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Abstract
Programmers are told “depend on interfaces, not implemen-

tations." But, given a program, is it possible even to assess 
objectively whether such advice has been followed?
Programmers frequently talk in ways like this about de-

pendence, but the very term, like many used in software 
engineering, has hitherto eluded precise definition. In this 
work, we resolve a variety of confusions about dependence, 
and present a formal definition unifying multiple varieties of 
software dependence, grounded in Halpern and Pearl’s the-
ory of actual causation. This definition is parameterized by 
the formal system characterizing the property of interest, and 
by constraints on “reasonable changes" to the program. By 
picking different choices of formal system, one can specialize 
the definition to characterize several notions of dependence, 
including build, correctness, and performance dependences. 
Overall, our work provides a path to making conversations 
about software dependence fully objective, and might serve 
as a basis for future work that automatically checks forms of 
dependence that were previously too abstract or high-level 
to be candidates for tools.

CCS Concepts: • Theory of computation → Program spec-
ifications; •  Mathematics of computing →  Causal net-
works.
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1 Introduction
The greatest gift research can give to industry—perhaps even 
more than new technology—is clarity, by offering simple and 
clear formulations of troubling challenges. Thanks to Floyd

Onward! ’20, November 18–20, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8178-9/20/11.
https://doi.org/10.1145/3426428.3426916

and Hoare, we can say what it means for a program to be

incorrect, down to a single line. Thanks to researchers such

as Abadi, Cardelli, Cook, and Aldrich, we can definitively

explain why every plugin system must use something akin

to objects [2, 3, 6]. Yet it seems that as soon as the topic of

code quality comes up, discussion becomes murky, and the

scene shifts from a scientist analyzing an artifact to an artist

giving feedback in a studio.

Enter any corporate code review, and you’ll find decisions

justified by reference to “coupling," “modularity," “knowing

about," and, the subject of this paper, “dependence." These

terms all evade meaning, enough that, 40 years after Parnas’s
pioneering papers on encapsulation [35] and dependences

[36], Richard Gabriel could not coax experts to give a de-

cisive definition of “modularity" [10]. This lack of precise

definitions yields what the first author has named “citrus

advice" [26], advice that is potentially useful but can backfire

in the absence of a deeper understanding.
1

With that in mind, consider these mentions of dependence

from two popular writers:

If something logical depends on the implemen-

tation, then something physical should too.

—Robert C. Martin, Clean Code[31]

I can remove this dependency by placing a sim-

ple delegating method on the server that hides

the delegate.

—Martin Fowler, Refactoring (2nd edition) [9]

In a town of software engineering sages, Fowler and Martin—

co-authors of The Agile Manifesto—would be sitting on the

same porch. Yet it is easy to read the two quotes as giving

opposite advice about interposing a delegating method. Per-

haps Martin would counter that doing so does not actually

remove the dependence, in which case it becomes clear that

they are talking about different things.
The confusion continues as we consider comments by

other authors:

Objects that depend on an algorithm will have

to change when the algorithm changes.

—Erich Gamma et al, Design Patterns [11]

1
The term “citrus advice" comes from the story of how the Royal Navy

saved thousands of sailors from scurvy by feeding them citrus fruits, but,

by virtue of not understanding Vitamin C, they then failed to notice that

supply-chain changes had caused the citrus to lose its scurvy protection

qualities, resulting in a resurgence during 20th century Arctic expeditions.
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In the old Web site with the background speci-

fied separately on each page, all of theWeb pages

were dependent on each other.

—John Ousterhout, A Philosophy of Software De-
sign [33]

From the popular press, then, we gather that depending on

something that changes is problematic because it breaks

code—but it can also involve webpage backgrounds, which

are not even executable. Interpreting all these writers in con-

text requires a deeper understanding of dependence. Without

it, their pronouncements risk being citrus advice.

Our aim in this paper is to provide an objective definition

of dependence for software engineering that captures and

clarifies programmers’ intuitions in the multiple contexts

in which the notion appears, and is sufficiently formal to

be mechanically checkable. Our definition builds on the old

idea that “𝐴 depends on 𝐵 if changing 𝐵 can change 𝐴," but

refines it using recent developments in the theory of causal-

ity and its application to programming [14, 42]. Further, it

gives a classification of the different varieties of dependence
discussed by software engineers by varying the language
of properties and the space of allowed changes. For example,

when applied to a language’s dynamic (execution) semantics,

and specialized to checking specific values of variables and

allowing intervention on any variable value, the definition

becomes the familiar notion of dependence used in dynamic

program-slicing. When applied to a language’s static (compi-

lation) semantics, and specialized to checking the property

“Does it compile?" the definition becomes the notion of de-

pendence used in discussions of package management.

Mechanical does not mean easy, nor even automatic. Sev-

eral instantiations will require information typically not

present in code, but only in proofs. Answers may differ

depending on some arbitrary modeling assumptions about

reasonable counterfactuals, and showing dependence may

require finding a unique witness in an infinite space of coun-

terfactuals.

Nonetheless, despite some unresolved difficulties and the

challenges of full automation, we hope that our work will

contribute to a clearer understanding of an idea that plays a

central and fundamental role in programming and software

design; that by demystifying dependence we will encourage

more precise and effective usage of the idea, and that our

framework will prove to be a fruitful basis for subsequent

research.

2 Nine Dependency Puzzles
If you open a popular software engineering book, you’ll

be sure to find lots of advice about avoiding and reducing

dependencies—in the context of design patterns, package

management, use of third-party software, and so on. Yet,

viewed under a microscope, contradictions emerge. Drawing

on this folk understanding of dependence, we’ve identified a

variety of puzzles:

1. If a call from procedure𝐴 to procedure 𝐵 generally implies

that 𝐴 depends on 𝐵, then does a round-robin scheduler—

which invokes a collection of tasks—in turn depend on

each of the tasks?

2. If 𝐴 writes a file and 𝐵 reads it, there is clearly a coupling

between the two induced by the assumption of a shared

format. But which depends on which? Similarly: a client

serializes messages received by a server. If either the se-

rializer or the deserializer changes, the other will break.

Do they both depend on each other?

3. If the lack of dependence of 𝐴 on 𝐵 means that a change

to 𝐵 cannot affect 𝐴, what about a change to 𝐵 that in-

troduces a new dependence, for example by modifying a

previously unreferenced global variable used by 𝐴?

4. Furthermore: If 𝐴 depends on 𝐵 when a failure of 𝐵 can

lead to a failure of 𝐴, but any module may crash the pro-

gram (e.g.: by stack overflow), then does every module

depend on every other module?

5. On the other hand: If𝐴 depends on a module 𝐵, but checks

the result and uses a slower and more reliable service 𝐶

if 𝐵 fails, then failure of 𝐵 no longer implies failure of 𝐴.

Does that mean that 𝐴 does not depend on 𝐵?

6. Dependency inversion supposedly eliminates a depen-

dence of 𝐴 on 𝐵 by passing 𝐵 to 𝐴 at runtime. But 𝐴 will

still fail if 𝐵 fails. Then so why doesn’t 𝐴 still depend on

𝐵?

7. The dependency relation is usually treated as transitive,

with cycles evidence of poor design. But if dependence

of 𝐴 on 𝐵 means that 𝐴 cannot function without 𝐵, what

does a self-dependence mean?

8. Libraries are built independently and thus should not

depend on application code. But a hash table implementa-

tion will give incorrect output if keys have inconsistent

implementations of equals() and hashcode() methods.

Does that mean that such library classes depend on their

callers?

9. A robot controller is written using n-version program-

ming. At each timestep, the robot turns left or right based

on a majority vote of 5 different controller implementa-

tions. Suppose all 5 implementations implement different

algorithms which somehow always give the same answer.

Then no change to any single implementation can alter

the robot. Does this mean the robot does not depend on

any of them.

The simple solution to most of these puzzles is that questions

like “Does module 𝐴 depend on module 𝐵?" are malformed.

Rather, each module has a variety of properties that can be
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impacted and changes that can be made, leading to different

kinds of dependence. The next section introduces the main

concepts needed to frame dependence properly. Later, after

developing our new definition, nwe resolve all these puzzles

in §8.

3 What’s in a Dependence Query?
3.1 Dependence Is about Properties, Not Programs
A company wants to add analytics to their mobile app to

track user engagement. But they don’t want to be tied to any

one vendor, so they build a wrapper around the analytics

library, so as not to depend on it. This pays off because, one

day, they decide this analytics library is using too much

bandwidth, so they switch to a different one that promises

to be more lightweight. Only the wrapper code needs to be

changed.

But, if the application didn’t depend on the analytics li-

brary, how could changing the library make a difference?

We have previously argued that the concept of depen-

dence only makes sense relative to some correctness prop-

erty [24, 25]. For example, while the company may have

successfully shielded the functional correctness of the app
from the functional properties of the analytics framework, it

did not block the app’s resource requirements from those of

the library. We extend this insight: there is no dependence

of a code fragment 𝐴 (on some other code fragment 𝐵), but

rather a dependence of some property 𝜑 of 𝐴.

As a corollary, questions of dependence cannot be re-

solved without determining the property of interest, and

so in general cannot be answered from the source code

alone. For example, imagine an app that runs showPopup("No

connection") when it tries to download an update and finds

no Internet connection. If the correctness of the system

merely requires that it show a popup with this message

in this event, then there is no dependence on code that sets

the default formatting of popups. But if there are specific

requirements on the visual design of this particular popup,

then it does.

Observing software writing in the wild, the most common

translation of “𝐴 depends on 𝐵" seems to be “some relevant

correctness property of𝐴 depends on the code of 𝐵", followed

by a substantial minority of cases in which 𝐴’s property is

instead “successful compilation." We explore the landscape

of such static vs. dynamic properties in the next section.

When people disagree about whether a module depends on

something, we hypothesize that the most common cause is

this ambiguity over which property is being discussed.

3.2 Dependence Is Relative to a Semantics
According to many writers on software, the moment you

import a new package into your project, it becomes a “de-

pendency," yet the project does not “depend" on it until it’s

used. If the dependency in question is PostgreSQL, but the

app would work with MySQL without any changes, then the

code “does not depend" on PostgreSQL.

Software writers effortlessly flit between different vari-

eties of dependence. The differences between these can be

exposed by asking the question “What change in the depen-

dency is relevant to the dependence?" For the first implied

definition, that would be introducing any kind of build error.

But for the second, it would be any change that alters the

behavior of the dependee, and for the third, it would only be

changes that cause it to differ from the SQL standard.

These varieties of dependence differ not just in the prop-

erty being queried, but in the semantic relation being consid-

ered. Thus dependence in dynamic slicingmay be formulated

in terms of some execution relation (⇝), yet the question
“Does it compile?" is not even askable in terms of (⇝). Yet
that question would make sense in terms of some relation

that models compilation, perhaps a composition of systems

for parsing, typing, and linking.

Let us give rough definitions of the three varieties of de-

pendence implied by the paragraph above. We see that each

corresponds to a different formal system and property:

1. Package A depends on package B if A would not compile

without B. This is dependence in the static semantics
of the language.

2. Package A depends on package B if the execution of code

in B is required for A to obtain its result. This is depen-
dence in the dynamic semantics of the language.

3. Package A depends on package B if some special property

of package B, not guaranteed by some broader spec (e.g.:

the SQL standard), is needed for A to meet its require-

ments. This is dependence in a correctness logic.

In the example from the start of this section, a program that

uses PostgreSQL, but only through queries that would work

equivalently in any other database engine, depends on Post-

greSQL in sense #2 but not sense #3. And returning to the

Martin Fowler and Robert Martin quotes from §1, Fowler’s

“removing a dependency by adding a delegation method" ap-

pears to be referring to a dependence in the static semantics,

as does Martin’s “physical dependence." Martin’s “logical

dependence," on the other hand, appears to refer to depen-

dence in either the dynamic semantics or correctness logic.

(Additional context makes clear that the latter is intended.)

These parameters—of the language of properties and the

relevant semantics—promise, less straightforwardly, to en-

able precise questions about the dependence of non-functional

properties. For example, in the three systems above, ques-

tions like “Does this web page depend on the background

color of another web page," from Ousterhout’s example in

§1, could not even be meaningfully asked. But now one can

imagine a semantics encoding properties such as “visual

consistency," or “usability" that might be evaluated in user

studies or perhaps in the context of probabilistic models.

Now questions such as “Does the usability requirement 𝜑
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of Page1.html depend on the background-color attribute in

Page2.html" become well-posed. And there are already exam-

ples of using formal semantics to check similar properties; in

particular, visual logic [34] has been used to check properties

such as “good contrast" between text and background.

A more tractable kind of non-functional requirement is

performance. Imagine a program using one of these two

versions of the max function over an array:

public int max1(int[] arr) {

assert(arr.length > 0);

int result = arr[0];

for (int i = 0; i < arr.length; i++) {

if (arr[i] > result) result = arr[i];

}

return result

}

public int max2(int[] arr) {

assert(arr.length > 0);

int[] arr2 = copy(arr);

while (!isSorted(arr2))

arr2 = randomPermutation(arr2);

return getLast(arr2);

}

Under most logics, there would be no way to distinguish

max1 from max2, even though the latter’s unbounded run-

ning time is sure to upset many programmers. However, in

a semantics that considers timing, such as Resource-Aware

ML [21] or Timed ML [43], a question like “Does this ap-

plication’s performance spec rely on this other module’s

performance?" becomes well-posed.

3.3 Dependence is Relative to Permitted Changes
Depending on something means relying on a thing being

what it is and not something else. So a dependence of 𝐴 on

𝐵 must be witnessed by a potential change to 𝐵 that would

impact 𝐴.

When a change may alter the dependence structure, or

have global effects such as crashing the program, then the

graph of susceptibility is the standard hairball: everything

depends on everything else. This is the question raised by

our third and fourth puzzles. For a dependence analysis to

be useful, there must be some limits on what changes may

be considered.

And it is not enough to have only broad restrictions such

as “no changes that add new dependences." Consider the

Observer pattern, where an object maintains a dynamic list

of observer callbacks and invokes them upon certain events.

The common justification is that doing so removes the de-

pendence of the object on its observers. Yet there are count-

less ways an observer may interfere with an observee, from

competing for shared resources such as locks and files, to

raising an uncaught exception, to manipulating the run-

time stack at the binary level. The intuitive justification—

of non-dependence, and hence non-interference—can hold

weight, but only under assumptions about permissible be-

havior which are not universally applicable.

Thus, dependence is defined relative to what changes

are under consideration. Dependence queries about com-

pilation consider changes in well-formedness; dependence

queries about execution consider changes in runtime state;

and dependence queries about modular correctness consider

changes to the specs and guarantees of components. Within

each of these categories, there must be some additional con-

straint on what changes are permitted, which we deem a

super-spec.
Super-specs are discussed more in §5.2.

3.4 Dependence Is Causality
The semantics of dependence must differ from traditional

program semantics in at least one fundamental respect. Tra-

ditionally, formal semantics aims to explain what the result

will be of taking a program in its given form, and executing

it (in terms of the values returned and effects produced). Ver-

ification, for example, is then about whether these results

comport with expectation, as expressed in a specification.

The semantics of dependence must be different, because

the concern is not what the result of executing this given

program will be, but rather what the result will be of execut-

ing another program—albeit one closely related to this one.

This other program may be the program that this program

will evolve to as the design changes; or perhaps it’s the pro-

gram after an unwanted perturbation (such as an attack by

an adversary); or perhaps it’s simply the program that this

program might have been had it been incorrect.

Central to dependence, therefore, is the concept of a coun-
terfactual hypothetical. This leads to a startling observation:

every one of the examples from §2 has an isomorphic
example in the domain of causality in the physical
world. In fact, two of these examples were directly based on

examples from the causality literature (more on this in §8).

We give translations of Examples 1-4 below, and leave the

rest as an exercise to the reader.

1. A worker is packing boxes into a shipping container. Can

the contents of any particular box cause the worker to

succeed or fail?

2. An engineer designs a socket. Do the engineer’s decisions

cause the design of the corresponding plug, or vice-versa?

3. If Beatrice did not cause Bob’s death, does that mean

Beatrice could have done nothing to save Billy?

4. If any neighbor could have cut electricity and gas to your

house, does that mean that every neighbor’s actions are a

cause of your being able to cook dinner at home?

These examples suggest that any advances in the theory

and definition of causality might be translated into a better
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understanding of software dependence. And so, in the next

section, we introduce some of the concepts that, in the past 30
years, have transformed causality from a field of philosophy

to a field of computer science.

4 Background: Actual Causation
In this section, we explain the recent work on the defini-

tion of actual causation, before we discuss how to apply the

underlying ideas to the question of software dependence.

Theorists categorize causality into two categories. “Type

causality" (also called “general causality") deals with general

statements about categories such as “A stray spark causes

fire." “Actual causality" deals with statements about specific

events, such as “A stray spark in Thomas Farriner’s bakery on

Pudding Lane caused the Great Fire of London on September

2nd, 1666." As dependence deals with questions about specific

programs and specific scenarios, actual causation is the one

relevant here.

There have been several proposed formal definitions of ac-

tual cause, and there is no standard for determining whether

a definition is correct—only arguments that it is is useful

and produces answers that match intuition. In the remainder

of this section, we give a crash course in actual causation,

in preparation for developing a definition suitable for soft-

ware. All of these details appear in the first two chapters of

Halpern’s book [14].

4.1 Structural Causal Models
In this section, we explain structural causal models, also
known as causal graphs, the main objects of study in the

Pearl school of causal inference. More detailed introductions

can be found in either Pearl’s [38] or Halpern’s [14] books, as

well as in many self-contained papers on causality [4, 13, 15].

Structural causal models view the world as a determinis-
tic program on non-deterministic inputs. For instance,
consider the classic example of a system where grass may be

wet or not (𝑊 = 1 or𝑊 = 0), based on whether the sprinkler

is on (𝑆) and whether it rained (𝑅). The state of the sprinkler

and rain are determined by unknown background factors,

captured in the variables 𝑈1 and 𝑈2, but the sprinkler will

never be on when it has rained. Following are a series of

equations (or rather, imperative assignment statements) de-

termining the state of the system; Fig. 1 depicts the structure

as a causal graph.

𝑅 = 𝑈1

𝑆 = 𝑈2 ∧ ¬𝑅
𝑊 = 𝑅 ∨ 𝑆

𝑈1 and𝑈2 are exogeneous variables, and may be probabilistic.

𝑅, 𝑆 , and𝑊 , in contrast, are endogenous variables, and are

given by the deterministic equations above, which may be

R

S

W

Figure 1. Causal graph for the sprinkler example. Exoge-

neous variables omitted.

read as a straight-line imperative program. The distribution

of𝑈1 and𝑈2 thus induces a distribution on 𝑅, 𝑆 , and𝑊 .

Actual causation deals with specific scenarios rather than

general models. Once a setting of the𝑈𝑖 has been picked, the

system becomes completely deterministic, allowing queries

aboutwhy a specific combination of variable values occurred.

An assignment of values ®𝑢 = {𝑢1, . . . , 𝑢𝑛} to variables

®𝑈 = {𝑈1, . . . ,𝑈𝑛} is denoted ®𝑈 = ®𝑢, and is called a context.
With some abuse of notation, it is frequently written as just ®𝑢.
Similar notation is used for settings of other sets of variables.

More formally, a model𝑀 consists of a set of endogenous

variables ®𝑋 and a set of exogenous variables ®𝑈 , where each

variable 𝑣 takes values from a domain D𝑣 , and a set of equa-

tions {𝑋𝑖 = 𝑓𝑖 ( ®𝑋, ®𝑈 )}. Most settings limit their attention to

strongly recursive models, in which the ith equation expres-

sion 𝑓𝑖 ignores all variables {𝑥𝑖 , . . . , 𝑥𝑛} that are assigned

later. Strongly recursive models may thus be interpreted as

straight-line imperative programs.
2

Given a model 𝑀 and context ®𝑢, the judgment (𝑀, ®𝑢) |=
𝑋𝑖 = 𝑥𝑖 means that, when ®𝑈 = ®𝑢, the equations of 𝑀 entail

the equality 𝑋𝑖 = 𝑥𝑖 . More generally, if 𝜑 is a logical formula

in terms of the 𝑋𝑖 (called an event), then (𝑀, ®𝑢) |= 𝜑 if

𝜑 is true under the unique assignment to the 𝑋𝑖 entailed

by the formulas of the model in the context ®𝑈 = ®𝑢. Actual
causation deals with the question of which values of variables

may be considered to be “causes" of the event 𝜑 , i.e., which

intermediate variables were relevant to 𝜑 being true.

Of importance is that, while the event 𝜑 may be an arbi-

trary formula, the causes may only be assignments to vari-

ables (or sets of variables). A formula like 𝑅 = 1 ∨ 𝑆 = 1 is
not permitted to be a cause, but a formula like 𝑅 = 1 ∧ 𝑆 = 1
is.

Intervention is the capability that distinguishes causal

models from probabilistic models, which contain no more

information than a count of how often each combination

of variables occurs. It is the feature that justifies a model’s

2
Confusingly, while these programsmay be “recursive" in the computability-

theory sense of “computable," a programming languages theorist might be

tempted to call them “not recursive," as they correspond to acyclic graphs!
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interpretation as an imperative program rather than as a

relation among variables. The intervened model𝑀𝑋𝑖←𝑥𝑖 is a

model that is identical to𝑀 , except that 𝑓𝑖 ( ®𝑋, ®𝑈 ) is replaced
with the constant 𝑥𝑖 . For example, if𝑀 is the sprinkler model

defined above, then𝑀𝑆←1 (“M where the sprinkler has been

forced on") is defined by the following equations:

𝑅 = 𝑈1

𝑆 = 1

𝑊 = 𝑅 ∨ 𝑆
Intervention is fundamentally outside the ability of pure sta-

tistical methods such as conditioning (discussed extensively

in Pearl [38]). Note that, with this intervention, it becomes

possible to speak about what happens when it rains and
the sprinkler is on, which could never occur when passively

observing the original model.

Intervention extends naturally to sets of assignments,

𝑀 ®𝑋←®𝑥 , and the judgment (𝑀 ®𝑍←®𝑧, ®𝑢) |= 𝜑 can also be written

as (𝑀, ®𝑢) |= [ ®𝑍 ← ®𝑧]𝜑 .
We have now defined all the tools needed to express actual

causation.

4.2 But-for Causation
As a build-up to our preferred definition, we first present a

simpler definition of actual causation called “but-for" causa-

tion, erroneously called “scientific causality" in law schools

worldwide. In but-for causation, 𝐴 is a cause of 𝐵 if, but for

𝐴 happening, 𝐵 would not have happened. More formally:

Definition 4.1. ®𝑋 = ®𝑥 is a but-for cause of 𝜑 in (𝑀, ®𝑢) if
there is an ®𝑥 ′ ≠ ®𝑥 such that:

1. The setting ®𝑋 = ®𝑥 actually occurred: (𝑀, ®𝑢) |= ®𝑋 = ®𝑥
2. The event 𝜑 actually occurred: (𝑀, ®𝑢) |= 𝜑 ,

3. If ®𝑋 = ®𝑥 ′ instead, 𝜑 would be false: (𝑀, ®𝑢) |= [ ®𝑋 ← ®𝑥 ′]¬𝜑

In the sprinkler/grass model, with 𝑈1 = 1 and 𝑈2 = 0,
rain (𝑅 = 1) is a but-for cause of wetness (𝑊 = 1), because,
without the rain (and since the sprinkler would not be on),

the grass would not be wet. However, with 𝑈1 = 𝑈2 = 1
(and hence 𝑅 = 1, 𝑆 = 0), rain (𝑅 = 1) is not a but-for cause,
because, were it not raining, the sprinkler would come on,

and the grass would be wet anyway.

For an example in a program context, a program starting is

a but-for cause of it printing any output: if it had it not started,

there would be no output. However, the second sprinkler

example above shows that, for over-determined events, but-

for causation does not align with intuition: the rain should

be the cause of the grass being wet—it’s what made the

grass wet, after all! This situation is isomorphic to Example

5 in §2, where an app uses some service (say, one payment

service), and, if it fails, uses a different one. But-for causation

would say—implausibly—that, if the first payment service

succeeded, its success would not have been a cause of the app

successfully processing a payment. Causality researchers call

this preemption. More generally, whenever there is a backup

in case of failure, no single happening can be the cause of

success.

Such undesirable answers in but-for causation have led

many to seek alternate definitions. At the very least, but-for

causation is unsuitable as a basis for the theory of depen-

dence, as it would indicate that the app does not depend on

the first payment service, or at least no more than it depends

on any unused payment service. Using such a definition of

dependence in dynamic program slicing would construct a

slice without including code from any payment service at all.

We therefore turn to a more modern definition of causation.

4.3 The Halpern-Pearl Definition
After witnessing problems with but-for causation and other

attempted definitions, Halpern and Pearl began working in

the early 2000’s on a new definition that was both rigor-

ous and yet still captured our intuitions about the causes of

events. In 2015, after discovering problems with two earlier

attempts, Halpern published his current definition of actual

causation [13], which has an imperfect but excellent track

record of aligning with intuition.

The key idea that differentiates the three Halpern-Pearl

definitions from but-for causation is the idea of a contin-
gency. Because of over-determination, it may not be pos-

sible to change a variable 𝑋𝑖 to make 𝜑 false, even if 𝑋𝑖

was clearly used in the process that made 𝜑 true—because

changing it may have a secondary effect that counteracts the

change. However, by blocking this secondary effect, it becomes

possible to observe that 𝑋𝑖 ’s value was indeed involved in

the chain of events leading to 𝜑 . Halpern’s 2015 definition
achieves this by allowing the change to the causing variables

®𝑋 to be observed in the context of some intervention (a “con-

tingency") which forces a witness set of variables ®𝑊 to keep

the values they would have taken had ®𝑋 not been modified.

Definition 4.2 (Actual cause (Halpern 2015)). ®𝑋 = ®𝑥 is an

actual cause of 𝜑 in (𝑀, ®𝑢) if the following three conditions

hold:

AC1. (𝑀, ®𝑢) |= ( ®𝑋 = ®𝑥) and (𝑀, ®𝑢) |= 𝜑

AC2. There is a set ®𝑊 of variables and a setting ®𝑥 ′ of the
variables in ®𝑋 such that if (𝑀, ®𝑢) |= ®𝑊 = ®𝑤 then

(𝑀, ®𝑢) |= [ ®𝑋 ← ®𝑥 ′, ®𝑊 ← ®𝑤]¬𝜑
AC3. ®𝑋 is minimal; no proper subset of ®𝑋 satisfies conditions

AC1 and AC2.

It’s easy to show that every (minimal) but-for cause is also a

Halpern 2015 cause. But the converse is not true. For example,

in the sprinkler example with𝑈1 = 𝑈2 = 1, 𝑅 = 1 is a cause
of𝑊 = 1, witnessed by the contingency 𝑆 ← 0. In other

words, the rain was a cause of the grass being wet, because,

were there no rain, and the sprinkler were kept in the off state,
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then the grass would not be wet. This judgment aligns with

intuition. But is the mechanism of contingency the reason

why?

4.4 Which Definition? Neither. Or Both.
In the writing of this paper, we switched between several

definitions of causation, beginning with a direct analogue

of the Halpern 2015 definition, and then one more similar

to but-for, and then the current one, which is superficially

more similar to the Halpern 2015 definition
3
, but spiritually

closer to but-for, as we found few examples of contingencies

in a software context, and those we did find could be better

justified without them.

All proposed definitions are evaluated by humans’ highly-

developed causal intuitions. And intuition states that, when

it rains, the rain causes the grass’s wetness. But compare:

suppose instead there is no rain, but you activate the sprin-

kler 5 minutes before it was scheduled to turn on anyway.

Though this graph is isomorphic, many would say your ac-

tions were not an actual cause of the grass’s wetness an hour

later. Perhaps then, the causal judgment about rain stems

not from the weather, but from the differences between tap-

water and rainwater; not from past actions, but from a more

precise model of the end-result.

Similarly, for the example of a fallback payment processor,

there is a material difference depending on which one is

used (seen on the bill from each vendor), which supports

the intuition that a successful transaction did depend on

whichever processor was used.
4

Throughout the remainder of this paper, we shall fre-

quently point to undesirable results from our definition, and

to alternate answers given by other definitions. Causality is

still an immature field, despite its growing popularity in AI

and other areas. And so, as long as there is debate over the

proper definition of actual causation, there shall be debate

over the exact logical formula defining dependence.

We now proceed to construct a definition of dependence

based directly on actual causation. But first we must deter-

mine how to lift interventions from the setting of causal

models to the setting of programs, and the evaluation of

properties from boolean combinations of assignments to ar-

bitrary facts about a program’s static semantics, dynamic

semantics, and correctness.

3
And even more similar to the Halpern-Pearl 2005 definition [18], not

described here.

4
As a real example of this: the multi-language Cubix framework [28] uses

an outdated-yet-robust Java parser, but falls back to a newer-but-buggy

parser when it encounters newer syntax. It makes sense to say that the

execution of Cubix depends on which parser was used in part because they

produce different output; it would makea less sense if they had the exact

same behavior save intermittent failure.

5 Causality in Programs
5.1 Intervention as Program Transformation
Intervention in a causal model is setting a variable to a con-

stant. As structural causal models are straight-line programs,

the naive extension to general programs is to modify the

program by inserting assignment statements setting some

variables to constants; this is the approach taken in early

work by Icard [23].

This, however, is not sufficiently general for our purposes.

The shift from straight-line to arbitrary programs is not

merely about admitting more complex code between assign-

ments to variables, but a fundamental change in the nature

of assignment itself: that a variable can take on an entire

family of values (or perhaps not exist at all). The power of

an intervention must be upgraded accordingly.

From another lens, if the functions 𝑓𝑖 defining each en-

dogenous variable are the “lines of code" of a causal model,

then interventions may be seen as program transfor-
mations. Indeed, researchers in pure causal inference have

recently adopted a view very much like this, with a formal-

ism in which interventions may set a variable not just to a

constant, but to an arbitrary (perhaps stochastic) function of

its predecessors [7].

When generalizing models to arbitrary programs, there-

fore, this suggests taking general program transformations as

the analog to interventions, an idea introduced in our previ-

ous work formalizing a probabilistic programming language

with counterfactuals [42].

If the interventions are program transformations, what are

the variables? An easy answer is: fragments of the program

state at arbitrary points in the execution. This raises the

challenge of actually specifying such an execution point to

perform an intervention, with identifiers such as “the value

of i in the 5th iteration of the loop in function foo when

called from a signal handler" being quite unstable across

intervention. This is closely related to execution-point iden-

tification in dynamic analysis [41], and to mutation of exe-

cution traces in probabilistic programming [44]. Finding a

universally satisfactory treatment is still an unsolved prob-

lem, though both cited papers offer effective defaults in their

respective contexts, as does our work on counterfactual prob-

abilistic programming [42]. In our example formalizations

for specific systems in §7, we will artfully dodge these issues.

With this generalization, the definition of actual cause is

already starting to look like a more refined version of “𝐴

depends on 𝐵 if a change to 𝐵 can change 𝐴." But, before

we dive into the details, there is still one more aspect of

structural causal models to generalize, one that was subtly

sneaked into the definition.
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5.2 The Concept of Valid Intervention
In the mid-2000s, Liblit and Aiken developed the Coopera-

tive Bug Isolation (CBI) project [30]. In this project, their sys-

tem would instrument programs to record at various points

whether certain predicates such as “𝑥 > 𝑦" were true, in the

style of Daikon [8]. They would then release the programs

to users, and have the systems send statistics back home, so

that they could detect which predicates were correlated with

program failures.

But a problem emerged: the strongest correlates were

often not ones useful for pinpointing a bug. Instead, they

would often be ones correlated with a large input, as these

were more likely to contain edge-cases. Aiken later told us in

conversation that the inability to identify useful predicates

was the greatest unsolved problem of the project.

The essence of the difficulty is that users of the CBI system

were most interested in predicates that showed the cause of

bugs—not just those that were correlates. And this is a much

harder problem, even just to define. But below, we do define

it—and find that it requires information not in the program.

Imagine CBI discovered that the predicate strlen(s) >

1000 was correlated with a program crash, and an agent

with limitless computational power was trying to determine

whether this relationship was causal. To apply either of the

definitions from §4, the agent would have to intervene in

the program to make s be some string of length greater than

1000 and then look for the crash—and this is underdefined,

as it clearly matters which string is used. In general, there is

no good way to intervene on a predicate; this is the reason

why the Halpern-Pearl definition only allows sets of assign-

ments as causes, even as events may be arbitrary boolean

formulas. But now suppose that the string were a structure

with a separate length field, and the predicate was s.length

> 1000. Now it is quite trivial to intervene and set s.length

to something else—and then the program would crash irre-

spective of the pursued bug, because this is not a valid
intervention.
In structural causal models, it is permissible to intervene

in a variable to set it to any value in its domain. And that “in

its domain" restriction hides a lot of work.

It has been noted [22] that structural causal models are

ontologically similar to propositional logic, where each vari-

able stands alone, and there are no composite structures.

Programs are not like this, of course. The reason, for in-

stance, that setting s.length to an arbitrary value is invalid

is that it likely violates s’s representation invariant relating
the length field to the string buffer itself.

Meanwhile, in structural causal models, restrictions on

valid interventions are encoded into the choice of variables

and their domains, so that causality questions may have

different answers depending on modeling choices (they are

model-relevant). For a classic example where adding vari-

ables changes an answer, in the Halpern-Pearl definition of

§4.3, if two people throw rocks at the same bottle and it

shatters, it cannot be shown that one person’s throw but not

the other’s is a cause of the bottle shattering, unless there

are variables added representing which one hit first. And

for an example where changing a variable’s domain changes

causality, consider Example 4 from §3.4: it cannot be shown

that your neighbor’s action 𝑁𝐴 is a cause of you cooking

dinner unless the domain includes a setting 𝑁𝐴 = 𝑎cut rep-

resenting them cutting your power and gas lines (and the

equations defining the model are augmented accordingly).

There are several ways to counteract this, such as adding

a parameter for how “abnormal" an intervention may be, but,

no matter what extensions are made to the formalism, the

first line of defense is to carefully construct the model to
permit exactly the relevant counterfactuals. So far, there is

no analogue to this when checking causality in programs.

By default, interventions as we have described them may

insert arbitrary code and set variables to arbitrary values of

their type, though there is no reason to believe that the set of

reasonable values a variable may take should coincide with

the domain of the standard types in a language.

As the analogue of the carefully-chosen variable domain

in structural causal models, we stipulate that there must

be some additional restrictions on what interventions are

valid. As it is perfectly reasonable to perform an intervention

that modifies a module’s spec (to, say, determine whether

another module’s correctness relies on a specific property),

for lack of a better term, we deem these extra restrictions a

super-specification. We first described the need for such

restrictions in our work on counterfactual probabilistic pro-

gramming [42], but we swept it under the rug by assuming

some unspecified static analysis to prevent invalid inter-

ventions. In this paper, we develop an explicit notion of

super-specifications. Without such super-specs, there may

be multiple possible answers to questions of dependence.

Thus, even after choosing a specific property, it may be im-

possible to decisively determine dependence from inspecting

the code alone.
5

When changing modules, a common super-spec is some

kind of frame condition stipulating which variables may be

modified or what effects may result. As a spoiler, this is the

resolution to two of the examples in §2, where dependence

on a module varies with whether it’s permissible to alter

that module to crash or mess with another module’s vari-

ables. When considering dependence of variable values on

other variable values, a useful super-spec is to only permit

interventions that respect a data structure’s representation

invariants, as in the string example. A more basic super-

spec is to rule out interventions that result in an ill-formed

5
But, at least for dependence on program state subject to a super-spec

of data structure invariants, there is empirical hope for useful answers

in the absence of user-provided restrictions: Zeller’s experience with the

HOWCOME tool [45] suggests that randomly mutating a valid program

state is moderately likely to produce another valid program state.
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program—but when considering build dependencies, such

interventions are of great interest.

The super-spec assigned to a program element may differ

with the nature of the query. One strand of research in actual

causation allows considering not a single model but a range

of models with a normality ordering [14, 16], where, for ex-

ample, a more “abnormal” model for fire may be allowed to

consider the case where there is a stray spark but no oxy-

gen. Such judgments have analogues in software as well: a

software engineer may conclude that one module’s failure

cannot affect another’s, while a security engineer, unwilling

to rule out a code-injection vulnerability, might not.

The need for a super-spec implies that the program text

will generally not contain enough information to check de-

pendence. This might seem undesirable, but we argue that

this is necessary, and any purported definition that lacks this

property will be flawed. If dependence is witnessed by possi-

ble changes, then, as the programmer’s intentions influence

what kinds of changes are possible, said intentions must also

influence whether a dependence exists.

And now, with a fuller framework for extending inter-

ventions to programs, we are ready to translate notions of

causality in the physical world into a notion of dependence

in the world of software.

6 A General Definition of Dependence
The last section identified challenges defining causality in

programs. This section answers these challenges by creat-

ing a general, formal definition of causality in program se-

mantics, built atop state machines as a common language

representing many kinds of semantics.

Causality is built on notions of components, properties,

allowable interventions, and deterministic execution. It can

thence be developed in many settings, from Halpern and

Pearl’s causal graphs, to databases and relational algebra

[32], to continuous-time models of biochemical reactions

[29]. We chose the setting of state machines as one which is

expressive enough to model most forms of program seman-

tics, while still permitting a simple, visual explanation. In

this section, we both present the generalized definition of

dependence in deterministic state machines, and simulta-
neously give an example application to dependence in

dynamic semantics (which roughly corresponds to dynamic

slicing), which requires little transformation to express as

a state machine. §7 then applies it to develop several other

forms of dependence.

Programs are substantially more expressive than struc-

tural causal models, and so any model of program semantics

will exhibit phenomena with no correspondence in causal

graphs. The two primary problem addressed by this section

is how to generalize the notion of a variable.

An easy first thought when generalizing structural causal

models to programs is to build a graph whose variables are

program variables, where intervention is forcing a variable

to a value, as done by one early attempt [23]. This is clearly

not suitable for applications where the objects of dependence

are high-level properties or otherwise not program variables.

And it is not even suitable for expressing dependence in ex-

ecution semantics, as it provides no way to, e.g., intervene

on a variable but only in the 5th iteration of a loop. A state

machine state, on the other hand, may represent an entity

much finer or much coarser than a program location. And,

in many cases, the state machine will correspond to a flat-
tening of some hierarchical structure such as a typechecking

derivation or a correctness proof, meaning it can provide

arbitrary amounts of context.

As our running example, we use Imp, an imperative lan-

guage with variables (integer only), assignments, arithmetic,

boolean expressions, conditionals, and loops, all defined the

usual way.

Actions, States, and Properties. In our setting, a system
is a state machine (𝑆, 𝐼 , 𝐿, 𝐴,𝑀) where 𝑆 is a set of states,

𝐼 ⊆ 𝑆 a set of initial states, 𝐿 a set of action labels, and

𝐴 ⊆ 𝑆 × 𝐿 × 𝑆 is a set of labeled transitions (“actions") on 𝑆 .

The available mutations,𝑀 : 𝑆 → P(𝑆), are described below.

The machine is required to be deterministic, so that, from

a given initial state, there is exactly one (possibly empty)

maximal path.

For example, to define a state machine for Impwhich has[[]

statement-level granularity: States are values of the current

environment 𝜇 together with the current program counter

𝑝𝑐 , where 𝑝𝑐 indicates either the beginning of an assignment,

or the condition of an if-statement or loop. Transitions cor-

respond to executions of single statements, and their labels

are unique identifiers for those statements. Fig. 2 shows a

portion of the state machine x := x + 1; y := x + 1; halt,

with the three statements numbered 1, 2, and 3, respectively;
the full state machine has infinitely many initial states, cor-

responding to the infinitely many possible starting values of

𝑥 .6

A trace is a maximal sequence of actions (𝑎0, 𝑙0, 𝑏0), . . . ,
such that 𝑎0 is an initial state (𝑎0 ∈ 𝐼 ) and 𝑏 𝑗 = 𝑎 𝑗+1 for

all 0 ≤ 𝑗 < 𝑛. A finite trace corresponds to a terminating

execution, and an infinite trace to a nonterminating one. For

example, each of the columns in Fig. 2 is a trace.

We assume there is some language of properties on traces.

We write 𝑡 |= 𝜑 if property 𝜑 is true for trace 𝑡 . A property

can equivalently be defined as a set of satisfying traces.

6
This example shows how the choice of many initial states allows these

state machines to model an initial input, in this case the initial value of 𝑥 . It

is similarly possible to model other aspects of the outside world, such as

interactive input, as an exogeneous variable in the initial state containing an

answer to all possible queries to the outside world. There are, after all, only

countably infinitely many of them, and it is permissible to have similarly

infinitely many initial states.
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Figure 2. Fragment of state machine for program x := x +

1; y := x + 1

Permitted Mutations. Associated with each state 𝑎 and

its unique outgoing transition (𝑎, 𝑙, 𝑏) is a set of available

mutated actions or available interventions 𝑀 (𝑎). Each avail-

able intervention is an alternate outgoing transition with the

same variable, i.e.: (𝑎, 𝑙, 𝑏 ′) for some 𝑏 ′. This set is typically
given by some super-spec 𝜌 , where any transition (𝑎, 𝑙, 𝑏 ′)
that satisfies 𝜌 (𝑎, 𝑙, 𝑏, 𝑏 ′) is an available mutation.

For Imp, if 𝑎 is a state corresponding to an assignment 𝑥 :=
𝑒 and (𝑎, 𝑙, 𝑏) its unique outgoing transition, then the super-

spec 𝜌 (𝑎, 𝑙, 𝑏, 𝑏 ′) is: in the successor state𝑏 ′, no variable other
than 𝑥 may be modified, and the program counter of 𝑏 ′ must

equal that of 𝑏. If 𝑎 is a state corresponding to the program

point immediately before executing a conditional if 𝑒 or

while 𝑒 , then the super-spec is that the new program counter

must correspond to either the next statement to be executed

if 𝑒 is true, or the next statement if 𝑒 is false. In summary:

any assignment may be modified, and any branch taken

may be flipped to the other alternative. However, neither

assignments to new variables nor loops may be inserted.

Causality. With this setup, we can adapt the Halpern-

Pearl definition of causality to the setting of state machines,

and use it as a formal definition of dependency.

Defining the first intervention in a trace is straightfor-

ward: replace one edge 𝑎 in a trace with a permitted mutant

𝑎′, and continue execution. But including any additional,

compensating changes is trickier. Unlike the static setting of

causal graphs, in programs or the state machines modeling

them, a small intervention may cause execution to take a

completely different path. For this, we offer a broad, perhaps

too broad, remedy: allow any permitted mutation on the new

states as a “witness" to the causality of 𝑎′. 7

7
This renders our definition of causation more similar to Halpern and

Pearl’s 2005 definition [18], with a more liberal allowance on compensating

Definition 6.1. Given a trace 𝑡 , property 𝜑 , and an action

𝑎, we say that 𝑎 causes 𝜑 (also: is a it cause of 𝜑) in 𝑡 iff:

1. 𝑎 occurs in 𝑡

2. 𝑡 |= 𝜑

3. There exists 𝑎′ an available intervention for 𝑎, and ®𝑤 ′ a
set of available interventions to some set of actions ®𝑊 ,

such that, if 𝑡 ′ is the unique trace resulting from replacing

𝑎 with 𝑎′ in 𝑡 and continuing execution with any encoun-

tered transition in ®𝑊 replaced with the corresponding

transition in ®𝑤 ′, then 𝑡 ′ ̸ |= 𝜑 . In this case, 𝑎′ and ®𝑤 ′ are
witnesses to the dependence on 𝑎. (Alternatively, the de-

pendence relies on interventions 𝑎′ and ®𝑤 ′.)
4. There is no trace in which any element of ®𝑤 ′ is itself a

cause of 𝜑 .

For example, in the trace obtained by execution x := x + 1;

y := x + 1; halt with start state [𝑥 ↦→ 1], the first state-
ment (i.e.: the outgoing edge of the top-left state of Fig. 2) is

a cause, and hence a dependency, of the proposition 𝑥 == 2
being true in the end state, as witnessed by the intervention

replacing 𝑥 := 𝑥 + 1 with 𝑥 := 3 (equivalently: mutating the

top-left edge of Fig. 2 to target the center node). The state-

ment 𝑦 := 𝑥 + 1 is not a cause, as no mutation is permitted

to this action which affects 𝑥 .

For a more complicated example which uses compensating

changes, consider the code:

1 : a : = 1

2 : b : = 1

3 : i f ( a == 1 ) then

4 : x : = a

e l s e

5 : x : = b

In the unique trace of this code from an empty start state, the

action corresponding to line 1 is a cause of the proposition
𝑥 == 1 being true in the final state. This is witnessed by

mutating line 1 to a := 2, and by the compensating change

of forcing the conditional to enter the “true" branch (i.e.:

mutating the outgoing edge from the state (𝜇 : [𝑎 ↦→ 2, 𝑏 ↦→
1], pc : 3) to target (𝜇 : [𝑎 ↦→ 2, 𝑏 ↦→ 1], pc : 4)).

Awkwardly, by similar reasoning, line 2 is also a cause! The
authors disagree over whether this is reasonable behavior,

with the argument in favor that it interferes with the ability

to change 𝑥 by changing 𝑎 and would be included in any

static slice, and the argument against being that there is no

dataflow from this line to 𝑥 in the actual trace.

If a developer wishes to build a tool that reports line 1
but not line 2 as a dependence, they have many options

for tweaking our definition. An easy choice is to restrict

compensating changes so that they may restore the control

flow of the original trace, but not introduce a new control

changes, than the 2015 definition [13]. (These are referred to, somewhat

confusingly, as the “updated" and “modified" definitions respectively in

Halpern’s book [14].)
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flow. However, we found such a distinction difficult to justify:

it nonetheless enters different states, and it is quite possible

for two traces that follow the same control path to have

radically different behavior.
8
While such heuristics may

be useful in applications, our conclusion is to question the

soundness of the idea of dynamic slicing itself, for it relies on

a distinction between control- and data-dependencies which

is semantically untenable.

Lifting Actual to Type Causality. We defined depen-

dence on a state, or, equivalently, on the outgoing transition

from a state. But if a specific state is an actual cause of an

event, then it can be said that a category containing this

state is a general cause of an event. And thus, dependence

on a state induces a dependence on any coarsening of the

state. For example, “dependence on a label" can be defined

as dependence on some transition with that label. In our

running example on Imp, labels are effectively line numbers,

so the development above also gives a definition for dynamic

dependence on a line. And similarly, module dependences

might be defined by coarsening to all the transitions executed

by a given module.

This section has lifted dependence from vagueness into

an objectively-checkable formal definition, but its edges are

still blurred by the same imperfections that caused Halpern

and Pearl to go through four definitions of actual causation

over 20 years [13, 17, 18, 37].

7 More Example Formalizations
7.1 Linking Dependence
Module𝑀 has a build dependency on module 𝑁 if𝑀 cannot

be built in the absence of 𝑁 , which typically means that𝑀

has a syntactic reference to 𝑁 . We should hope to find that

this is a special case of the definition of §6—and indeed it is,

applying the definition to the static semantics of a language.

This section uses a simple model for whether a program

successfully builds: whether a term in the simply-typed

lambda calculus (STLC) is well-formed. This takes the form

of a state machine which takes in a queue of bindings, and

subsequently attempts to add each to its typing context. If a

binding is in the typing context upon termination, then it is

well-typed, and hence “built" successfully
9
.

8
Indeed, electronics are constructed this way. While there are many differ-

ent things a CPU can do, the effect of each cycle is expressed as straight-line

code: different components compute many possible results in parallel, and

multiplexers select among them. Such a style is also important when imple-

menting constant-time cryptography.

9
This is superficially different from the typical presentation of the STLC,

which gives a hierarchical typing derivation rather than a linear machine.

In fact, there are mechanical techniques for converting any hierarchical

proof system into a linear abstract machine [19, 27]; Sergey [40] gives a full

worked-example of doing so for a type system.

Below, we present the full definition of the state machine.

This machine evaluates each binding in a single step, al-

though it could be modified to have individual steps check-

ing each subterm, likely following Sergey [40]. Fig. 3 shows

the execution of this machine on the program 𝑃 , containing

“modules" 𝐹 = 𝜆𝑓 .𝜆𝑥 .𝑓 (𝑓 𝑥) and 𝐺 = 𝜆𝑥 .𝐹 (𝜆𝑦.𝑦)𝑥 .
States A state is a triple (Γ, cur, 𝑞) of a typing context Γ, a

focused binding cur, and a queue 𝑞. Γ takes the form

𝐹 : 𝜏1,𝐺 : 𝜏2, . . . , containing type bindings for all

successfully evaluated prior definitions. A binding 𝑏
is either an assignment 𝐹 = 𝑓 , or the special token

end. cur is a binding containing the term currently

being typechecked. The queue 𝑞, written in either the

notation [𝐹 = 𝑓 ,𝐺 = 𝑔, . . . ] or 𝐹 = 𝑓 :: 𝐺 = 𝑔 :: . . . , is
a list of bindings to be checked after the current one

is completed.

Actions The state (Γ, 𝐹 = 𝑓 , 𝑏 :: 𝑞) steps to ((Γ, 𝐹 : 𝜏), 𝑏, 𝑞)
with label 𝐹 if there is some 𝜏 such that Γ ⊢ 𝑓 : 𝜏 under
the normal rules of STLC. It steps to (Γ, 𝑏, 𝑞) with label

𝐹 if there is no such 𝜏 . Any state with cur = end is

terminal.

Properties Properties take the form 𝐹 ∈ Γ, where Γ is the

typing context of the terminal state. This means that

the binding for 𝐹 typechecked successfully.

Allowed Mutations From the state (Γ, cur, 𝐹 = 𝑓 :: 𝑞),
a mutated action may step to (Γ, 𝐹 = 𝑓 , 𝑞). This is
equivalent to forcing the binding 𝐹 = 𝑓 to fail to type-

check.

Applying the definition of §6 to program 𝑃 , we find that

the well-formedness of 𝐺 , 𝐺 ∈ Γ, does depend on the well-

formedness of 𝐹 , as reified in the transition labeled 𝐹 .

7.2 “Depend on Interfaces, Not Implementations"
A common slogan in software engineering is “depend on

interfaces, not implementations." In this section, we formal-

ize this advice inside the simplest setting that allows for

reasoning about logical interfaces: Imp with Hoare-style ver-

ification. In this setting, the dependee “module" is the first

portion of a sequential program, and the “interface" is a post-

condition which is weaker than its actual behavior. The lack

of dependence on implementation means that no change to

the module which preserves its postcondition may alter the

overall guarantees of the program.

In this domain, showing that an altered program meets a

spec means finding a Hoare logic proof of that spec. More

broadly, the “execution" of the Hoare logic semantics is a

highly nondeterministic proof search which may involve

conjuring new propositions (e.g.: loop invariants) out of thin

air. It is overall a poor fit for our formalism in terms of

deterministic state machines. While an alternate formalism

of causality would be more appropriate for this problem—

and we have preliminary work on one, based on derivation

trees—we find that, for pedagogical purposes, we can encode
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Figure 3. Execution of typing machine on the program 𝑃 . Dashed edges represent possible interventions.

it quite adequately into a state machine by removing the

nondeterminism from the language via these adjustments:

1. All loops are annotated with their loop invariant. They

take the form while𝐼 𝐸 do 𝑆 , where 𝐼 is the loop invariant.

2. There is no arbitrary strengthening or weakening of as-

sertions (i.e.: the conseqence rule is removed). All post-

condition weakening / preconditioning strengthening is

done by the command weaken(𝑄), where the Hoare triple
{𝑃} weaken(𝑄) {𝑄} is derivable for any 𝑃 with 𝑃 ⇒ 𝑄 .

This command also doubles as a way to give an explicit

“interface" for the preceding code.

With these changes, computing the strongest postcondition

of a command becomes a deterministic function, and we can

now linearize the system into a state machine.

States We first define an assertion. At assertion 𝑃 for a pro-

gram point 𝑝𝑐 is a predicate a predicate which must be

true of state at 𝑝𝑐 in all concrete program executions.

A state is stack of program counter/assertion pairs

(𝑝𝑐1, 𝑃1) :: · · · :: ∅, with 𝑃𝑖 an assertion for 𝑝𝑐𝑖 for all

𝑖 . 𝑝𝑐1 is the “current" program point. Each successive

𝑝𝑐𝑖+1 is the 𝑝𝑐 prior to executing the parent loop or

conditional 𝑝𝑐𝑖 , where relevant. At times we will speak

loosely and only refer refer to the head of the state,

(𝑝𝑐1, 𝑃1).

Actions Let𝐶 be the command at 𝑝𝑐1, and 𝑝𝑐
′
1 its successor

command. Then state (𝑝𝑐1, 𝑃1) :: 𝑆 transitions to a

new state depending on 𝐶 .

1. 𝐶 is an assignment: Then the state steps to the tar-

get state (𝑝𝑐 ′1, sp(𝐶, 𝑃)) :: 𝑆 , where sp(𝐶, 𝑃) is the
strongest postcondition of 𝑃 across 𝐶 .

2. 𝐶 = weaken(Q). If 𝑃1 ⇒ 𝑄 , then the state steps

to (𝑝𝑐 ′1, 𝑄) :: 𝑆 . Else, the state is terminal. In the

latter case, we say that the preceding segment of

the program fails its immediate postcondition.

3. 𝐶 = if 𝐸 then 𝐶1 else 𝐶2. Let 𝑝𝑐0 be the 𝑝𝑐 for im-

mediately before the execution of𝐶1. Then the state

steps to (𝑝𝑐0, 𝑃1 ∧ 𝐸) :: (𝑝𝑐1, 𝑃1) :: 𝑆 .
4. The previous case should communicate the use of

the stack. The remaining rules are not necessary

to communicate the intended point, and we leave

them as an exercise to the reader. (This system is

a linearization of the normal rules of Hoare logic,

similarly to what can be mechanically derived via

the transformation of §5.1 of [19].)

Properties The property in question is that a terminal state

with a given 𝑝𝑐 and assertion 𝑄 is reached, i.e.: that 𝑄

is a valid postcondition for the entire program.
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Allowed Mutations Depending on the kind of dependence

query considered, this system uses one of two choices

for the space of allowed mutation:

1. When checking for dependence on a spec, the fol-

lowing mutations are allowed: Consider some 𝑝𝑐 as-

sociated with a weaken command weaken(𝑄). Any
state with this 𝑝𝑐 will have a transition to a new

state with head (𝑝𝑐 ′, 𝑄). A valid mutation may in-

stead target (𝑝𝑐 ′, 𝑄 ′) for any proposition 𝑄 ′. That
is, the preceding code may be ascribed a new spec.

(Note that the preceding code need not actually

meet this spec!)

2. When checking for dependence on an implementa-

tion, the following mutations are allowed: Consider

some 𝑝𝑐 associated with a command 𝐶 , with outgo-

ing transition targeting some 𝑝𝑐 ′. A valid mutation

is a transition targeting a state (𝑝𝑐 ′, 𝑃) for an arbi-

trary assertion 𝑃 (equivalent to replacing the code

at 𝑝𝑐 with any code) subject to the condition that

the intervened trace does not fail its immediate post-

condition. More formally: consider the next state

in the original trace whose 𝑝𝑐 is associated with a

weaken command weaken(𝑄); then the intervened

tracemust reach another state with the same 𝑝𝑐 , and

this state may not be terminal (meaning𝑄 is a valid

weakening of the postcondition). These mutations

are used to check for dependence on an implemen-

tation.

We now apply this definition to a simple example:

/ / Module 1

cho i c e : = 1 ;

weaken ( cho i c e == 1

| | c ho i c e == 2

| | c ho i c e == 3 ) ;

/ / Module 2

r e s u l t ; = cho i c e ∗ 2 ;

weaken ( r e s u l t < 1 0 )

The only valid mutations to the body of module 1, the

choice ;= 1 line, are the equivalents of replacing it with

code passing the postcondition, e.g.: choice := 2 or choice

:= 3. Neither of these prevent module 2 from achieving the

postcondition result < 10, so module 2 does not depend on

the implementation of module 1. However, it does depend

on the interface, as replacing module 1’s postcondition with

choice == 5 will cause module 2 to violate its postcondition.

7.3 Trusted Bases
The idea of a trusted base is fundamental to high depend-

ability systems. In short, the trusted base is that part of the

system that must function correctly; failures in any other

part of the system can be tolerated. If the system can be

designed so that the trusted base is small, this implies a

concomitant reduction in the effort required to guarantee

correctness of the system as a whole, since only the trusted

base need be checked. Of course the claim that the trusted

base is indeed alone sufficient to establish correctness must

be justified, and this may require in addition some kind of

non-interference argument (to show that failures outside the

trusted base cannot compromise it).

To define the concept of trusted base, we need to limit the

interventions that can be considered in determining causality.

The intuition is very simple: the very idea of a trusted base

relies on the assumption that this part of the system will not

break. So we consider causality and dependence only in the

context in which interventions may not alter the behavior

of the trusted base.

More formally, we partition the actions of the system as a

whole into the actions of the trusted base 𝐵, which we shall

refer to as the trusted actions, and the actions of the rest of the
system, which are untrusted. Correctness of the system as a

whole is with respect to some critical property 𝑃 . It is rarely

practical for this property to capture full correctness, and for

most critical systems it will represent the non-occurrence

of some catastrophe (such as loss of data, violation of secu-

rity, physical accidents such as collision, etc). The base 𝐵 is

then sound for 𝑃—that is, it indeed forms a trusted base for

that property—if 𝑃 holds for all traces (that is, 𝑃 is indeed

a property of the system), and no action outside 𝐵 causes

𝑃 , in a context in which the only permitted interventions

are on actions outside 𝐵. That is, so long as the actions in

the trusted base execute faithfully, the criticality property

depends only on the trusted base, and on no other parts of

the system.

To illustrate this, consider the example of the careful file
transfer protocol from the famous end-to-end paper [39]. In

the simple (standard) file transfer protocol, blocks are read

from disk, sent across the network, and written to disk on

the other side. In the careful file transfer protocol, the sender

computes a checksum of the file on disk; the receiver simi-

larly computes a checksum after writing the file to disk on

the other side, and sends it back to the sender; and if the two

checksums do not match, the transfer is repeated until they

do.

In the original paper, the example was used to explain

the idea of end-to-end design: by designing the endpoints to

perform the checksum computations, the protocol no longer

depended on a reliable network, suggesting that the over-

all goals of a protocol can be established at the endpoints

without burdening the network itself with requirements that

might not even apply to other protocols. In the context of

this paper, the key point is that the checksum mechanism

becomes a trusted base for the protocol: so long as the check-

sums are computed correctly, the file transfer can be assumed

to be correct. Below, we give a semi-formal description of
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how to formalize this work into a state machine. Fig. 4 gives

an example trace.

States The state components are the files on disk, the mes-

sages in the network, and various buffers for local

storage. For convenience, we represent each category

as a single variable, and represent the value of that

variable as a relation (or equivalently as a predicate).

Thus, for example, the disk variable holds the contents

of the files on disk for both sender and receiver, and

includes in its value the tuple (S, C) when, on the

sender’s disk, file has content𝐶); likewise the network

net contains (S, C)when the channel emanating from

the sender (𝑆) contains the value 𝐶; and the variable

checksum contains (S, i) when the sender has com-

puted the checksum 𝑖 for the file.

Actions The actions are disk.read(d,c), disk.sum(d,i) and

disk.write(d,c) in which the file contents 𝑐 are read,

have checksum 𝑖 computed, and written, at disk 𝑑 ;

net.send(p,c and net.recv(p,c) in which the chan-

nel emanating from participant 𝑝 has a message with

content 𝑐 sent on it or received from it; and an internal

action ftp.match of the top-level protocol that checks

that the checksum received by the sender matches the

checksum it previously computed from the file on its

own disk.

Property The correctness property is that, for any terminat-

ing trace, the data stored for the file in the final state

is the same in the two disks (that is, the disk variable

contains tuples of the form (S,c) and (R,c) where 𝑐

is the shared value of the file.

Allowed Mutations Except for the trusted disk.sum and

ftp.match actions, any action may be mutated to give

either fail (resulting in a retry) or to give an arbitrary

value
10
.

The trusted base then comprises (a) the actions of the top-

level program (including both the general order of actions

and the specific ftp.match action), and (b) the disk.sum ac-

tion that computes the checksum of files on disk. With this

setup, applying the definition of §6, the correctness property

does not depend on any non-trusted action.

10
There is one additional subtlety that must be addressed, common to any

formal analysis of a system of this sort. When considering the interventions

that are permitted for the actions outside the trusted base, the formalism

must disallow transitions that magically guess the correct value of the

checksum. If such an intervention were allowed, the net.send action (for

example) might cause the correctness property, because one could construct

a trace in which an intervention breaks the disk.write action, causing the

wrong data to be written to disk, and a second intervention breaks the

net.recv action so that the sender happens to receive the correct checksum

back, despite the fact that it does not match the file written to disk. Another

solution to this problem would be to represent the checksum computation

more abstractly in a way that disallows faking.

8 Puzzling No More!
We are now ready to revisit the examples of §2. With the

new perspective of the proper framing and the multiple vari-

eties of dependence, all of the apparent paradoxes disappear.

Some of these examples also serve to illustrate some coun-

terintuitive properties of dependence that it inherits from its

basis in actual causation.

1. Assuming tasks are dynamically assigned, the round-robin

scheduler’s well-formedness does not depend on the tasks

in static semantics. Specific results obtained and timing

do depend in the dynamic semantics. Correctness does

not depend in program logic, with a posssible exception

for minor conditions on resource use.

2. For a pair of a serializer/deserializer, the round-trip prop-

erty depends on both in the program logic. Alternatively,

if the spec for each is defined with reference to a math-

ematical description of the format, defined as a relation

between a data structure and its serialized form, then the

correctness of each depends on said format in the program

logic.

3. If it is reasonable for 𝐵 to modify a global variable of 𝐴,

then indeed the correctness of 𝐴 already depends on 𝐵

in the program logic not to do so, and any programmer

checking the code would need to inspect 𝐵 for whether it

interferes with 𝐴. But if 𝐵’s super-spec includes a frame

condition restricting what state is considered reasonable

for it to modify, then such a programmer would not need

to inspect 𝐵, and𝐴’s results do not depend in the dynamic

semantics on 𝐵.

4. Similarly, if it is considered valid to replace any module

with one that crashes, then 𝐴 not crashing depends in the

dynamic semantics on every other module. But if each

module has a super-spec prohibiting crashing, then these

dependences are removed.

5. By the definition in §6, 𝐴’s success in the trace does in-

deed depend on 𝐵, witnessed by the contingency where

𝐵 fails, and 𝐶 also fails. (If 𝐶 is never executed, then it

cannot be a dependence.) Under a definition closer to but-

for-causation, 𝐴’s success would not depend on 𝐵, as 𝐵

cannot be modified to cause 𝐴 to fail, but it would depend

on the set {𝐵,𝐶} rendering 𝐵 part of a dependence. Mean-

while, 𝐴’s correctness does not depend on the correctness

of 𝐵 in the program logic according to either definition.

This example is isomorphic to examples in causality on

over-determined events and having a backup plan, such

as Example 1 from Halpern [15], and Example 13 in Gly-

mour [12]. This is the only realistic software-engineering

example we have found that involves a contingency /

compensating intervention; we discussed specific instan-

tiations in §4.4.
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disk:{(S,C)}
buf:{(S,C)}
net:{}
checksum:{(S,i)}

disk:{(S,C)}
buf:{}
net:{(S,C)}
checksum:{(S,i)}

disk:{(S,C),(R,C)}
buf:{}
net:{}
checksum:{(S,i)}

disk:{(S,C),(R,C)}
buf:{}
net:{}
checksum:{(S,i),(R,i)}

disk:{(S,C),(R,C)}
buf:{}
net:{(R,i)}
checksum:{(S,i),(R,i)}

net.send(S,C)

disk.write(R,C)disk.sum(R,i)

net.send(R,i)

disk:{(S,C)}
buf:{(R,C)}
net:{}
checksum:{(S,i)}

net.recv(S,C)

disk:{(S,C)}
buf:{}
net:{}
checksum:{(S,i)}

disk.read(S,C)

disk:{(S,C),(R,C)}
buf:{(S,i)}
net:{(R,i)}
checksum:{(S,i),(R,i)}

net.recv(R,i)

disk:{(S,C),(R,C)}
buf:{}
net:{(in,i)}
checksum:{(S,i),(R,i)}

ftp.match

…

Figure 4. Sample trace of the careful file transfer protocol.

6. If 𝐴 uses 𝐵 through dependency inversion, then 𝐴’s well-

formedness does not depend on 𝐵 in the static semantics,

but its results do depend on 𝐵 in the dynamic semantics,

and its correctness depends on the spec of 𝐵 in the pro-

gram logic.

7. Even with dependence both ways between properties of𝐴

and properties of 𝐵, we need not consider self-dependence

because, in general, dependence is not transitive. 𝐴 may

use 𝐵, and 𝐵 may use 𝐶 , but 𝐴 need not exercise all be-

haviors of 𝐵, so it is possible for 𝐴’s results or correctness

to not depend in the dynamic semantics on 𝐶 . Alterna-

tively, see the structure in Example 5 above. Causation

is generally not transitive for the same reasons; Halpern

[15] discusses why, along with situations in which it is

transitive.

8. Correctness of the hash table would likely be defined

conditionally: if the inserted keys correctly implement

equals() and hashcode(), then the hash table operations

produce the correct results. Then a hash table’s correct-

ness does not depend in the program logic on the caller or

keys. Its results do still depend in the dynamic semantics

on both.

9. The robot’s moves depend in the dynamic semantics on

any subset of 3 programs, but each individual program is

merely part of a dependence. This example is lifted directly

from questions in causality about majority vote (Glymour

[12] Example 14, Halpern [13] Example 3.8). According
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to both the Halpern-Pearl definition and but-for causation

with minimality, if 5 people vote on a proposal where

majority vote wins, and all 5 vote in favor, then any subset
of 3 is a cause, while each individual is “part of a cause."

This example shows the use of the minimality condition,

D3.
11

As an extra insight, Example 2 shows that coupling is dif-
ferent from dependence. While the serializer and dese-

rializer are clearly coupled for any reasonable definition,

neither depends on the other: either the correctness of both

is defined in terms of some common abstract format, or the

correctness is defined in terms of a round-trip property that

depends on both.

While we leave thorough investigation of the concept of

coupling to future work, one possible working definition is:

two code fragments are coupled if they ever must change

in tandem to maintain some property. This would make the

relation between dependence and coupling the same as be-

tween causation and correlation. According to Reichenbach’s

principle [20], if two variables are correlated, then either one

causes the other or they have a common cause (or some com-

mon effect of both is being held constant). Correspondingly,

if two code fragments are coupled, then either one depends

on the other, they depend on some common thing (like the

abstract description of a file format), or some property (such

as the round-trip property) depends on both.

9 Conclusion
Programmers and programming-language researchers some-

times appear to work in parallel universes, each with its

own concerns and priorities and seemingly little overlap.

Advances that are recognized in both, and which combine

the rigor and clarity of research with the subtle insights of

practice, have the potential for great impact.

Type theory has achieved broad impact by providing a

unified toolset, which has provided a foundation for both

an abstract framework for computation and practical tools

for structuring programs. In contrast, except for Parnas’s

pioneering exploration of the “uses" relation [36], and some

work unifying several instantiations of noninterference [1],

most work that might have contributed to a more general no-

tion of dependence—such as theories of data abstraction (in-

dependence of representation) and polymorphism (indepen-

dence of type)—has proceeded in more specialized contexts,

resulting in theoretical ideas with more limited applicability.

11
This is according to the Halpern 2015 definition [13] of actual causation.

While we like the intuitive appeal of this answer, the formalism of §6 is

expressive enough to permit sets to be causes. Instead, its answer is more

similar to the Halpern-Pearl 2005 definition[18], which states: each of the

5 voters is a cause, but with responsibility [5, 14]
1
3 (as 3 votes must be

modified to change the outcome). Our preliminary (and more complicated)

formalism based on tree-structured derivations does permit causes to be

sets.

A more generalized study of program dependences, we

believe, might tie together these and many other existing

threads of research (in compilation, program analysis, slicing,

and so on), open room to explore it in new application areas,

and provide a solid foundation for evaluation of program

designs.

We hope that our paperwill rekindle interest in the topic of

dependences; that the promise that we see in studying these

problems will inspire others to engage them; and that our

ideas will encourage designers and tool developers to explore

new forms of dependence analysis with new applications in

many areas.
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