figure 2-3 shows how the Hacker News example fits into our model of shared state.
Importantly, this does not actually represent the real underlying implementation of
the application at hand, because Wildcard is a browser extension that works with
existing websites, which do not necessarily support extensibility over their underlying
datastores. Rather, this shows the mental model that we are providing to the user
performing the customization.

The shared state in this case is a table of articles on the web page. The customiza-
tion leverages three distinct forms of extensibility described above:

47

Figure 2-4: Three forms of extensibility: adding state, adding derived computed
results, and adding a new view

• Adding views. The Wildcard table view is a new view of the list of articles.
It is a highly generic one that can visualize any tabular data, but is a view
nonetheless. The user can use the table view to perform updates to the under-
lying shared state—e.g., sorting the list in a different way—and these updates
are also reflected in the original website UI.

• Adding state. The user can add a new column to the table to store manually
written annotations for the articles.

• Adding derived computations. The user can add a computed column which
calculates read times for each of the articles. The results of the computation
are available to all views, not just the table view, so they can be displayed in
the underlying webpage.

This example shows that there are several useful classes of extension that we can
enable over shared state, shown in Figure 2-4:

• Adding views. Adding new views on top of the shared state, which can
visualize the state and perform updates on it just like any other view

• Adding state. Extending the schema of the state stored in 𝑆, e.g. adding new
columns or tables to a relational database

• Adding derived computations. We can define a function 𝑓* which applies
to the raw base state 𝑆 and computes new derived values which can be used by
all views. For example, these might be database queries which can be shared
by many views.

2.3.4 Concurrent

One of the main difficulties with building shared state abstractions is correctly han-
dling concurrent edits. For example, multiple text editors operating on the same text

48

document should be able to insert text simultaneously without errors like interleaving
of characters. Without careful and precise implementation, it is easy to create race
conditions and corrupted data anytime state is being shared across multiple writers.

Building in concurrency control at the data layer can be a powerful way to re-
lieve developers of some of the burden of reasoning about tricky concurrency issues.
Databases have invested substantial effort in addressing this problem and allowing
efficient concurrent edits through mechanisms like multi-version concurrency control
[11, 43, 83]. Algorithms like Operational Transform (OT) [25, 74] and Conflict-free
Replicated Data Types (CRDT) [70, 68] have also developed solutions to concurrent
editing of data structures like text sequences and counters.

2.3.5 Flexible data model

When different views are coordinating over the same shared state, the views might
each want to display different projections of the state, e.g. combining data across
various collections, or grouping and aggregating it in different ways. Supporting this
kind of usage requires a data model that is flexible enough to support different kinds
of query patterns.

In Riffle we use the relational model [21], which entails storing data in tables,
and then executing queries that join together data across tables to fetch the needed
results. It encourages storing data in a normalized form, where each piece of data
has a single canonical representation without redundant copies. This separates the
storage format from the projected format needed for any particular view, and allows
for many different shapes of queries over the same information.

In contrast to the relational model, some databases use a document-oriented
model, which more tightly couples the storage format of the data with the expected
access patterns. This model can make it harder to query in ways that span across
documents.

An interesting contrast to either of these data models is a traditional filesystem,
which allows the contents of files to be arbitrary sequences of bytes. This model is
flexible in a sense because any application can store information in any way it likes.
However, the lack of any semantic structure imposed by the storage system can make
it more difficult for applications to interoperate, since an application must understand
how to parse the low-level byte representation of any given file format.

2.4 Conclusion
Shared state with downstream views is a powerful general model for reasoning about
coordination between software components. In this section, we have described several
key design considerations for designing such an abstraction:

• Reactive. Automatic propagation of updates to downstream dependencies
makes it easier for users and developers to reason about the effects of changes.

• Unified. Managing all system state—including the state of the user interface—
in a shared substrate makes it possible to handle all state in a uniform way.

49

• Extensible. Shared state, especially with unified state management, can serve
as a powerful foundation for open-ended extensibility.

• Concurrent. Support for concurrent editing is a powerful feature to have
built-in to a data substrate.

• Flexible data model. It is useful for a shared state mechanism to support
modeling a wide variety of data. The relational model supports many kinds of
data and query patterns.

In the following chapters, we will show how these properties can be integrated
into programming systems that use shared state to support users and developers
in coordinating behavior across different views. In Wildcard and Potluck, state is
reactively synchronized between a base data source and a tabular dataset, and in
Riffle, all view components coordinate through a unified reactive relational database.

50

Chapter 3

Wildcard: Customizing Existing
Websites

In this chapter1, we introduce data-driven customization, an approach to enabling
software customization through direct manipulation.

We augment existing user interfaces with a table view that shows the structured
data inside the application; when users edit the table, their changes are reflected in
the original UI. This simple model accommodates a spreadsheet formula language
and custom data-editing widgets, providing enough power to implement a variety of
useful extensions.

We illustrate the approach with Wildcard, a browser extension that implements
this data-driven customization paradigm on the web using web scraping. Through
concrete examples, we show that this paradigm can support useful extensions to many
real websites, and we share reflections from our experiences using the tool.

Wildcard concretely demonstrates many of the principles laid out in Chapter 1.
It provides a familiar reactive table UI as a mediating interface for interacting with
the data inside an application. By enabling many customizations through direct
interactions with the table and simple spreadsheet programming, it avoids much of
the complexity of imperative programming when performing simple customizations.

3.1 Introduction

Many applications don’t meet the precise needs of their users, and it is impossible
for developers to anticipate everyone’s unique requirements. End user customization
systems can help close this gap, by empowering non-programmers to modify their
software to satisfy their personal goals.

1The material in this chapter is adapted from the following paper: Litt, Geoffrey, Daniel Jackson,
Tyler Millis, and Jessica Quaye. “End-User Software Customization by Direct Manipulation of
Tabular Data.” In Proceedings of the 2020 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software, 18–33. Virtual USA: ACM,
2020. https://doi.org/10.1145/3426428.3426914 [46]. I led the project, advised by Daniel. Tyler
and Jessica contributed to the evaluation by developing site adapters and example customizations.

51

Application UI

Data is synchronized live in both directions

User manipulates table to

customize the application

User continues to use

original application UI

End user

Table view of
data in the application

Figure 3-1: An overview of data-driven customization

Many end user customization systems [22, 14, 45, 19] offer a scripting model. They
use various strategies to make programming more approachable: friendly syntax, a
visual programming environment, or macro recording to bootstrap from concrete
demonstrations. But all these techniques build on the same fundamental foundation:
an imperative programming model, with statements, mutable variables, and loops.

We have known for decades about an alternative: direct manipulation [73], where
“visibility of the object of interest” replaces “complex command language syntax.”
Direct manipulation is the de facto standard in GUIs today, but when it comes to
customizing those GUIs, it is rarely to be found. Switching from using an application
to customizing it via scripting requires an abrupt shift in interaction model, and poses
a steep learning barrier for users not familiar with programming.

We subscribe to MacLean et al.’s vision of a “gentle slope” [51] free of such “cliffs,”
where users should only need to make minimal and incremental investments in skill to
achieve their desired customizations. We seek to contribute to this gentle slope with a
new method for customizing software via direct manipulation, taking inspiration from
visual database query interfaces and spreadsheets, which have successfully enabled
millions of end users to compute with data through direct manipulation.

In our proposed paradigm, data-driven customization, an application’s UI is aug-
mented with a table view where the user can see and manipulate the application’s
internal data. These changes don’t just apply to the table; they also result in immedi-
ate changes to the application’s original user interface. The user can sort/filter data
in the UI, inject annotations, pull in related information from other web services,
and more, all using the table as a mediating interface. Interacting with the table
view resembles interacting with a familiar spreadsheet, but results in customizing an
existing application.

To explore this idea in a real context, we have developed a browser extension called
Wildcard that uses web scraping techniques to implement data-driven customization
for existing Web applications. We introduce the tool with an example customization
of Hacker News in Section 3.2, and then describe the implementation in Section 3.3.

Wildcard is just an initial proof of concept of data-driven customization. In Sec-
tion 3.4, we discuss our broader vision for how this style of customization could change
the relationship between users and creators of software, focusing on three ideas:

• Decoupling data from applications : On the modern Web, data is often stored in

52

proprietary silos, limiting the agency of users to choose their applications and
flexibly work with data. We propose data-driven customization as an incre-
mental step towards a more decentralized architecture, where users gain more
control over the storage, processing and display of information from web ser-
vices.

• Customization by direct manipulation : We explain how data-driven customiza-
tion can provide a gentle slope, by allowing a user to customize an application
by directly seeing and changing its data, rather than by writing imperative
scripts.

• Semantic wrappers : Typically, tools that don’t rely on official extension APIs
resort to offering low-level APIs for customization. Instead, we propose a
community-maintained library of semantic wrappers around existing applica-
tions, enabling end users to work with domain data rather than low-level rep-
resentations.

In Section 3.5 we discuss connections to related work. Our goals overlap with
software customization tools, and our methods overlap with direct manipulation in-
terfaces for working with structured data, including visual database query systems
and spreadsheets.

Finally, in Section 3.6, we present evidence that Wildcard can produce useful
customizations, by sharing reflections from customizing 11 different websites in ways
that met our own personal needs.

3.2 Example Scenario

To concretely illustrate the user experience of data-driven customization, we present
a scenario of customizing Hacker News, a popular tech news aggregator. Figure 3-2
shows accompanying screenshots.

Opening the table. When the user opens Hacker News in a browser equipped
with the Wildcard extension, they see a table at the bottom of the page. It contains a
row for each link on the homepage, listing information like the title, URL, submitter
username, number of points, and number of comments (Figure 3-2, Note A). The end
user didn’t need to do any work to create this table, because a programmer previously
created an adapter to extract data from this particular website, and contributed it to
a shared library of adapters integrated into Wildcard.

Sorting by points. First, the user decides to change the ranking of links on the
homepage. Hacker News itself uses a ranking algorithm in which the position of an
article depends not only on its point count (a measure of popularity), but also on
how long it has been on the site. If the user hasn’t been checking the site frequently,
it’s easy to miss a popular article that has fallen lower on the list. Sorting the page
just by points would achieve a more stable ranking.

To achieve this ordering, the user simply clicks on the “points” column header
in the table. This sorts the table view by points, and the website UI also becomes
sorted in the same order (Figure 3-2, Note B). Internally, Wildcard has changed the

53

https://news.ycombinator.com/

Figure 3-2: Customizing Hacker News by interacting with a table view

54

webpage’s DOM to synchronize it with the sort order of the table. This sort predicate
is also persisted in the browser and reapplied automatically the next time the user
loads the page, so they can always browse the page sorted by points.

Adding estimated read times. Next, the user decides to attempt a more
substantial customization: adding estimated read times to each article, in order to
prioritize reading deeper content.

The table contains additional empty columns where the user can enter spreadsheet-
like formulas to compute derived values. The user enters a formula into the first col-
umn for user-defined formulas or data, which is named user1 by default (Figure 3-2,
Note C): =ReadTimeInSeconds(link).

This formula calls a built-in function ReadTimeInSeconds that uses a third-party
public web API to compute an estimated read time for the URL’s contents. The
link argument in the formula refers to a column name in the table; the formula is
automatically evaluated across all rows in the table, using the value of link for each
row.

The user clicks the user1 column header to sort the articles on the page in de-
scending order of estimated read time. They would also like to display the read times
in the page, but a number in seconds isn’t the most legible format, so they enter
another formula in the user2 column: =Concat(Round(user1/60), "min read").
This formula converts seconds to minutes by dividing by 60 and rounding, then con-
catenates the result with a string label, producing results like “21 min read”.

Finally, the user clicks a menu option in the table header to display the contents
of this new column in the original page (Figure 3-2, Note D). Each article on the page
now shows an annotation with the estimated read time in minutes. (The formatting of
annotations was determined by the programmer who created the adapter for Hacker
News.)

Adding manual annotations. The user can manually add notes to the table,
by entering data values into the table without formulas. In this case, the user jots
down a few notes in another column about articles they might want to read, and the
notes appear in the page next to the read times (Figure 3-2, Note D). The annotations
are also stored in the browser’s local storage so they can be retrieved on future visits.

Filtering out visited links. The user can filter out articles they have already
read. (We omit this example from the figure for brevity.) The user can call a built-in
function that returns a boolean depending on whether a URL is in the browser’s
history: =Visited(link).

They can then filter the table to only contain rows where this formula column
contains false; links that the user has already visited are hidden both from the table
view and the original page. This is an example of a customization that the original
website could not have implemented, since websites don’t have access to the browser
history for privacy reasons. But by using Wildcard, the user was able to implement
the customization locally, without needing to expose their browser history to Hacker
News.

This scenario has shown a few examples of how data-driven customizations em-
power a user to improve their experience of a website. Section 3.6 explains many
other use cases and contexts where the technique applies, but first we explain how

55

Web page
DOM

scraped
data

DOM
edits

Both table adapters expose a uniform
table adapter interface

8ery engine produces a
combined and sorted table

read/write
local table

DOM Scraping
table adapter

Local Storage
table adapter

4ery engine

Browser
local storage

<html>

</html>

id

1 300

500

200

2

3

title points

Big news

New product

Show HN

id

1

3

user1

read this

looks fun

user1id

1 300

500

200

2

3

title points DESC

Big news

New product

Show HN looks fun

read this

Figure 3-3: The table adapter architecture

the system works internally.

3.3 System Architecture

Figure 3-3 summarizes the overall architecture of data-driven customization, using a
simplified illustration of the Hacker News example scenario. The name and points
value for each article is scraped from the web page DOM, and user annotations are
loaded from the browser’s local storage.

First, the web page and the browser storage are each wrapped by a table adapter,
which defines a bidirectional mapping between an underlying data source and a table.
In addition to a read mapping for how the underlying data should be represented as
a table, it also has a write mapping defining the effects that edits have on the original
data source.

The local storage adapter has a trivial mapping: it loads a table of data stored
in the browser, and persists edits to that state. The mapping logic of the DOM
scraping adapter is much more involved. It implements web scraping logic to produce
a table of data from the web page, and turns edits into DOM manipulations, such as
reordering rows of data on the page.

The two tables are then combined into a single table for the user to view and edit.
The query engine is responsible for creating this combined view, and routing the

56

user’s edits back to the individual table adapters. In this example, the query engine
has joined the two tables together by a shared ID column, and sorted the result by
the points column.

We now examine each component of the system in more detail.

3.3.1 Table Adapters

A key idea in data-driven customization is that a wide variety of data sources can be
mapped to a generic table abstraction. In a relational database, the table matches
the underlying storage format, but in data-driven customization, the table is merely
an interface layer. The data shown in the table is a projection of some underlying
state, and edits to the table can have complex effects on the underlying state.

Abstract Interface

We begin by describing the abstract interface fulfilled by a table adapter.
Returning a table : A table adapter exposes a table of data: an ordered list of

records. Each record carries a unique identifier and associates named attributes with
values. Tables have a typed schema, so the same attributes are shared across all
records. We currently support strings, numeric values, booleans, and datetimes as
types. The columns also carry some additional metadata, such as whether or not
they are read-only or editable.

A table adapter can update the contents of a table at any time in response to
changes in the underlying state (e.g., a DOM scraping adapter can update the table
when the page body changes). When data changes, the query view is reactively
updated in response.

Handling edits : The query engine can issue a request to a table adapter to make an
edit to a record. The meaning of making an edit can vary depending on the adapter:
in the local storage adapter, a new value may be persisted into local storage; in the
DOM scraping adapter, an edit may result in changing the value of a form field.

In addition, the query engine also sends additional information about the com-
bined query view to each table adapter:

Sorting/filtering : When the user sorts or filters the query view, an ordered list
of visible IDs is sent to each table adapter. The DOM scraping adapter uses this
information to change the list of rows shown in the web page.

Data from other tables : The query engine provides each table adapter with the
entire combined table shown to the user. The DOM scraping adapter uses this for
injecting annotations—values from other tables are added to the original web page.

Currently selected record : As the user clicks around the table view, the query
engine broadcasts the record currently selected by the user to each table adapter.
The DOM scraping adapter uses this information to highlight the row in the page
that corresponds to the selected row in the table, which helps the user understand
the mapping between the table and the original UI.

Next, we present the three types of table adapters we have built in Wildcard so far.
These do not represent an exhaustive set of all possible table adapters—in Section 3.4

57

we discuss other types of adapters that would fit well into the general paradigm.

DOM Scraping Adapters

DOM scraping adapters enable Wildcard to interface with an existing website UI. A
DOM scraping adapter fulfills the standard web scraping task of extracting a table of
data from the DOM, but it also acts in the reverse direction: manipulating the DOM
to reflect edits to the table.

In Wildcard, DOM scraping adapters are programmed manually for each website
using JavaScript code. It might seem that this prohibits non-programmer users from
using the system at all, but we mitigate this problem with a shared repository of
adapters. Once an adapter is programmed for a website, it is added to the shared
repository, enabling any end user to perform customizations on that website.

In the future, other strategies for producing DOM scraping adapters could reduce
this dependence on programmers: an end user could specify the scraping logic via
demonstration, or the desired data table could be automatically inferred from the
page. While we are interested in these techniques and discuss them in Section 3.4,
we believe that a shared repository of manually programmed adapters is a pragmatic
starting point; given that many users visit the same popular websites,a critical mass
of adapters could serve the needs of many users.

To make it easier to create these adapters, Wildcard provides a framework that
makes the process feel more like writing unidirectional scraping code than performing
a complex bidirectional synchronization. The key idea is this: programmers return
pointers to DOM elements representing table rows and table cells; Wildcard extracts
data from these DOM elements, but it also uses the pointers to synchronize table edits
back into the page. For example, when the user sorts the table, the DOM elements
representing the table rows are moved around in the DOM to reflect the new sorted
order.

Figure 3-4 shows an example of the scraper code used for the Hacker News example
(with some code eliminated for brevity.) It defines the following main components:

• enabled: defines when this adapter should run, usually based on the active
URL in the browser.2

• attributes: defines a schema for the table, with a name and type for each
column

• scrapePage: defines a scraping function which returns an array of objects, each
containing the data for a single row of the table.

Here are some of the concerns that emerge when building adapters in practice:
Choosing a row ID : When possible, it is best to choose a server-side identifier

that remains stable across pageloads. This enables user annotations persisted in local
storage to be associated with the same records on subsequent pageloads. We have

2Currently Wildcard can only show a single table at a time, so if multiple adapters are enabled
for a single page, we arbitrarily pick one. It would be a straightforward extension to allow the user
to switch between multiple possible tables available on the page.

58

const HNAdapter = createDomScrapingAdapter({
name: "Hacker News",

// Specify when the adapter should be enabled, based on current URL
enabled() {

return (
urlExact("news.ycombinator.com/") ||
urlContains("news.ycombinator.com/news") ||
urlContains("news.ycombinator.com/newest")

);
},

// Define the name and type of each column in the table
attributes: [

{ name: "id", type: "text", hidden: true },
{ name: "rank", type: "numeric" },
{ name: "title", type: "text" },
{ name: "link", type: "text" },
// ... other columns omitted for brevity

],

// Iterate over DOM elements, returning information about each row
scrapePage() {

return Array.from(document.querySelectorAll("tr.athing")).map((el) => {
let detailsRow = el.nextElementSibling;
let spacerRow = detailsRow.nextElementSibling;

return {
// Return a unique ID for each row
id: String(el.getAttribute("id")),

// Return DOM elements corresponding to this row
// (this enables moving/hiding the elements for sorting/filtering)
rowElements: [el, detailsRow, spacerRow],

// Return data for each column
dataValues: {

rank: el.querySelector("span.rank"),
title: el.querySelector("a.storylink"),
link: el.querySelector("a.storylink").getAttribute("href"),
// ... other columns omitted for brevity

},

// Specify where annotations should be injected, and what they should look like
annotationContainer: detailsRow.querySelector("td.subtext") as HTMLElement,
annotationTemplate: `| $annotation`,

};
});

},
});

Figure 3-4: Source code for the Hacker News scraper. Some details removed for
brevity.

59

found that it’s usually possible to find such an identifier; for example, each item in a
page often contains a link to a page with more details, with a URL that contains a
stable ID.

Types of scraped values : For each individual value within a row, there are two
options for what type of data can be returned by the programmer-specified scraping
function.

The default option is to return a DOM element, in which case the generic adapter
extracts the text contents of the DOM element and casts them to the type of the
column. The advantage of returning a DOM element is that the value is editable—
when the user changes the value in the table, the generic adapter can simply overwrite
the inner contents of the DOM element.

Another option is to directly return a value, rather than returning a DOM element.
The advantage of this approach is that the adapter author can perform arbitrary com-
putations to derive the returned value—for example, they can use a regular expression
to extract a substring. The disadvantage is that the field is no longer writable. The
computation used to derive the value isn’t reversible, so there’s no way to reflect a
table edit in the DOM.

Optional overrides : In order to turn a unidirectional scraping function into a
bidirectional scraping adapter, there are a number of behaviors that must be specified:

• when should the scraping function be re-run in response to changes on the page?
• how should injected annotations appear in table rows?
• when the user selects a row in the table, how should the corresponding row in

the DOM be highlighted?

The scraping framework defines sensible defaults that work well on many sites, but
the programmer can optionally override them to provide better site-specific behavior.
For example, the Hacker News adapter specifies annotation options that make user
annotations appear more naturally in the design of the original webpage.

AJAX Scraping Adapters

An AJAX scraping adapter intercepts AJAX requests made by a web page, and
extracts information from those requests to add to the table. When available, this
tends to be a helpful technique because the data is already in a structured form so it
is easier to scrape, and it often includes valuable information not shown in the UI.

As with DOM scraping adapters, we have made it easy for programmers to create
site-specific AJAX scraping adapters. A programmer writes a function that specifies
how to extract data from an AJAX request, and the framework handles the details
of intercepting requests and calling the programmer-defined function.3

In order to join the tables produced by AJAX scraping and DOM scraping, a
common set of identifiers is required across records in the two tables. Often there

3So far we have only implemented AJAX scraping in the Firefox version of Wildcard, since Firefox
has convenient APIs for intercepting requests. It appears possible to implement in Chrome and Edge
as well, but we have not finished our implementation.

60

is a server-defined ID present both in the DOM and in AJAX responses; if not, the
programmer can use some set of overlapping data (e.g. an item name) as a shared ID.

Local Storage Adapters

The local storage adapter simply stores a table of data in the browser. This is
currently only used to persist annotations.

The table view is initialized with empty columns such as user1 which serve as
the user’s “scratch space,” as shown in Section 3.2. When the user makes edits to
these columns, new rows are created in the local storage table. The rows contain the
record ID from the DOM scraping adapter, which enables them to be re-associated
with the same records on subsequent pageloads.

3.3.2 Query Engine

The query engine is responsible for coordinating across multiple table adapters. It
joins data across multiple tables and creates a single result table which is shown to the
user through the editor. It also handles all user interactions and routes appropriate
messages to each table adapter.

Queries are processed in three steps. First, the query invokes a primary DOM
scraping adapter that associates table rows with elements in the application’s user in-
terface. Next, additional tables (AJAX data, local storage data) are left-joined by ID.
Finally, the result table is sorted and filtered according to user-specified predicates.

One way to view this query model is as a tiny subset of the SQL query model.
Despite its simplicity, this model has proven sufficient for meeting our customization
needs, and minimizes the complexity of supporting arbitrary queries. But because it
fits into the general paradigm of relational queries, it could theoretically be extended
to support a wider range of queries.

The query engine is also responsible for executing formulas. We have built a small
formula language resembling a spreadsheet formula language. As in visual database
query tools like SIEUFERD [5] and Airtable, formulas automatically apply across an
entire column of data, and reference other column names instead of values in specific
rows. This is more convenient than needing to copy-paste a formula across an entire
column as in spreadsheets, and has worked for all of the customizations we have built.

3.3.3 Table Editor

We provide a table editor view as the user interface on top of the query engine. Our
table editor is built with the Handsontable JavaScript library, which provides built-in
UI elements for viewing, editing, sorting, and filtering a table.

In addition to the basic table editing operations, we also provide cell editors : UI
widgets that expose a custom editing UI for a single cell of the table view. A program-
mer building a cell editor need only integrate it with the table viewer; propagating
values into the website UI is handled by the site-specific DOM adapter. In Section 3.6
we provide some examples of using cell editors.

61

https://airtable.com/

The table editor only serves as a shallow interface layer over the query engine,
relaying user commands to the query engine and rendering the resulting data table.
Because of this architectural split, it would be straightforward to develop additional
table editor interfaces on top of the Wildcard system. For example, we could provide
a calendar view for displaying a table containing a date column.

3.4 Vision

We envision data-driven customization as a broad paradigm that could extend well
beyond the Wildcard proof-of-concept, and ultimately result in new software archi-
tectures that empower end users to mold software to their specific needs. Here we
explore some of the deeper ideas underlying our work, and future possibilities beyond
the Wildcard tool.

3.4.1 Decoupling Data from Applications

When data is freely available outside the context of a specific application, users have
more freedom to choose a suitable application for their needs. For example, an RSS
feed can be consumed by many reader applications—a journalist can use a power tool
optimized for skimming hundreds of news sources a day, while a casual reader can
use a simple app to keep up with a few blogs. Motivated users can even create their
own custom workflows for filtering and combining RSS feeds, either via traditional
programming or in an end-user programming environment like Yahoo Pipes.

However, on the Web today, data is often siloed and only accessible through a sin-
gle prescribed application. A Facebook feed can only be viewed through the Facebook
application. Podcasts, originally served openly through RSS, are beginning to become
exclusive to specific platforms like Spotify. This coupling between data and applica-
tions leaves users at the mercy of using a single client optimized for specific purposes
(e.g., maximizing engagement) that may not be aligned with users’ individual desires.

Some services provide APIs that mitigate these siloing effects, but APIs fail to
provide a full solution to the problem. First, APIs often provide limited access, espe-
cially when an open client ecosystem would harm the economic incentives of a web
service built on advertising in a first-party client—in 2012, Twitter infamously im-
posed restrictions on third-party applications that mimicked the “mainstream Twitter
consumer client experience.” A second problem is that web APIs have a high barrier
to entry—they tend to be designed more for programmers creating entire applica-
tions or heavy-duty automations than for end users casually modifying their own
experience.

There have been compelling suggestions for more decentralized architectures that
would give users more control of their data. Local-first software [39] suggests that
productivity applications should run logic and store data locally, while retaining the
benefits of realtime collaboration through peer-to-peer synchronization. The SOLID
project [10] envisions a decentralized future where users store data on their own
servers, and choose to grant limited access to applications. We see data-driven cus-

62

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://stratechery.com/2019/spotifys-podcast-aggregation-play/
https://stratechery.com/2019/spotifys-podcast-aggregation-play/
https://www.theverge.com/2012/8/16/3248079/twitter-limits-app-developers-control
https://www.theverge.com/2012/8/16/3248079/twitter-limits-app-developers-control

tomization as aligned with these decentralized visions, but complementary to them
in two ways.

Incrementality. Rather than proposing that web services be totally rearchi-
tected, data-driven customization suggests a more incremental path for adding user
agency to existing software.

Data-driven customization allows for lightly augmenting a centralized website with
decentralized data storage. Section 3.2 demonstrated how a user’s private annota-
tions on a news site could be stored in their browser, without needing to upload the
annotation to the website’s server. A hybrid storage model is reasonable here: a cen-
tralized storage model makes sense for most of the information on Hacker News that is
viewed by all users, but a user’s private annotations can easily just be stored in their
browser. This model could even be extended with peer-to-peer sharing—a column in
a Wildcard table could be shared directly among friends, providing shared annota-
tion of a common website without needing to use the website itself as a centralized
intermediary.

By using third-party data extraction, data-driven customization also works with
existing websites that do not expose structured data to the user. Ultimately, in
adversarial situations where websites are strongly incentivized to restrict access to
their data, scraping is unlikely to be a sustainable solution. But we hypothesize that
there are many more situations where websites are neutral : not opposed to the idea of
end user customization, but also not sufficiently motivated to create and maintain a
public API. We see these neutral situations as a context where this kind of incremental
approach could succeed. Perhaps some of these websites might be more motivated
to provide official extension hooks if they saw the value that users were getting from
unofficial community-provided ones.

Focus on end user customization. Having access to the data is a necessary
but not sufficient condition for empowering end users to craft their own software
experience. Another key ingredient is providing usable tools and interfaces for working
with the data.

In data-driven customization, we focus heavily on this part of the solution. By
showing raw data in the context of a user interface and allowing small tweaks to the
original application’s behavior, we provide a smooth path for people to move from
using an application to tweaking it.

In this sense, data-driven customization is a complementary approach to other
projects that focus on getting users greater access to their data. In a decentralized
future where data is stored locally rather than in cloud silos, interfaces like Wildcard
would be one technique for actually making use of this data in service of greater end
user flexibility.

3.4.2 Customization by Direct Manipulation

Hutchins, Hollan and Norman [32] define a direct manipulation interface as one that
uses a model-world metaphor rather than a conversation metaphor. Instead of pre-
senting an “assumed” but not directly visible world that the user converses with, “the

63

world is explicitly represented” and the user can “[act] upon the objects of the task
domain themselves.”

Although most GUIs today employ direct manipulation, software customization
tools typically use an imperative programming model, which implements the conver-
sational metaphor rather than direct manipulation. Here, for example, is how a user
retrieves a list of of calendar names from the Calendar application in Applescript [22],
the scripting language for customizing Mac OS applications:

tell application "Calendar"
name of calendars

end tell

Some customization environments like Mac Automator and Zapier forego textual
syntax and let the user connect programs and construct automations by dragging and
dropping icons representing commands. These environments still do not constitute
direct manipulation, though: the objects being manipulated are in the domain of
programming, not in the domain of the task at hand.

Imperative programming is a reasonable choice as the model for building cus-
tomizations. Turing-complete programming provides a high ceiling for possible cus-
tomizations, and a sequence of commands is a natural fit for automations that sim-
ulate a series of steps taken by the user. There is, however, a serious drawback to
this approach. MacLean et al. [51] describe an ideal for user-tailorable systems: a
“gentle slope” from using to customizing, where small incremental increases in skill
lead to corresponding increments of customization power. Requiring users wanting to
customize their applications to learn programming creates an abrupt “cliff,” exacting
a significant investment in learning even to implement the simplest customizations.
Another goal of MacLean et al. is to make it “as easy to change the environment as
it is to use it”—at least for some subset of changes. But in scripting languages, the
experience of customization does not remotely resemble the experience of use.

With data-driven customization we aim to provide a gentler slope, by using direct
manipulation for software customization. The data shown in the table view is the
domain data from the original application. The user makes changes to the data by
selecting areas of interest in the table, e.g. sorting/filtering by clicking the relevant
column header, or adding annotations by clicking and typing on the relevant row. At
every step, the user receives intermediate feedback, not only in the table view, but
also in the original application, so it’s clear whether they are making progress towards
their desired result. These types of interactions are common in GUI applications, and
Wildcard therefore seems to meet MacLean et al.’s goal: some one-click customiza-
tions are as easy as using the original application. Formulas introduce some additional
complexity, but spreadsheets have demonstrated that formula programming is still ac-
cessible to many users, helped by the pure functional semantics and the visibility of
intermediate results.

One aspect of directness that we have chosen not to pursue in Wildcard is en-
abling customization in closer proximity to the original user interface elements, as
explored by other tools like Scotty [24]. While closer proximity might be helpful, we

64

have found that augmenting the original UI with a distinct, additional representation
provides a more consistent experience across all applications, and clearly shows what
structured data is available to work with. We also emphasize the mapping between
the representations by highlighting content in the original page, similar to the way
that browser developer tools highlight the currently selected element in the DOM
inspector in the original page.

Ainsworth et al. provide a helpful taxonomy of the value of multiple represen-
tations [2]. In their terms, Wildcard plays a complementary role by supporting a
different set of tasks from the original application, while displaying shared informa-
tion. Wildcard may also help construct deeper understanding by subtraction : by
stripping away details and only showing the essential data in an interface, Wildcard
encourages thinking of an application in terms of its core information, rather than the
specific capabilities provided by the current user interface. In our experience, we’ve
often found that looking at a site’s data in table format tends to spur new ideas for
customizations which weren’t evident from looking at the original UI.

3.4.3 Semantic Wrappers

Ad hoc customization tools enable customization without using official extension APIs,
enabling a broader range of customizations on top of more applications. For example,
web browser extensions have demonstrated the utility of customizing websites through
manipulating the DOM, without websites needing to provide explicit extension APIs.
However, ad hoc customization comes with a cost: these tools typically operate at a
low level of abstraction, e.g. manipulating user interface elements, rather than in a
meaningful domain model. This makes it harder for end users to write scripts, and
makes the resulting scripts more brittle as the specifics of a user interface change.

Anticipated customization tools, in contrast, use explicit extension APIs provided
by the application developer. Examples of this include accessing a backend web API,
or writing a customization in Applescript for an application that exposes its domain
model to the scripting language. The main benefit of this style is that it allows
the extension author to work with meaningful concepts in the application domain—
“create a new calendar event” rather than “click the button that contains the text ‘new
event’ ”—which makes customizations easier to build and more robust. However, the
plugin API limits the types of customizations that can be built, and many applications
don’t have any plugin API.

With Wildcard, we use a hybrid approach that aims to provide the best of both
worlds. Third-party programmers implement site-specific adapters that are internally
implemented as ad hoc customizations, but externally provide a high-level interface to
the application, abstracting away the details of the user interface. These wrappers are
added to a shared repository, available to all users of the system. When an end user is
using a site that already has an adapter, they benefit from a semantic customization
experience that avoids low-level details.

One way to view this approach is as introducing a new abstraction barrier into
third-party extension. Typically, a third-party customization script combines two
responsibilities: 1) mapping the low-level details of a user interface to semantic con-

65

structs (e.g., using CSS selectors to find certain page elements), and 2) handling the
actual logic of the specific customization. Even though the mapping logic is often
more generic than the specific customization, the intertwining of these two respon-
sibilities in a single script makes it very difficult to share the mapping logic across
scripts.

With Wildcard we propose a decoupling of these two layers: a repository of shared
wrappers maintained by programmers, and a separate repository of specific customiza-
tions built on top of these wrappers. This general architecture has been successfully
demonstrated by projects like Gmail.js, an open source project that wraps the Gmail
web client in a convenient API for browser extensions to build on.

The success of semantic wrappers depends on a key hypothesis: that a single
wrapper created by a programmer can be used for many different purposes by end
users. Although we’ve validated that a single generic adapter can support many
customizations, so far the people making the adapters have largely been the same
people building customizations on top of them, so more work is needed to fully test
this hypothesis.

The distribution mechanism for semantic wrappers is also important for encour-
aging an ecosystem of shared wrappers. Currently, the distribution mechanism is
simply merging the code for all adapters into the main Wildcard codebase. This is a
simple solution, but makes it fairly difficult to contribute new wrappers and requires
installing a new version of the extension to gain access to new wrappers. In the fu-
ture we might explore other mechanisms, like an online repository that the extension
pulls from dynamically. Security is also a consideration—DOM scraping adapters can
execute arbitrary JavaScript code, which means a malicious adapter could exfiltrate
sensitive information from a page. Approaches to security could include centralized
code review, using a restricted scraping DSL, or creating a sandboxed context for
scrapers without access to networking APIs.

Alternate Mechanisms for Wrapper Creation

Requiring programming to create wrappers has an obvious limitation. If an end user
wants to customize a site and no programmer has contributed a wrapper for that site,
then they have no means of customizing it. Although a sufficiently vibrant community
of programmers could produce wrappers for many popular sites, it’s unrealistic to
imagine covering all websites that end users might want to customize. We envision
two strategies for dealing with this problem:

End user wrapper creation. If end users could create wrappers without pro-
gramming, they could customize any website, as long as it worked with the wrapper
creation process. We could try integrating techniques from projects like Helena [19]
which enable end users to scrape websites by demonstration. Another intriguing pos-
sibility we plan to explore in the future is blurring the boundaries between scraping
and customizing by using spreadsheet formulas as a means of guiding the scraping
process.

First-party wrapper creation. An integrated adapter installed by the de-
veloper of an application could directly access internal state, providing the same

66

https://github.com/KartikTalwar/gmail.js/

functionality as a DOM scraping adapter but in a more robust way.
With the advent of rich frontend web frameworks, structured application state is

now often available in the web client. We suspect it is possible to create plugins for
frontend frameworks that expose this state to Wildcard with only minimal effort from
the application developers. This kind of plugin would allow developers to integrate
with an ecosystem of formulas and customization tools without needing to build that
functionality from scratch.

3.5 Related Work

Data-driven customization relates to two broad areas of related work. Our problem
statement is related to software customization tools, and our solution approach is
related to spreadsheets and other direct manipulation interfaces.

3.5.1 Customization Tools

Data-driven customization is most closely related to other tools that aim to empower
end users to customize software without traditional coding.

This lineage goes back at least to the Buttons system by MacLean et al. [51],
where Xerox Lisp users could share buttons that performed various “tailoring” ac-
tions on the system. The authors proposed the “gentle slope” idea which has greatly
influenced our approach to data-driven customization (as discussed in Section 3.4.2).
The authors also point out the importance of a “tailoring culture” where people with
different skillsets collaborate to produce useful customizations; in their system, Lisp
programmers create buttons that others can use, modify, and rearrange. This division
of labor corresponds to our idea of semantic wrappers, where end user customization
is supported by programmer-created building blocks.

More recently, Tchernavskij introduced the notion of malleable software, which
aims to allow users to tailor their software by pulling apart and recombining indi-
vidual user interface elements [76]. This work builds on prior work on customizing
graphical interfaces, including Beaudouin-Lafon’s idea of instrumental interaction [6]
and Klokmose et al.’s customizable Webstrates environment [40]. Data-driven cus-
tomization shares the overall goals of this line of work, and proposes new interaction
techniques for achieving them. In particular, by showing users a structured data rep-
resentation and allowing them to perform lightweight programming through formulas,
our approach supports customizations of intermediate complexity: more sophisticated
than those that can be achieved merely by manipulating existing interface elements,
but simple enough to not require full-blown programming.

Other web customization tools have also aimed to enable end users to modify
web interfaces without programming. Sifter [34] enables end users to sort and filter
lists of data obtained by web scraping, much like Wildcard’s sorting features. The
main difference between the systems is that data-driven customization has many
other use cases besides sorting and filtering. Also, Sifter involves end users in a semi-
automated data extraction process, rather than having programmers create wrappers.

67

This provides coverage of more websites, but at the expense of complicating the end
user experience. We might integrate end user scraping techniques in Wildcard in
the future, but we believe that, when possible, it is valuable for end users to have
a customization experience decoupled from the challenge of scraping the underlying
data. Sifter also implements scraping across multiple pages, a valuable feature for
sorting and filtering that isn’t present in Wildcard.

Thresher [30] helps end users create wrappers that map website content to Se-
mantic Web schemas like “Movie” or “Director,” and augments websites with new
functionality by exploiting that schema information. Wildcard shares the general
idea of wrappers, but maps to a generic table data type rather than more specific
schemas, increasing the range of supported data and allowing for a simpler mapping
process.

There are many software customization tools that offer simplified forms of pro-
gramming for end users. Chickenfoot [14] and Coscripter [45] offer user friendly syntax
for writing web automation scripts; Applescript [22] has a similar goal for desktop
customization. There are visual programming environments for customization that
don’t involve writing any text: Automator for Mac and Shortcuts for iOS are modern
options for customizing Apple products, and Zapier enables users to connect different
web applications together visually. As mentioned previously, these tools all require
writing imperative programs, in contrast to the more declarative and direct approach
of data-driven customization.

3.5.2 Spreadsheets and Visual Query Interfaces

Another relevant area involves spreadsheets and visual query interfaces. We take
inspiration from these tools in our work, but apply them in a different domain: cus-
tomizing existing software applications, rather than interacting with databases or
constructing software from scratch.

The most closely related work is in systems that offer spreadsheet-like querying of
relational data. SIEUFERD by Bakke and Karger [5] is one such recent system, and
their paper presents a survey of many other similar tools. Our work is particularly
influenced by the authors’ observation that a user should be able to modify queries by
interacting with the results of the query rather than some representation of the query
itself. SIEUFERD’s interface supports a far more general range of queries than Wild-
card, but the core principles of the user interface are the same. Airtable is another
example of a modern commercial product that offers spreadsheet-like interaction with
a relational database.

Our work is also inspired by the many projects that have explored using spread-
sheets as a foundation for building software applications, including Object Spread-
sheets [54], Quilt [8], Gneiss [18], Marmite [80], and Glide. We share the main idea of
connecting a spreadsheet view to a GUI, but we apply it to software customization,
rather than building software from scratch.

Another related system is ScrAPIr, by Alrashed et al. [3], which enables end users
to access backend web APIs without programming. ScrAPIr shares our high level goal
of end user empowerment, as well as the idea of wrappers, by creating a shared library

68

https://support.apple.com/guide/automator/welcome/mac
https://apps.apple.com/us/app/shortcuts/id915249334
https://zapier.com/
https://airtable.com/
https://www.glideapps.com/

Table 3.1: A list of customizations that we have implemented using Wildcard.

Website Description LOC Example customizations
Airbnb Travel 73 Add Walkability Scores to listings. Sort

listings by price.
Amazon Online shopping 99 Sort third party sellers by total price, in-

cluding fees.
Blogger Blogging 36 Use alternate text editor to edit blog posts.
Expedia Travel 41 Use alternate datepicker to enter travel

dates.
Flux Data portal 67 Use Wildcard as a faster table editor for

editing lab results.
Github Code repository 62 Sort a user’s code repositories by stars to

find popular work.
Hacker News News 69 Add read times to links. Filter out links

that have been read.
Instacart Grocery delivery 48 Sort groceries by price and category. Take

notes on items.
Uber Eats Food delivery 117 Sort/filter restaurants by estimated deliv-

ery ETA and price.
Weather.com Weather 51 Sort/filter hourly weather to find nice

times of day.
Youtube Videos 80 Sort/filter videos by length, to find short

videos to watch.

of wrappers around existing web APIs. Unlike Wildcard, however, ScrAPIr targets
explicit APIs exposed by developers. It also focuses on backend services and doesn’t
aim to extend the frontend interfaces of web applications.

3.6 Evaluation: Experience & Limitations

To evaluate data-driven customization in practice, we built the Wildcard browser
extension, which implements data-driven customization in the context of existing
websites. It is implemented in Typescript, and works across three major browsers:
Chrome, Firefox, and Edge.

We developed site-specific adapters for 11 websites that we personally use fre-
quently, and then built customizations for those websites using the Wildcard table
view. Table 1 summarizes these results, showing the number of lines of code in the
adapter for each site, and some example customizations we created. Here we offer our
reflections from these experiences using the system, focused on two key questions:

• How broad is the range of possible customizations in this paradigm?
• How feasible is it to build DOM scraping adapters for real websites?

69

3.6.1 Range of Customizations

We have found that data-driven customization can serve a broad range of useful
purposes. Here we expand on some archetypal examples that illuminate aspects of
using the system in practice.

Sorting and Filtering

It might seem that most websites already have adequate sorting and filtering func-
tionality, but we have found it surprisingly helpful to add new sorting/filtering func-
tionality to websites using Wildcard.

Sometimes, websites have opaque ranking algorithms which presumably maximize
profit but restrict user agency. For example, Airbnb previously allowed users to sort
listings by price, but removed that feature in 2012. In other cases, a lack of sorting
options seems more like an innocent omission; for example, the Instacart grocery
delivery service has a spartan UI for viewing an order, which doesn’t allow for sorting
items by price or category. In both of these cases, Wildcard enables users to take
back some control.

In the current implementation of Wildcard, users can only sort and filter entries
that are shown on the current page, which means that users are not entirely liberated
from the site’s original ranking. This restriction could be overcome in the future by
scraping content across multiple pages, or by using an integrated adapter and avoiding
scraping altogether. However, we’ve also realized that sorting/filtering a single page
of a paginated list is sometimes an acceptable outcome (and even a preferable one).
It’s more useful, for example, to sort 30 recommended Youtube videos than to try to
sort all videos on Youtube.

Annotating

Many web annotation systems focus on annotating text or arbitrary webpage con-
tent, but Wildcard limits annotations to structured objects extracted by an adapter,
resulting in a different set of use cases. Annotating with Wildcard has proven most
useful when taking notes on a list of possible options (e.g., evaluating possible Airbnb
locations to rent). We have also used it with Instacart’s online grocery cart, for jotting
down notes as we review an order and consider modifications (shown in Figure 3-7).

Formulas

Formulas are the most powerful part of the Wildcard system. So far, our language
supports only a small number of predefined functions. Adding more should allow a
broad range of useful computations, as shown by the success of spreadsheets.

Formulas are especially useful for fetching data from Web APIs. We’ve used
them to augment Airbnb listings with walkability scores, and to augment Hacker
News articles with estimated read times as shown in Section 3.2. One challenge
of the current language design is that supporting a new web API requires writing
JavaScript code to add a new function to the language, because web APIs typically

70

Figure 3-5: Sorting the used sellers page on Amazon by total price, including fees.
The original page doesn’t have sorting, and doesn’t show the combined price.

71

Figure 3-6: Organizing takeout restaurants on Uber Eats by delivery ETA and price

return complex JSON data structures that can’t be easily displayed in a single table
cell. In the future we would like to make it possible to call new APIs without adding
a dedicated function, which might require adding functions to the formula language
that can manipulate JSON data.

We have also found instances where simple data manipulation is useful, e.g. trans-
forming the results of an API call with basic arithmetic and string operations, as
shown in Section 3.2.

Cell Editors

We developed two cell editors : custom UI widgets for editing values in the table.
One benefit that cell editors provide is enabling users to incorporate their private

information into a web UI. We created a datepicker widget (based on the FullCalendar
plugin), which can load calendar data from a Google Calendar. This makes it conve-
nient to enter dates into a website based on the user’s personal calendar information,
without needing to upload a user’s calendar to the website itself.

Another benefit is that a user can choose a single preferred widget for editing a
certain type of information across different sites. For example, a user could use their
favorite rich text editor to edit text in various websites like blogging platforms and
task trackers. To demonstrate this capability, we built a text editor based on the
CKEditor rich text editor. We used the editor with Google’s Blogger website, by
building a site adapter that represented the contents of a blog post as a single table
cell containing an HTML string (shown in Figure 3-8).

72

https://fullcalendar.io/
https://ckeditor.com/

Figure 3-7: Taking notes on Instacart grocery items, after sorting them by price

Figure 3-8: Using a custom text editor widget to edit a blog post on Blogger. The
text is synchronized with the Blogger editor through a table cell.

73

Limitations

There are many customizations that are not possible to implement with data-driven
customization. Some of the limitations are specific to the current implementation of
the Wildcard extension, but others are more fundamental to the general paradigm.

One limitation is that Wildcard can only make customizations that use the avail-
able data exposed in the table. If the adapter doesn’t expose some piece of data,
the user can’t use it in their customization. The table data format also rules out
customizing certain sites that don’t have a way to map to a table. The UI modi-
fications available in Wildcard are also limited in scope; deleting arbitrary buttons
isn’t possible, for example. There is no facility for running automations when the
user isn’t actively viewing a page—at one point, we wanted to build an automation
to repeatedly load a grocery delivery website to check for open delivery slots, but
it didn’t seem possible to achieve this in Wildcard. We consider these limitations
acceptable, since our goal is to support as many useful customizations as possible
with a low threshold of difficulty, and not to span all possible customizations.

We have found that one benefit of showing structured data is predictability: once
we build an adapter for a website, it is clear what data is available or unavailable for
use in customizations. Also, there is sometimes a way to reframe an imperative script
in terms of our direct manipulation model. For example, a script that iterates through
rows in a page adding some additional information to each row can be reproduced
using a single formula in Wildcard.

3.6.2 Viability of Scraping

Separately from the range of customizations, we also evaluated the feasibility of
building DOM scraping adapters in practice. In order for third-party customiza-
tion through Wildcard to succeed, it is important that creating adapters for existing
websites takes minimal effort.

Nearly all of our DOM scraping adapters were created by members of our team.
However, an external developer unaffiliated with the project contributed one adapter,
designed to sort the Github page listing a user’s repositories, and they described the
experience as “very straightforward.”

The adapters for our test sites ranged from 36 to 117 lines of code, averaging 68
lines; Table 1 shows the number of lines of code for each adapter. Most of the code in
the adapters is simply using DOM APIs and CSS selectors to implement conventional
web scraping logic.

Some of the challenges of writing a DOM scraping adapter are the same ones as
with writing normal web scraping code. Sometimes, addressing the desired set of ele-
ments can be difficult, and when sites change, scrapers can break; we observed several
instances where sites changed their CSS classes and caused Wildcard adapters to no
longer work. One benefit of a library of shared wrappers is that if many customiza-
tions depend on some piece of scraping logic, rather than having the scraping logic
embedded in a single browser extension, it should be more likely to be fixed quickly.

The interactive nature of Wildcard also introduces additional challenges beyond

74

normal web scraping. One challenge is registering appropriate event handlers to
update the table data in response to UI changes that happen after initial page load.
Another challenge is persisting updates to the DOM—some websites use virtual DOM
frameworks that can occasionally overwrite changes made by Wildcard. So far, in
practice we’ve managed to work around these issues for all of the websites we’ve tried,
but we don’t claim that any website can be customized through DOM scraping. As
web frontend code gets increasingly complex (and starts to move beyond the DOM
to other technologies like Shadow DOM or even WebGL), it may become increasingly
difficult to customize websites from the outside without first-party support.

AJAX scraping proved very useful in several cases. The Uber Eats website
was challenging to scrape because it has a complex DOM structure with machine-
generated CSS classes, but the site also uses AJAX requests which contain all the
relevant data in a structured form that is much easier to extract. We also found ex-
amples where relevant information wasn’t present in the DOM at all. On the grocery
delivery site Instacart, we found that AJAX requests contained useful information
not shown in the UI, like the category and barcode ID of an item.

3.7 Conclusion and Future Work
One direction for future work could be to characterize the limits of the table-editing
paradigm. Are there ways to offer an increase in power and functional complexity,
while retaining a programming model that is simpler for end users than conventional
coding? For example, we could enable users to set up triggers to perform actions like
sending notifications when certain conditions are met in the table view.

Also, more broadly, data-driven customization suggests new possibilities for how
multiple applications might be integrated in new ways, by synchronizing their under-
lying data representations in a shared format. So far, we have mostly explored the
implications for customization within a single application, but it would be interest-
ing to explore how end users could use these techniques to synchronize data across
applications to avoid manual coordination work.

In summary, in this chapter, we have shown how ideas from reactive database edi-
tors and spreadsheets can be applied to customize existing web applications in useful
ways. Wildcard demonstrates that it is possible to take an incremental approach
where direct manipulation table views are used to interact with an application state,
even if the application itself is actually built using traditional techniques.

75

76

Chapter 4

Potluck: Gradually Enriching Text
Notes

In this chapter, we introduce our second approach to creating personal software1. It
uses a strategy for bridging the gap between text documents and apps called gradual
enrichment : allowing users to record information in natural, messy ways, and then
slowly adding formal structure and computational behavior only as needed.

4.1 Introduction
One inspiration for gradual enrichment is spreadsheets. In a spreadsheet, a user can
start writing down data in a freeform grid, without committing to any particular
structure. They can then write formulas that run computations on information, if
and when it’s useful to do so. Eventually, after lots of iterations, they might arrive
at a highly complex software application, but one grown organically from their data
and unique needs. At every point along the way, the artifact remained useful and
grounded in real needs.

Here we explore how to apply this kind of gradual enrichment to text documents.
People often jot down freeform text notes—recipes, schedules, workouts, chores, and
more—using apps like Apple Notes and Notion. These notes contain meaningful
information, like quantities in a recipe or weights in a workout log, that can serve as
the basis for useful computations. How might we enable people to gradually
turn these text documents into custom pieces of software?

Potluck is a research prototype that demonstrates a workflow for gradually turning
text documents into interactive software. It has three parts:

• Extensible searches. Users can define searches : custom patterns that detect
data within the text of a note. Searches are defined in a compositional pattern

1The material in this chapter is adapted from the following paper: Litt, Geoffrey, Max Schoening,
Paul Shen, Paul Sonnentag. “Potluck: Dynamic Documents as Personal Software.” 2022 LIVE
Workshop at SPLASH. https://www.inkandswitch.com/potluck/ [48]. I led the project, and all
authors made substantial contributions to the main ideas. The work was supported by the Ink &
Switch research lab.

77

Figure 4-1: The Potluck interaction model forms a loop: extract data from text,
compute with that data, and then display results back in the text.

language which allows reusing patterns that others have written.
• Live computations. Once data is extracted from the text document, users can

write formulas that compute new values based on the extracted data. Formulas
are written using JavaScript, in a live programming environment that resembles
a spreadsheet.

• Dynamic annotations. Computed values can be displayed in the original text
document as annotations. Potluck provides a few annotation types that can
insert new text, cover up or restyle the original text, or even inject interactive
widgets.

Together, these ideas form a loop. By treating text as both a source of information
and a substrate for hosting a user interface, we can turn a text document into an
interactive application (Figure 4-1).

Figure 4-2 shows an example of a simple Potluck document: a recipe for making
coffee, which includes an interactive slider that can scale up the number of servings.

The interactive and computational behavior of this document was constructed
within Potluck itself. Later we will explain the details of how it was made; for now
it’s sufficient to know that we’ve 1) constructed a search that finds the quantities of
coffee and water, 2) run a computation that multiplies those quantities, and then 3)
set up some annotations to overlay the scaled quantities over the original ones.

We have found that many different kinds of software can be built in Potluck.
We’ve used it to build tools for tracking household chores, managing a cash register,
organizing a meeting agenda, tracking workouts, splitting a bill, and planning a trip.
Figure 4-3 shows several examples.

Starting with freeform documents promotes a wide variety of use cases. Existing

78

Figure 4-2: A coffee recipe in Potluck, with a slider for scaling the number of servings

notes can serve as inspiration, rather than trying to build applications from a blank
slate. We’ve also found that barebones text-based UIs are sufficient for many personal
use cases, without the need for a full layout design.

The idea of gradually enhancing a document into a software application is not
new. It is related to document-based productivity tools like Coda, Notion, Roam,
and Logseq, as well as research systems including Documents as User Interfaces [12],
Webstrates [40], and Smalltalk [35]. What, then, are the contributions of this work?
Potluck extends in two directions less explored by prior work:

• Using freeform text data as a source of information for computations.
Many tools only allow users to compute with data that’s been put into a specific
structured format. In Potluck, we encourage people to write data in freeform
text, and define searches to parse structure from the text.

• Using text annotations to power an interactive interface. Even in tools
that combine documents and computation, there’s often some separation be-
tween editable text and computational results. In Potluck, we deeply entangle
interactive elements with the user’s text, by providing dynamic annotations
that can overlay or restyle the original document. The effect is to treat the text
itself as a place to host UI.

There are still some important limitations and open questions that we haven’t yet
resolved. While we care about enabling non-programmers, and have made some design
decisions with them in mind, our current prototype does expect the user to have basic
knowledge of JavaScript, and our test users have mostly been skilled programmers.
We are also not yet sure exactly where the limits of this model are—what kinds of
apps are possible and desirable to build in this style?

79

https://coda.io/
https://www.notion.so
https://roamresearch.com/
https://logseq.com/

Figure 4-3: Potluck documents can help with running a cash register, planning a
meeting agenda, and tracking a plant watering schedule.

80

4.2 Background

Applications are of the most familiar metaphors in using a computer today, so it
might seem strange to question their value. But in this section we’ll argue that, when
examined closely enough, the application model imposes serious rigidity on users. In
contrast, we’ll show that documents have some intriguing benefits due to their more
freeform nature, but have their own drawbacks.

4.2.1 The rigidity of apps

Let’s examine some of the kinds of rigidity that applications impose on users. To
ground our analysis, we’ll use some concrete examples from Paprika, a popular recipe
management app that provides useful features like scaling ingredients and setting
timers.2

One problem with apps is that they have predefined feature sets that the
creators deemed appropriate for the goal. It’s impossible to make a small tweak, or
even remove an unwanted feature, unless the creator of the app has explicitly allowed
for the change. Each app has a (often narrow) domain that it considers in scope,
requiring us to learn to use many independent apps that don’t compose together
well. In short, apps enact rigid boundaries between tasks, and define rigid solutions
within those boundaries.

As an example, consider the sidebar in the Paprika recipes app, which includes
many extra features beyond recipes: grocery shopping, pantry management, meal
planning, and a feature for assembling “menus” out of recipes (Figure 4-4). On the
one hand, this feature set is very broad: the extra sidebar items may be unnecessary
for many users, but there’s no way to remove them. On the other hand, the application
still has a narrow focus, since it siloes away cooking as a separate domain from the
rest of life. In the analog world, it’s natural to combine a grocery shopping list with
other chores for the day, but there’s no way to easily integrate a Paprika shopping
list with other notes in another app.

There’s another important dimension of inflexibility: apps create rigid data
schemas that define the kinds of information we can record within them. We can fill
out the available form fields, but we can’t add new fields or scribble in the margins.
Structured data inputs struggle with ambiguity—when faced with a list of radio but-
tons, there’s no way we can select two options, like we might have done on a paper
form.

Here’s an example of this schema rigidity in Paprika: every recipe must list the in-
gredients in a separate section from the directions. This means that people can’t write
recipes by simply mentioning the ingredient quantities directly within the directions.
Also, when the recipe is scaled up, the multiplier only applies within the officially
designated ingredients section, and doesn’t affect any quantities shown within the
directions.

2Our critique isn’t meant to single out Paprika. In fact, we chose Paprika because it’s a very
popular app, so its flaws are more likely to show problems with apps in general rather than one
particular app.

81

https://www.paprikaapp.com/

Figure 4-4: Beyond the core recipe functionality, Paprika’s sidebar has extra features
for Groceries, Pantry, Meals, and Menus

As another example of schema rigidity, when constructing a meal plan, you can
only add a recipe in a specific slot for some date. There’s no way to ambiguously
assign a recipe to either Tuesday or Wednesday, which would be natural to do in a
paper notebook (Figure 4-5).

The overall effect is one of limited agency—once a user has picked the best available
app, their choices end there. People aren’t encouraged to think about little further
changes they might want to make, or naturally make tweaks as they go; instead, they
just adapt their behavior to whatever the app encourages.

4.2.2 The flexibility of documents

It’s striking to contrast the rigidity of a recipe app with the natural ways that people
use analog tools to manage recipes. They maintain boxes or binders of favorite recipes
and hand them down as treasured family heirlooms. They write in physical cookbooks
to leave their own annotations. On one sheet of scrap paper, someone can write a
fuzzy sketch of a meal plan for the week, a grocery list, and some notes about other
ongoing todos. Because paper is an inherently permissive medium, there’s no need
to adhere to preset rules.

In the digital world, we find a close analogue to this kind of flexibility in text and
multimedia documents, where we can write whatever we want (Figure 4-6). Docu-
ments have a couple key advantages relative to applications.

First, documents are useful for all kinds of tasks. A note can capture any
kind of information, without needing to worry about what bucket it fits in. This
generality makes for more versatile tools—there’s a common set of conventions that
people are familiar with for editing text, and they’re implemented to a high degree
of quality in many editors and libraries because text is such a versatile data format.

Also, documents don’t enforce a schema. Text doesn’t enforce rigid schemas

82

Figure 4-5: Each meal plan entry in Paprika must be assigned to a specific date on
the calendar, with no room for ambiguity.

Figure 4-6: Text documents are a single versatile medium for recording all kinds of
information.

83

on what we can write, so we can work in a medium closer to how we think instead of
conforming to an external system. It feels entirely natural to come up with a personal
way of writing down todos or workout logs in a text note, because the medium is so
flexible.

However, there is a tradeoff: documents are static. However, documents lose
the convenient computational features of an application, like automatically scaling
ingredients, setting timers, or tracking nutrition statistics. This is not just a lack
of engineering effort—there’s a fundamental challenge, which is that the data hasn’t
been entered in a consistent format that the computer can reliably understand.

4.2.3 Gradual enrichment

We’ve seen that applications and documents each have their own advantages. How
might we get the best of both worlds?

We think an appealing approach is to enable people to gradually enrich text
documents. A user can start with a text document, and as they work with it, they
can add bits of structure and computational behavior as needed. This process should
be incremental, so that the document remains useful at every step along the way, and
there’s never any unnecessary work up front.

Notably, this process can’t avoid the need to teach the computer how to interpret
meaning from freeform data. The point is to defer this process until it’s absolutely
needed. It’s okay to end up with structured schemas when we need them to support
computational features, but when they’re not necessary, text is a perfectly adequate
representation for humans to interact with.

4.3 Related Work
Many others have explored tools for mixing documents and interactive functionality.
Here are a few projects we took inspiration from.

4.3.1 Text documents as user interfaces

A key part of the Potluck interaction model is using a text document itself as an
interactive interface, by showing computed values and interactive widgets in the text.

This idea has been explored at least as far back as 1991, in Eric Bier and Ken
Pier’s work on Documents as User Interfaces at Xerox PARC [12]. They demonstrated
that if we treat specific segments of text as clickable buttons, then we can arrange
them in a UI by simply moving the text to the appropriate place in the flow of the
document.

Modern commercial tools like Coda3 and Notion4 have also explored intertwining
text and computation. Coda’s goal is particularly close to ours: allowing users to
gradually enrich documents into apps, including by embedding interactive widgets and

3http://coda.io
4https://notion.so

84

Figure 4-7: Coda supports enriching text documents with interactive computation

computational results in documents (Figure 4-7). However, there’s a key difference
in the model: in Coda, computations run on data that stored in structured tables
with defined schemas, whereas in Potluck, computations run on data interpreted from
freeform text. Later we’ll address some of the tradeoffs between these approaches.

Plaintext knowledge management tools like Emacs Org Mode, Obsidian, Logseq,
and TaskTXT allow users to write plaintext files in a specific syntax that supports
dynamic functionality, such as extracting todos and surfacing relationships between
entities. These tools share Potluck’s goal of building on top of the familiar and
portable format of plain text, and many of them also have robust ecosystems of user-
authored plugins which can extend the tools to more domains and tasks. However,
these tools also tend to come with some degree of built-in, opinionated syntax and
features, and writing plugins often requires leaving the tool and applying expert
programming skills. Potluck places a greater emphasis on allowing end-users to define
their own syntax and features, and aims to apply to a broader set of domains.

Another inspiration is Bret Victor’s reactive documents5 (Figure 4-8), which inte-
grate a spreadsheet-like model into text. This allows a reader to interactively change
the assumptions in a written explanation and see the consequences of those changes in
realtime. While Potluck has a slightly different goal—building personal tools, rather
than writing explanations for other people—we share the principle of combining the
explanatory power of natural language and the dynamism of computation in a single
medium.

4.3.2 Data detectors

In their 1998 paper Collaborative, Programmable Intelligent Agents [62], Nardi,
Miller, and Wright describe data detectors : intelligent pattern recognizers built into
the operating system which can detect structured data like phone numbers and street
addresses contained within everyday unstructured documents, and then allow the

5http://worrydream.com/ExplorableExplanations/#reactiveDocument

85

https://orgmode.org/
https://obsidian.md/
https://logseq.com
https://tasktxt.com/

Figure 4-8: A reactive document by Bret Victor explaining a tax policy change. The
user can edit values by dragging, and other dependent values in the text automatically
update.

Figure 4-9: A data detector in macOS enables right-clicking on a phone number to
add it to contacts or make a phone call.

user to take actions on that structured data. This idea was productized and lives on
to this day in MacOS and iOS, although without the user extensibility envisioned by
the original paper (Figure 4-9).

We find data detectors promising because they allow people to represent infor-
mation on their own terms. However, today data detectors are more of a minor
convenience than a core metaphor in the OS. We think the reason is that the inter-
action model around data detectors is limited: all a user can do is manually click on
a detected value and take a single action. There’s no ability to perform more sophis-
ticated computations with the detected data, or to automatically show annotations
on detected data.

Feedback loop

In order for a data detector to feel good to use in an interactive setting, it’s critical
that the system can provide immediate feedback as a user types and help them develop
consistent expectations for how the system will interpret their text.

One inspiration was Fantastical, which parses a natural language description into
a structured calendar event. It shows instant visual feedback, and is also fairly
predictable—even though the input feels freeform, the parser acts consistently enough
that it’s possible to learn how to reliably write well-parsed inputs. Fantastical even

86

https://flexibits.com/fantastical

publishes recommended guidelines for how to type events to help out the parser. An-
other example of a fast predictable parser is Soulver, a “notepad calculator” app that
instantly performs math computations over a notepad with flexible text input.

In our experience, these kinds of tools feel nice to use because they strike a good
balance between natural language and formal syntax. They allow the user to
type naturally, but they don’t aim to accurately interpret everything someone could
possibly write. There’s a feedback loop where the user adjusts their input in response
to the machine.

Extensibility

People should have the ability to encode their own knowledge and personal micro-
syntax into their tools. However, defining abstract patterns over plain text can be
difficult even for skilled programmers; regular expressions are notoriously hard to use.
We need ergonomic tools for defining patterns.

One category of approaches is to develop better languages. For example, LAPIS
[57] by Miller and Myers developed a set of tools for specifying and extracting patterns
from text by composing together existing patterns, including a friendly syntax that
resembles natural language. Another route is programming by example (PBE): letting
users provide concrete examples to specify a more general pattern. This technique
has been explored by many systems, including the Flash Fill [27] system deployed in
Microsoft Excel, related systems like FlashExtract [44], and LAPIS. There are also
some interesting hybrid interaction models between PBE and code editing—Mayer
et al. use PBE to generate candidate programs, but also let users directly edit the
resulting programs [53].

In the next section, we explore how our Potluck tool embodies these ideas of fast,
predictable, and extensible data detectors.

4.4 Potluck: an environment for dynamic documents

Potluck is a research prototype we built to explore the idea of gradually enriching
text documents into interactive application. Our goal was to design a concrete model
for gradual enrichment, and then to evaluate that model by using it to build personal
tools.

To understand the core ideas in our prototype, let’s see how someone could use it
to build the coffee recipe shown at the beginning of this chapter. As a reminder, the
final note contains a slider that scales the recipe quantities, and an interactive timer
to keep track of the brew time. These aren’t particularly interesting features in and
of themselves; they’re common features found in recipe apps. The important point
is that in Potluck, a user can build them from scratch on top of a text note without
leaving the tool, and then keep customizing and extending the tool for their needs.

Figure 4-10 shows the steps of the process.

87

https://flexibits.com/fantastical/help/adding-events-and-tasks
https://soulver.app/

Step A:
Write a search
that extracts
quantities from
the document
into a table

Step B:
Write a
computation
that doubles the
quantity and
replaces the
original text

Step C:
Use a formula to
insert an
interactive
slider into the
document

Step D:
Connect the
slider to the
quantity scale
factor to change
the scale
interactively

Figure 4-10: Creating an interactive quantity scaler for a coffee recipe in Potluck

88

4.4.1 Extracting data with searches

Potluck starts out looking like a familiar note-taking application; there is a list of
notes to the left, an editable text area with the note’s content in the center, and a
search panel to the right. The first step towards scaling our ingredient quantities
is to help the system recognize those values as structured information embedded
within the recipe text. It’s important that users can define flexible patterns that
can accommodate messy real world data, but also that users have control over the
patterns they define, and can develop consistent expectations about how they behave.

Potluck allows users to define patterns that are recognized within a text docu-
ment. Patterns are created with a search interaction. Users are already familiar with
searching for content in a word processor or web browser, so it’s a natural on-ramp
to creating live data detectors.

As an easy start, the user can search for a string literal: 11 g, the quantity of
coffee in our recipe. The search result appears in a table in the search panel, and is
also underlined in the text note itself. Searches run continuously against the note’s
content, so the results update as we update the text note:

Of course, a string literal is usually too specific to find all the data the user
wants—in this recipe, the search has detected the quantity of coffee, but not yet the
quantity of water. The search needs to be generalized to find any number followed
by the g symbol. In Potluck, the user can do this by rewriting their search from 11
g to {number} g (Figure 4-10 Step A). This works because Potluck searches can
reference other existing searches, by putting the name of an existing search inside of
curly braces. Potluck comes with many simple patterns built in, including numbers,
dates, and phone numbers.

Later on, the user will want to do arithmetic using only the number and not the
unit, so they can also extract the number using a named capture group. If they edit
the search to say {number:amount} g, the table of results will automatically show a
column that just contains the amount.

For more advanced patterns, the language also supports arbitrary regular ex-
pressions. The user could have generalized their search to support other units be-
sides grams, by changing the unit part of the search to use a regular expression:
{/g|kg|ml/:unit}. However, regular expressions can be confusing to read and write,
so we generally encourage encapsulating them inside of reusable named searches. For
example, the built-in number search is internally implemented with a regular expres-
sion, but the user doesn’t need to see that implementation detail.

4.4.2 Running live computations

Now that the quantities have been found in the text, the user needs to multiply them
by some scaling factor. They can do this by creating computed properties that contain
small JavaScript expressions.

In this case, the user adds a computed property called scaledQuantity that is
the result of multiplying the quantity by a scale factor. For now, they want to make
2 cups of coffee, so they just write a simple formula: amount * 2. Later they’ll make

89

Figure 4-11: Potluck offers several annotation locations: above the text, next to the
text, or replacing the text.

the scale factor adjustable. (Figure 4-10 Step B)
Our choice of JavaScript was motivated by convenience—it was easy to implement

and easy to teach to people who already know JavaScript. However, we’ve applied
some well-known design ideas from live programming and spreadsheets to try to
make the environment friendly to program in. Each column computes a small pure
expression that automatically re-evaluates reactively, and the current output is shown
live in the table. We also provide built-in higher level functions for common high-level
tasks that are cumbersome in JavaScript, like summing up a list of numbers. The
result is that simple computations resemble small spreadsheet formulas, while the full
power of JavaScript is still available to expert users.

4.4.3 Adding annotations

The user has computed a scaled value, but it’s not yet visible in the text document.
They’d like to complete the scaler feature by covering up the original quantity with
a scaled quantity. They can do this by setting up an annotation, which allows any
column from a computation to show up in the text document.

Annotations don’t edit the original text content; they exist in a separate overlay
layer. This preserves a clear separation between text and annotations, keeps the
original text freely editable, and avoids circular feedback loops that could happen if
annotations were themselves searchable. The visual design also differentiates between
user input, displayed as normal text, and computational annotations, displayed with
blue ink.

Annotations are placed in the document near the corresponding search result.
The user can choose to place an annotation in one of several locations, each useful in
different situations: Above Text, Next to Text, or Replace Text (Figure 4-11). When
the “Replace Text” option is chosen, the annotation moves out of the way when the
text editing cursor moves into the annotation, so that the underlying text can still be
seen and edited.

In this case, the user tries out a few options for where to place the annotation,
and decides to cover up the original text with the scaled value (Figure 4-10 Step B).

90

Interactive widgets

Now the scaled values are available in the text, but there’s not a nice interface for
setting the scale factor within the text. Perhaps after making coffee a few times, our
user gets tired of editing the formula each time and would like to add a slider interface
to set how many cups they plan to make.

In Potluck, the user can use dynamic annotations to add interactive widgets which
are built into the environment and exposed via special formulas. In the search panel,
they can call a Slider() formula which returns a slider widget as a value, and then
use the annotation mechanism to display it in the document (Figure 4-10 Step C).

Now there is a slider in the document, but its value does not affect the rest of
the document in any way. The next step is to wire up the slider to the quantities.
Previously the user hardcoded a scale factor of 2; they need to replace this with a
computed expression that retrieves the value from the slider.

Potluck contains a number of helper functions that allow a computed expression
to pull data from other searches. They can return to the quantities table where they
previously hardcoded the scale factor, and instead retrieve the scaling factor from
the other search that contains the slider. They get the slider value with the formula
Find("scale").data.value, and put that in a column called scale. They can then
replace the previously hardcoded amount * 2 with a new formula, amount * scale.
Finally, they can add a unit label with JavaScript string interpolation: ${amount *
scale} g.

This completes the working recipe scaler (Figure 4-10 Step D).
In summary, we’ve seen how an interactive recipe scaler can be built in Potluck

using a search for quantities, a computation that multiplies the quantities, and a
slider widget annotation, all configured live within the tool.

4.4.4 Reusing searches

Next, our user wants to add another feature: a timer to help them track the coffee
brew time.

They could build this up from scratch just as they did with the scaler, but because
adding timers for durations in a document is a very general use case, they can instead
reuse an existing search that someone else already made. The user opens the
search panel to add a pre-existing search called duration, which recognizes duration
strings like “2 minutes”. This search also comes with a predefined computed property
that shows a countdown timer, which is another kind of built-in interactive widget.

Reusing searches is a key concept in Potluck, because many searches for things
like numbers, durations, and even Markdown syntax are useful across domains. For
these common use cases, people shouldn’t need to build everything from scratch.
Reuse still allows for further remixing—the duration search’s pattern and computed
property are defined in userspace, so the user can still edit searches and computations
at any time.

91

4.4.5 Other features

Changing text styling

Sometimes, instead of using a computational result to add annotations to the text,
it’s more helpful to change the styling used to display the text. Potluck supports this
via dynamic formatting.

Consider a document with a watering schedule for house plants, including how
often the plant needs to be watered, and when it was last watered. It’s hard for a
user to tell at a glance which plants should be watered today. One way they could
solve this is by coloring dates in red if they’re too far in the past and it’s time to water
that plant. The user can do this by adding a computed property which outputs “red”
or “green”, and assigning that to control the color of the underlying search result. The
resulting plant tracker is shown in Figure 4-3. Any CSS property can be addressed
by dynamic formatting, including color, font size, and font weight.

Dynamic formatting is reminiscent of syntax highlighting in code—in fact, the
Markdown preview syntax in Potluck (e.g., bolding headings) is powered by this
mechanism. The difference from syntax highlighting is that both the parser grammar
and the formatting rules themselves are meant to be easily editable on the fly by
end-users. For example, it’s straightforward to create a rule that a given word should
always be highlighted when it appears in a document.

Editing the text programmatically

Both annotations and dynamic formatting share an important characteristic: they
are overlays applied to the text at view time, and they don’t durably edit the state of
the underlying text in any way. We designed the system this way because it preserves
a clear separation between the editable text content and downstream derived data,
eliminating the potential for confusing feedback loops between the two layers.

However, we found that there were use cases where we wanted exceptions to this
model. For example, in the plant tracker demo from above, every time we water a
plant we have to remember today’s date in order to record it in the log. It’d be much
easier to have a programmatic way of inserting today’s date into the text.

To support this, Potluck includes buttons that can insert or replace text in the
document. Buttons are similar to other interactive widgets like sliders, but they have
an additional capability for editing the surrounding text. The user specifies what
should happen when the button is clicked: what text should be inserted, and where.
Once the user has created a button, they can mark a plant as watered with a single
tap. (These buttons are also shown in Figure 4-3.)

This button’s update behaves just like any other text edit—we get features like
undo and redo for free. Furthermore, changing the text causes the parsers and for-
matting to rerun, updating the plant color indicators. Also, because the text edit only
happens upon an explicit user interaction, it’s impossible to create runaway infinite
loops where the computations and text update each other.

We’ve seen how users can extract data with searches, perform computation on the
structured data, and inject annotations back in the text. Clicking a template button

92

Figure 4-12: It’s more convenient to follow a recipe when the quantities are shown
inline in the directions.

changes the text and starts the cycle again. Potluck’s interaction model turns static
documents into an interactive and stateful computational medium.

Extracting spatial relationships

Now that we’ve seen a full loop of the interaction model, let’s briefly return to the
first stage of data extraction. So far, we’ve seen the user extract relatively simple
patterns, but in some cases, the document contains richer structure that requires the
ability to establish looser spatial relationships between different parts of the text.

Consider the example shown in Figure 4-12. A common problem with following
recipes is looking up the quantity of a given ingredient while following the directions.
It’s useful if we can see the quantities directly within the directions.

To support this use case, we need to start from an ingredient in the directions
(e.g., “spaghetti”), and find the corresponding quantity in the ingredients section of the
recipe. This relationship can’t be easily expressed in a pattern or a regular expression;
we need a spatial query that can look across longer distances in the document. In
this case, we can write a spatial query that runs the following logic: “Start from
the ingredient name in the directions, get all previous ingredient names and take the
quantity of the first ingredient with a matching name”:

Or, in code that we could enter into a Potluck formula:

AllPrevOfType(ingredient, "ingredient")
.find(other => (

other.data.quantity !== undefined &&
other.isEqualTo(ingredient)

))

We found spatial queries to be an essential tool for capturing relationships between
parts of the text. For example, spatial queries can help associate a heading with
the content underneath the heading, or help associate an ingredient with its nearby
quantity.

93

Figure 4-13: A spatial query that finds the quantity of an ingredient in the directions.

94

4.5 Evaluation: Experience & Limitations

In addition to using Potluck extensively ourselves to build various tools (many of
which are shown above), we also conducted informal testing sessions with about a
dozen people. Most of the test users were programmers familiar with JavaScript, but
several of our testers were designers with only some limited programming experience.
We gave users a brief tutorial on how to use Potluck and then observed as people tried
to build their own tools in the environment. Here are some findings on the benefits
and limitations of Potluck we learned from that process.

4.5.1 Versatility

A key question about this paradigm of gradual enrichment is how versatile it is. How
far can you stretch these primitives, and when are they most useful? To explore this,
we used Potluck to build documents for various use cases: tracking trip expenses, stock
portfolios, planning trips, scheduling workshop agendas, managing a cash register, and
more. (See the interactive demos in the introduction for some examples.)

In general, we found that the freeform nature of text made it possible to adapt
Potluck to a wide range of use cases. Any text document, whether it contains prose or
a structured personal micro-syntax, can serve as the starting point for an interactive
tool. The medium is inherently permissive and flexible.

Meanwhile, some properties of Potluck—at least in its current form—limit the
kinds of applications that can be built. Text must serve as both the input mechanism
for the data and the substrate for designing the user interface, which obviously rules
out applications with non-textual data or rich user interfaces and visualizations.

Working with fuzzy text data also increases the chances of errors—when reusing
searches developed by someone else, it’s possible to write invalid data that isn’t rec-
ognized by the search. This is less of a problem in traditional software that performs
stricter input validation.

Most of our example applications are also relatively small, with fewer than a dozen
searches, each containing only a few computational columns. Even at this scale, we
started to find it time-consuming to understand and modify tools built by others
within our team. This is an unsurprising challenge that also emerges in traditional
software and spreadsheets, but it suggests a need for better techniques to manage
complexity.

4.5.2 Tool composition

We found that dynamic documents in Potluck naturally promote two kinds of com-
position.

The first kind of composition is reusing the same tool in different contexts. A
timer can be used for remembering to take a pie out of the oven, or for holding a
plank in a workout. A quantity scaler is useful in both recipes and event planning.
Because all tools are made up of searches, tools, and annotations on a shared text
substrate, it’s possible to reuse tools across documents.

95

Sometimes, simple tools like a timer can be trivially reused across documents; in
other cases, we found it necessary to adapt or extend an existing tool. For example,
often a search needs to be edited to support a different syntax. A quantity scaler
might start out only looking for quantities in grams, and later need to be generalized
to support more kinds of unit.

One unresolved design challenge is how to propagate changes across reused searches.
In our prototype, changes to a search automatically affect all the documents where it’s
used. This makes it convenient to improve searches globally, but also makes it very
easy to break other documents when editing a search. We suspect a better approach
would be to decouple the usage of a search in different documents.

A second kind of composition is combining multiple tools and domains in a single
document. One document can contain information that might have been tracked in
separate apps, like combining meal planning with an exercise log, or combining a trip
agenda and group expense tracker in the same document. These kinds of combinations
feel very natural in freeform documents, but are often difficult to achieve in traditional
software.

In larger documents, especially those dealing with multiple domains, we found
that it was sometimes useful to restrict a particular search to only certain regions of
a document. For example, when a recipe document has notes at the bottom, it might
be useful to have recipe-related searches apply to the recipe part of the document, but
not the notes. To support this, we built a mechanism where searches can configured
to only operate in part of a document.

4.5.3 Potluck vs. spreadsheets

We and our test users sometimes found ourselves preferring Potluck instead of a
spreadsheet for performing simple computations.

One reason is that it’s common to start out writing information in a text document,
and a text-based computational tool avoids the need to move the information to
a spreadsheet. We also noticed that it often felt easier to edit data in text than
in a spreadsheet. This might be because we’re more familiar with the affordances
of text editors. Also, notes apps are more common than spreadsheets on mobile
devices (and more ergonomic to use, since text wraps on narrow screens) which makes
them convenient for editing on the go. Figure 4-14 shows an example of the same
computation expressed in a text document and a computational table view.

However, in some cases Potluck felt more tedious than using a spreadsheet. Some
documents contain many individual values which are hard to address using textual
patterns; for example, the document in Figure 4-15 which lets the user enter 7 different
variables as inputs to a calculator for a pizza dough.

In a spreadsheet it would be easy to just enter each of these values into a cell and
reference the cell by name, but in Potluck, the user has to construct searches that
can find these values in the text document based on some surrounding pattern. It’s
possible we could improve upon this by extending Potluck with some mechanism for
identifying named values within the text itself.

96

Figure 4-14: The same unit conversion computation, in Potluck on the left and a
Notion Table on the right

Figure 4-15: A pizza dough recipe that computes flour and water amounts based on
input parameters

97

Figure 4-16: Text notes often contain implicit structure and relationships expressed
through a personal micro-syntax.

4.5.4 Challenges of parsing

A key challenge in Potluck is accurately parsing structured information from a text
document. We noticed that the difficulty of parsing depends a lot on how the text
content arrives in the document: it’s much easier to parse information from a personal
micro-syntax being typed into Potluck than it is to parse preexisting content being
pasted in.

Accurately parsing structured information from preexisting text data—like a recipe
from the internet—is extremely challenging. For example, a recipe might call an in-
gredient “pork”, but later refer to it as “the meat”—how do you recognize that these
are the same entity? These are difficult problems in the field of natural language
processing.

The situation is quite different for personal notes typed into Potluck. When the
user controls the shape of the text and is receiving feedback as they type, it’s much
easier to create text that conforms to the parsers active in a given document. For
example, if fractions aren’t recognized as numbers but decimals are, you can either edit
the number recognizer to understand fractions, or just rewrite the text to decimals.
Editing the search seems like the more principled choice, but in practice we often
found ourselves editing the text because it was easier to do in the moment.

We also found it very natural to represent information using lightweight text syn-
taxes. In personal notes, people implicitly develop syntaxes to write down information
like times, durations, or domain-specific information, and these conventions can be
encoded in Potluck as patterns. For example, the plant watering document from the
demo section above showed a simple syntax for recording watering dates. The fig-
ure below shows another example, where workout activities are grouped underneath
dates. We found that Potluck’s combination of pattern searches and spatial queries
was generally flexible enough to capture the underlying structure in many different
kinds of informal syntax (Figure 4-16).

98

4.5.5 State and UI in text

In Potluck, application state lives in the text. For example, you might note the last
watered date for a plant using the text syntax 08/31/2022, or use [x] to indicate
a completed task. There is no hidden metadata; searches are just a function of the
text.

Text editors are generic and refined tools that have many built-in features like
copy/paste and undo/redo. Having state directly in the text gives us these features
for free. For example, you can copy a document to a different text editor to edit and
then paste it back into Potluck, and it retains all of its behavior. By using text as
the source of truth, Potluck inherits the affordances and powers of text.6

In some cases, our demos violate this general principle by storing ephemeral state
which isn’t stored in the text. For example, our default timer widget doesn’t store
the remaining time in the text, so a running timer won’t survive a copy-paste. This
wasn’t a particularly principled decision though; in theory, any state that can be
encoded as text can be stored in the document itself.7

In Potluck, text also serves as the output medium for displaying computed data.
We enjoyed designing tools in Potluck because the text medium forces a simple one-
dimensional layout and avoids many of the choices found in conventional UI layout.
Of course, there are limits to this approach—many kinds of apps and views don’t
make sense to build using text as the substrate. But we didn’t notice these limits
too acutely when building apps in Potluck, perhaps because we were already in the
mindset of “writing a text document” and not “designing an interface”. Still, to extend
the range of scenarios where Potluck is useful, one direction for future work could be
to allow users to extend text documents with richer visual components.

4.5.6 Limitations

In our testing sessions, we discovered several key limitations of Potluck.

Recursive searches

A key design decision we made in Potluck is that searches are not recursive: an-
notations in the document cannot feed into further searches. On each edit of the
document, the system performs a single loop of searching and annotating. We believe
avoiding recursive searches keeps the mental model and system implementation much
simpler—for example, since the order in which searches are executed is irrelevant,
and infinite loops are not a concern—but it also limits certain kinds of composition.

For example: imagine a recipe document where a user wants to both convert units
on quantities and scale up quantities. If the system supported recursive searches, these

6Originally we tried allowing users to manually highlight entities in the text. We abandoned this
approach mainly because manual highlighting was tedious, but also because it created hidden state
outside the text that was hard to reason about.

7The text-based todo list app TaskTXT has a good solution to storing timer state in the docu-
ment. When a timer is started, it records the start time into the text document in a human-friendly
format. The result is that even a running timer can survive a cut-paste.

99

https://tasktxt.com/

could be written as two separate spreadsheets; the unit conversion sheet could produce
annotations which would then appear as search results in the quantity scaling sheet.
But in the absence of recursive searches, we must express these two computations in
a single table.

Live searches vs. manual tagging

Some systems allow users to manually tag an arbitrary span of text with an annotation
based on the position of the span in the text. For example, a Google Docs comment
behaves in this way. In Potluck, we do not allow this—all searches must be expressed
as a pattern match over the contents of the text. This design avoids hidden state
and enables the user to always reason about the behavior of searches for example,
copy-pasting text works in a predictable way.

However, this design decision can also make it harder to express certain kinds of
searches. A common example is when displaying the result of a computation at a
specified place in the document. The user cannot specify a location in the document
that will serve as an anchor for the annotation display; instead, they must write a
label in text, and author a search that will only match that label.

Formula language

In general, users with strong JavaScript proficiency generally found it much easier
to program the system, but users with limited JavaScript experience often required
substantial hints to successfully create a Potluck document.

One particular point of confusion was the way that search results are represented.
In the Potluck formula language, search results are not represented as primitive
JavaScript datatypes like strings or numbers; they are stored as references to lo-
cations in the text; preserving this metadata enables formulas that traverse spatially
from a given search result to find related data. As a result, search results must be
explicitly converted to primitive datatypes like numbers before they can be used in
regular JavaScript computations. Users often got confused about whether a given
cell in a table contained a search result or a regular JavaScript primitive. This could
likely be improved through better language design and UI affordances.

Some participants also struggled with referencing data across tables. Potluck
allows formulas in a table to reference data from another table, or even another doc-
ument; this functionality is used, for example, in the coffee recipe to bring the slider
value into the scaling computation. We observed that users made more mistakes when
trying to reference data across tables than when computing within a single table; one
reason was that the editor environment does not offer support for correctly referenc-
ing the name of another table. Writing computations across tables also sometimes
required effectively writing relational joins (i.e., looping over the contents of one ta-
ble once for each row of another table, and performing some kind of aggregation);
currently this must be done manually in JavaScript, and first-class language support
would make these kinds of computations easier to express.

100

Figure 4-17: Showing a calendar view of a workout note in Potluck

4.6 Future Work

Structured data views

Annotations in the text can’t create more complex layouts or graphical visualizations.
To address these shortcomings, we did some small experiments with structured views
that are defined outside of the text. For example, Figure 4-17 shows a text note
recording recent workouts, with a calendar view that shows the dates of the workout
in a more convenient format.

One thing we found surprisingly useful in this experiment was to show context
around each search result within the structured view. You can hover over any date
and see the text from the original document surrounding that date, which makes the
structured view a useful window into the original text.

We think it would be interesting to explore structured views in more detail. What
is the relationship between text and structured data views? Do the views live inside
of the document or are they separate from the text? As a starting point, people
could connect their text notes to existing structured views, including generic views
like calendars. As a step beyond that, we envision people creating their own views
using some mechanism besides traditional programming.

Integrating machine learning

There are limits to how well the deterministic pattern descriptions we used in Potluck
can interpret structured data out of text. For example, consider the difficulty of
finding all the ingredients in a typical recipe—how do you decide on the list of known
foods? How do you match up mentions of the same ingredient that use different
words?

We think AI and machine learning could help solve these kinds of problems and
make Potluck both more approachable and powerful. Recent advances in large lan-
guage models like GPT-3 have shown the power of ML for interpreting structured
information out of text. Some Potluck searches might be made both more accurate
and more easily specified by using a language model (Figure 4-18).

Another role for ML could be in helping end-users write code for search queries

101

https://en.wikipedia.org/wiki/GPT-3

Figure 4-18: Extracting the ingredients from a recipe using GPT-3

and computations, using an approach like GitHub Copilot. This would still result in
fast, predictable searches, but could make it easier to author them. In Chapter 6, we
demonstrate an experimental prototype of adding this approach to Potluck.

There is a delicate tension between ML-based automation and maintaining user
control. We’d want to avoid an approach that delegates too much work to an AI
model; every step of the process should be repeatable, inspectable, and understand-
able.

Machine learning could also help extend the ideas of Potluck to other types of
source material, like handwritten ink, photos, or video. Many of the same core ideas
would apply: extracting meaningful symbols from freeform data.

4.7 Conclusion

In this chapter, we’ve shown how searches, computations, and annotations can come
together to enable users to gradually enrich text documents with structure and mean-
ing.

While we’ve shown these ideas in the context of a specific research prototype, we
don’t necessarily think that a new “notes app” is the right way to implement them.
Perhaps these concepts could be more powerfully applied at deeper levels of the stack.

Imagine an operating system with the principles of Potluck deeply woven in. Peo-
ple could start by just organically recording information however they want. As they
come across places where the computer could help them, they would gradually add
structure to their data, but only as much structure as is needed for the task at hand.
They would then add bits of computational behavior, borrowed from others or cre-
ated from scratch, to complete the task. The resulting tools might resemble “apps”,
but in fact would be precisely tailored to one’s own needs. The tool fits the workflow,
rather than the workflow fitting the tool.

In summary, Potluck demonstrates how reactive table interfaces can help people
build small personal tools on top of existing unstructured text data. We have shown

102

https://github.com/features/copilot
https://thesephist.com/posts/tools/

that it is possible to use a table UI to perform computations over structured tabular
data, while simultaneously allowing for flexible data entry that avoids premature
formalism.

103

104

Chapter 5

Riffle: Reactive Relational State for
Local-First Applications

In the previous chapters we have demonstrated how ideas from reactive databases
can help end-users develop simple personal tools. In this chapter1, we apply similar
techniques to a different problem: supporting skilled programmers who are building
complex applications.

5.1 Introduction

A key part of application development is managing state : displaying a view of the
application’s data and keeping that view updated over time. For example, in a music
app, the application state includes the structure of a user’s music library—the tracks,
playlists, favorites, etc.—as well as UI state, such as the currently selected album, or
the sort order applied to a list of tracks. The application’s user interface (UI) can be
thought of as a live visualization of queries over these underlying sources of state: for
example, fetching and sorting the tracks within the currently selected playlist.

One powerful abstraction for defining such queries is reactive data transforma-
tion, as seen in early UI frameworks like Garnet [60] and in modern frameworks such
as React.js. In a reactive system, a developer declaratively specifies data transfor-
mations and dependencies, freeing them from manually propagating updates. The
concept of reactivity is perhaps best known in spreadsheets, arguably the most suc-
cessful paradigm for allowing programmers of all levels of skill to describe complex
computations. In fact, prior work [18, 9] has shown that spreadsheets themselves can
even be used as a substrate for specifying reactive data transformations that power
simple GUI applications.

1The material in this chapter is adapted from the following paper: Litt, Geoffrey, Nicholas
Schiefer, Johannes Schickling, and Daniel Jackson. 2023. Riffle: Reactive Relational State for Local-
First Applications. In The 36th Annual ACM Symposium on User Interface Software and Technology
(UIST ’23), October 29-November 1, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3586183.3606801 [47]. The main ideas were developed together
with Nicholas, advised by Daniel. Johannes led the development of Overtone and contributed
improvements to Riffle.

105

Figure 5-1: An overview of the Riffle architecture. The UI visualizes the results of
a reactive graph of relational queries on a persistent client-side relational database.
The dataflow loop runs synchronously on the UI thread, supporting fast, transactional
reactivity. In the background, the local relational database is synchronized with other
data sources over the Internet.

In practice, however, real-world applications tend to require more complex mech-
anisms than a spreadsheet to define reactive dataflow, for two main reasons. First,
most spreadsheet languages lack the expressive power needed to code a complex ap-
plication. Second, many real-world applications handle large amounts of data and
have strict performance requirements. As a result, state tends to be spread across
many layers—a backend database, a server-side ORM, a client-side cache, in-memory
UI state, etc.—breaking the conceptual simplicity of a reactive system and forcing
the developer to reason across many layers of abstraction. Reactivity is often present
in part of the stack (e.g., at the view layer), but not all the way through. The core
simplicity of “application as spreadsheet” has been lost.

In this chapter, we propose Riffle, a novel architecture for application state man-
agement which both provides a simple conceptual model and scales up to meet the
needs of complex real-world applications (Figure 1). We use a local-first [39] architec-
ture where all of an application’s state is stored in a persistent client-side relational
database. All updates, whether to domain state or UI state, flow synchronously
through this database. In the background, data can be synchronized over a network.
Figure 5-1 visualizes this architecture.

Our architecture has two key concepts:

• Reactive relational queries. Data transformations are represented by a di-
rected acyclic graph of relational queries. Reactivity ensures that updates prop-
agate automatically through the graph without intervention from the developer.
Relational queries let the developer provide high-level declarative specifications
of transformations while benefiting from performant query execution.

• Synchronous transactional updates. Whenever a write occurs to the database,
downstream dependencies are synchronously updated within a transaction. Since
UI state and domain state are both handled in the same system, we can guaran-

106

tee that the UI and all state visible to the programmer is always in an internally
consistent state, without inconsistencies across parts of the view.

A naive implementation of this architecture would have unacceptably slow inter-
action latencies, since any interaction might require re-executing expensive relational
queries before updating the UI. To make this architecture fast enough to support a
responsive UI, we build on top of SKDB2, a relational database that supports efficient
incremental updates and network synchronization. A primary contribution of Riffle
is applying performance advancements in incremental databases to enable simpler
abstractions for application programming. End-users also benefit, since applications
built in Riffle have fast interaction latencies.

We have implemented these ideas in a TypeScript library that provides APIs
for application developers to specify data transformations using reactive relational
queries. The library uses React3 as a view templating framework, which turns the
reactive query results from Riffle into DOM elements in the browser.

We demonstrate the benefits of Riffle in two case studies. First we build the
TodoMVC reference application, showing how Riffle provides a simple model for re-
active state in a small-scale application (Section 5.6). Next, we describe a formative
case study where Riffle has been used over the course of a year to develop Overtone, a
professional music management application. The resulting application demonstrates
how Riffle scales up to support large volumes of data and stringent performance re-
quirements, while preserving simplicity for the developer and speed and reliability for
the end-user (Section 5.7.1). To further analyze the benefits and tradeoffs of Riffle, we
present a heuristic analysis following Olsen’s criteria for evaluating systems research
[65] (Section 5.7.2).

Riffle suggests a new way of thinking about application development. By tightly
coupling the UI to a fast, reactive client-side database that supports ergonomic
queries, Riffle offers a kind of stack compression that simplifies the data architec-
ture, leading to applications that are simpler for developers to create and maintain,
easier for systems engineers to optimize, and faster and more reliable for end-users.
Looking ahead, this approach also lays the foundation for future benefits like end-user
customization and data-centric interoperability across applications.

5.2 Background

The complexity of state management

Today, application developers bear much of the complexity of managing state in their
applications. Most web applications have a multi-layer architecture involving at least
three programs running on different computers: a client-side program running in
JavaScript, a server-side program written in a language like Python or Java, and a
database queried with a language like SQL. Developers must wrangle data across these

2https://skdb.io/
3https://react.dev/

107

layers, manipulating copies of the same information, often in different languages and
representations. They must also manually manage the network boundary, including
serializing data and appropriately handling latency or failures. State is often persisted
in various caches along the way to improve performance. Reactivity may exist within
the view layer, but often does not span across the entire stack.

Experienced industry developers report that they are forced to spend their effort
thinking like distributed systems developers, instead of focusing on the application
itself. One developer, Tristan Hume, writes [31]:

When I’ve worked on any kind of distributed system, including systems as
simple as a web app with frontend and backend code, probably upwards
of 80% of my time is spent on things I wouldn’t need to do if it weren’t
distributed. . .

In addition to requiring tedious effort, application-level state management code is
also a common source of bugs [4]. Writing correct code for distributed state manage-
ment is a famously hard problem, even for distributed systems engineers [83].

Riffle simplifies application development by managing all state on behalf of the
programmer, in a single client-side system that subsumes the responsibilities of various
parts of the traditional state management stack. In doing so, it supports better
correctness, expressiveness, and performance. Riffle achieves this goal by building on
recent advances in three related research areas, which we describe next.

Applications as spreadsheets

Anyone who has used a spreadsheet is familiar with the value of one-way reactive
constraints. Spreadsheets are easy to use because of Alan Kay’s “value rule” [36]:
every cell has its value defined by a rule which is reactively maintained, making
it easy to understand and debug the provenance of computations. More broadly,
reactive constraints have a long, successful history in user interface development,
ranging from early systems like Sketchpad [75], Thinglab [15], and Garnet [60] to
modern frameworks like React and SwiftUI.

In fact, reactive constraints provide such a simple model of application state man-
agement that they can even support end-user programming. This has been demon-
strated by spreadsheet-driven application development environments—including re-
search projects like Gneiss [18] and Quilt [9], as well as commercial products like
Airtable4 and Glide5, which have successfully enabled end-users to define application
dataflow logic in a spreadsheet UI.

However, while these environments successfully achieve a “low floor,” so that the
simplest applications are easy to build, they also have a “low ceiling,” ruling out more
ambitious applications due to limitations in expressiveness and performance. For
example, Airtable has a limit of 100,000 rows in a collection, and does not support
full SQL (omitting even relational join), and Quilt [9] incurs latency by routing UI

4https://www.airtable.com
5https://www.glideapps.com

108

updates through a cloud-hosted spreadsheet. As a result, these tools are often useful
for building small-scale applications, but do not extend to full-featured, commercial-
grade applications.

Riffle takes inspiration from these systems and gives the developer a simple mental
model by preserving the spreadsheet model for state management. At the same time,
it also achieves the performance required to drive large-scale, complex applications,
as we demonstrate in Section 5.7.1.

Incremental view maintenance

Performance is a key challenge for reactive systems, especially those that process
considerable amounts of data, like large music and photo libraries. To achieve per-
formant reactivity, Riffle applies advances from the database research community in
incremental view maintenance (IVM) [13]. In many databases, the user can specify a
view over some tables in the database as a SQL query. With IVM, the database can
efficiently keep that view up to date as small changes occur to the underlying data,
without recomputing the view from scratch upon each update. In effect, IVM is a
structured form of reactivity for relational query languages like SQL, rather than im-
perative or functional programming languages. We summarize related work on IVM
in more detail in Section 5.3.

Local-first software

Riffle employs a variant of the local-first architecture [39] in which all application
data is replicated to the client device, and the client is treated as a source of truth.
The UI can access and edit the local data at any time, regardless of whether a net-
work connection is present. Local and remote updates both update the client-side
datastore, which in turn updates the UI view.

Local-first software is not local-only. Cross-device collaboration is still possible
because a background process takes care of synchronizing data when a network is
present. Cloud persistence is also possible, by synchronizing with a peer hosted in
the cloud, but the conventional role of the cloud server is diminished.

The key benefit for developers is stack compression. Rather than needing to
manipulate and transport data in many different layers, the developer is instead freed
to think in more synchronous, local terms. They can simply read from and write to a
local datastore, and let a general data management abstraction handle the process of
synchronizing data across the network. As an architect for one local-first application
explains6:

To create a new feature as an engineer, you essentially render and modify
local in-memory data structures to build new functionality. All the com-
plexity that comes with requests, conflicts, network errors and retries are
handled by sync for free.

6https://twitter.com/artman/status/1558081815113617409

109

Local-first software offers also offers benefits for end-users. Interaction latencies
can be lower since more data is available on-device without needing to access the
network. Offline mode becomes easier to implement because data is eagerly loaded
onto the client and can be edited directly there. The end-user gains more privacy and
ownership over their data, since the data primarily lives on their client rather than
on a server.

The local-first model is a good fit for applications that help manage personal
information, or collaborative work with a small team. For example, the local-first ar-
chitecture has been applied to a note-taking app, a budgeting app7, an issue tracker8,
an email client9, and an RSS reader10. Our music manager case study in Section 5.7.1
also fits this profile. In these applications, the benefits of fast, reliable, offline-capable
UI are particularly salient—they manage important information for serious use, and
are accessed repeatedly throughout a day. These are also applications where all the
state relevant to a user is small enough to be replicated fully to the client. In contrast,
a social network or an e-commerce site might be a more challenging context in which
to apply a local-first architecture; we expand more on the limits of the local-first
pattern in Section 5.7.3.

5.3 Related work
There are many systems that handle various aspects of managing application state,
including data storage, query models, cross-device synchronization, and reactive UI.
In this section, we summarize three categories of work which we draw on in Riffle to
create a novel combination.

Applications as spreadsheets

First, we discuss work focused on reactive dataflow. In the space of web applications,
we can roughly differentiate between client-side and full-stack approaches.

Client-side reactivity: A vast number of frameworks have been developed for main-
taining reactive dataflow within the UI client. The idea goes back at least to early
UI frameworks like Garnet [60, 59], as well as functional reactive programming li-
braries like Flapjax [56] and Vega-Lite [69]. Modern web view templating layers like
React.js11 and Vue.js12 provide automatic reactive maintenance of UI trees, and also
provide a basic approach to application state. Special-purpose state management li-
braries such as MobX13, Recoil14, Jotai15, and Datascript16 provide additional utilities

7https://actualbudget.com/
8https://linear.app/
9https://superhuman.com/

10https://readwise.io/read
11https://react.dev/
12https://vuejs.org/
13https://mobx.js.org/
14https://recoiljs.org/
15https://jotai.org/
16https://github.com/tonsky/datascript

110

for managing state and reactive dependencies outside the tree of UI components, as
Riffle does.

Riffle shares the basic idea of these tools, but has two important differences from
them.

First, client-side reactive UI libraries typically do not offer relational queries as
a first-class citizen, forcing the developer to manually compute relational queries
in a general-purpose language like JavaScript. As one example, the Redux17 state
management library for React recommends18 representing state in a normalized form,
but then suggests that the developer query this data using generic JavaScript. Manual
joins across tables written by application developers are less declarative and require
more work to optimize. (One exception to this generalization is Datascript, which
provides a Datalog query engine and was one of our inspirations for seeing the utility
of relational data management in client UIs.)

A second difference is that in web-based systems, client-side reactive frameworks
often are assumed to only be dealing with a small partial subset of all the data, with
most data held on the server. This assumption allows for a simple reactivity model
within the scope of the client, but fragments the reactivity of the system as a whole
into multiple parts which the developer must manage manually. In contrast, Riffle
applies reactive relational queries to a much larger collection of data (e.g., the user’s
entire music collection), which reduces fragmentation.

Full-stack reactivity : These systems provide developers with simpler abstractions
for managing the entire stack of a client-server system, in particular providing auto-
matic reactivity across the network. Quilt [9] and Object Spreadsheets [54] provide
end-users with tools to define web applications that can persist data to a server back-
end, while defining data transformations in a spreadsheet interface. Links [23] and
Ur/Web [20] implement a “tierless” web development pattern, where a single stati-
cally typed functional program is compiled into programs that run on the database,
the server, and the client. Commercial systems like Meteor19 and Firebase20 have of-
fered tools for managing reactivity across the client-server boundary for years. Newer
commercial efforts in the space include Convex21, which offers a custom reactive
transactional database, and Electric Clojure22, which is a Clojure/Script DSL that
automates reactivity across the network boundary.

Riffle shares the general goal of these systems: making it easier to reason about
reactive dataflow throughout an entire application. However, it differs in its approach
to the network. In full-stack web frameworks, a slow and unreliable network is often
kept as a core part of each user interaction, incurring UI latency. To avoid this, some
frameworks like Meteor perform optimistic updates on the client before updates are
sent to the server, which makes them more similar to local-first frameworks which we
discuss next.

17https://redux.js.org/
18https://redux.js.org/usage/structuring-reducers/normalizing-state-shape
19https://www.meteor.com/
20https://firebase.google.com/
21https://www.convex.dev/
22https://github.com/hyperfiddle/electric

111

Figure 5-2: A comparison of different approaches to managing reactive UI state. Riffle
simplifies reactive dataflow by offering a single performant reactive loop for managing
the entire state of a user interface, including both UI state and domain state.

Local-first frameworks

Kleppmann et al [39] proposed local-first software as a solution to the problems of
depending on the network during user interactions. The key idea is to eagerly syn-
chronize application state to the client and treat the local client-side data storage as
a source of truth that can be queried or written to at any time, synchronizing across
the network whenever it is available.

Our approach proposes a tighter coupling between the user interface and the data
storage layer than most existing local-first systems. Existing frameworks typically
preserve a distinction between UI state and domain state—this resembles the split
between client and server state in the traditional web architecture, but with both
parts contained within the client. In contrast, Riffle takes advantage of the presence
of local data and unifies all state into a single system, enabling benefits such as
synchronous transactional updates explained below.

Another difference between Riffle and existing tools is the support for a relational
data model. Many prominent libraries supporting local-first software, such as Au-
tomerge, Yjs, PouchDB, and Replicache, use a simple document data model which
lacks support for executing relational queries. Some systems like TinyBase, VLCN,
and Electric SQL23 do provide a relational model, but do not tightly couple the UI
and database to the extent that Riffle does.

23https://electric-sql.com/

112

Incremental view maintenance

Riffle builds on decades of work on incremental view maintenance (IVM) in database
systems. Summarizing the extensive literature on IVM is beyond the scope of this
thesis; we refer the reader to [72] for a survey of classic IVM techniques. Some form
of IVM can be found in most mature, commercial relational database management
systems (RDBMSs) such as Oracle, Microsoft SQL Server, and DB2, although they
haven’t become widespread in popular open source RDBMSs such as PostgreSQL24.
Typically, IVM is implemented only for a subset of the SQL query language25: for
example, it is not common to support incremental view maintenance for correlated
subqueries or recursive computed table expressions, although techniques for these are
known [1, 28]. Other systems, such as Noria [26], add some form of IVM on top of
existing RDBMSs.

In the past decade, several new databases built specifically for efficient, low-
latency, and universal IVM have been developed. Materialize is a data warehouse
designed specifically to support low-latency IVM of complex SQL queries26, building
on the timely dataflow [58] and differential dataflow [55] incremental computation
frameworks. SKDB, the embedded database we use in Riffle, achieves fast IVM
through Skip27, a systems programming language that offers native support for de-
pendency tracking and incremental cache invalidation.

5.4 Key Concepts

The two main concepts in the Riffle architecture are reactive relational queries and
synchronous transactional updates. In this section we motivate those concepts and
explain how they benefit both developers and end-users.

5.4.1 Reactive relational queries

A significant fraction of application code is spent transforming state to display in the
user interface—for example, joining together and grouping data about tracks, albums
and artists, to show in a playlist view in a music player.

Riffle’s abstraction for these kinds of data transformations needs to balance two
seemingly conflicting goals. First, in order for UI state updates (like hover, selection,
and clicks) to feel responsive, Riffle must offer very low latencies, similar to those
that might be achieved by explicitly coding all interactions imperatively in a low-
level language. At the same time, Riffle must also provide high-level abstractions
that are friendly for application developers, without requiring a deep understanding
of systems programming and performance optimization.

24https://wiki.postgresql.org/wiki/Incremental_View_Maintenance
25https://docs.oracle.com/database/121/DWHSG/refresh.htm#DWHSG8372,

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh-sql-command.html
26https://materialize.com/blog/olvm/
27http://skiplang.com/

113

To resolve this tension, Riffle takes inspiration from two sources, reactive program-
ming and relational queries, which each provide declarative abstractions to program-
mers along different dimensions. Riffle combines these complementary paradigms and
expresses its computational work as a graph of reactive relational queries. In doing so,
it gives users simple, flexible, and high-level abstractions that can be used to specify
performant data transformations.

Reactive programming. Reactive programming provides a declarative ap-
proach to propagating updates. Downstream dependencies are kept up-to-date by
the system rather than manually managed by the user.

In a reactive system, the burden of performance for individual transformations
is strict, because a slow transformation could be called at any time when one of its
inputs changes. One technique that can be used to improve performance in a reactive
system is to make incremental updates occur at a finer granularity—for example, only
recomputing part of an individual query.

Relational queries. The relational model [21] entails storing data in tables,
and then executing queries that join together data across tables to fetch the needed
results. It encourages storing data in a normalized form, where each piece of data
has a single canonical representation without redundant copies.

The relational paradigm provides a declarative approach to specifying data trans-
formations. In a relational language like SQL, a programmer describes their program
as a series of high-level operations on relations; it is the job of the database to de-
termine how to execute those logical operations efficiently. Crucially, the relational
paradigm decouples the semantics of queries from the efficient read and write access
patterns that implement them. For example, a user can join on any column of a table
efficiently (as long as appropriate indices are defined), while in a document or nested
object model, lookups must be restricted to the keys of a document or fields of an
object, since other lookups are much slower.

While relational databases have been widely used for decades, including in web
server backends and for data storage in desktop applications, they are rarely used
in web application clients. Perhaps as a result, many existing local-first systems,
which take inspiration from frontend tools, rely instead on key-value or document
data models [38], which couple efficient access patterns with the application schema
and do not accommodate sophisticated queries.

Combining reactive and relational. Reactive programming and relational
queries each provide their own type of declarative programming:

• Reactive programming enables the programmer to declaratively specify a func-
tion over state, and then implements efficient updates of that function when the
state changes.

• The relational model makes individual data transformations declarative, and
provides a data model that decouples read, write, and storage patterns.

In Riffle, we combine these two kinds of declarative programming in reactive re-
lational queries. A Riffle application is defined by a graph of relational queries,
maintained through reactive updates. The application developer describes a directed

114

acyclic graph of data transformations, primarily as relational queries in a SQL-like
query language, including business logic that would normally be written in a non-
relational language.28

The results of these queries are automatically kept up-to-date through a reactive
programming system. In order to update fast enough, the individual queries in the
graph must also be run on a reactivity-aware database that offers efficient, fine-grained
reactivity within a query. We discuss further in Section 5.5 how we achieve this by
building on a database that supports this functionality.

When combining reactivity and relational queries, the two forms of declarative
programming described above reinforce each other—it is easier to implement incre-
mental algorithms for relational queries than it is for imperative code with mutable
state, and relational queries also present a simple programmer-facing abstraction over
the complex internal logic driving incremental updates. This allows us to take ad-
vantage of the decades of database research on performantly indexing and querying
relational tables without requiring application developers to understand the details
of systems programming.

Despite this natural connection, combining reactivity and relational queries has
seen only minimal adoption in application development frameworks, even as reactive
programming models have becoming widely adopted for building applications. The
core observation behind Riffle is that reactive relational queries are a natural and
powerful abstraction for specifying data transformations in applications.

5.4.2 Synchronous transactional updates

Synchronous transactional updates ensure that, in the typical flow of using an appli-
cation, the UI is always both consistent and responsive.

Consider the scenario depicted in Figure 5-3. There is an application whose UI
includes a sidebar that selects the content shown in the main pane. At first, Item A
is shown in the main pane; then, the user clicks on Item B in the sidebar. How does
the UI react?

Typical web app. In a single-page web application (SPA), data is often only
loaded after the user interacts (Figure 5-3, left side). Before showing Item B in the
main pane, the UI must wait for roundtrip network traffic, as well as time spent on
the backend server and database to query and serve the relevant data. During this
time, the user is forced to wait for the UI to update. The UI is also in an inconsistent
state, since Item B is selected in the sidebar, but Item A is still shown in the main
pane, which can be confusing for the user if it lasts a long time.29

28Recognizing the limitations of existing relational query languages like SQL, Riffle also allows
developers to write queries in GraphQL or as pure TypeScript functions. See Section 5.5.

29There are other design options available that make different tradeoffs between responsiveness and
consistency, but there is no way to avoid the latency of data loading. For example, in a traditional
server-rendered “multi-page” web app (MPA), this user interaction would trigger a new page load,
and the browser would show a blank loading screen before showing the new consistent page. This
architecture prioritizes consistency more than the SPA, since the sidebar and main pane always
match each other, but it sacrifices responsiveness, since nothing is shown while the data loads.

115

Figure 5-3: In a single-page web application, user interactions frequently incur net-
work latency and leave the UI in a temporarily inconsistent state. In contrast, Riffle’s
local-first architecture and synchronous transactional updates enable faster responses.
The UI can respond to the interaction immediately without showing inconsistent load-
ing states because the data was synchronized to the client before the user explicitly
requested it, and database queries are efficiently updated within 16ms.

116

Riffle’s approach. In contrast, using Riffle, all the data needed by the user is
synchronized ahead of time to a client-side database (Figure 5-3, right side). Because
the data for pane B is already preloaded into a database running within the UI
process, the application is able to quickly render a final state that reflects the user’s
interaction. Throughout the execution, the UI is always in a consistent state; in fact,
it is impossible for this UI to show a state where the sidebar selection does not match
the main pane, because the two are transactionally updated together.

Coordinating UI state and domain state. Riffle’s approach to managing both
UI state and domain state together helps support synchronous transactional updates.
In many application frameworks, UI state is managed within the view layer, whereas
domain state is managed in a separate persistent layer. This separation of concerns
makes it difficult to keep the UI internally consistent. For example, in the scenario
above, a traditional framework would manage the selection state of the sidebar within
the view layer, and the data shown in the main pane in a separate persistent layer.
The sidebar updates immediately after the interaction (because the view framework
drives that process), while the main pane loads separately and asynchronously. In
contrast, in Riffle, managing both UI state and domain state inside a single reactive
database makes it possible to achieve transactional consistency.

Response times. What is a reasonable time budget for responding to user
interactions? Nielsen defines 100ms as the rough response time limit for an action to
feel instantaneous to a user [63]; some applications like Superhuman aim for under
50ms30. In general, Riffle aims to fall well within these limits by usually responding
to user actions within 16ms (representing a single frame on common 60fps displays),
and treating 100ms as an upper limit. Notably, removing network latency from an
interaction is necessary but not sufficient for responsiveness; recomputing queries
must also be fast, which we support through reactive relational queries.

The limits of synchrony. While is possible to avoid many of the sources of
asynchrony seen in typical web applications by using a local-first architecture, we
cannot entirely avoid asynchrony in all cases. There may be some cases where we
need to make a request to an external API or run a heavy computation.

Riffle models these kinds of processes as asynchronous side effects outside of the
synchronous update cycle. When an asynchronous effect completes (e.g., a networked
API responds with data), that may trigger an update on the synchronous state, just as
a user interaction would. Segregating asynchrony in this way preserves the simplicity
of the core synchronous update loop.

The need for occasional asynchrony does not invalidate our general design princi-
ple. We still eliminate unnecessary asynchrony as much as possible, by eagerly syncing
data to the client, loading it into memory, and managing UI state and domain state
together in a transactionally consistent datastore. As we explain in Section 5.7.1, we
have found that this approach is sufficient to eliminate many sources of asynchrony
that are commonly found in streaming music applications.

30https://blog.superhuman.com/superhuman-is-built-for-speed/

117

Figure 5-4: Implementation architecture: The Riffle library sits between React (for
view templating) and SKDB (for all data storage and queries)

5.5 System Implementation

In this section we describe details of the implementation of Riffle as a TypeScript
library. Figure 5-4 shows a high-level overview of the architecture.

5.5.1 Relational Database Backend

As a backend for persistence and querying, Riffle uses a relational database called
SKDB, which has two particularly useful properties for building the kinds of UIs that
Riffle aims to support.

First, SKDB supports performant incremental updates: when a small change
is made to a table, the results of queries over that table can be updated much more ef-
ficiently than recomputing from scratch.31 The result of an incrementally maintained
query is materialized into memory, and is known as a virtual view. Virtual views can
have indexes defined on them that are also incrementally maintained.

Second, SKDB supports data synchronization over the network. Changes made
to the database can be synchronized live between clients through a server using Web-
Sockets. Synchronization can be enabled at a per-table level, which is useful for
making some changes local to each device or user.

A full discussion of the details of SKDB’s incrementality and synchronization is
out of scope for this thesis; we treat these features as black boxes. These are highly
general primitives that we depend on to enable the Riffle architecture.

31Incremental updates enable the Riffle architecture. In a previous iteration of Riffle, we imple-
mented it using the popular SQLite database as the backend. This worked conceptually, but was
too slow in practice—some expensive joins took hundreds of milliseconds to recompute, which would
block the UI thread and cause noticeable lag.

118

Riffle’s contribution is to provide abstractions and architectural patterns for using
this underlying relational database to ergonomically construct a user interface. The
remainder of this section shows many examples of such patterns, including mecha-
nisms for locally binding queries and state to UI components, and dynamically gen-
erating queries as a UI evolves.

5.5.2 View Framework

Riffle integrates with React.js as a view templating layer. In principle, the ideas could
apply to many view libraries; we chose React because of its popularity.

In React, developers use hooks to incorporate state, effects, or library logic into
a view component. Riffle defines a hook called useRiffleComponent that developers
can use to specify the data dependencies of a component. In its simplest form, the
developer can simply pass in a single relational query as an argument, indicating
that the component should subscribe to that query. In more complex forms, the
developer can subscribe to multiple queries at once, establish dependencies between
them, and/or specify a schema for local component state. We will see examples of all
these forms in the case studies below.

5.5.3 Reactivity Algorithm

In an ideal world, the reactive graph could be fully dynamic: any query could be
initialized at any time and maintained reactively from then on. In practice, however,
many queries are too expensive to initialize dynamically in response to a user inter-
action, for the same reason that a non-reactive database is too slow to power Riffle
in general. For this reason, Riffle supports two layers of reactivity: a static layer and
an on-demand layer.

The static layer is implemented using SKDB’s virtual views, which are defined
statically in the code, globally scoped over all the data, and initialized when the
application first boots. They are then incrementally maintained eagerly by SKDB.
These virtual views typically compute expensive joins over the application’s state.

The on-demand layer represents a smaller set of currently active queries being used
by the UI, and is maintained within Riffle itself. The on-demand layer invalidates and
reruns queries with table-level reactivity: the programmer annotates which queries
depend on which tables (or virtual views) in the database, and also which writes
affect which tables, and then the reactive graph automatically reruns queries when
data changes.32 Updates propagate through the graph in a topologically sorted order;
we compare new values to old values at every node and perform early cutoff if a query
returns the same results as it previously returned.

In some cases, it is desirable to defer reactivity and avoid immediately updating the
UI for performance reasons. For example, a batch process might be performing many
writes in the background, and there is no reason to perform expensive UI updates

32Table annotations are optional; if omitted from a query, then the query will rerun upon every
write to any table. Also, we envision removing manual annotations in a future version of Riffle, by
taking deeper advantage of SKDB’s built-in reactivity.

119

after every individual write. In a database with support for concurrent writes we
could handle this with a separate write process executing a long-running transaction,
but this is not possible running the database in the UI thread. As a result, we also
offer support for application code to indicate certain updates which should not trigger
a “push” update to the UI. Stale query results are marked, and the next time a normal
update occurs (e.g. in response to user interaction), all queries are brought up to date
to reflect a consistent state in the UI.

5.5.4 Query languages

Virtual views in SKDB are defined in SQL. For dynamic queries, Riffle lets the de-
veloper choose between one of three languages:

• SQL offers a powerful declarative model for joining, filtering, and aggregating
over relational data. Many web developers already have some familiarity with
SQL.

• GraphQL33 provides an additional layer on top of SQL with several advantages.
It has a concise syntax for specifying simple traversals of object graphs, and has
the ability to directly produce nested tree-shaped result sets which are often
needed to construct a UI tree.

• JavaScript can also be used to write any computation as a query, as long as it
is pure and side-effect free. This may be more verbose than SQL or GraphQL,
but is also more flexible for expressing arbitrary logic.34

5.5.5 Dynamic query generation

Many user interfaces require queries where the logic of the query itself depends on the
results of other queries. A common case is that a query contains a parameter which
must be bound to a value. Sometimes, the level of dynamism needed exceeds the
simple parameter binding available within a SQL query—for example, we might want
to entirely omit part of the query if some runtime condition holds. Riffle supports
highly dynamic queries by allowing the developer to specify SQL query fragments as
strings using JavaScript; we show some examples of this in Section 5.6.

5.5.6 Query scope

Queries can exist in two scopes: they can either be global, or local to a component.
Global queries are initialized outside of the UI tree, and are typically maintained as
long as the application is running. A local query has a lifetime and scope tied to a

33https://graphql.org/
34There are currently some restrictions on the ordering of the languages in the graph, because

SQL and GraphQL queries can only run directly on database tables. The results of a SQL query
can flow into a JavaScript query that applies further transformations, but the results of a JavaScript
query cannot be queried using SQL. This is an incidental limitation of our implementation, and not
a principled choice.

120

specific component in the UI tree: it is initialized together with the component, main-
tained while the component exists in the tree, and torn down when the component is
removed.

Local queries accomplish two goals. First, they are necessary for efficiency, since
they provide a way to subscribe only to data that is currently being used in the UI.
They also provide a convenient scoping abstraction, since they are able to incorporate
local component state into the query, as we describe next.

5.5.7 Local component state

UIs are commonly constructed out of a tree of components that each maintain local
state. Riffle provides an abstraction for easily managing such state within component
code, while storing it in a persistent relational database.

For a given component type, the developer defines a state schema, a set of columns
representing the state associated with each instance of that component. For ex-
ample, for a TrackList component in a music app, the developer might specify
scrollPosition and selectedTrackId in the state schema.

Given this schema, Riffle automatically creates a database table with the given
columns, which will store one row per instance of this component type. Inside a
component instance, the developer may read and write the local state values; Riffle
maps these to queries and writes over the appropriate row in the component state
table.

Each component instance is associated with a component key which uniquely
identifies that instance. By default, Riffle automatically generates a unique key for
each component instance that is created in the UI, meaning that the state of the
instance will never be loaded from persistent storage. If the developer would prefer
that the local state of the component is saved, they can define a stable key; for
example, the natural key for a TrackList component would be the ID of the playlist
being shown by that list.35

5.5.8 Performance architecture

We make two implementation choices that are crucial for performance.
First, we run SKDB synchronously in the main UI thread, in order to avoid

messaging overheads associated with sending large data blobs to a separate process
such as a Web Worker. This brings the risk that slow queries will block the browser
from updating the UI, so ensuring fast queries through incremental maintenance is
essential.

Second, we batch state updates to React. Whenever there is a state change, we
update all queries in the reactive graph before sending them all to React in a single
batch. This choice has semantic importance, since it means we will never render a

35So far, we have not found it necessary to implement a system to garbage collect stale local
component state, but such a system could be straightforwardly implemented by saving a creation
timestamp with each component state record, and periodically removing old records as space limi-
tations are hit.

121

UI that only contains some of the downstream updates implied by a state update. It
also brings a performance benefit, since React does not need to repeatedly update in
response to the same state change.

As mentioned above, we also give the application code tools to defer reactivity
even further, for batch write processes which do not need to immediately reflect their
results in the UI.

5.5.9 Debugger

We have implemented a simple debugger (shown in Figure 5-5) which exposes the
underlying structure of a Riffle application, showing:

• A live view of the tables in the underlying database, including their data and
schemas

• A live view of the queries currently executing over the database, and their results
• An interactive console where the user can execute arbitrary queries over the

current state of the database

The debugger brings some degree of live programming facilities to Riffle, because
the developer can understand the data and queries backing the application, and try
out new queries. Although it currently cannot actually edit the underlying application
code stored on the filesystem, the developer can still prototype a query in the debugger
and then copy-paste it into their code editor.

5.6 A simple example: Todo List App
In this section, we demonstrate how the Riffle concepts apply in practice, by imple-
menting TodoMVC36, a small reference application commonly used to compare UI and
state management tools. We will walk through developing a relational data schema,
specifying a reactive query graph, and binding the queries to the user interface.

Relational schema. Designing a relational schema for a Riffle application is
similar to designing a schema for the backend database of any web application. One
minor difference from traditional backend data modeling is that eventually our UI
state will also be modeled in the relational schema. For now, we begin by just
modeling our domain state, in this case a simple table todos with the following
schema:

• id: string
• text: string
• completed: boolean

A simple reactive query. To display the list of todos in our database, we can
define a reactive SQL query that loads all the todos. We write it inside a React
component using a hook provided by Riffle called useRiffleComponent.

36https://todomvc.com

122

Figure 5-5: The Riffle debugger shows a live view of the data in the underlying
database. Other tabs (not shown) include the current reactive queries and an inter-
active SQL console.

export const MainSection = () => {
const { todos } = useRiffleComponent({

queries: ({ rxSQL }) => {
todos: rxSQL(sql`select * from todos`)

}
}

return <ul className="todo-list">
{todos.map((todo: Todo) =>

(<li key={todo.id}>{todo.text}))}

}

This hook establishes a subscription to the results of this reactive query, and
returns a list that we can use in the view template. Every time the contents of the
todos table change, this component is re-rendered with the new list.

Because the table of todos is managed through Riffle, it is not just available in
memory. It is also automatically persisted locally and synchronized over the network.

Storing UI state. Next, we need a text box where the user can type in text for
a new todo. Typically, in React, the state of the input box would be treated as local
in-memory state, but in Riffle, we instead model this UI state in the database.

To store the text box state, we can create a new table ui_state, with a single text
column named newTodoText. Because there is only ever one text box in TodoMVC,

123

we will only ever have one row in this table, so there’s no need for a further key.
We can also configure this table to not be synchronized over the network, since it’s
typically useful to keep UI state local per device.

To read the value, we can define a reactive query which subscribes to the value.
(We use a Riffle helper called asScalar which extracts a value from a single-row,
single-column table.)

To update this value, we can define a write event in the database schema named
updateNewTodoText which performs a SQL update. (Write events provide a thin
abstraction over SQL statements because the same updates are sometimes used across
multiple parts of the UI.) Now, in the UI component, we can bind the text input to
the value of the todo text in the database:

export const Header = () => {
const { newTodoText } = useRiffleComponent({
queries: {

newTodoText:
rxSQL(sql`select newTodoText from ui_state;`)
.asScalar()

}
})

return <input
value={newTodoText}
onChange={(e) => store.applyEvent(

'updateNewTodoText',
{ text: e.target.value })}

/>
}

This provides the same “unidirectional dataflow” that is typically used in React
for managing state. Instead of letting the DOM input element manage its own state,
the input is treated as a pure view of an underlying state. In this case, though, we
have routed that unidirectional dataflow through a persistent database, instead of
just the view framework.

Transactional updates. When the user hits the enter key in the text box, we
want to simultaneously (1) create a new todo with the text in the box and (2) clear
the contents of the text box. Using Riffle, we can apply events for those two updates
within a transaction. This means that the UI will never be in a state where the text
is still shown in the box but the list of todos is not updated; the state of the entire
app will tick in a single transactional step.

Chaining reactive queries. So far, we have seen static query definitions. While
the results of the query may change at runtime, the query definitions themselves have
been fixed. However, in some cases, the definition of the query depends dynamically
on the results of another query. In TodoMVC, we will need this functionality to let
the user filter the list to incomplete or completed todos.

124

First, we must store the value of the filter toggle; we can extend our UI state in
the database by adding a new column, filter, to the existing ui_state table. Next,
we need to use the filter state to perform the actual filtering. When the filter contains
the value all, we can use the same query as above. But if it is set to completed, then
we’d like to append a clause to our query: select * from todos where completed
= true.

Figure 5-6 shows how this chaining is established in Riffle. We first write a reactive
SQL query which loads the value of the filter from the database. Then we initialize
a JavaScript computation which computes a SQL clause applying the appropriate
filter in a query. (It refers to the previous SQL in the chain using a name filter$
which has been assigned.) Finally, we compute a SQL query which interpolates that
clause and loads filtered todos. By writing these computations, a reactive chain has
automatically been established. Whenever the contents of the todos table or the
value of the filter in ui_state change, the visible todos will be updated.

A more complex query. So far, we have not gained too much from the relational
model, since we only have a single todos table storing domain state. However, the
benefits of the relational model grow as our application grows in complexity.

For example, imagine we wanted to add labels to the TodoMVC app, where a
todo can have multiple labels, and the user can filter by label. In a document data
model, we might start by embedding label names directly inside the documents for
todos, but this denormalized data model makes it hard to do things like rename a
label or efficiently find all the todos with a given label.

A relational model is a natural fit for this kind of data modeling. We could simply
create a labels table with a todos_labels join table, and then query across the
tables with joins. It would be very easy to view the todos in one or more labels, or
to filter together by label and completed status—all with reactive updates.

5.7 Evaluation: Experience & Limitations

5.7.1 Case study: Music Application

The benefits of Riffle become more evident in a data-intensive application that man-
ages a large amount of data in a complex schema and has stringent performance
requirements. We have used Riffle to build exactly such an application: a music man-
agement application called Overtone. In this section we first describe the features of
the application, and then share reflections from the development process.

Goals

Overtone is a web and desktop application that allows a user to access their music in
two streaming music services, Spotify and SoundCloud. It also supports subscribing to
music podcasts via RSS. To enable the reactive relational paradigm, the user’s entire
metadata library, as well as the UI state of the application, is stored locally in a Riffle

125

Figure 5-6: TodoMVC includes a simple example of a dynamic SQL query. The
currently active filter setting is queried from a table using a SQL query. A JavaScript
query then turns that value into a filter clause in a SQL string, which in turn queries
the todos table to produce the final filtered data for the view.

126

database after being downloaded from the streaming provider.37 Music playback still
happens via streaming network API calls, because Spotify and Soundcloud don’t allow
users to download music files. Overtone is currently in alpha with limited usage, but
intended eventually for commercial release.

Overtone aims to improve upon the experience of existing streaming music clients
in both performance and flexibility.

Performance. Overtone’s performance goal is to respond to all user interactions
within 16ms to render smoothly at 60fps; as a minimum threshold, we adopt Nielsen’s
limit of 100ms [63] for interactions feeling “instant”. This target is far beyond the
performance seen in music clients for many popular streaming services. For example,
the Spotify desktop client can take thousands of milliseconds to switch between views
for different playlists owned by a user, even if the playlists are short and have already
been recently loaded; we suspect the main culprit is network access. It also exhibits
flickering effects like black screens while data is loading.

Flexibility. It is often useful to see a music collection through a variety of different
views: browsing by playlist, album, or artist; sorting by various fields; or filtering and
doing full text search. Overtone has a general goal of offering flexible views of music
metadata. Storing the music collection in a relational database that can be queried
with SQL makes it easy to support a variety of rich views over the data. In contrast,
some of these capabilities are surprisingly absent in music streaming service clients;
for example, Spotify offers no way for users to view all tracks by a given artist.

Data schema

The relational schema for Overtone currently includes 15 tables. These tables store
domain state like tracks, albums, artists, playlists, podcasts, as well as relationships
between those entities. In the future, this schema is likely to grow to support more
complex entities such as genres and tags. The schema also includes tables for storing
UI state such as navigation state, the current play queue and playback state, and the
user’s authentication credentials.

We also define 8 virtual views over the base tables to efficiently join together data,
e.g. joining data about tracks and artists into a single result table. One example of
such a virtual view is shown in Figure 5-7. We also define a GraphQL schema on top
of the base relational schema; we describe further below the problems that motivated
the GraphQL layer.

Application features

In this section, we describe several important features of the Overtone application,
and how they use Riffle to achieve the goals of performance and flexibility.

Metadata synchronization. Overtone currently supports adding tracks from
two streaming services (Spotify and SoundCloud) or a podcast RSS feed. Overtone
imports changes in a user’s Spotify and SoundCloud libraries into their local library by

37Overtone only eagerly synchronizes the data which a user has saved to their collection; it would
be impractical to synchronize all the music in Spotify’s global catalog to a client device.

127

Figure 5-7: Examples of a SQL query and view definition used in the Overtone music
manager.

128

polling over the network.38 The writes for these imports are scheduled and throttled
so that they do not interfere with smooth operation of the UI while the import is
happening.39 Virtual views are incrementally updated as imports happen, amortizing
the cost of computing whole-table joins across many incremental updates.

The track list. A central feature in Overtone is the track list, (shown in Figure 5-
7) which displays a table of music tracks drawn from a playlist, album, or collection
of works by an artist, filtered and sorted by properties selected by the user. For each
track, the UI shows metadata about the track, and about linked entities. To efficiently
load this data, we query a virtual view which joins together this information.

The track list also supports sorting and full text search. These features can be
supported by chained queries in the reactive graph. Just as we applied filtering to a
list in the TodoMVC example, we can apply a where clause to the query based on
a text search input, or apply an ordering based on the column selected for sorting.
Chained queries also offer a convenient abstraction for implementing virtualized list
rendering. Many virtualized list implementations require complex layers of caching,
but in Riffle there is a simple solution: we track the user’s scroll position as UI state,
use that scroll position to determine a window of tracks that should be visible, and
then pass that information to the query that loads the tracks.

The track list uses the local component state mechanism described in Section 5.5
to store the current selection, sort property and direction, and scroll position. This
supports convenient persistent UI state ; for example, the sort order and scroll position
for each playlist is saved by default.

The playlist sidebar. The left sidebar in Overtone shows a list of playlists,
with a count of tracks within each playlist. The data for this component is once
again defined by an incrementally maintained virtual view (shown in Figure 5-7).
The currently selected playlist is stored in Riffle; we have found that this is a useful
piece of UI state to persist across reloads of the application.

When the user clicks on a playlist in the sidebar, we trigger an update on the UI
state for the currently selected playlist. In turn, this propagates a change through
the reactive graph, which stabilizes in a transactional way.

Other features. Riffle supports a variety of other features in Overtone, including
a text search box that filters items in the music collection, using a relational query
with a text filter; playback state (e.g., time and overall duration) for the currently
playing track; and a queue upcoming tracks to play.

Performance. Some Overtone users have libraries containing many tens of thou-
sands of tracks. This scale of data introduces performance challenges for the developer
building the track list. We must efficiently find the tracks within a given collection,
join in associated metadata for albums and artists, and apply any relevant sorting
and filtering to the collection. The view might need to change if the metadata library

38Because Overtone has so far been designed to show a view of music collections which are already
stored in existing cloud services, we have not yet used SKDB’s synchronization features to share the
state of relational tables across devices for Overtone. However, product development in the near
future will likely involve synchronizing the state of relational tables between devices.

39Currently the throttling happens in the application layer; we plan to incorporate support for
throttled background writes into Riffle itself in the future.

129

changes, but also every time the user performs an interaction, like selecting a new
track.

In early experiments, we found that joining together this data at interactive laten-
cies was challenging. Even a mature relational database like SQLite, with appropriate
indexes, would sometimes take over 300ms to join together the data for the track list
with a large music library. This might be acceptable latency for a traditional app
architecture where state is spread across many layers with different performance guar-
antees, but it is too slow for running directly within a UI.

With SKDB, we achieve more predictable performance. Individual reads and
writes usually complete within 10ms, since expensive joins are incrementally maintained—
and often much faster, on the order of 1ms. In exchange for some memory overhead
and some small time overhead on writes, reads are made efficient.

Although Riffle generally offers good performance by default, during the devel-
opment of Overtone, adding new features has sometimes resulted in performance
regressions where interactions exceed the 100ms threshold. So far, we have been able
to solve these kinds of problems by restructuring reactivity (e.g., moving work from
read queries into eagerly maintained virtual views), or performing standard UI opti-
mization techniques like reducing the size of result sets using virtualized rendering.
We have also found the need to optimize other parts of the UI stack beyond data
transformations.40

Debugging experience

We have implemented several debug views inside of Overtone which make use of
Riffle’s dependency tracking metadata to help understand the state of the system.

One main debug view, shown in Figure 5-8, shows a history of recent updates that
have occurred in the Riffle reactive graph, including writes that have triggered queries
to re-run, as well as new queries that have been registered by new UI components
being mounted. This view provides visibility into the behavior of the system: what
actions are occurring, and which queries are updating in response. Because Riffle
explicitly tracks dependencies in a reactive graph, it is easy to access the causal
information about which queries were triggered by which upstream actions.

The debug view also helps understand the performance of the system, by showing
the total time taken to run queries in response to an update, as well as the time taken
by each individual query.

We have found having a historical timeline of recent events in the application to
be a useful complement to a current live view of the system state. The historical view
enables a workflow where we can perform an interaction and then inspect afterwards
the events that occurred during that interaction.

40We found that UI responsiveness is often impaired not just by delays in loading data, but also
by delays at the rendering layer. After optimizing the data loading in Riffle, we found that updating
the browser DOM through React.js had become the new bottleneck, so we re-implemented the table
view using a library41 that draws to the more efficient Canvas API.

130

Figure 5-8: A debugger that shows recent updates in the Riffle reactive graph

131

Reflections on Development Experience

The design of Riffle has co-evolved with this application over the course of about a
year and a half. The lead developer of the application, Johannes Schickling, started
out as an external partner; he ended up making substantial contributions to Riffle
itself and became a contributor to the core project. Most development was done by
Johannes, with some part-time help from the other Riffle collaborators.

The goal of the case study was to test the ideas of Riffle in the context of a real
application with substantial complexity. Many of the problems we encountered in the
creation of Overtone resulted in changes to Riffle; as a result, this case study should be
seen as a formative process that guided the design of Riffle, not a one-time evaluation
of a pre-existing system. In this section we present some of the main lessons we have
learned from building Overtone using Riffle. Many of these lessons have already fed
back into the design of Riffle; others suggest unresolved limitations for future work.

Synchronous architecture. In our original prototype of Riffle we used a com-
mon architecture for running databases in the browser: our database ran in a Web
Worker thread, communicating asynchronously with the UI thread. However, when
building Overtone using this prototype we discovered two main problems.

First, performance was inadequate in some cases. In a complex app like Overtone,
Riffle needs to re-run over 10 SQL queries in response to a single user interaction.
In some browsers each query was incurring up to ~2ms of overhead due to inter-
process communication, often dwarfing the time needed to execute the query itself,
and adding up to substantial delays across multiple queries. We saw very noticeable
lag in interactions like text entry and button hover states, which pass through the
database in Riffle, and require low latency to feel fluid.

A second problem was that asynchronous data fetching complicated our mental
model of the application. As one example: when a new component would appear in
the UI, it would not have data available on its first render (because React requires
render functions to be synchronous); we would need to explicitly handle this case,
e.g. with an empty state or loading spinner.

In response to these challenges we switched to the synchronous architecture de-
scribed in this chapter. Eliminating the overhead of frequent inter-process commu-
nication in the browser solved many of the user-facing latency issues. It also made
our UI code simpler by eliminating the need for intermediate loading states. (These
observations led to our principle of synchronous transactional updates described in
Section 5.4.2.)

The synchronous architecture introduces its own new challenges. Scheduling re-
active query updates on the UI thread incurs the risk of blocking the UI and causing
lag; we avoid these problems in Overtone by making sure that the queries in the
application are fast enough over typical data sizes. Also, we now load all data into
memory, which makes memory a limiting factor in data sizes. We elaborate more on
these problems in Section 5.7.3.

Incremental view maintenance. Our initial prototype used SQLite as an
underlying persistent database. SQLite is a mature, optimized database, and we found
that its performance met our needs for most of our queries. However, queries over

132

large playlists that required many joins would sometimes take over 10 milliseconds,
resulting in frame drops and noticeable lag. We attempted to solve these problems
by introducing a materialized view that would precompute the joins, but this did not
resolve the problem because the materialized view itself needed to be refreshed with
an expensive query when the underlying data changed.

These challenges motivated us to switch to SKDB as a backing database, since
it supports incremental view maintenance which can maintain a materialized view
without recomputing from scratch. We have found that efficient view maintenance is
important for building a database-backed application where queries with many joins
over large data must react with low latency to updates on the underlying data.

Another approach we have tried is to manually incrementalize updates on expen-
sive views by specifying explicit logic for how the view should update in response to
writes. This approach has several disadvantages: it loses the advantage of declar-
atively specifying the view in SQL, and requires careful testing to ensure the up-
date logic is correct. However, it does provide a pragmatic technique to improve
performance even in a database like SQLite which lacks built-in incremental view
maintenance.

Limits of SQL. Initially we were enthusiastic about SQL as a relational query
language, but while writing queries to support Overtone we quickly ran into sev-
eral limitations. SQL cannot produce tree-shaped results, has a verbose syntax for
traversing associations (e.g., a two-step join across a many-to-many association), and
lacks good support for composing fragments of queries into a larger query. We also
found that a lack of automatic type inference for the resulting types of SQL queries
made it difficult to use SQL queries in a TypeScript environment.

In response to these challenges, we added GraphQL42 as a supported reactive
query type in Riffle. We use a standard GraphQL setup: we define a schema which
defines core data types in the application, and implement a resolver which interprets
GraphQL queries at runtime by executing SQL queries. Most components in Overtone
do not use raw SQL queries; instead they specify a GraphQL query for their data
requirements.

We have found that GraphQL is a convenient existing language (and tooling
ecosystem) for papering over some of SQL’s limitations. It can produce tree-shaped
results, it has a concise syntax for traversing associations and selecting fields, and it
has an existing tooling ecosystem for inferring TypeScript types from queries. On the
other hand, it adds significant complexity: there are now multiple data schemas and
query languages in the application. In the future, replacing SQL with a new relational
query language better designed for UI programming might be able to replace these
two layers with a single language.

UI state. Persisting UI state by default turned out to be even more beneficial
than we’d imagined. Users were happy that their selected playlist and track were
preserved, for example. But we also encountered some bad cases. We initially included
the playing state of a track in the persisted UI state, but this meant that opening the
app could cause a track to start playing spontaneously, which might be annoying, and

42https://graphql.org/

133

even dangerous, if the user hasn’t adjusted their volume setting. We have handled
these kinds of cases by simply resetting the state to an initial value when the app
boots.

In general, we found that we could simply take UI state that would have been
managed in React, and put it into Riffle instead. However, there are some parts of a
UI’s state which are typically managed by the browser DOM and not React, such as
the scroll position within a component, and these cases required extra work. In order
to store playlist scroll position in Overtone, we needed to implement additional code
to bidirectionally synchronize scroll position with the database, by listening to scroll
events as well as updating the scroll position in the browser to match the database.

Managing UI state in the database also exposed some of the limitations of the
relational model. For example, the Overtone routing navigation stack is represented
as a list of values, with each value being some branch of a tagged union representing a
type of page and type-specific parameters for that page. This structure proved clumsy
to represent in a relational database (because of the limited support for tagged unions)
so we have currently resorted to storing the routing stack as a string-serialized value
within a single cell in the relational database.

Debug views. We have found it convenient during Overtone’s development to
have the entire state accessible in a single database. We have been able to open SQL
databases, share them with each other as files, and have even built features into the
app to hydrate state from a saved previous state. We found that it was often easy
to reproduce bugs because the entire state of the system could be shared as a file,
and the UI depends entirely on the state of the database. We also built a debugger
view showing recent refreshes (what caused them, and which queries refreshed) which
has helped us fix numerous bugs at both the application level and within Riffle’s
implementation; having explicit dependency tracking made it easy to provide these
debug views because the system always knows the provenance for the causes of any
update.

Separate reactivity for data and view. Riffle has its own reactive graph
with dependency tracking at the data layer, and also integrates with React.js which
has its own reactivity model for the view layer. We found that having a separate
reactivity model for the data layer helped with efficiency because we could propagate
data updates independently of the UI tree. This particularly helps when two child
components far away in a UI tree need to subscribe to the same data. For example, in
Overtone, changing the selection in a list of tracks updates the contents of a sidebar
which shows details for the selected track. In normal React usage, the state for the
selected track would be “hoisted” to a parent component containing both the list view
and the sidebar, and the entire UI tree below that parent would need to re-render
in response to changes to selection state. In contrast, in Riffle, the selection can be
stored in the database, and the list view and sidebar can each independently subscribe
to shared state from the database without needing to pass that state through the UI
tree.

Occasionally, we have gotten confused by having multiple layers of reactivity, since
there is caching going on at multiple levels of the system, including within the Riffle
reactive graph and within React. As future work, subsuming DOM output into Riffle’s

134

reactivity model might be able to simplify the architecture by removing React as a
separate layer.

Loading data on startup. At first, we designed Overtone to import all metadata
for a user’s music collection upfront, when the app was started. But this wasn’t ideal:
the import process could take several minutes, during which the user could interact
only with the tracks loaded so far. If you had a particular song in mind, you wouldn’t
be able to navigate to it and play it until the import had finished. Because the import
latency was constrained by the streaming service’s rate limiting, and by fundamental
performance limitations of the database (the throughput of inserts), there was no easy
way to shorten this process. This problem reflects a common limitation of local-first
software that employs an eager synchronization workflow.

Our solution was to prioritize imports based on user input. First, the applica-
tion shows a list of playlists without loading all their tracks; if the user clicks on
a playlist, the tracks for that playlist are immediately prioritized for import. The
resulting experience is a kind of hybrid between a traditional web application and
standard local-first application. Once all data has been synchronized, interactions
are synchronous since data is available locally. But while the data is loading, the
user can still navigate to pages that asynchronously load data, which resembles the
experience of a standard web app.

Performance analysis

In this section we present a brief performance analysis that shows how view main-
tenance scales in Overtone. Overtone stores tracks, albums, and artists in separate
normalized tables. Tracks belong to a single album and store a foreign key directly;
there is also a join table tracks_artists supporting a many-to-many relationship
between tracks and artists. In the user interface, the information for all of these
tables must be joined together. We compute a materialized view which stores the
results of this join, so that further downstream queries do not need to compute the
joins in response to user interactions; this view is one of the primary queries in our
application.

Here is a simplified version of the SQL for the view:

select * from tracks, albums,
tracks_artists, artists

where tracks.albumId = albums.id
and tracks_artists.trackId = tracks.id
and tracks_artists.artistId = artists.id;

Whenever the track, artist, or album metadata changes (e.g., while importing
a metadata change from Spotify), the materialized view must also be updated. In
SQLite, this requires re-running the entire join query and re-inserting the contents
of the view from scratch. In SKDB, the view can be maintained incrementally, only
updating the changed data.

Table 1 shows the time in milliseconds taken for each of these two systems to
update the materialized view in response to inserting a single new track (along with

135

Size of table 100 1000 10000 50000
SKDB 1.1 1.6 1.6 2.4
SQLite 1.7 14 130 778

Table 5.1: Time taken to update materialized view in response to inserting 1 new
track (ms)

a corresponding album and artist) into the base tables. Each column represents
a different number of pre-existing tracks in the database before the insert. Both
databases were run using WASM running in Google Chrome on a 2021 MacBook Pro
M1, on the same synthetic dataset.

Using SQLite, the time taken to recompute the view scales linearly with the
number of tracks in the view. While the recomputation times are reasonable for
small collections, with 50,000 tracks (not an uncommonly large music collection), the
recomputation takes over 700 milliseconds, an unacceptably long time to block the UI
in response to a small change. In contrast, in SKDB, the time taken stays relatively
constant: the view can be updated in under 3 milliseconds even for a large music
collection. This benchmark demonstrates the value of using a database that supports
incremental view maintenance when building responsive applications that store large
amounts of data.

5.7.2 Heuristic evaluation

Olsen [65] introduces a set of criteria for evaluating a complex UI system. Several of
the criteria especially pertain to Riffle.

Importance and generality. Olsen notes that the importance and generality of
the problem being solved is a major factor in assessing the value of the solution. The
problem being solved by Riffle—managing reactive state in applications—is important
and general, as demonstrated by the large number of research and commercial systems
aiming to solve it. Our solution is general enough to apply to any application which
can be architected in a local-first way and have its state managed relationally; this
is a broad class of applications which is not limited to any particular domain. We
discuss the limits of the appropriate applications for Riffle further in Section 5.7.3.

Scale. It would be much easier to build a version of Riffle that only works for
small toy applications; most of our effort has gone into making these simple abstrac-
tions scale up to a real context. The music application case study demonstrates that
Riffle can scale up to meet the performance and expressiveness needs of a real-world
application. Many aspects of Riffle’s design, including the performance architecture,
the addition of GraphQL as a query language, and the design of our APIs, were specif-
ically informed by the needs of this large application. We believe the observations
from Overtone should generalize to any complex application with relational data and
high performance requirements, such as an email client or budgeting app.

Expressive leverage. Olsen defines expressive leverage as “where a designer can
accomplish more by expressing less.” Riffle achieves expressive leverage by enabling
the developer to declaratively specify reactive relational queries.

136

Using typical web technologies, the UI developer for an application like Overtone
would need to write API calls to query information from a backend (e.g., polling
for new changes), low-level JavaScript code for data transformations like relational
joins, and would need to explicitly write code for persisting UI state. In Riffle, the
developer only needs to declaratively specify relational state and queries in order to
meet all of these needs. Query results are automatically updated when the database
changes, relational joins are efficiently executed within the database, and UI state is
automatically persisted by the framework.

Synchronous transactional updates are an example of where Riffle can help de-
velopers achieve a better user experience with less code. Usually, web UI developers
must write code to handle asynchronous data loading and intermediate states such
as loading spinners. In a Riffle app like Overtone, this code is eliminated, and the UI
is more responsive to user interactions.

These benefits also relate to Olsen’s notion of expressive match : “an estimate of
how close the means for expressing design choices are to the problem being solved.”
Reactive relational queries offer a high-level mental model that allows developers to
think in terms of questions like “what data depends on what other data?” and “what
should the shape of these query results be?”, rather than concerning themselves with
lower-level implementation details of correctly propagating updates and efficiently
implementing joins.

On the other hand, Riffle does require developers to specify more explicit informa-
tion than some competing approaches. The most prominent example is the need to
specify a relational schema, which requires more up-front work than a schemaless doc-
ument data model. We believe this is a worthwhile tradeoff for complex applications,
since the schema makes it easier to enforce data constraints and model normalized
data.

5.7.3 Limitations

In this section we list several key limitations of our general architecture and our
current implementation.

Local-first architecture. Riffle relies on a local-first architecture, which imposes
some restrictions on the kinds of applications that are a good fit for the design.

First, we synchronize more data to the local device than is a typical web applica-
tion, meaning the client device must have enough storage space for the synchronized
data. The first-time experience may also require waiting for more data to load. 43

As a result, the local-first architecture is a better fit for applications with repeated
frequent use (e.g., a music application or a productivity tool), as opposed to appli-
cations which are intended for less frequent use and may not justify the initial data
load time (e.g., an e-commerce website).

Allowing users to concurrently make edits offline and without a central server
makes it harder to preserve certain data invariants. Distributed data structures like

43In Overtone we have somewhat mitigated this load time limitation by adopting a synchronization
strategy which prioritizes events to scrape from cloud music providers based on user interactions;
this is a kind of hybrid between naive eager synchronization and lazy data fetching.

137

CRDTs [70, 68, 82] offer techniques for preserving low-level invariants like the order of
elements in a sequence, but some constraints like uniqueness or foreign key constraints
are difficult to preserve while allowing offline editing. For example, a room booking
system might not be a good fit for Riffle because users might concurrently book the
same room. (These kinds of stronger data invariants could possibly be added to
the model by requiring certain operations within an application to be validated by a
central server.)

Local-first applications also limit the kinds of access control that are easily achiev-
able. With a single user, all of the user’s data may be synchronized, but if data is
shared between multiple users, a more sophisticated approach is needed. If the data
can be easily segmented into large coarse-grained units (e.g., “projects” or “libraries”),
these units may be used to determine what is synchronized to a given user’s device;
however, an application like a social media network may not offer such convenient
boundaries between discrete datasets. Access control in local-first software is an active
area of research [79].

Schema evolution is a challenge in any local-first system where state is spread
across multiple devices—for example, it is difficult to rename a column if the rename
cannot be performed atomically across all clients. In Riffle, the problem is more
prevalent than usual because we store UI state in a persistent schema in addition
to domain state. We have not yet developed a principled solution to this problem;
in general we have reset UI state when changing the schema for that data. Some
approaches to managing schema divergence in decentralized systems have been pro-
posed in the context of a document-based data model [49] but it is unclear how this
approach would extend to a relational model.

Relational model. Riffle relies heavily on the relational model, which has several
limitations in the context of building user interfaces. Representing sequences and
nested hierarchies is less straightforward in the relational model than using the data
structures like lists and objects available in programming languages, or in a document-
based database. This limitation appears more acutely in Riffle than in many uses of
relational databases because we encourage moving UI state (which often includes
structures like ordered lists) into the database.

Another limitation is that most relational query languages such as SQL produce
tabular relational results, but user interfaces frequently show tree-shaped results with
nesting. This is technically a limitation of existing relational query languages and not
a fundamental limitation of the relational model since it is possible to query relational
data and produce nested trees at the final projection step; Partiql44 is one example
of a a relational query language that can produce nested output. In Riffle we use
GraphQL and JavaScript to transform relational query results into tree-shaped data
for the UI.

Synchronous execution model. A major part of Riffle’s simplicity comes from
turning interactions that would typically require asynchronous data fetching into
synchronous operations operating on local data. However, sometimes asynchrony is
unavoidable. One example is making network requests to search a large dataset that

44https://partiql.org/

138

cannot be synchronized locally; another example is handling particularly slow SQL
queries that can’t be made fast enough to execute synchronously within the UI.

In Riffle, application developers must handle these cases manually by writing im-
perative code performs asynchronous operations which write to the Riffle database.
For example, a search over a cloud music service might trigger asynchronous network
requests and write the results from the network responses back into the database.
This is a practical solution but it loses the simplicity of Riffle’s declarative model. A
possible direction for future work is suggested by DIEL [81], which offers a declara-
tive relational model that spans across the network boundary and incorporates asyn-
chronous requests.

Performance limits. As shown in the Overtone case study, the Riffle architec-
ture is generally capable of supporting responsive interactions in a real application.
However, the currently implemented system does have performance limits.

For the current feature set of Overtone, most interactions in the application are
responsive within the 100ms “instant” threshold for music collections in the tens of
thousands of tracks, but larger collections can cause some interactions to exceed
that threshold. We believe that continued performance optimization, both within
SKDB and at the interaction point between Riffle and SKDB, is likely to continue to
provide further speedups. Crucially, incremental maintenance provides extra options
for addressing bottlenecks in a way that is impossible with a traditional non-reactive
database, since the low-level database can be optimized further to efficiently handle
small changes.

So far, we have done our testing on fast modern devices (e.g., a MacBook Pro
with an M1 processor). More testing on slower client devices may reveal further
performance limitations, since the Riffle architecture depends on the performance of
the client. Another limitation is that we do not currently support datasets that are
too large to fit in memory in the browser’s WASM heap (limited to 1GB), and we
have no automated mechanism for asynchronously executing slow queries off the main
thread.

In general, we see the current implementation of Riffle as an existence proof that a
reactive relational database can be made performant enough to support synchronous
transactional updates and UI state in the database, but improving performance fur-
ther is important to make the architecture viable in more situations.

5.8 Future work

Data substrate for interoperability. Prior projects have explored shared data
substrates that enable interoperability between tools. For example, Webstrates [40]
stores information in the browser DOM and synchronizes it over the Web, SOLID
[52] stores information in personal data pods controlled by the user and accessed via
Web APIs, Plan 9 [67] uses the desktop filesystem to share data among tools, and
Dynamicland45 offers a global reactive database tied to a physical space

45https://dynamicland.org/

139

In a similar spirit, we envision using Riffle to build such a data substrate where
multiple applications and tools could all act on a user’s personal data. For example, a
user’s Overtone music collection stored in a Riffle database could also be accessed by
other special-purpose tools, e.g. a tool that analyzes tracks and adds additional spe-
cialized metadata. Riffle has several characteristics that could make it an attractive
choice for this kind of usage:

• Flexible access patterns. The relational data model is access pattern agnos-
tic, and so could support different tools querying data in ways that are different
from the original application. At the same time, relational data constraints
could preserve useful integrity properties.

• Fast reactivity. Fast reactive updates could enable live state synchronization
across different tools in an operating system. A single application could in
fact be composed of multiple smaller tools exclusively coordinating through the
shared Riffle data layer in realtime.

• UI state in the substrate. Storing all UI state in the database provides a
unique opportunity to provide scripting and automation capabilities through the
shared data substrate. Because all actions in the UI must flow through database
writes, any tool connected to the shared reactive database can programmatically
trigger the same actions as original GUI itself. For example, an external script
could play/pause tracks or change the selected playlist in Overtone.

As one example of this potential, we have run some small experiments connecting a
generic SQL editor GUI to a running application, and editing the state (both domain
state and UI state) in the generic editor. Future work would involve creating multiple
rich applications and having them interoperate through Riffle as a conduit.

Live programming. The debugger view we have built (Section 5.5) is a small ex-
ample of the kinds of live programming interfaces that could visualize the structured
dataflow graph created by Riffle. Future work could explore making this debugger
more powerful. Some directions could include allowing for actually dynamically edit-
ing running queries on the fly within the debugger, as well as richer views of the
dependency structure, such as a dependency graph with edges between queries that
depend on one another. We have found it useful to draw these kinds of diagrams
manually ourselves, and Riffle provides exactly the underlying structured dataflow
needed to support such visualizations.

5.9 Conclusion
In this chapter, we have presented Riffle, a new architecture for user interfaces that
couples the UI with a fast, reactive client-side relational database. Reactive relational
queries provide an ergonomic declarative model for developers to define data trans-
formation logic that can be efficiently executed. Synchronous transactional updates
enable the UI to efficiently step forward in consistent steps.

In combination, these properties enable both a simpler way for developers to write
applications, and higher quality experiences for end-users. Riffle shows how ideas from

140

reactive databases and spreadsheets can be applied to simplify the creation of complex
software by skilled developers.

141

142

Chapter 6

Conclusion

In this thesis, we have introduced three novel techniques for applying the power of
spreadsheets and reactive databases to support developers and end users in building
and customizing personal software.

• Wildcard enables end-users to customize existing web applications through a
reactive table interface.

• Potluck supports users in turning text notes into personal interactive tools
through a reactive table view.

• Riffle supports developers in building sophisticated user interfaces based on a
reactive relational data model, with a live table debugger view.

6.1 Key Ideas

While these techniques apply to a range of scenarios—from making a small customiza-
tion to an existing website to building a complex UI application from scratch—they
all demonstrate the value of a few key ideas.

Making state visible in reactive table views. We have shown that software
development can be simplified by providing a view of underlying state in a reactive
table—making visible information that would typically be opaque, and allowing the
user to directly interact with it. As demonstrated by Wildcard and Potluck, this
approach can even be applied when the information is being extracted from a source
that is not in a relational format, like a rendered UI or a text note.

Fast reactivity. More broadly, we have shown a few ways that declarative
abstractions can simplify software development by allowing users to interact with
higher-level models of a system. One key abstraction is fast reactivity, which main-
tains invariants across different state representations and avoids the need for users
to manually propagate change through a system. Wildcard and Potluck demon-
strate how existing data representations can be reactively synchronized with a tabular
representation—users can think in terms of higher-level invariants (such as patterns
to extract from a text document) rather than the lower-level logic of scheduling these
updates appropriately.

143

Semantic wrappers. Another useful abstraction is semantic wrappers, which
extract structured data from unstructured sources in a reactive loop. These wrappers
provide a modular boundary between extracting data and working with that data.
This modularity can enable users of different technical ability to tackle the two parts
of the task, or can allow the same user to focus separately on data extraction and
working with the data. A well-designed semantic wrapper makes it feel seamless to
work in a structured way with less structured data.

Reactive relational model. Finally, Riffle demonstrates the power of combin-
ing reactive programming with relational queries, which are themselves a powerful
abstraction that enables users to think in terms of high-level query logic rather than
lower-level execution details. Defining a user interface as a graph of relational queries
with reactive dependencies not only gives the developer a high-level model for rea-
soning about the behavior of the UI, but also allows the underlying reactive and
relational execution engines to optimize performance.

Overall, these systems build on the long history of work on spreadsheets and
reactive database systems, and demonstrate new ways of applying these ideas to the
creation and customization of many different kinds of software.

6.2 Future Work

6.2.1 Towards data-centric interoperability

The metaphors we use in our computing environments define the kinds of composition
that are possible to achieve. For example, modern web-based applications tend to
tightly couple a specific application interface together with data storage and manage-
ment. Each application stores its own private data, making it difficult to collaborate
together on that data using disparate tools, or to collectively manage data together
across multiple tools. This architecture forces teams to make compromises over their
tooling choices, and can force individuals to learn new tools to work with a specific
team [64].

We can find other points in the design space of possibilities by looking at historical
precedent. As discussed in the introduction to this thesis, the desktop filesystem is
an example of a data storage system that provides a foundation of shared state and
coordination across multiple applications. The same file can be edited by collaborators
in their respective preferred editors, or passed between tools that each handle different
parts of a pipelined workflow. Files can be organized together into folders regardless
of their formats or the applications used to open them. Furthermore, filesystem-
based version control systems like git make it possible to collaborate over this data;
collaborators using git enjoy the privilege of editing the same files using different
editors, such as different code editors.

Various systems have explored building on these desirable properties of the desktop
filesystem in new ways. Webstrates [40] and Pushpin [77] have proposed shared
repositories of document-structured data that can be reactively edited live by multiple
tools. Another direction is to introduce relational structure into the shared data—

144

Figure 6-1: Haiku OS stores a list of contacts using structured attributes on files,
enabling them to be managed through a generic database view

as demonstrated by the filesystem in Haiku OS, which supports storing arbitrary
structured attributes on files and then viewing and editing those attributes in a generic
database editor. In Haiku, a contacts editor can be represented simply as a list of
empty files with attributes such as names, emails, etc. (Figure 6-1). Microsoft also
made a failed attempt called WinFS to similarly reorient the Windows filesystem
around a relational database which would have more understanding of the schema of
the data inside1.

The work in this thesis contributes some ideas for enabling data-centric interop-
erability.

First, our work suggests interaction techniques for exposing a relational dataset
to the user in the context of a running GUI. Wildcard shows how a reactive database
debugger view can be shown alongside a rich GUI application as a means of under-
standing and modifying its behavior, e.g. by sorting data differently or by adding
new computational properties. These interactions would layer naturally on top of a
relational filesystem backing the state of a GUI app.

Second, Potluck demonstrates techniques for integrating less structured data into
an interoperable datastore. Every system needs to deal with some combination of
highly structured and less structured data; the naive approach would be to treat
these data in isolation, forgoing any opportunity to leverage the semantic meaning
contained within less structured data like a text note. Potluck suggests a different
approach: letting users define methods for extracting meaningful structure from text
data, and then using that structured data to support computations which can be
integrated back into the text. If the data from a Potluck note were extracted into a
shared OS-level filesystem, other applications and interactive views could be built on
top of that structured data.

Finally, Riffle proposes a new UI architecture that would fit very naturally on
top of a relational database filesystem. If the user’s system had a reactive relational
“filesystem” responsible for managing all data, application developers could delegate
state management (query planning, reactivity, persistence, synchronization) to this
database, and would only need to be responsible for implementing UI components
that query the database and visualize its contents. Furthermore, storing all data
including UI state in this shared datastore would open up interesting opportunities

1https://en.wikipedia.org/wiki/WinFS

145

for scripting across applications, since any tool could drive any part of the UI of
another tool (even things like selection state or pressing buttons) through the shared
data substrate.

There are some key challenges to achieving this kind of shared structured relational
datastore across multiple applications. One challenge is managing diverging data
schemas. Often applications that perform similar tasks in the same domain (drawing
applications, todo lists, etc.) use different data representations that are specific to the
needs of that application. Common standards are difficult to agree upon and often
only cover the lowest common denominator of needed behavior; a better approach
would be to somehow share data as much as possible between applications, while also
allowing each application to manage its own unique format.

Cambria [49] suggests one direction for handling this problem in the context of
document-formatted data: declaratively define bidirectional edit lenses that can trans-
late edits on one data format into edits on the other, and vice versa. Similar tech-
niques might be applicable to relational data, although the fact that relations can
reference one another in flexible ways might make the problem more challenging in
the relational setting.

Another challenge is managing boundaries between data for sharing and privacy.
In a traditional filesystem or a document-based data model, there is a natural hier-
archy to the system which helps establish boundaries for access control and sharing.
In contrast, if all data is stored in a relational database, there is no obvious canonical
hierarchy, and different approaches such as row-level access controls are needed.

6.2.2 The role of AI

As of this writing in summer 2023, there has been a whirlwind of recent progress in
large language models (LLMs). One of the most intriguing advances is the ability of
models to write code: the LLM-based GitHub Copilot autocomplete product has been
used by one million people2, and GPT-4 has proven capable of generating relatively
sophisticated programs such as a 3D game [17]. What might this progress entail
for tools that aim to simplify the creation and editing of software, especially by less
technically sophisticated users? To take a pessimistic stance: it possible that decades
of research into better tools has been superceded by AI techniques and chatbots?

While it is too early to tell, I believe that LLM-based code generation will, at least
in the short term, prove complementary to the techniques introduced in this thesis.
Here we briefly describe two promising directions for integrating LLMs with end-user
programming tools.

Writing computations

One useful role for AI could be to help users fill in small bits of code within spreadsheet-
style programming environments, such as formula computations in Wildcard or Potluck.
In this setup, users would preserve live visibility into data; being able to see live in-
termediate results from a computation could help people understand the behavior

2https://github.blog/2023-02-14-github-copilot-for-business-is-now-available/

146

Figure 6-2: A spreadsheet table generated by GPT-3 after the user typed “double the
quantities”

of automatically generated computations. Direct manipulation interactions would
remain possible: editing data values or sorting by certain columns is more easily
achieved by direct manipulation than through a natural language chat interface.

To illustrate what we mean, here is one specific extension to Potluck that we have
prototyped using GPT-3 [16], shown in Figure 6-2. Instead of writing a search pattern
such as {number} g into the search box, the user can input a natural language goal
like “double the quantities”. An LLM interprets this goal and automatically outputs
a table which contains 1) search patterns expressed in the Potluck search language
which extract relevant data from the text, and 2) computed columns which calculate
derived results over the extracted data to achieve the stated goal.

With this interaction model, the user retains visibility and control. The search
patterns and computations generated by the AI are inserted into a live program-
ming environment where the user can see how the computation works, and modify
the generated code. They can iterate directly on the code for simple changes (e.g.:
changing a 2 to a 3 to scale up the recipe further), or can ask the LLM to make
further adjustments to the code on their behalf. The environment also allows the
user to click a button and see an LLM-generated natural language description of how
the computation works.

In this arrangement, the spreadsheet programming environment broadly, as well
the formula language specifically, serve as a shared representation which the user and
an AI bot can fluidly collaborate on together. Heer has described [29] how such shared
representations can help balance the need for user agency with useful automation of
specific tasks.

Expressing logic in a declarative style can also help support AI code generation. In

147

Potluck, reactivity is deeply built in to the foundation of the system; the AI needs only
generate search patterns and JavaScript computations, and the system automatically
takes care of executing these reactively as the user edits a text document. The
relational queries in Riffle could serve a similar role: the AI could generate SQL
queries expressing the logic of a transformation, which can then be efficiently executed
by a powerful query optimizer. In all of these cases, a powerful runtime helps either an
AI or a human user express the core logic of a task without worrying about low-level
implementation details.

Writing semantic wrappers

Another powerful role for LLMs could be in authoring supporting the extraction of
structured data from unstructured sources. There are at least two distinct ways LLMs
could be used to support data extraction, each with different tradeoffs: 1) LLM code
generation, using LLMs to author extraction code, and 2) LLM scraping, using LLMs
to directly perform extraction.

LLM code generation would use LLMs to author data scraping and extraction
code, such as Wildcard site adapters and Potluck searches; we showed one example
of this above when an LLM authored a Potluck search. Once the code is authored,
it executes deterministically. Having the LLM author semantic wrappers could be a
useful way to balance automation and agency: an LLM could author code to extract
a clean structured dataset from an unstructured source, and then the user could
specify their own behaviors and computations over that cleaned data. This split
of responsibilities resembles the split we originally envisioned for Wildcard, where
skilled developers would play the role of creating site adapters for popular websites.
Instead of relying on skilled human developers, one could imagine LLMs automatically
authoring site adapters, or perhaps automatically verifying and maintaining adapters
which were initially authored by humans.

A second approach is LLM scraping, where the LLM itself performs data extrac-
tion. For example, in Wildcard, upon loading a page, an LLM could be prompted
with a phrases like “Produce a JSON table of Airbnb listings based on this HTML”.
Early experiments have suggested that LLMs are quite capable at these kinds of
tasks [42]. This approach would build on earlier efforts in end-user programming
research to enable “sloppy programming” with fuzzy natural language syntax for web
automations [50].

The two approaches have interesting tradeoffs. Code generation produces a pro-
cess which runs deterministically and predictably—given the same input it will always
produce the same output. As a result, the user can learn the rules of the system and
create data which follows the rules, e.g. developing a personal micro-syntax in Potluck
which will always trigger a given search in the right way. The user also has some
chance (given the right tools and languages) of understanding what the scraping code
does. Finally, scraping code can be executed efficiently; this supports interactions
like re-scraping data reactively upon every keystroke.

On the other hand, some kinds of scraping are very difficult to achieve with de-
terministic code. Tasks like extracting food names from a text recipe, or extracting

148

names of people from a meeting notes document, stretch the limits of traditional
“scraping”; these tasks are more accurately described as natural language processing
(NLP) tasks for extracting semantic meaning from unstructured inputs. LLMs pro-
vide a powerful new toolkit for performing these kinds of open-ended flexible scraping
tasks.

In summary, LLM-powered code generation and scraping seems likely to contribute
significant advances to the state of developer tooling and end-user programming in-
terfaces. But ideas such as declarative representations of logic and semantic wrappers
will likely remain relevant as a tool for mediating collaboration between LLM agents
and human users.

6.3 Conclusion
Software ought to be the ultimate medium for free expression. We are not bound by
the laws of physics; nearly any computational tool is possible to create, at least in
theory.

In practice, the structures we have today for creating software too often get in
the way. For skilled developers, they introduce mountains of incidental complexity,
making it far harder than it should to build great user experiences. And for end users
without much programming expertise, using a computer usually boils down to using
prefabricated experiences created by developers, without much hope for modification.

In this thesis we have shown how ideas from spreadsheet interfaces and relational
databases can help simplify the creation and modification of software, both by de-
velopers and end users. Spreadsheet-style table interfaces allow for visibility into
underlying data provide direct manipulation affordances for editing data and speci-
fying computations. Reactivity simplifies the mental model of dataflow. Relational
databases offer powerful abstractions for modeling and querying data. Taken together,
these techniques offer new ways of thinking about building and editing software.

149

150

Bibliography

[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.
DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
arXiv:1207.0137 [cs] http://arxiv.org/abs/1207.0137

[2] Shaaron Ainsworth. 1999. The Functions of Multiple Representations. Comput-
ers & Education 33, 2-3 (Sept. 1999), 131–152. https://doi.org/10.1016/
S0360-1315(99)00029-9

[3] Tarfah Alrashed, Jumana Almahmoud, Amy X. Zhang, and David R. Karger.
2020. ScrAPIr: Making Web Data APIs Accessible to End Users. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems (CHI
’20). Association for Computing Machinery, Honolulu, HI, USA, 1–12. https:
//doi.org/10.1145/3313831.3376691

[4] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2015. Feral Concurrency Control: An Empirical Investigation
of Modern Application Integrity. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, Melbourne Victoria
Australia, 1327–1342. https://doi.org/10.1145/2723372.2737784

[5] Eirik Bakke and David R. Karger. 2016. Expressive Query Construction through
Direct Manipulation of Nested Relational Results. In Proceedings of the 2016 In-
ternational Conference on Management of Data - SIGMOD ’16. ACM Press, San
Francisco, California, USA, 1377–1392. https://doi.org/10.1145/2882903.
2915210

[6] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model
for Designing Post-WIMP User Interfaces. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’00). ACM, New York,
NY, USA, 446–453. https://doi.org/10.1145/332040.332473

[7] Edward Benson. 2014. Reducing Authoring Complexity on the Web with a Re-
lational Layer for Web Content. Thesis. Massachusetts Institute of Technology.
https://dspace.mit.edu/handle/1721.1/93056

[8] Edward Benson, Amy X. Zhang, and David R. Karger. 2014. Spreadsheet Driven
Web Applications. In Proceedings of the 27th Annual ACM Symposium on User

151

http://arxiv.org/abs/1207.0137
https://doi.org/10.1016/S0360-1315(99)00029-9
https://doi.org/10.1016/S0360-1315(99)00029-9
https://doi.org/10.1145/3313831.3376691
https://doi.org/10.1145/3313831.3376691
https://doi.org/10.1145/2723372.2737784
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/332040.332473
https://dspace.mit.edu/handle/1721.1/93056

Interface Software and Technology - UIST ’14. ACM Press, Honolulu, Hawaii,
USA, 97–106. https://doi.org/10.1145/2642918.2647387

[9] Edward Benson, Amy X. Zhang, and David R. Karger. 2014. Spreadsheet
Driven Web Applications. In Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology. ACM, Honolulu Hawaii USA, 97–106.
https://doi.org/10.1145/2642918.2647387

[10] Tim Berners-Lee. 2019. One Small Step for the Web. . . . https://medium.com/
@timberners_lee/one-small-step-for-the-web-87f92217d085

[11] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley Pub. Co,
Reading, Mass.

[12] Eric A. Bier and Ken Pier. 1991. Documents as User Interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’91).
Association for Computing Machinery, New York, NY, USA, 443–444. https:
//doi.org/10.1145/108844.108994

[13] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. 1986. Efficiently
Updating Materialized Views. In Proceedings of the 1986 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’86). Association for
Computing Machinery, New York, NY, USA, 61–71. https://doi.org/10.
1145/16894.16861

[14] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.
2005. Automation and Customization of Rendered Web Pages. In Proceedings of
the 18th Annual ACM Symposium on User Interface Software and Technology -
UIST ’05. ACM Press, Seattle, WA, USA, 163. https://doi.org/10.1145/
1095034.1095062

[15] Alan Borning. 1981. The Programming Language Aspects of ThingLab, a
Constraint-Oriented Simulation Laboratory. ACM Transactions on Program-
ming Languages and Systems 3, 4 (Oct. 1981), 353–387. https://doi.org/
10.1145/357146.357147

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language Models Are Few-Shot Learn-
ers. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (NIPS’20). Curran Associates Inc., Red Hook, NY, USA,
1877–1901.

152

https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/2642918.2647387
https://medium.com/@timberners_lee/one-small-step-for-the-web-87f92217d085
https://medium.com/@timberners_lee/one-small-step-for-the-web-87f92217d085
https://doi.org/10.1145/108844.108994
https://doi.org/10.1145/108844.108994
https://doi.org/10.1145/16894.16861
https://doi.org/10.1145/16894.16861
https://doi.org/10.1145/1095034.1095062
https://doi.org/10.1145/1095034.1095062
https://doi.org/10.1145/357146.357147
https://doi.org/10.1145/357146.357147

[17] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of Artifi-
cial General Intelligence: Early Experiments with GPT-4. arXiv:2303.12712 [cs]
http://arxiv.org/abs/2303.12712

[18] Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive Web
Data Applications with Spreadsheets. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology - UIST ’14. ACM Press,
Honolulu, Hawaii, USA, 87–96. https://doi.org/10.1145/2642918.2647371

[19] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In The 31st Annual ACM Symposium
on User Interface Software and Technology - UIST ’18. ACM Press, Berlin, Ger-
many, 963–975. https://doi.org/10.1145/3242587.3242661

[20] Adam Chlipala. 2015. Ur/Web: A Simple Model for Programming the Web. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL ’15). Association for Computing Ma-
chinery, New York, NY, USA, 153–165. https://doi.org/10.1145/2676726.
2677004

[21] E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13, 6 (June 1970), 377–387. https://doi.org/10.1145/
362384.362685

[22] William R. Cook. 2007. AppleScript. In Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages - HOPL III. ACM Press, San
Diego, California, 1–1–1–21. https://doi.org/10.1145/1238844.1238845

[23] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007. Links:
Web Programming Without Tiers. In Formal Methods for Components and Ob-
jects, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friede-
mann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Ran-
gan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar,
Moshe Y. Vardi, Gerhard Weikum, Frank S. de Boer, Marcello M. Bon-
sangue, Susanne Graf, and Willem-Paul de Roever (Eds.). Vol. 4709. Springer
Berlin Heidelberg, Berlin, Heidelberg, 266–296. https://doi.org/10.1007/
978-3-540-74792-5_12

[24] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2011. Crack-
ing the Cocoa Nut: User Interface Programming at Runtime. In Proceedings
of the 24th Annual ACM Symposium on User Interface Software and Technol-
ogy - UIST ’11. ACM Press, Santa Barbara, California, USA, 225. https:
//doi.org/10.1145/2047196.2047226

153

http://arxiv.org/abs/2303.12712
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1145/2676726.2677004
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1145/2047196.2047226
https://doi.org/10.1145/2047196.2047226

[25] C. A. Ellis and S. J. Gibbs. 1989. Concurrency Control in Groupware Systems.
In Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data - SIGMOD ’89. ACM Press, Portland, Oregon, United States,
399–407. https://doi.org/10.1145/67544.66963

[26] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Mar-
tin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. 2018. Noria:
Dynamic, Partially-Stateful Data-Flow for High-Performance Web Applications.
In 13th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18). 213–231. https://www.usenix.org/conference/osdi18/
presentation/gjengset

[27] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-Output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, Austin
Texas USA, 317–330. https://doi.org/10.1145/1926385.1926423

[28] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. 1993. Main-
taining Views Incrementally. ACM SIGMOD Record 22, 2 (June 1993), 157–166.
https://doi.org/10.1145/170036.170066

[29] Jeffrey Heer. 2019. Agency plus Automation: Designing Artificial Intelligence
into Interactive Systems. Proceedings of the National Academy of Sciences 116,
6 (Feb. 2019), 1844–1850. https://doi.org/10.1073/pnas.1807184115

[30] Andrew Hogue and David Karger. 2005. Thresher: Automating the Unwrapping
of Semantic Content from the World Wide Web. In Proceedings of the 14th In-
ternational Conference on World Wide Web - WWW ’05. ACM Press, Chiba,
Japan, 86. https://doi.org/10.1145/1060745.1060762

[31] Tristan Hume. 2020. Fragile Narrow Laggy Asynchronous Mismatched Pipes Kill
Productivity. https://thume.ca/2020/05/17/pipes-kill-productivity/

[32] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct Ma-
nipulation Interfaces. (1985), 28.

[33] David F. Huynh, David R. Karger, and Robert C. Miller. 2007. Exhibit:
Lightweight Structured Data Publishing. In Proceedings of the 16th Interna-
tional Conference on World Wide Web - WWW ’07. ACM Press, Banff, Alberta,
Canada, 737. https://doi.org/10.1145/1242572.1242672

[34] David F. Huynh, Robert C. Miller, and David R. Karger. 2006. Enabling
Web Browsers to Augment Web Sites’ Filtering and Sorting Functionalities.
In Proceedings of the 19th Annual ACM Symposium on User Interface Soft-
ware and Technology - UIST ’06. ACM Press, Montreux, Switzerland, 125.
https://doi.org/10.1145/1166253.1166274

154

https://doi.org/10.1145/67544.66963
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/170036.170066
https://doi.org/10.1073/pnas.1807184115
https://doi.org/10.1145/1060745.1060762
https://thume.ca/2020/05/17/pipes-kill-productivity/
https://doi.org/10.1145/1242572.1242672
https://doi.org/10.1145/1166253.1166274

[35] Daniel Ingalls. 2020. The Evolution of Smalltalk: From Smalltalk-72 through
Squeak. Proceedings of the ACM on Programming Languages 4, HOPL (June
2020), 1–101. https://doi.org/10.1145/3386335

[36] Alan Kay. 1984. Computer Software. Scientific American 251, 3 (1984), 52.
https://www.academia.edu/1533030/Computer_Software

[37] Alan Kay. 1984. Opening the Hood of a Word Processor. (1984).
http://worrydream.com/refs/Kay%20-%20Opening%20the%20Hood%20of%
20a%20Word%20Processor.pdf

[38] Martin Kleppmann and Alastair Beresford. 2018. Automerge: Real-
time Data Sync between Edge Devices. https://mobiuk.org/abstract/
S4-P5-Kleppmann-Automerge.pdf

[39] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-First Software: You Own Your Data, in Spite of
the Cloud. In Proceedings of the 2019 ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming and
Software - Onward! 2019. ACM Press, Athens, Greece, 154–178. https:
//doi.org/10.1145/3359591.3359737

[40] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and
Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology - UIST ’15. ACM Press, Daegu, Kyungpook, Republic of Korea,
280–290. https://doi.org/10.1145/2807442.2807446

[41] Andrew J. Ko, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw,
Susan Wiedenbeck, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret
Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, and Henry Lieberman.
2011. The State of the Art in End-User Software Engineering. Comput. Surveys
43, 3 (April 2011), 1–44. https://doi.org/10.1145/1922649.1922658

[42] Rebecca Krosnick and Steve Oney. 2023. Promises and Pitfalls of Us-
ing LLMs for Scraping Web UIs. Computational UI Workshop at CHI
2023 (2023). http://www-personal.umich.edu/~rkros/papers/LLMs_
webscraping_CHI2023_workshop.pdf

[43] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for Con-
currency Control. ACM Transactions on Database Systems 6, 2 (June 1981),
213–226. https://doi.org/10.1145/319566.319567

[44] Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extrac-
tion by Examples. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, Edinburgh United
Kingdom, 542–553. https://doi.org/10.1145/2594291.2594333

155

https://doi.org/10.1145/3386335
https://www.academia.edu/1533030/Computer_Software
http://worrydream.com/refs/Kay%20-%20Opening%20the%20Hood%20of%20a%20Word%20Processor.pdf
http://worrydream.com/refs/Kay%20-%20Opening%20the%20Hood%20of%20a%20Word%20Processor.pdf
https: //mobiuk.org/abstract/S4-P5-Kleppmann-Automerge.pdf
https: //mobiuk.org/abstract/S4-P5-Kleppmann-Automerge.pdf
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/1922649.1922658
http://www-personal.umich.edu/~rkros/papers/LLMs_webscraping_CHI2023_workshop.pdf
http://www-personal.umich.edu/~rkros/papers/LLMs_webscraping_CHI2023_workshop.pdf
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/2594291.2594333

[45] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
Automating & Sharing How-to Knowledge in the Enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08).
ACM, New York, NY, USA, 1719–1728. https://doi.org/10.1145/1357054.
1357323

[46] Geoffrey Litt, Daniel Jackson, Tyler Millis, and Jessica Quaye. 2020. End-User
Software Customization by Direct Manipulation of Tabular Data. In Proceed-
ings of the 2020 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. ACM, Virtual USA,
18–33. https://doi.org/10.1145/3426428.3426914

[47] Geoffrey Litt, Nicholas Schiefer, Johannes Schickling, and Daniel Jackson. 2023.
Riffle: Reactive Relational State for Local-First Applications. In Proceedings of
the 36th Annual ACM Symposium on User Interface Software and Technology.
San Francisco, CA. https://doi.org/10.1145/3586183.3606801

[48] Geoffrey Litt, Max Schoening, Paul Shen, and Paul Sonnentag. 2022. Potluck:
Dynamic Documents as Personal Software. In LIVE Workshop at SPLASH.
https://www.inkandswitch.com/potluck/

[49] Geoffrey Litt, Peter van Hardenberg, and Orion Henry. 2021. Cambria: Schema
Evolution in Distributed Systems with Edit Lenses. In Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed Data (Pa-
PoC ’21). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/3447865.3457963

[50] Greg Little, Robert C. Miller, Victoria H. Chou, Michael Bernstein, Tessa Lau,
and Allen Cypher. 2010. Sloppy Programming. In No Code Required. Elsevier,
289–307. https://doi.org/10.1016/B978-0-12-381541-5.00015-8

[51] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran. 1990.
User-Tailorable Systems: Pressing the Issues with Buttons. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems Empowering
People - CHI ’90. ACM Press, Seattle, Washington, United States, 175–182.
https://doi.org/10.1145/97243.97271

[52] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven
Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee.
2016. A Demonstration of the Solid Platform for Social Web Applications. In
Proceedings of the 25th International Conference Companion on World Wide Web
- WWW ’16 Companion. ACM Press, Montréal, Québec, Canada,
223–226. https://doi.org/10.1145/2872518.2890529

[53] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Olek-
sandr Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User

156

https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3586183.3606801
https://www.inkandswitch.com/potluck/
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1016/B978-0-12-381541-5.00015-8
https://doi.org/10.1145/97243.97271
https://doi.org/10.1145/2872518.2890529

Interaction Models for Disambiguation in Programming by Example. In Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology - UIST ’15. ACM Press, Daegu, Kyungpook, Republic of Korea, 291–301.
https://doi.org/10.1145/2807442.2807459

[54] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. 2016. Object Spread-
sheets: A New Computational Model for End-User Development of Data-
Centric Web Applications. In Proceedings of the 2016 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and
Software - Onward! 2016. ACM Press, Amsterdam, Netherlands, 112–127.
https://doi.org/10.1145/2986012.2986018

[55] Frank McSherry, D. Murray, R. Isaacs, and M. Isard. 2013. Differential
Dataflow. In Conference on Innovative Data Systems Research. https://www.
semanticscholar.org/paper/Differential-Dataflow-McSherry-Murray/
f5df61effe8047eb9ea1702cfcc268dbba678567

[56] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax: A
Programming Language for Ajax Applications. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’09). Association for Computing Machinery, New York,
NY, USA, 1–20. https://doi.org/10.1145/1640089.1640091

[57] Robert C. Miller and Brad A. Myers. 2002. LAPIS: Smart Editing with Text
Structure. In CHI ’02 Extended Abstracts on Human Factors in Computing Sys-
tems. ACM, Minneapolis Minnesota USA, 496–497. https://doi.org/10.
1145/506443.506447

[58] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples. ACM, Farminton Pennsylvania, 439–455. https://doi.org/10.1145/
2517349.2522738

[59] Brad A. Myers. 1996. The Amulet User Interface Development Environment. In
Conference Companion on Human Factors in Computing Systems (CHI ’96).
Association for Computing Machinery, New York, NY, USA, 327. https:
//doi.org/10.1145/257089.257351

[60] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden,
David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal. 1995.
GARNET Comprehensive Support for Graphical, Highly Interactive User Inter-
faces. In Readings in Human–Computer Interaction. Elsevier, 357–371.

[61] Bonnie A. Nardi and James R. Miller. 1990. An Ethnographic Study of Dis-
tributed Problem Solving in Spreadsheet Development. ACM Press, 197–208.

157

https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2986012.2986018
https://www.semanticscholar.org/paper/Differential-Dataflow-McSherry-Murray/f5df61effe8047eb9ea1702cfcc268dbba678567
https://www.semanticscholar.org/paper/Differential-Dataflow-McSherry-Murray/f5df61effe8047eb9ea1702cfcc268dbba678567
https://www.semanticscholar.org/paper/Differential-Dataflow-McSherry-Murray/f5df61effe8047eb9ea1702cfcc268dbba678567
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/506443.506447
https://doi.org/10.1145/506443.506447
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/257089.257351
https://doi.org/10.1145/257089.257351

[62] Bonnie A. Nardi, James R. Miller, and David J. Wright. 1998. Collaborative,
Programmable Intelligent Agents. Commun. ACM 41, 3 (March 1998), 96–104.
https://doi.org/10.1145/272287.272331

[63] Jakob Nielsen. 1993. Response Times: The 3 Important Limits. https://www.
nngroup.com/articles/response-times-3-important-limits/

[64] Midas Nouwens and Clemens Nylandsted Klokmose. 2018. The Application and
Its Consequences for Non-Standard Knowledge Work. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems - CHI ’18. ACM
Press, Montreal QC, Canada, 1–12. https://doi.org/10.1145/3173574.
3173973

[65] Dan R. Olsen. 2007. Evaluating User Interface Systems Research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology
- UIST ’07. ACM Press, Newport, Rhode Island, USA, 251. https://doi.org/
10.1145/1294211.1294256

[66] John K. Ousterhout. 2018. A Philosophy of Software Design (first edition ed.).
Yaknyam Press, Palo Alto, CA.

[67] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. 1995. Plan 9 from Bell Labs. Comput-
ing systems 8, 3 (1995), 221–254.

[68] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Repli-
cated Abstract Data Types: Building Blocks for Collaborative Applications. J.
Parallel and Distrib. Comput. 71, 3 (March 2011), 354–368. https://doi.org/
10.1016/j.jpdc.2010.12.006

[69] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey
Heer. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans-
actions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 341–350.
https://doi.org/10.1109/TVCG.2016.2599030

[70] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A
Comprehensive Study of Convergent and Commutative Replicated Data Types.
Report. Inria – Centre Paris-Rocquencourt ; INRIA. https://hal.inria.fr/
inria-00555588

[71] Frank M. Shipman and Catherine C. Marshall. 1999. Formality Considered
Harmful: Experiences, Emerging Themes, and Directions on the Use of For-
mal Representations in Interactive Systems. Computer Supported Cooperative
Work (CSCW) 8, 4 (Dec. 1999), 333–352. https://doi.org/10.1023/A:
1008716330212

[72] Rada Shirkova. 2011. Materialized Views. Foundations and Trends® in
Databases 4, 4 (2011), 295–405. https://doi.org/10.1561/1900000020

158

https://doi.org/10.1145/272287.272331
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/3173574.3173973
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1109/TVCG.2016.2599030
https://hal.inria.fr/inria-00555588
https://hal.inria.fr/inria-00555588
https://doi.org/10.1023/A:1008716330212
https://doi.org/10.1023/A:1008716330212
https://doi.org/10.1561/1900000020

[73] B. Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Lan-
guages. Computer 16, 8 (Aug. 1983), 57–69. https://doi.org/10.1109/MC.
1983.1654471

[74] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen.
1998. Achieving Convergence, Causality Preservation, and Intention Preservation
in Real-Time Cooperative Editing Systems. ACM Transactions on Computer-
Human Interaction 5, 1 (March 1998), 63–108. https://doi.org/10.1145/
274444.274447

[75] Ivan E. Sutherland. 1963. Sketchpad: A Man-Machine Graphical Communi-
cation System. In Proceedings of the May 21-23, 1963, Spring Joint Computer
Conference (AFIPS ’63 (Spring)). Association for Computing Machinery, New
York, NY, USA, 329–346. https://doi.org/10.1145/1461551.1461591

[76] Philip Tchernavskij. 2019. Designing and Programming Malleable Software.
Ph.D. Dissertation. Université Paris-Saclay, École doctorale nº580 Sciences et
Technologies de l’Information et de la Communication (STIC).

[77] Peter van Hardenberg and Martin Kleppmann. 2020. PushPin: Towards
Production-Quality Peer-to-Peer Collaboration. In Proceedings of the 7thWork-
shop on Principles and Practice of Consistency for Distributed Data. ACM, Her-
aklion Greece, 1–10. https://doi.org/10.1145/3380787.3393683

[78] Lea Verou, Amy X. Zhang, and David R. Karger. 2016. Mavo: Creating Inter-
active Data-Driven Web Applications by Authoring HTML. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology (UIST
’16). Association for Computing Machinery, New York, NY, USA, 483–496.
https://doi.org/10.1145/2984511.2984551

[79] Matthew Weidner, Martin Kleppmann, Daniel Hugenroth, and Alastair R. Beres-
ford. 2021. Key Agreement for Decentralized Secure Group Messaging with
Strong Security Guarantees. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, Virtual Event Republic
of Korea, 2024–2045. https://doi.org/10.1145/3460120.3484542

[80] Jeffrey Wong and Jason I. Hong. 2007. Making Mashups with Marmite: Towards
End-User Programming for the Web. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems - CHI ’07. ACM Press, San Jose,
California, USA, 1435–1444. https://doi.org/10.1145/1240624.1240842

[81] Yifan Wu, Remco Chang, Joseph Hellerstein, Arvind Satyanarayan, and Eugene
Wu. 2021. DIEL: Interactive Visualization Beyond the Here and Now. https:
//doi.org/10.48550/arXiv.1907.00062 arXiv:1907.00062 [cs]

[82] Weihai Yu and Claudia-Lavinia Ignat. 2020. Conflict-Free Replicated Relations
for Multi-Synchronous Database Management at Edge. In 2020 IEEE Inter-
national Conference on Smart Data Services (SMDS). IEEE, Beijing, China,
113–121. https://doi.org/10.1109/SMDS49396.2020.00021

159

https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/1461551.1461591
https://doi.org/10.1145/3380787.3393683
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1145/3460120.3484542
https://doi.org/10.1145/1240624.1240842
https://doi.org/10.48550/arXiv.1907.00062
https://doi.org/10.48550/arXiv.1907.00062
https://doi.org/10.1109/SMDS49396.2020.00021

[83] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav.
2021. FoundationDB: A Distributed Unbundled Transactional Key Value Store.
In Proceedings of the 2021 International Conference on Management of Data.
ACM, Virtual Event China, 2653–2666. https://doi.org/10.1145/3448016.
3457559

160

https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3448016.3457559

	Introduction
	Background
	Direct manipulation / desktop metaphor
	Spreadsheets
	Low-code database platforms
	Reactive databases

	Contributions
	Wildcard: extending web applications
	Potluck: enriching text documents
	Riffle: building reactive relational applications
	Shared themes

	Design dimensions for reactive databases
	Introduction
	A simple model of state and views
	View model

	Properties of shared state
	Reactive
	Unified
	Extensible
	Concurrent
	Flexible data model

	Conclusion

	Wildcard: Customizing Existing Websites
	Introduction
	Example Scenario
	System Architecture
	Table Adapters
	Query Engine
	Table Editor

	Vision
	Decoupling Data from Applications
	Customization by Direct Manipulation
	Semantic Wrappers

	Related Work
	Customization Tools
	Spreadsheets and Visual Query Interfaces

	Evaluation: Experience & Limitations
	Range of Customizations
	Viability of Scraping

	Conclusion and Future Work

	Potluck: Gradually Enriching Text Notes
	Introduction
	Background
	The rigidity of apps
	The flexibility of documents
	Gradual enrichment

	Related Work
	Text documents as user interfaces
	Data detectors

	Potluck: an environment for dynamic documents
	Extracting data with searches
	Running live computations
	Adding annotations
	Reusing searches
	Other features

	Evaluation: Experience & Limitations
	Versatility
	Tool composition
	Potluck vs. spreadsheets
	Challenges of parsing
	State and UI in text
	Limitations

	Future Work
	Conclusion

	Riffle: Reactive Relational State for Local-First Applications
	Introduction
	Background
	Related work
	Key Concepts
	Reactive relational queries
	Synchronous transactional updates

	System Implementation
	Relational Database Backend
	View Framework
	Reactivity Algorithm
	Query languages
	Dynamic query generation
	Query scope
	Local component state
	Performance architecture
	Debugger

	A simple example: Todo List App
	Evaluation: Experience & Limitations
	Case study: Music Application
	Heuristic evaluation
	Limitations

	Future work
	Conclusion

	Conclusion
	Key Ideas
	Future Work
	Towards data-centric interoperability
	The role of AI

	Conclusion

