
Alloy is a language and a toolkit for ex-
ploring the kinds of structures that arise
in many software designs. This brief arti-
cle aims to give a flavor of Alloy in action,
to summarize how Alloy has been used to
date, and thereby to give you a sense of
how you might use it in your own soft-
ware design work.

Formal Design Languages
Software involves structures of many
sorts: architectures, database schemas,
network topologies, ontologies, and so
on. When you design a software system,
you need to be able to express the struc-
tures that are essential to the design, and
to check that they have the properties you
expect.

You can express a structure by sketch-
ing it on a napkin. That’s a good start, but
it’s limited. Informal representations give
inconsistent interpretations, and they
can’t be analyzed mechanically. So people
have turned to formal notations that de-
fine structure and behavior precisely and
objectively, and that can exploit the pow-
er of computation.

By using formality early in develop-
ment, you can minimize the costs of am-
biguity and get feedback on your work by
running analyses. The most popular ap-
proach that advocates this is agile devel-
opment, in which the formal representa-
tion is code in a traditional programming
language and the analysis is conventional
unit testing.

As a language for exploring designs,
however, code is imperfect. It’s verbose
and often indirect, and it doesn’t allow
partial descriptions in which some details
are left to be resolved later. And testing,
as a way to analyze designs, leaves much

to be desired. It’s notoriously incomplete,
and burdensome, since you need to write
test cases explicitly. And it’s very hard to
use code to articulate design without get-
ting mired in low level details (such as the
choice of data representations).

An alternative, which has been ex-
plored since the 1970s, is to use a design
language built not on conventional ma-
chine instructions but on logic. Partiality
comes for free because, rather than listing
each step of a computation, you write a
logical constraint saying what’s true after,
and that constraint can say as little or as
much as you please. To analyze such a
language, you use specialized algorithms
such as model checkers or satisfiability
solvers (more on these below). This usu-
ally requires much less effort than test-
ing, since you only need to express the
property you want to check rather than a
large collection of cases. And the analy-
sis is much more complete than testing,
because it effectively covers all (or almost
all) test cases that you could have written
by hand.

What Came Before: Theorem Provers
and Model Checkers

To understand Alloy, it helps to know a
bit about the context in which it was de-
veloped, and the tools that existed at the
time.

Theorem provers are mechanical aids
for constructing mathematical proofs.
To apply a theorem prover to a software
design problem, you formulate some in-
tended property of the design, and then
attempt to prove the theorem that the
property follows from the design. The-
orem provers tend to provide very rich
logics, so they can usually express any
property you might care about, at least
about states and state transitions—more
dynamic properties can require a tempo-
ral logic that theorem provers don’t typi-

cally support directly. Also, because they
generate mathematical proofs, which can
be checked by tools that are smaller and
simpler than the tool that finds the proof,
you can be confident that the analysis is
sound.

On the other hand, the combination of
an expressive logic and sound proof has
meant that finding proofs cannot gener-
ally be automated. So theorem provers
usually require considerable effort and
expertise from the user, often orders of
magnitude greater than the effort of con-
structing a formal design in the first place.
Moreover, failure to find a proof does not
mean that a proof does not exist, and the-
orem provers don’t provide counterexam-
ples that explain concretely why a theo-
rem is not valid. So theorem provers are
not so useful when the intended property
does not hold—which unfortunately is
the common case in design work.

Model checkers revolutionized design
analysis by providing exactly the fea-
tures theorem provers lacked. They offer
push-button automation, requiring the
user to give only the design and prop-
erty to be checked. They allow dynam-
ic properties to be expressed (through
temporal logics), and generate counter-
examples when properties do not hold.
Model checkers work by exploring the
space of possible states of a system, and
if that space is large, they may require
considerable computational resources
(or may fail to terminate). The so-called
“state explosion” problem arises because
model checkers are often used to analyze
designs involving components that run in
parallel, resulting in an overall state space
that grows exponentially with the number
of components.

Alloy was inspired by the successes and
limitations of model checkers. For designs
involving parallelism and simple state
(comprising boolean variables, bound-

Alloy: A Language and Tool
for Exploring Software Designs

Daniel Jackson
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

To appear, CACM
Draft of February 22, 2019

ed integers, enumerations and fixed-size
arrays), model checkers were ideal. They
could easily find subtle synchronization
bugs that appeared only in rare scenari-
os that involved long traces with multiple
context switches, and therefore eluded
testing.

For hardware designs, model checkers
were often a good match. But for software
designs they were less ideal. Although
some software design problems involve
this kind of synchronization, often the
complexity arises from the structure
of the state itself. Early model checkers
(such as SMV [9]) had limited expressive-
ness in this regard, and did not support
rich structures such as trees, lists, tables
and graphs.

Explicit state model checkers, such
as SPIN [14], and later Java Pathfinder
[37], allowed designs with rich state to
be modeled, but, despite providing sup-
port for temporal properties, gave little
help for expressing structural ones. To
express reachability (for example that two
social media users are connected by some
path of friend edges), you would typical-
ly need to code an explicit search, which
would have to be executed at every point
at which the property was needed. Also,
explicit state model checkers have limit-
ed support for partiality (since the model
checker would have to conduct a costly
search through possible next states to
find one satisfying the constraints).

Particularly hard for all model checkers
are the kinds of designs that involve a con-
figuration of elements in a graph or tree
structure. Many network protocols are
designed to work irrespective of the ini-
tial configuration (or of the configuration
as it evolves), and exposing a flaw often
involves not only finding a behavior that
breaks a property but also finding a con-
figuration in which to execute it.

Even the few model checkers that can
express rich structures are generally not
up to this task. Enumerating possible
configurations is not feasible, because
the number of configurations grows su-
per-exponentially: if there are n nodes,
there are 2n×n ways to connect them.

Alloy’s Innovations
Alloy brought a new kind of design lan-
guage and analysis, made possible by
three innovations.

Relational logic. Alloy uses the same
logic for describing designs and proper-
ties. This logic combines the for-all and
exists-some quantifiers of first-order log-
ic with the operators of set theory and re-
lational calculus.

The idea of modeling software designs
with sets and relations had been pio-
neered in the Z language [32]. Alloy in-
corporated much of the power of Z, while
simplifying the logic to make it more
tractable.

First, Alloy allows only first-order struc-
tures, ruling out sets of sets and relations
over sets, for example. This changes how
designs are modeled, but not what can be
modeled; after all, relational databases
have flourished despite being first order.

Second, taking advantage of this re-
striction, Alloy’s operators are defined in
a very general way, so that most expres-
sions can be written with just a few oper-
ators. The key operator is relational join,
which in conventional mathematics only
applies to binary relations, but in Alloy
works on relations of any arity. By using
a dot to represent the join operator, Al-
loy lets you write dereferencing expres-
sions as you would in an object oriented
programming language, but gives these
expressions a simple mathematical inter-
pretation. So, as in Java, given an employ-
ee e, a relation dept that maps employees
to departments, and a relation manager
that maps departments to their manag-
ers, e.dept.manager would give the man-
ager of e’s department. But unlike in Java,
the expression will also work if e is a set of
employees, or dept can map an employee
to multiple departments, giving the ex-
pected result—the set of managers of the
set of departments that the employees e
belong to. The expression dept.manager is
well defined too, and means the relation
that maps employees to their managers.
You can also navigate backwards, writing
manager.m for the department(s) that m
manages.

(A note for readers interested in lan-
guage design: this flexibility is achieved
by treating all values as relations—a set
being a relation with one column, and a
scalar being a set with one element—and
defining a join operator that applies uni-
formly over a pair of relations, irrespec-
tive of their arity. In contrast, other lan-
guages tend to have multiple operators,

implicit coercions or overloading to ac-
commodate variants that Alloy unifies.)

Alloy was influenced also by modeling
languages such as UML. Like the class
diagrams of UML, Alloy makes it easy to
describe a universe of objects as a classi-
fication tree, with each relation defined
over nodes in this tree. Alloy’s dot oper-
ator was inspired in part by the naviga-
tional expressions of OCL (the Object
Constraint Language [39] of UML), but
by defining the dot as relational join, Al-
loy dramatically simplifies the semantics
of navigation.

Small scope analysis. Even plain first-or-
der logic (without relational operators) is
not decidable. This means that no algo-
rithm can exist that could analyze a soft-
ware design written in a language like Al-
loy completely. So something has to give.
You could make the language decidable,
but that would cripple its expressive pow-
er and make it unable to express even the
most basic properties of structures (al-
though exciting progress has been made
recently in applying decidable fragments
of first-order logic to certain problems
[29]). You could give up on automation,
and require help from the user, but this
eliminates most of the benefit of an analy-
sis tool; analysis is no longer a reward for
constructing a design model, but a major
extra investment beyond modeling.

The other option is to somehow limit
the analysis. Prior to Alloy, two approach-
es were popular. Abstraction reduces the
analysis to a finite number of cases, by in-
troducing abstract values that each corre-
spond to an entire set of real values. This
often results in false positives that are
hard to interpret, and in practice picking
the right abstraction calls for considerable
ingenuity. Simulation picks a finite num-
ber of cases, usually by random sampling,
but it covers such a small part of the state
space that subtle flaws elude detection.

Alloy offered a new approach: running
all small tests. The designer specifies a
scope that bounds each of the types in the
specification. A scope of 5, for example,
would include tests involving at most 5
elements of each type: 5 network nodes, 5
packets, 5 identifiers, and so on.

The rationale for this is the small scope
hypothesis, which asserts that most bugs
can be demonstrated with small counter-
examples. That means that if you test for
all small counterexamples, you are likely

to find any bug. Many Alloy case studies
have confirmed the hypothesis, by per-
forming an analysis in a variety of scopes
and showing, retrospectively, that a small
scope would have sufficed to find all the
bugs that were discovered.

Translation to SAT. Even with small
scopes, the state space of an Alloy model
is fiendishly large. The state comprises a
collection of variables whose values are
relations. Just one binary relation in a
scope of 5 has 5 × 5 = 25 possible edges,
and thus 225 possible values. A very small
design might have 5 such relations, giving
(225)5 possible states—about 1037 states.
Even checking a billion cases per second,
such an analysis would take many times
the age of the universe.

Alloy therefore does not perform an
explicit search, but instead translates the
design problem to a satisfiability prob-
lem whose variables are not relations but
simple bits. By flipping bits individually, a
satisfiability (SAT) solver can usually find
a solution (if there is one) or show that
none exists by examining only a tiny por-
tion of the space.

Alloy’s analysis tool is essentially a com-
piler to SAT, which allows it to exploit the
latest advances in SAT solvers. The suc-
cess of SAT solvers has been a remarkable
story in computer science: theoreticians
had shown that SAT was inherently in-
tractable, but it turned out that most of
the cases that arise in practice can be
solved efficiently. So SAT went from be-
ing the archetypal insoluble problem used

to demonstrate the infeasibility of oth-
er problems to being a soluble problem
that other problems could be translated
to. Alloy also applies a variety of tactics
to reduce the problem prior to solving,
most notably adding symmetry breaking
constraints that save the SAT solver from
considering cases that are equivalent to
one another.

Example: Modeling Origins
To see Alloy in action, let’s explore the de-
sign of an origin-tracking mechanism for
web browsers. The model shown here is a
toy version of a real model that exposed
several serious flaws in browser security
[1]. Although it cuts corners and is unre-
alistic in some respects, it does capture
the spirit and style of the original model,
and is fairly representative of how Alloy is
often used.

First, some background for those unfa-
miliar with browser security. Cross-site
request forgery (CSRF) is a pernicious
and subtle attack in which a malicious
script running in a page that the user has
loaded makes a hidden and unwanted re-
quest to a website for which the user is al-
ready authenticated. This may happen ei-
ther because the user was enticed to load
a page from a malicious server, or because
a supposedly safe server was the subject
of a cross-site scripting attack, and served
a page containing a malicious script. Such
a script can issue any request the user
can issue; one of the first CSRF vulnera-
bilities to be discovered, for example, al-

lowed an attacker to change the delivery
address for the user’s account in a DVD
rental site. What makes CSRF particularly
problematic is that the browser sends au-
thentication credentials stored as cookies
spontaneously when a request is issued,
whether that request is made explicitly by
the user or programmatically by a script.

One way to counter CSRF is to track
the origins of all responses received from
servers. In our example, the browser
would mark the malicious script as orig-
inating at the malicious or compromised
server. The subsequent request made by
that script to the rental site server—the
target of the attack—would be labeled as
having this other origin. The target server
can be configured so that it only accepts
requests that originate directly from the
user (for example, by the user entering
the URL for the request in the address
bar), or from itself (for example, from a

1 abstract sig EndPoint { }

2 sig Server extends EndPoint {
3 causes: set HTTPEvent
4 }

5 sig Client extends EndPoint { }

6 abstract sig HTTPEvent {
7 from, to, origin: EndPoint
8 }

9 sig Request extends HTTPEvent {
10 response: lone Response
11 }

12 sig Response extends HTTPEvent {
13 embeds: set Request
14 }

15 sig Redirect extends Response {
16 }

fig. 1 Structure declarations
fig. 2 Data model from declarations

17 fact Directions {
18 Request.from + Response.to in Client
19 Request.to + Response.from in Server
20 }

21 fact RequestResponse {
22 all r: Response | one response.r
23 all r: Response |
24 r.to = response.r.from
25 and r.from = response.r.to
26 all r: Request |
27 r not in r.^(response.embeds)
28 }

29 fact Causality {
30 all e: HTTPEvent, s: Server |
31 e in s.causes iff e.from = s or
32 some r: Response |
33 e in r.embeds and r in s.causes
34 }

35 fact Origin {
36 all r: Response, e: r.embeds |
37 e.origin = r.origin
38 all r: Response | r.origin =
39 (r in Redirect implies
40 response.r.origin else r.from)
41 all r: Request |
42 no embeds.r implies
43 r.origin in r.from
44 }

45 pred EnforceOrigins (s: Server) {
46 all r: Request |
47 r.to = s implies
48 r.origin = r.to or r.origin = r.from
49 }

fig. 3 Fact and predicate declarations

script embedded in a page previously sent
by the target server). As always the devil
is in the details, and we shall see that a
plausible design of this mechanism turns
out to be flawed.

Here are some features to look out for
in this model, which distinguish Alloy
from many other approaches:
· A rich structure of objects, classifica-

tion and relationships;
· Constraints in a simple logic that ex-

ploits the relations and sets of the
structure, avoiding the kind of low lev-
el structures (arrays and indices, etc.)
that are often needed in model check-
ers;

· Capturing dynamic behavior without
any need for a built-in notion of time
or state;

· Intended properties to check ex-
pressed in the same language as the
model itself;

· An abstract style of modeling that in-
cludes only those aspects essential to
the problem at hand.

We start by declaring a collection of sig-
natures (Fig. 1). A signature introduces
a set of objects and some fields that re-
late them to other objects. So Server, for
example, will represent the set of server
nodes, and has a field causes that asso-
ciates each server with the set of HTTP
events that it causes.

Keywords (or their omission) indicate
the multiplicity of the relations between
objects: thus each HTTP event has ex-
actly one from endpoint, one to endpoint,
and one origin endpoint (line 7); each re-
quest has at most one response (line 10,
with lone being read as “less than or equal
to one”); and each response embeds any
number of requests (line 13).

Objects are, mathematically, just atom-
ic identifiers without any internal struc-
ture. So the causes relation includes tu-
ples of the form (s, e) where the value of
s is some atomic identifier representing a

server object, and the value of e is some
atomic identifier representing an event.

Fields are declared in signatures to al-
low a kind of object-oriented mindset. Al-
loy supports this by resolving field names
contextually (so that field names need
not be globally unique), and by allowing
“signature facts” (not used here) that are
implicitly scoped over the elements of a
signature and their fields. But don’t be
misled into thinking that there is some
kind of complex object semantics here.
The signature structure is only a conve-
nience, and just introduces a set and some
relations.

The extends keyword defines one sig-
nature as a subset of another. An abstract
signature has no elements that do not be-
long to a child signature, and the exten-
sions of a signature are disjoint. So the
declarations of EndPoint, Server and Client
imply that the set of endpoints is parti-
tioned into servers and clients: no server
is also a client, and there is no endpoint
that is neither client nor server. A relation
defined over a set applies over its subsets
too, so the declaration of from, for exam-
ple, which says that every HTTP event is

from a single endpoint, implies that the
same is true for every request and re-
sponse. (Alloy is best viewed as untyped.
It turns out that conventional program-
ming language types are far too restric-
tive for a modeling language. Alloy thus
allows expressions such as HTTPEvent.re-
sponse, denoting the set of responses to
any events, but its type checker rejects an
expression such as Request.embeds which
always denotes an empty set [12].)

The Alloy Analyzer can generate a
graphical representation of the sets and
relations from the signature declarations
(Fig. 2); this is just an alternative view and
involves no analysis.

Moving to the substance of what the
model actually means:
· The from and to fields are just the

source and destination of the event’s
packet.

· For a response r, the expression r.em-
beds denotes a set of requests that
are embedded as JavaScript in the re-
sponse; when that response is loaded
into the browser, the requests are exe-
cuted spontaneously.

· A redirect is a special kind of response
that indicates that a resource has
moved, and spontaneously issues a re-
quest to a different server; this second
request is modeled as an embedded re-
quest in the redirect response.

· The origin of an event is a notion com-
puted by the browser as a means of
preventing cross-site attacks. As we’ll
see later, the idea is that a server may
choose to reject an event unless it orig-
inated at that server or at a browser.

· The cause of an event is not part of the
actual state of the mechanism. It is in-
troduced in order to express the essen-
tial design property: that an evil server
cannot cause a client to send a request
to a good server.

Now let’s look at the constraints (Fig. 3).
If there were no constraints, any behavior
would be possible; adding constraints re-
stricts the behavior to include only those
that are intended by design.

The constraints are grouped into sepa-
rate named facts to make the model more
understandable:
· The Directions fact contains two con-

straints. The first says that every re-
quest is from, and every response is to,
a client; the second says that every re-
quest is to, and every response is from

50 check {
51 no good, bad: Server {
52 good.EnforceOrigins
53 no r: Request |
54 r.to = bad and r.origin in Client
55 some r: Request |
56 r.to = good and r in bad.causes
57 }
58 } for 5

fig. 4 Check command

fig. 5 Counterexample for check of Fig. 4

a server. These kinds of constraints can
be written in many ways. Here we’ve
chosen to use expressions denoting
sets of endpoints—Request.from for
the set of endpoints that requests are
from, eg. But we could equally well
have written a constraint like

from in
 Request -> Client + Response -> Server

to say that the from relation maps re-
quests to clients and responses to
servers. Or in a more familiar but less
succinct style, we could have used
quantifiers:

all r: Request | r.from in Client
all r: Response | r.from in Server

(which constrains only the range of
the relations, which is sufficient in this
case since the declarations constrain
their domains).

· The RequestResponse fact defines some
basic properties of how requests and
responses work: that every response is
from exactly one server (line 22); that
every response is to the endpoint its
request was from, and from the end-
point its request was to (line 23); and
that a request cannot be embedded in
a response to itself (line 26). Two ex-
pressions in these constraints merit
explanation. The expression response.r
exploits the flexibility of the join oper-
ator to navigate backwards from the
response r to the request it responds
to; it could equivalently be written
r.~response using the transpose op-
erator ~. The expression r.^(response.
embeds) starts with the request r, and
then applies to it one or more naviga-

tions (using the closure operator ^) of
following the response and embeds re-
lations, as if we’d written instead the
infinite expression

r.response.embeds
+ r.response.embeds.response.embeds
+ r.response.embeds.response.embeds
 .response.embeds
+ …

defining the requests embedded in the
response to r, the requests embedded
in the response to the requests em-
bedded in the response to r, and so on.
(Equivalently, r.^p is the set of nodes
reachable from r in the graph whose
edges correspond to the relation p.)

· The Causality fact defines the causes
relation. It says that an event is caused
by a server if and only if it is from that
server, or is embedded in a response
that the server causes.

· The Origin fact describes the ori-
gin-tracking mechanism. Each con-
straint defines the origin of a different
kind of HTTP event. The first (line 36)
says that every embedded request e has
the same origin as the response r that
it is embedded in. The second (line 38)
defines the origin of a response: it says
that if the response is a redirect, it has
the same origin as the original request,
and otherwise its origin is the server
that the response came from. The third
(line 41) handles a request that is not
embedded: its origin is the endpoint it
comes from (which will usually be the
browser).

Finally, EnforceOrigins is a predicate that
can be applied to a server, indicating that
it chooses to enforce the origin header,
allowing incoming requests only if they
originate at that server, or at the client
that sent the request.

With all this in place—the structure of
endpoints and messages, the rules about
how origins are computed and used, and
the definition of causality—we can define
a design property to check (Fig. 4).

The keyword check introduces a com-
mand that can be executed. This com-
mand instructs the Alloy Analyzer to
search for a refutation for the given con-
straint. In this case, the constraint asserts
the non-existence of a cross-site request
forgery attack; refuting this will show that
the origin mechanism is not designed
correctly, and an attack is possible.

The constraint says that there are no
two servers, good and bad, such that the
good server enforces the origin header
(line 52), there are no requests sent di-
rectly to the bad server that originate
in the client (line 53), and yet there is
some request to the good server that was
caused by the bad server (line 55).

Analysis Results: Finding Bugs
The Alloy Analyzer finds a counterexam-
ple (Fig. 5) almost instantaneously—in
30ms on my 2012 Mac Book (with a 2.6
GHz i7 processor and 16GB of RAM).

The counterexample can be displayed
in various ways—as text, as a table, or as
a graph whose appearance can be cus-
tomized. I’ve chosen the graph option,
and have selected which objects are to
appear as nodes (just the events and the
servers), which relations are to appear as
edges (those between events, and causes),
and I’ve picked colors for the sets and re-
lations. I’ve also chosen to use the Skolem
constants (witnesses that the analyzer
finds for the quantified variables) good
and bad to label the servers.

Reading the graph from the top, looking
just at the large rectangles representing
the HTTP events, we see that a request
(Req1) was sent from a client to the good
server. The response (Resp) embeds a re-
quest (Req0) that is sent to the bad server;
this is a cross-site request which won’t be
rejected because the bad server accepts
incoming requests irrespective of origin.
The bad server’s response is to send a re-
direct whose embedded request (Req2) is
received by the good server. (Note that
the numbering of objects is arbitrary:
Req1 actually happens before Req0.)

Now looking at the server nodes and
the events they cause, we see that, as ex-

fig. 7 A simulated instance

fig. 6 A bogus counterexample

pected, the good server caused the re-
sponse to the first request, and the bad
server caused the redirect and its subse-
quent embedded request. The problem is
the mismatch between cause and origin
in the last request (Req2): we can see that
it was caused by the bad server, but it was
labelled as originating at the good server.
In other words, the origin tracking design
is allowing a cross-site request forgery by
incorrectly identifying the origin of the
request in the redirect.

The solution to this problem turns out
to be non-trivial. Updating the origin
header after each redirect would fail for
websites that offer open redirection; a
better solution is to list a chain of end-
points in the origin header [1].

Agile Modeling
As I mentioned earlier, our model is rep-
resentative of many Alloy models. But the
way I presented it was potentially mis-
leading. In practice, users of Alloy don’t
construct a model in its entirety and then
check its properties. Instead, they pro-
ceed in a more agile way, growing the
model and simulating and checking it as
they go.

Take, for example, the constraint on
line 26 of Fig. 3. Initially, I hadn’t actually
noticed the need for this constraint. But
when I ran the check for the first time
(without this constraint), the analyzer
presented me with counterexamples such
as the one shown in Fig. 6, in which the
response to a request is the very response
in which the request is embedded!

One way to build a model, exploiting
Alloy’s ability to express and analyze very
partial models, is to add one constraint at
a time, exploring its effect. You don’t need
to have a property to check; you can just
ask for an instance of the model satisfying
all the constraints.

Doing this even before any explicit
constraints have been included is very
helpful. You can run just the data model
by itself and see a series of instances that
satisfy the constraints implicit in the dec-
larations. Often doing this alone exposes
some interesting issues. In this case, the
first few instances include examples with
no HTTP events, and with requests and
responses that are disconnected.

To get more representative instances,
you can specify an additional constraint
to be satisfied. For example, the command

run {some response}

will show instances in which the response
relation has some tuples. The first one
generated (Fig. 7) shows a request with a
response that is a redirect from the same
source as the request, and sent to an end-
point that is also its origin, and it includes
an orphaned redirect unrelated to any re-
quest! These anomalies immediately sug-
gest enrichments of the model.

When we developed Alloy, we under-
estimated the value of this kind of sim-
ulation. As we experimented with Alloy,
however, we came to realize how helpful it
is to have a tool that can generate provoc-
ative examples. These examples invari-
ably expose basic misunderstandings, not
only about what’s being modeled but also
about which properties matter. It’s essen-
tial that Alloy provides this simulation
for free: in particular, you don’t need to
formulate anything like a test case, which
would defeat the whole point.

Growing a model in a declarative lan-
guage like Alloy is very different from
growing a program in a conventional
programming language. A program starts
with no behaviors at all, and as you add
code, new behaviors become possible.
With Alloy, it’s the opposite. The empty
model, since it lacks any constraints, al-
lows every possible behavior; as you add
constraints, behaviors are eliminated.

This allows a powerful style of incre-
mental development in which you only
add constraints that are absolutely essen-
tial for the task at hand—whether that’s
eliminating pathological cases or ensur-
ing that a design property holds.

Typically a model includes both a de-
scription of the mechanism being de-
signed and some assumptions about
the environment in which it operates.
Our model does not separate these rig-
orously, but where brevity is not such a
pressing concern, it would be wise to do
so. We could separate, for example, the
constraints that model the setting and
checking of the origin field from those
that describe what kinds of requests and
responses are possible.

Obviously, the less you assume about
the environment, the better, since every
assumption you make is a risk (since it
may turn out to be untrue). In our mod-
el, for example, we don’t require every
request to have a response. It would be

easy to do—just change the declaration
of response in line 10 of Fig. 1 by drop-
ping the lone keyword—but would only
make the result of the analysis less gen-
eral. Likewise, the less you constrain the
mechanism, the better. Allowing multiple
behaviors gives implementation freedom,
which is especially important in a distrib-
uted setting.

Simulation matters for a more pro-
found reason. Verification—that is,
checking properties—is often overrated
in its ability to prevent failure. As Chris-
topher Alexander explains [2], designed
artifacts usually fail to meet their purpos-
es not because specifications are violated
but because specifications are unknown.
The “unknown unknowns” of a software
design are invariably discovered when the
design is finally deployed, but can often
be exposed earlier by simulation, espe-
cially in the hands of an imaginative de-
signer.

Verification, in contrast, is too narrow-
ly focused to produce such discoveries.
This is not to say that property checking is
not useful—it’s especially valuable when a
property can be assured with high confi-
dence using a tool such as Alloy or a mod-
el checker or theorem prover (rather than
by testing). But its value is always contin-
gent on the sufficiency of the property it-
self, and techniques that help you explore
properties have an important role to play.

Uses of Alloy
Hundreds of papers have reported on
applications of Alloy in a wide variety of
settings. Here are some examples to give a
flavor of how Alloy has been used.

Critical systems. A team at the Univer-
sity of Washington constructed a depend-
ability case [18] for a neutron radiothera-
py installation. They devised an ingenious
technique for verifying properties of code
against specifications using lightweight,
pluggable checkers. The end-to-end de-
pendability case was assembled in Alloy
from the code specifications, proper-
ties of the equipment and environment,
and the expected properties, and then
checked using the Alloy Analyzer. The
analysis found several safety-critical flaws
in the latest version of the control soft-
ware, which the researchers were able to
correct prior to its deployment. For a full
description, see a recent research report

[30] and additional information on the
project’s website [36].

Network protocols. Pamela Zave, a re-
searcher at AT&T, has been using Alloy
for many years to construct and analyze
models of networking, and for designing
a new unifying network architecture. In
a major case study, she analyzed Chord,
a distributed hash table for peer-to-peer
applications. The original paper on Chord
[33]—one of the most widely cited papers
in computer science—notes that an inno-
vation of Chord was its relative simplicity,
and consequently the confidence users
can have in its correctness. By modeling
and analyzing the protocol in Alloy, Zave
showed that the Chord protocol was not,
however, correct, and she was able to de-
velop a fixed version that maintains its
simplicity and elegance while guarantee-
ing correct behavior [43]. Zave also used
the explicit model checker SPIN [14] in
this work, and wrote an insightful article
explaining the relative merits of the two
tools, and how she used them in tandem
[42].

Web security. The demonstration exam-
ple of this paper is drawn from a real study
performed by a research group at Berke-
ley and Stanford [1]. They constructed a
library of Alloy models to capture various
aspects of web security mechanisms, and
then analyzed five different mechanisms,
including: WebAuth, a web-based au-
thentication protocol based on Kerberos
deployed at several universities including
Stanford; HTML5 forms; the Cross-Ori-
gin Resource Sharing protocol; and pro-
posed designs for using the referer header
and the origin header to foil cross-site
attacks (of which the last is the basis for
the example here). The base library was
written in 2,000 lines of Alloy; the various
mechanisms required between 20 and
214 extra lines; and every bug was found
within two minutes and a scope of 8. Two
previously known vulnerabilities were
confirmed by the analysis, and three new
ones discovered.

Memory models. John Wickerson and
his colleagues have shown that four
common tasks in the design of memory
models—generating conformance tests,
comparing two memory models, check-
ing compiler optimizations, and checking
compiler mappings—can all be framed
as constraint satisfaction problems in
Alloy [41]. They were able to reproduce

automatically several results for C11 (the
memory model introduced in 2011 for C
and C++) and common compiler optimi-
zations associated with it, for the memory
models of the IBM Power and Intel x86
chips, and for compiler mappings from
OpenCL to AMD-style GPUs. They then
used their technique to develop and check
a new memory model for Nvidia GPUs.

Code verification. Alloy can also be used
to verify code, by translating the body of
a function into Alloy, and asking Alloy to
find a behavior of the function that vio-
lates its specification. Greg Dennis built a
tool called Forge that wraps Alloy so that
it can be applied directly to Java code an-
notated with JML specifications. In a case
study application [10], he checked a vari-
ety of implementations of the Java collec-
tions list interface, and found bugs in one
(a GNU Trove implementation). Dennis
also applied his tool to KOA, an electron-
ic voting system used in the Netherlands
that was annotated with JML specifica-
tions and had previously been analyzed
with a theorem proving tool, and found
several functions that did not satisfy their
specifications [11].

Civil engineering. In one of the more
innovative applications of Alloy, John
Baugh and his colleagues have been ap-
plying Alloy to problems in large-scale
physical simulation. They designed an
extension to ADCIRC—an ocean circula-
tion model widely used by the U.S. Army
Corps of Engineers and others for simu-
lating hurricane storm surge—that intro-
duces a notion of subdomains to allow
more localized computation of changes
(and thus reduced overall computational
effort). Their extension, which has been
incorporated into the official ADCIRC
release, was modeled and verified in Al-
loy [7].

Alloy as a backend. Because Alloy of-
fers a small and expressive logic, along
with a powerful analyzer, it has been ex-
ploited as a backend in many different
tools. Developers have often used Alloy’s
own engine, Kodkod [34], directly, rath-
er than the API of Alloy itself, because it
offers a simpler programmatic interface
with the ability to set bounds on rela-
tions, improving performance. Jasmine
Blanchette’s Nitpick tool [8], for example,
uses Kodkod to find counterexamples in
Isabelle/HOL, saving the user the trouble
of trying to prove a theorem that is not

true, and the Margrave tool [26] analyzes
firewall configurations. Last year, a team
from Princeton and Nvidia built a tool
that uses Alloy to synthesize security at-
tacks that exploit the Spectre and Melt-
down vulnerabilities [35].

Teaching. Alloy has been widely taught
in undergraduate and graduate courses
for many years. At the University of Min-
ho in Portugal, Alcino Cunha teaches an
annual course on formal methods using
Alloy, and has developed a web interface
to present students with Alloy exercises
(which are then automatically checked).
At Brown University, Tim Nelson teach-
es Logic for Systems, which uses Alloy for
modeling and analysis of system designs,
and has become one of the most popular
undergraduate classes. Because the Al-
loy language is very close to a pure rela-
tional logic, it has also been popular in
the teaching of discrete mathematics, for
example in a course that Charles Wallace
teaches at Michigan Technological Uni-
versity [38] and appearing as a chapter in
a popular textbook [15].

Alloy Extensions
Many extensions to Alloy—both to the
language and to the tool—have been cre-
ated. These offer a variety of improve-
ments in expressiveness, performance
and usability. For the most part, these
extensions have been mutually incom-
patible, but a new open source effort is
now working to consolidate them. There
are too many efforts to include here, so
we focus on representatives of the main
classes.

Higher-order solving. The Alloy Analyz-
er’s constraint solving mechanism cannot
handle formulas with universal quantifi-
cations over relations—that is, problems
that reduce to “find some relation P such
that for every relation Q…” This is exactly
the form that many synthesis problems
take, in which the relation P represents a
structure to be synthesized, such as the
abstract syntax tree of a program, and the
relation Q represents the state space over
which certain behaviors are to be verified.
Alloy* [24] is an extension of Alloy that
can solve such formulas, by generalizing
a tactic known as counterexample-guided
inductive synthesis that has been widely
used in synthesis engines.

Temporal logic. Alloy has no built-in
notion of time or dynamic behavior. On

the one hand, this is an asset, because it
keeps the language simple, and allows
it to be used very flexibly. We exploited
this in the example model of this paper,
where the flow of time is captured in the
response relation that maps each request
to its response. By adding a signature for
state, Alloy supports the specification
style common in languages such as B,
VDM and Z; and by adding a signature
for events, Alloy allows analysis over trac-
es that can be visualized as series of snap-
shots. On the other hand, it would often
be preferable to have dynamic features
built into the language. Electrum [20] ex-
tends Alloy with a keyword var to indicate
that a signature or field has a time-varying
value, and with the quantifiers of linear
temporal logic (which fit elegantly with
Alloy’s traditional quantifiers). DynAlloy
[31] offers similar functionality, but using
dynamic logic instead, and is the basis of
an impressive code analysis tool called
TACO [13] that outperforms Forge (men-
tioned above) by employing domain-spe-
cific optimizations. No extension of Alloy,
however, has yet addressed the problem
of combining Alloy’s capacity for struc-
tural analysis with the ability of tradition-
al model checkers to explore long traces,
so Alloy analyses are still typically limited
to short traces.

Instance generation. The result of an Al-
loy analysis is not one but an entire set of
solutions to a constraint-solving problem,
each of which represents either a positive
example of a scenario, or a negative ex-
ample, showing how the design fails to
meet some property. The order in which
these appear is somewhat arbitrary, being
determined both by how the problem is
encoded and the tactics of the backend
SAT solver. Since SAT solvers tend to
try false before true values, the instanc-
es generated tend to be small ones—with
few nodes and edges. This is often desir-
able, but is not always ideal. Various ex-
tensions to the Alloy Analyzer provide
more control over the order in which in-
stances appear. Aluminum [28] presents
only minimal scenarios, in which every
relation tuple is needed to satisfy the con-
straints, and lets the user add new tuples,
automatically compensating with a (min-
imal) set of additional tuples required for
consistency. Amalgam [27] lets users ask
about the provenance of an instance, in-
dicating which subformula is responsible

for requiring (or forbidding) a particular
tuple in the instance. Another extension
[21] of the Alloy Analyzer generates min-
imal and maximal instances, and choos-
ing a next instance that is as close to, or
as far away from, the current instance as
possible.

Better numerics. Alloy handles numeri-
cal operations by treating numbers as bit
strings. This has the advantage of fitting
into the SAT solving paradigm smoothly,
and it allows a good repertoire of integer
operations. But the analysis scales poorly,
making Alloy unsuitable for heavily nu-
meric applications. The finite scopes of
Alloy can also be an issue when a design-
er would like numbers to be unbounded.
A possible solution is to replace the SAT
backend with an SMT backend instead.
This is challenging because SMT solvers
have not traditionally supported relation-
al operators. Nevertheless, a team at the
University of Iowa has recently extended
CVC4, a leading SMT solver, with a theo-
ry of finite relations, and has promisingly
demonstrated its application to some Al-
loy problems [23].

Configurations. Many Alloy models
contain two loosely coupled parts, one
defining a configuration (say of a network)
and the other the behavior (say of sending
packets). By iterating through configura-
tions and analyzing each independently,
one can often dramatically reduce anal-
ysis time [22]. In some applications, a
configuration is already fully or partially
known, and the goal is to complete the
instance—in which case searching for the
configuration is a wasted effort. Kodkod,
Alloy’s engine, allows the explicit defini-
tion of a “partial instance” to support this,
but in Alloy itself, this notion is not well
supported (and relies on a heuristic for
extracting partial instances from formu-
las in a certain form). Researchers have
therefore proposed a language extension
[25] to allow partial instances to be de-
fined directly in Alloy itself.

How to Try Alloy
The Alloy Analyzer [3] is a free download
available for Mac, Windows and Linux.
The Alloy book [16] provides a gentle in-
troduction to relational logic and to the
Alloy language, gives many examples of
Alloy models, and includes a reference
manual and a comparison to other lan-
guages (both of which are available on the

book’s website [17]). The Alloy communi-
ty answers questions tagged with the key-
word alloy on StackOverflow, and hosts a
discussion forum [5]. A variety of tutori-
als for learning Alloy are available online
too, as well as blog posts with illustrative
case studies and examples (eg [40, 19]).
The model used in this paper is available
(along with its visualization theme) in the
Alloy community’s model repository [4].

Acknowledgments
I am very grateful to David Chemouil,
Alcino Cunha, Peter Kriens, Shriram
Krishnamurthi, Emina Torlak, Hillel
Wayne, Pamela Zave, and the anonymous
reviewers, whose suggestions improved
this paper greatly; to Moshe Vardi, who
encouraged me to write it; and to Devdat-
ta Akhawe, Adam Barth, Peifung E. Lam,
John Mitchell and Dawn Song whose
work formed the basis of the paper’s ex-
ample. Thank you also to the many mem-
bers of the Alloy community who have
contributed to Alloy over the years.

References
1. Devdatta Akhawe, Adam Barth, Peifung E.

Lam, John Mitchell and Dawn Song. Towards a
Formal Foundation of Web Security. 23rd IEEE
Computer Security Foundations Symposium,
Edinburgh, 2010, pp. 290–304.

2. Christopher Alexander. Notes on the Synthesis
of Form. Harvard University Press, 1964.

3. Alloy Tools website: http://alloytools.org.
4. Alloy Models repository: https://github.com/

AlloyTools/models
5. Alloy discussion forum: https://groups.google.

com/forum/#!forum/alloytools
6. Adam Barth, Colin Jackson and John C.

Mitchell. Robust defenses for cross-site request
forgery. 15th ACM Conf. on Computer and
Communications Security (CCS 2008). ACM,
2008, pp. 75–88.

7. John Baugh and Alper Altuntas. Formal meth-
ods and finite element analysis of hurricane
storm surge: A case study in software veri-
fication. Science of Computer Programming,
158:100–121, 2018.

8. Jasmine Blanchette and Tobias Nipkow. Nitpick:
A counterexample generator for higher-or-
der logic based on a relational model finder.
First International Conference on Interactive
Theorem Proving (ITP 2010), M. Kaufmann and
L.C. Paulson, eds. LNCS 6172, pp. 131–146,
Springer, 2010.

9. Jerry R. Burch, Edmund M. Clarke, Kenneth L.
McMillan, David L. Dill and L. J. Hwang. Sym-
bolic Model Checking: 1020 States and Beyond.
Fifth Annual Symposium on Logic in Computer
Science (LICS ’90), Philadelphia, Pennsylvania,
USA, June 4-7, 1990, pp. 428–439.

10. Greg Dennis, Felix Chang and Daniel Jackson.
Modular Verification of Code with SAT. Inter-

national Symposium on Software Testing and
Analysis. Portland, ME, July 2006.

11. Greg Dennis, Kuat Yessenov and Daniel Jack-
son. Bounded Verification of Voting Software.
Second IFIP Working Conference on Verified
Software: Theories, Tools, and Experiments
(VSTTE 2008) . Toronto, Canada, October
2008.

12. Jonathan Edwards, Daniel Jackson and Emina
Torlak. A type system for object models. 12th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2004,
Newport Beach, CA, USA, October 31 - No-
vember 6, 2004, pages 189–199, 2004.

13. Juan P. Galeotti, Nicolas Rosner, Carlos G.
Lopez Pombo and Marcelo F. Frias. TACO: Ef-
ficient SAT-Based Bounded Verification Using
Symmetry Breaking and Tight Bounds. IEEE
Trans. Softw. Eng. 39, 9 (September 2013), pp.
1283–1307.

14. Gerard J. Holzmann. The Spin Model Checker:
Primer and Reference Manual, Addison Wesley,
2003.

15. Michael Huth and Mark Ryan. Logic in Com-
puter Science: Modeling and Reasoning about
Systems, Cambridge University Press, 2004.

16. Daniel Jackson. Software Abstractions, MIT
Press, Second edition, 2012.

17. Daniel Jackson. Software Abstractions website.
http://softwareabstractions.org.

18. Daniel Jackson, Martyn Thomas, and Lynette I.
Millett, eds. Software For Dependable Systems:
Sufficient Evidence? Committee on Certifiably
Dependable Software Systems, Computer Sci-
ence and Telecommunications Board, Division
on Engineering and Physical Sciences, National
Research Council of the National Academies.
The National Academies Press, Washington,
DC. 2007.

19. Peter Kriens. JPMS, The Sequel. http://aqute.
biz/2017/06/14/jpms-the-sequel.html

20. Nuno Macedo, Julien Brunel, David Chemouil,
Alcino Cunha and Denis Kuperberg. Light-
weight specification and analysis of dynamic
systems with rich configurations. 24th ACM
SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE’16), Seattle,
WA, USA, 2016, pp. 373–383.

21. Nuno Macedo, Alcino Cunha and Tiago
Guimaraes. Exploring Scenario Exploration.
Fundamental Approaches to Software Engineer-
ing (FASE 2015), A. Egyed and I. Schaefer, eds.
Lecture Notes in Computer Science, Vol 9033.
Springer, Berlin, Heidelberg.

22. Nuno Macedo, Alcino Cunha and Eduardo Pes-
soa. Exploiting Partial Knowledge for Efficient
Model Analysis. 15th International Symposium
on Automated Technology for Verification and
Analysis (ATVA’17), pp 344-362. Springer, 2017.

23. Baoluo Meng, Andrew Reynolds, Cesare Tinelli
and Clark Barrett. Relational Constraint Solving
in SMT. 26th International Conference on Au-
tomated Deduction (CADE ’17) (Leonardo de
Moura, ed.), Springer, Vol. 10395, Gothenburg,
Sweden, 2017.

24. Aleksandar Milicevic, Joseph P. Near, Eunsuk
Kang and Daniel Jackson. Alloy*: a gener-
al-purpose higher-order relational constraint
solver. Formal Methods in System Design, 2017,
pp.1–32.

25. Vajih Montaghami and Derek Rayside. Extend-
ing alloy with partial instances. Third Interna-
tional Conference on Abstract State Machines,
Alloy, B, VDM, and Z (ABZ’12), 2012, pp.
122–135.

26. Timothy Nelson, Christopher Barratt, Daniel
J. Dougherty, Kathi Fisler, Shriram Krish-
namurthi. The Margrave Tool for Firewall Anal-
ysis. 24th USENIX Large Installation System
Administration Conference, San Jose, CA, 2010.

27. Timothy Nelson, Natasha Danas, Daniel J.
Dougherty and Shriram Krishnamurthi. The
Power of Why and Why Not: Enriching Scenar-
io Exploration with Provenance. Joint European
Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of
Software Engineering, 2017.

28. Timothy Nelson, Salman Saghafi, Daniel J.
Dougherty, Kathi Fisler and Shriram Krish-
namurthi. Aluminum: Principled Scenario
Exploration through Minimality. International
Conference on Software Engineering, 2013.

29. Oded Padon, Giuliano Losa, Mooly Sagiv,
and Sharon Shoham. 2017. Paxos Made EPR:
Decidable Reasoning about Distributed Proto-
cols. Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA 2017),
Vancouver, 2017.

30. Stuart Pernsteiner, Calvin Loncaric, Emina
Torlak, Zachary Tatlock, Xi Wang, Michael D.
Ernst and Jonathan Jacky. Investigating Safety of
a Radiotherapy Machine Using System Models
with Pluggable Checkers. Computer Aided
Verification (CAV 2016). Lecture Notes in
Computer Science, Vol. 9780, Springer.

31. German Regis, Cesar Cornejo, Simon Gutierrez
Brida, Mariano Politano, Fernando Raverta,
Pablo Ponzio, Nazareno Aguirre, Juan Pablo

Galeotti and Marcelo Frias. DynAlloy Analyzer:
A Tool for the Specification and Analysis of Al-
loy Models with Dynamic Behaviour. 11th Joint
Meeting on Foundations of Software Engineering
(ESEC/FSE 2017). ACM, New York, NY, USA,
pp. 969–973.

32. John Michael Spivey. The Z Notation: A refer-
ence manual (2nd ed.), Prentice Hall, 1992.

33. Ion Stoica, Robert Morris, David Liben-Nowell,
David R. Karger, M. Frans Kaashoek, Frank
Dabek and Hari Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Protocol for
Internet Applications. IEEE/ACM Transactions
on Networking (TON), Vol. 11, No. 1 (2003):
pp.17–32.

34. Emina Torlak and Daniel Jackson. Kodkod:
a relational model finder. 13th International
Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’07),
Braga, Portugal, 2007, pp. 632–647.

35. Caroline Trippel, Daniel Lustig and Margaret
Martonosi. MeltdownPrime and SpectrePrime:
Automatically-Synthesized Attacks Exploiting
Invalidation-Based Coherence Protocols. arX-
iv:1802.03802, February 2018.

36. University of Washington. PLSE Neutrons. http:
neutrons.uwplse.org/

37. W. Visser, K. Havelund, G. Brat, S.-J. Park, and
F. Lerda. Model Checking Programs. Automat-
ed Software Engineering Journal, 10(2), April
2003.

38. Charles Wallace. Learning Discrete Structures
Interactively with Alloy. 49th ACM Technical
Symposium on Computer Science Education,
Baltimore, Maryland, USA.February 21–24,
2018, pp. 1051–1051.

39. Jos B. Warmer and Anneke G. Kleppe. The
Object Constraint Language: Precise Modeling
With UML. Addison-Wesley, 1999.

40. Hillel Wayne. Personal blog. https://www.hillel-
wayne.com

41. John Wickerson, Mark Batty, Tyler Sorensen
and George A. Constantinides. Automatically
comparing memory consistency models. 44th
ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 2017),Paris,
France, 2017, pp. 190–204.

42. Pamela Zave. A practical comparison of Alloy
and Spin. Formal Aspects of Computing, Vol. 27:
239–253, 2015.

43. Pamela Zave. Reasoning about identifier spaces:
How to make Chord correct. IEEE Transactions
on Software Engineering, 43(12):1144–1156,
December 2017.

