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Abstract
Despite many advances in programming models and frame-
works, writing distributed applications remains hard. Even
when the underlying logic is inherently sequential and simple,
addressing distributed aspects results in complex cross-cutting
code that undermines such simplicity.

This paper analyzes different programming models to moti-
vate a new paradigm that leverages the sequential computation
model, while gaining the expressiveness for distribution. The
paper argues for an adoption of the paradigm shift by exhibiting
a programming model that allows easier reasoning about the
conceptual aspects of distributed systems’ behavior. The newly
proposed programming model provides a clean separation of
concerns and retains the simplicity of sequential computation,
using it as a basis onto which distributed aspects are added
without corrupting the essential sequential structure, while of-
floading much of the complexity of implementing distributed
concerns to the compiler. We demonstrate the feasibility of
this model on a case study, identifying key improvements over
existing approaches.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed program-
ming; D.3.2 [Language Classifications]: Very high-level lan-
guages; D.2.3 [Coding Tools and Techniques]: Structured pro-
gramming; I.2.2 [Automatic Programming]: Program transfor-
mation

Keywords reactive, distributed, programming model, declar-
ative programming, software synthesis, separation of concerns

1. Introduction
Distributed, reactive, and interactive applications represent the
dominant category of modern software, which includes many
types of web applications, data dissemination, data processing,
and monitoring systems, ranging over domains from user
communication to business analytics [5, 24, 46, 57]. Some
reactive applications must exhibit distributed computation and
update their state in response to multiple external stimuli, com-
bining incomplete inputs from multiple sources [5]; others must
promptly respond to asynchronous user inputs or process incom-
ing protocol messages [24, 50]. Today’s era of always available
social networks, scalable online services and real-time user col-
laborations brings new demands for application programming
in the field of distributed computing and imposes additional
requirements on implementations of such distributed systems.

Both interactiveness and performance are essential features
of many successful modern distributed systems that have
to ensure timely responses even when they represent values
computed at multiple different nodes. This in turn often requires
scaling a distributed application by reconfiguring the location
of its state and computation, together with the structure of
communication across a distributed system, which might
contain a large sets of machines [2]. Moreover, many systems
must accommodate interactions amongst multiple users, raising
demands for clean control over allowed interactions and data
synchronization [42, 46]. In sum, modern distributed reactive
applications often need to achieve a combination of seemingly
conflicting properties even if their underlying functionality and
business logic remain relatively simple.

On the other hand, programming such inherently complex
software systems in the presence of the variety of non-functional
requirements does not seem to become much easier. There
are numerous reasons for this complexity, where some of the
main ones are: 1. the distributed architecture across multiple
nodes in the system that need to participate in complex
interactions; 2. the abstraction gap between the problem
domain level (business logic) and the implementation level
(low-level communication primitives, message handling,
scheduling, asynchronous callbacks); 3. concurrency issues
within and across different nodes in the system, such as data
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races, atomicity violations, deadlocks, etc.; 4. the difficulty in
achieving efficiency, responsiveness, scalability, availability
and shared data consistency, inherent to distributed computing.

When compared to sequential (specifically, locally-executed
and single-threaded code), programming models for distributed
systems become inherently more complex, due to multiple
additional aspects of dealing with distributed nature of the
running implementation [16, 39]. Advances in distributed
programming models and web frameworks have addressed some
of these challenges, and have made it easier to program certain
classes of distributed applications, but they tend to sacrifice
flexibility and introduce new complications. For example, some
of the flexible and general models, such as the actor model, force
the programmer to break computations into distinct message
sends and handlers [16, 32, 48]. More specialized models, such
as reactive programming, involve propagation algorithms that
can become performance bottlenecks [24, 43]. Inherent in all
these approaches to distributed programming is the recognition,
codified in the so-called CAP theorem, that it is not possible to
achieve consistency, availability and resiliency of a distributed
system all at once [27]. Each approach therefore adopts some
point in the design space, and optimizes some of these at the ex-
pense of others [13, 42, 51, 57]. Because these approaches tend
to address some of the concerns with hardwired functionality,
a developer who wants full control to select an arbitrary point
in the design space must resort to a more primitive framework.
We propose an approach in which, in contrast—by strictly sep-
arating out the behavior and avoiding the commitment to where
the design will sit in the space dictated by distributed aspects of
the system—developers can capture the logic of their systems
early, while still being free to make design decisions concerned
with distribution later, according to the desired requirements.

The sequential model of computation is well understood
and often the most natural way to express system’s behavior.
From the perspective of distributed computing, however, the
sequential model is not sufficiently expressive, because it fails
to capture many of the inherent distributed aspects [16]. Many
modern programming models and frameworks for developing
distributed systems allow the behavior of individual nodes of
the system to be expressed in the sequential model, while using
specialized abstractions, and language constructs, to capture
additional aspects such as communication and remote execution
[4, 16, 19, 28, 29]. In this paper, we envision a more radical
approach, in which the sequential model is used to express
end-to-end behavior of the system, while the concerns of
node interaction, data location and consistency constraints are
handled by adding special pragmas to the code. The pragmas
are then used by the compiler to generate implementations with
respect to the specified distributed aspects of the system.

We propose a programming paradigm that uses sequential
computation model for describing end-to-end behavior of a dis-
tributed system and does not require disruptive changes in the
process of achieving its final implementation. The key insight
lies in the notion of identifying fragments that capture behaviors

for which the semantics expressed with sequential computation
model can be guaranteed and the idea that such fragments can
be enriched with information about distributed aspects of the
system that is sufficient to produce a complete implementa-
tion. We define the semantics of our programming model by
restricting the relationship between the behavior captured by the
sequential model and possible executions of the resulting system.
Effectively, this makes our system a synthesizer that needs to
find a correct distributed implementation according to the spec-
ification expressed by the fragments augmented with distributed
concerns. We show that such enriched fragments are natural and
expressive to define potentially a large class of distributed sys-
tems, while allowing orthogonal aspects to be specified indepen-
dently. More specifically, specifying not just orthogonal aspects
of the system, but also additional behaviors, can be done without
changing the existing code. In the end effect, the programming
model achieves a clear separation of concerns during develop-
ment and effectively splits it into two phases: the first one, in
which developers focus on the conceptual logic of the end-to-end
behavior of the system and write sequential code which is easy to
reason about and test; and second one, in which such fragments
are enriched with additional information, such as location of data
and computation, that allows the system to produce an efficient
complete implementation. As a side-effect of such a separation,
the ability to specify behaviors of the system independently
provides high-degree of modularity and compositionality as
well as flexibility in customizing different aspects of the system.

We structure our presentation in the form of a proposal paper.
We motivate the paradigm shift by considering a simple but repre-
sentative example, rendering it in some of the existing representa-
tive programming models for programming distributed systems
and analyzing the tradeoffs amongst the ease of programming,
reasoning and expressiveness. We demonstrate the feasibility
and expressiveness of our new programming model through the
detailed case study, while realizing the desired requirements
and comparing to other analyzed programming models and
frameworks. Afterwards, we capture the essential components
that are necessary for our programming model and describe
its prototype implementation. Finally, we present our vision of
what needs to be achieved to make such a programming model
practically usable for wide range of distributed applications.

2. Modern Approaches
To motivate the programming paradigm shift in development
of distributed systems and the need for a new programming
model, we chose to analyze several commonly used approaches
as representatives of different programming models, which are
provided as separate programming languages or programming
frameworks. This section introduces the approaches that we
consider in our motivating case study.

2.1 Criteria and Goals of the Case Study
The main criteria for choosing the particular programming
models in our analysis are: 1) the extent of the model to represent
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fundamental concepts and abstractions that are both inherent
to the model, as well as sufficiently distinct from other models
(even though many programming models incorporate and mix
multiple such concepts); 2) the ability to implement certain
classes of distributed applications that are conceptually simple,
but tend to exhibit complex implementations (and thus are usable
and flexible to different extents in today’s practice of developing
distributed systems). The models considered in our analysis
share the goal of making development of distributed applications
easier, by hiding some of the inherent complexity from the
developer. On the other hand, they focus to a different extent
on the following aspects of distributed system implementations:

• expressiveness to capture conceptually related behaviors
with the same programming abstraction (lack of such expres-
siveness may result in a single behavior implementation be-
ing dispersed over code that implements unrelated behaviors)
• the flexibility and convenience in adding new behaviors

that are conceptually independent of other behaviors in the
system (lack of such expressiveness may require disruptive
changes for the implementation of new behaviors)
• specification, and its flexibility (for subsequent changes),

of mapping the system’s state and computation to particular
nodes
• the support for specifying and ensuring different guarantees

for data consistency

Our analysis aims at determining to which extent the analyzed
models are suitable for development of the supported class of dis-
tributed applications, as well as the flexibility of implementing
applications outside that class. Importantly, the analysis points
out the extent to which these models become too strict and, by
defaulting to inappropriate implementations, hurt efficiency, per-
formance, and flexibility. To this end, our case study implements
a fairly complex distributed application with varying require-
ments, with respect to different distributed aspects (mentioned
in the previous section), and tries to analyze the potential issues
and quantify their impact when handling those requirements.

2.2 Analyzed Programming Models
In our case study, we consider a subset of related programming
models in more detail, as representatives of broader category
of models that are relatively widely used in practice. We focus
on models that have emerged in popularity in distributed soft-
ware development practice during recent years, especially those
well-suited for developing conceptually simple, but sufficiently
user-specific, distributed systems and applications. Note that
other models, not considered in the analysis, but otherwise rele-
vant showcases of both novel programming concepts and various
programming model design decisions, are presented in § 6.

We introduce programming models considered in our
analysis, briefly commenting on the motivation for including
them. (These models are described in more details in § 6.)

2.2.1 Reactive Programming
Reactive programming is motivated by difficult reasoning about
complex control flows, concurrency and values changing over
time, and is becoming attractive for implementing distributed
(interactive) applications [13, 24, 52, 58]. Reactive model
of computation is being adopted in modern programming
frameworks since it automatically manages the propagation
of value changes to their dependencies across distributed nodes
[3, 13, 24, 44]. We consider Functional Reactive Programming
(FRP), which employs functional approach to abstract the
time and compose side-effect free behaviors that represent
changing values [7, 13, 22, 50, 58]. Since FRP approaches
provide abstractions for behaviors and events that are relatively
similar across different realizations, we consider the FRP model
described in [50], without loss of generality.

2.2.2 Programming with Streams
Stream processing systems include a collection of computational
units that compute in parallel and communicate via channels
[53]. Due to raising demands for streaming functionality in dis-
tributed applications, we’ve been witnessing increasing support
for programming with streams of values [9, 30, 48]. Although
fundamentally similar to FRP (and other dataflow models, see
§ 6), stream programming focuses on managing production
and flow of values. We consider Akka streams, a representative
of the “Reactive Streams Initiative”, that provides efficient and
robust streams for programming distributed applications [5, 9].

2.2.3 Event-Driven Programming
Event-driven programming models represent applications with
a set of events that occur in the system [23, 25, 33, 46]. By
focusing on the application logic encapsulated with events,
the model offloads the management of communication and
concurrent execution to the underlying runtime. We analyze
Sunny [46], a high-level event-driven model for programming
web applications, which supports first-class events and a global
data model that are managed by the runtime.

2.2.4 Key-Value Stores
Distributed key-value stores are a popular choice for im-
plementing distributed applications since they provide a
uniform interface to a remote storage while allowing good
horizontal scaling [18, 59]. In spite of lacking support for
defining computation and communication explicitly, many of
the data-driven aspects such as replication and consistency can
be offloaded to the underlying data store. Modern distributed
applications often base their logic solely on the communication
with the store through a protocol like REST. We analyze Redis
[59], and it’s Scala DSL interface scredis [8].

2.2.5 Actor Model
Actors are units of concurrent execution that can communicate
only by exchanging messages [10, 32]. When distributed across
nodes, they become very flexible and fit well for implementing
a wide range of distributed systems [1, 12, 17, 34]. We consider
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the Akka framework, which implements the actor model on
the JVM and offers an advanced runtime with capabilities such
as message delivery guarantees, location-transparency, and
high-level communication patterns [1].

3. Motivating Case Study
In this section, we present our case study that illustrates the
ideas behind our proposed programming model and compares it
to other approaches for programming distributed systems. Our
goal is to motivate the proposal for a new programming model
through a detailed analysis of multiple aspects and requirements
of implementing distributed applications. We demonstrate
disadvantageous consequences of design trade-offs in the
existing models and show desirable properties of handling the
given requirements in the newly proposed model.

We consider a prototypical example of developing a
distributed messaging application. Such an application
is commonly used to point out complex aspects of the
implementation in spite of representing a conceptually simple
system [29, 46, 50]. Throughout the analysis, we progressively
consider more (functional) requirements and implement more
behaviors in the application. In the interest of presenting key
insights and advantages of the proposed model, for each of the
requirements, we describe implementation considerations for
all analyzed models. In doing so, we begin by considering the
sequential computation model and afterwards the aspects that
make a transition to distributed implementations challenging (in
other models). Finally, we arrive at a messaging application that
not only offers the basic expected functionality (of exchanging
messages between nodes in the system), but also addresses
common efficiency and data consistency concerns.1

For each requirement, we present its corresponding imple-
mentation in the sequential model as well as in our newly pro-
posed programming model. We present sequential implemen-
tations in Scala [47], which the prototype compiler for our
programming model reuses in defining the resulting distributed
application. As the resulting implementation, our system gen-
erates Scala code that uses Akka framework to implement the
desired distributed application as a set of distributed communi-
cating actors [1]. This implementation is equivalent to the imple-
mentation of the case study, given in the case of the actor model.

3.1 Two-Way Interaction for Sending Messages
We start by considering the basic functionality of sending a
message (with receiving a response whether it was successful),
in a commonly-used way, which allows clients to send messages
that are stored on the server. For the sake of focusing on the
illustration of main ideas, we assume the server is responsible
for only one given chat room (while not going into the details on
how can this be generalized, which tends to involve additional
requirements). Moreover, to illustrate realistic domain-specific

1 A common concern with messaging systems is consistency of observable
messages, which might be violated if network instability is not anticipated in
the system’s implementation [41]

concerns, we do not consider actions like user login; while they
can be implemented in our model, they are usually provided
through existing libraries [4, 46].

3.1.1 From Sequential to Distributed Implementations
This section presents the implementation of the requirements
as simple programs in the sequential computation model and
shows that some aspects of the distributed system behavior can
be captured with a conceptually matching sequential code.

Sending Messages as a Sequential Program We start by
declaring variables that represent the state of the messaging
server (assuming users are identified by strings):
1 var joinedUsers: Set[String] = Set() // initially empty
2 var messages: List[String] = List()
3 var last: String = "Initial" Sequential

We maintain users that joined the room, the log of messages
and the last message or event in the system. (For clarity, code
snippets with same captions, here Sequential, belong to the same
implementation given in a particular programming model.)

Afterwards, the function for sending a message can be
straightforwardly implemented as:
4 def postMsg(user: String, msg: String) = {
5 if (joinedUsers contains user) {
6 messages +:= msg // append new message
7 last = "Last: " + msg
8 true
9 } else false } Sequential

With the previously declared variables in scope, the function
checks if the user belongs to the room and if so, adds the
message to the log and returns true, otherwise just returns false.

Having this code, developers can easily reason about its
behavior, run it and write tests for it. As an example, to check
correctness of the function, developers can exercise both
execution paths that return different outcomes:
10 joinedUsers = Set("User 1") // User 1 joined
11 assert(postMsg("User 1", "Hello") == true)
12 assert(last == "Last: Hello")
13 joinedUsers = Set("User 2") // User 1 now cannot post
14 assert(postMsg("User 1", "Onward") == false)
15 assert(messages.size == 1) SequentialTesting

In spite of being a simple example, it demonstrates that
sequential computation model allows easy reasoning about
the system’s behavior as well as testing its behaviors. The
central idea of our programming model is to preserve this
simplicity, even in cases where the resulting implementation
runs distributed across multiple nodes.

Implementing Distributed Messaging To make the behav-
ior distributed across nodes, even for the functionality simple
as sending messages, the implementation needs to take into
account multiple aspects of the desired distributed system, in
addition to describing the behavior itself. Although conceptually
simple, the implementation for such a distributed application
requires capturing the computation and communication
with respect to the system’s node configuration: in our case
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specifically, capturing where the variables used in the function
are located and fetched from, and how is the behavior invoked.

In the running example, if we assume a simple client-server
architecture, we might make the following decisions:

• assigning messages, last and joinedUsers to the server node
• deciding that postMsg executes fully on the server, to which

clients send function arguments user and message

• initiating the communication on the client, handling it on
the server, and sending the return value of postMsg back
• ensuring concurrent postMsg invocations keep mutable

variables last and messages consistent
• ensuring concurrently (locally) issued postMsg requests

result in an appropriate order of matching responses

As we will demonstrate, in most programming models that
we consider, these aspects need to be introduced, either with
special language higher-level abstractions and constructs (if
supported) or manually, as disruptive changes to the existing
code that implements the business logic, i.e. the conceptual
behavior itself. Moreover, in addition to those changes, due
to requiring special abstractions, these programming models
often inherently require a “paradigm shift” that results in a
significantly different and more complex programming model
than the sequential computation model (which is sufficient for
capturing the conceptual behavior of the application).

Sending Messages in Existing Approaches The following
sections show implementations of the messaging application in
the other considered programming models (introduced in § 2),
and analyzes their complexity and discrepancy with respect
to the starting sequential code.

3.1.2 Functional Reactive Programming
In the case of reactive programming we need to declare our
data as reactive and define dependencies between all used
variables so that they achieve the computation required for the
message sending. Effectively, we need to achieve two tasks:
1) specifying dependencies between variables used in postMsg
and it’s resulting value, and 2) defining reactive variables on the
client and providing mechanisms for binding the dependencies
from the server to the client (and vice versa for the response).

We declare reactive behaviors on the client that capture the
values for the message and user, and an event that samples an
input element (in this case a button) to initiate the behavior.2

The resulting event captures all the necessary information that
needs to be forwarded to the server.
1 val usr: Beh[String] = text("user").vals // input as behavior
2 val msg: Beh[String] = text("message").vals
3 val send: Event[MEvent] = // button clicks as event
4 button("send").toStream(Click)
5 val submit: Event[(String, String)] = {
6 val entry = usr.combine(msg)
7 entry.sampledBy(send) } FRP

2 Note that for brevity, we omit some code and syntax details.

We construct behaviors from textual input elements. They
represent values for the user and message (of type String). We
construct a new event that samples from the send event, which is
in turn bound to a button, so that each time the button is pressed,
the code samples and combines current values of user and msg
to create a pairs of current values.

Behaviors constructed on a remote node can be forwarded
to other nodes by appropriately binding events. We bind the
event submit from the client to the server (which is in this case
implicit [50]), by using a specialized method toServer:
8 val post: EventS[(String, String)] = submit.toServer FRP

On the server, we encapsulate joinedUsers as a reactive
behavior, similarly as we did on the client. Afterwards, the func-
tionality analogous to the sequential postMsg (presented before)
can be defined by mapping the bound stream post with an appro-
priate function. This function, given the values of the user and
the message as arguments, computes the necessary information:
9 val joinedB: Beh[Set[String]] = ... // joined users as behavior

10 def proc(p: (String, String), joined: Set[String]): Result = {
11 val (usr, msg) = p // extract values from a pair
12 if (joined contains usr) Success(msg, usr)
13 else Failure(usr) }
14 val results: Event[Result] = post.combine(joinedB) {
15 proc } FRP

where we assume Success and Failure are previously defined
case classes as subclasses of Result, that carry given values for
the sake of convenience. The resulting values of this behavior
can then be bound on the client to be processed as the response.

Afterwards, also on the server, we need to handle values
from the created event to update the behaviors that represent
the accumulated messages and the last posted message:
16 val successfulE = results.filter(_.isSucc)
17 var messages: Beh[List[String]] = successfulE.fold(List()) {
18 case (acc, Success(msg, _))⇒
19 msg :: acc } // append the message
20 var last: Beh[String] = successfulE.map(_.msg).
21 .fold("Initial"){ "Last: " + _._2 } // retain last FRP

Behaviors messages and last are determined by folding the
list of successes (due to filtering of results with isSucc that
returns true only for Success). This effectively means that the
current values of behaviors is recomputed (by the fold function)
whenever a new request appears: messages are appended, while
the last message just gets overwritten.

The resulting event results needs to be further bound from
the server to the client as well, so that the resulting values that
designate whether the post was successful are transferred back
to the client. FRP approaches need to expose a construct similar
to toClient, which takes a function that is executed when the
event fires, to determine to which clients the event should be
transferred [50]:
22 def correctClient(r: Result, c: Client): Option[Boolean] =
23 if (r.usr == c.usr) // check if user belongs to client c
24 Some(r) else None
25 val clientRes = results.toClient(correctClient).
26 map(_.isSucc).hold // behavior as the success flag FRP
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The resulting event is bound to a behavior on the right client,
as determined by evaluating correctClient for all known clients
(which returns Some(r) if value r needs to be forwarded to
that client c). Here, by calling hold we define a behavior that
emits the last value of the event results, i.e. a Boolean value that
designates whether the message was successfully sent.

This implementation demonstrates that flow of values is real-
ized with behaviors and events, dictated by the way of their bind-
ing. Effectively, the constructs that achieve such bindings across
different nodes (here, toServer and toClient) dictate the flexibil-
ity of handling additional distributed aspects within the system,
such as different communication patterns or consistency. Purity
of behaviors in FRP often implies the need for (un)compressing
multiple values (like in the case of constructing Success) and for-
warding them along the appropriate flow, whenever they might
be needed at another point within the system’s behavior. This ex-
ample shows that handling additional distributed aspects, like ad-
ditional communication (as in our example, sending the response
back to the client), would necessarily need to disrupt the existing
code had the structure of the existing code failed to expose
appropriate values. In addition, FRP approaches do not support
mutability and rely on special combinators for combining and
folding behaviors; declaring an event that consumes a behavior
but also needs to update it (recursively, as needed in our example,
to model a mutable variable) might create cycles in the flow that
might become significantly more complex to reason about.

3.1.3 Flow Graphs with Akka Streams
With Akka streams, we declare and combine streams of values
to achieve a similar end-result flow structure as shown in the
previous section with FRP, albeit with different abstractions
and capabilities. (Effectively, in the running example, Akka
streams generalize the behaviors and events used in FRP.) The
central notion that models any activity in Akka streams is a
flow graph, which is comprised of sources that emit streams
of values, sinks that consume streams of values, and flows as
processing components between them.

We start by declaring sources on the client for streaming
current values for the the user and the message. (We omit some
details, including the definition of getMsg, which returns the
message to send; the function blocks until an UI interaction,
effectively capturing same behavior as event sampling in FRP.)
1 var user: String = ...; def getMsg(): String = ...
2 val usr = Source(()⇒ user) // current values as stream
3 val msg = Source(()⇒ getMsg())
4 val pair = usr.zip(msg) // combine streams Streams

We combine streams of values, similarly as we did previously;
zip produces a source of pairs of String values.

Preparing requests from the client can be performed by
binding the source on the client to the appropriate flow on the
server. Flows effectively represent components that process
values that are pushed to them and output resulting values. We
map the previously constructed source pair to produce Request
values (we omit definition of toRequest) and bind it to a flow
that represents an HTTP connection for the transfer of values

to the server. The flow http takes the stream of requests on its
input and pushes them out on the network as its output:
5 implicit val materializer = ActorMaterializer()
6 val http: Flow[Request, Response, Future[Success]] =
7 Http().connect(params) // a remotely bound flow
8 pair.map(toRequest).to(http).run Streams

For brevity, we omit some (implementation specific) details,
such as materialization (required for scheduling) and details
of the construction of the given HTTP flow [9]. By calling run
we effectively activate the resulting flow graph.

A sink is an element that consumes a stream of values that is
pushed to it (through streams from the attached flow or source,
as we will show later). For the server code, we define a source
for values of joined users (which simply returns the variable
joinedUsers), as well as sinks that consume messages:
9 val joined = Source(()⇒ joinedUsers)

10 val msgSink = Sink.fold(List())(_ :: _) // stores messages
11 val lastSink = Sink.last[String] Streams

The msgSink sink appends newly pushed messages to the
message log, while lastSink retains the last message.

Processing on the server can be concisely expressed by
constructing a composite flow graph that is composed out of
simpler flow graph components:
12 def procMsg(p: (String, String), join: Set[String]): Result =
13 ... // process message, similarly as defined previously
14 val serverFlow = FlowGraph() { implicit builder⇒
15 val zip = builder.add(Zip[Entry, Set[String]])
16 clientSrc ~> zip.in0 // combine connected inputs
17 joinedSrc ~> zip.in1
18 val bcast = builder.add(Broadcast[Result](3))
19 zip ~> process ~> bcast // fan out results
20 bcast.filter(_.isSucc).map(_.msg) ~> msgSink
21 bcast.filter(_.isSucc).map("Last: " + _.msg) ~> lastSink
22 bcast.map(_.isSucc) ~> clientRes } Streams

This flow graph executes on the server and handles newly
received messages. (We omit code that declares source
clientSource and sink clientRes that represent streams of values
pushed from and back to the client, respectively, over an HTTP
channel.) The flow graph updates the state on the server by
extracting appropriate values (with map) and binding the
resulting streams to the appropriate sinks. The stream of
Boolean values, bcast.map(_.isSucc) represents whether the
message was successfully sent and is forwarded to clientRes
as the response. For brevity, we omit details of processing
responses on the client—the client uses similar mechanisms
to unwrap the source from the http flow and connect it to the
appropriate sink that handles the received Boolean values.

Although similar in spirit to FRP, Akka streams is not
restricted to purely functional style, allows constructing flexible
and robust flow graphs, and focuses on controlling flows of
values distributed over the network (including the control of
back-pressure [5]). However, it suffers from similar issues
as FRP, since the flow graph dictates both the communicated
values and communication routes. This effectively means that
even small changes in the communication within the distributed
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system might require disruptive changes to existing flow graphs
and their bindings. In addition, the approach requires dealing
with additional concerns of running and distributing flows (like
flow materialization) and might require constructs outside the
model to handle lower-level details (e.g. futures to encapsulate
potential failures in the network) [9].

3.1.4 Event-Driven Programming with Sunny
Sunny allows developers to declaratively express the structure
of the distributed application and its data and define event
handling with cleanly abstracted snippets of code. We define
events, but omit the code that invokes them in the application,
since the Sunny programming model couples event triggering
with input elements found on web pages [46].

First, we write a declarative specification of the (global) data
model. The record User describes data on the client node:
1 record User do refs name: String end Sunny

where refs denotes simple referencing aggregation (without
any constraints) [46].

We then provide a specification of the network model, in
which we specify the client machine that contains a reference
to the user record, and the server that contains messages and
joined users:
2 machine Client do refs usr: User end
4 machine Server do
5 refs joined: (set User)
6 owns last: String, messages: (seq String)
7 end Sunny

The server node maintains the users that joined the room, the
message log and the last message. (Keyword owns captures
referencing an external field where referential integrity is
automatically maintained within the data model.)

To achieve the functionality of sending messages we define
an appropriate event model:
8 event SendMsg do
9 from client: Client; to serv: Server

10 params msg: String
11 fun newMsg { serv.last = "Last: " + msg
12 serv.messages << msg } // append the message
13 requires { room.members.include?(client.user) }
14 ensures { newMsg() }
15 end Sunny

The event has an appropriate precondition (given in the requires
clause) that prevents executing the event, i.e. its postcondition, in
case of a client state that should not allow it. Here, we require that
the user has joined the room. A specification of the effects of an
event (ensures clause) is concerned only with updating relevant
data records, namely adding the message and setting last.

Note that this implementation ignores responding to clients.
Interestingly, to specify returning the response, as we formulated
it previously, this specific model (adopted in Sunny) would need
to be changed. Firstly, since the runtime does not process events
if their preconditions are not satisfied, we would need to remove
precondition in SendMsg and modify the postcondition code
to check the condition explicitly (to prevent discarding events

of failed message posting). Secondly, since the only means of
communication in the event-driven model is through events, the
model forces us to invoke another event to send the response to
the client. In that case, the postcondition would look similar to:
14 ensures { if (room.members.include?(client.user))
15 then { newMsg(); trigger Response(client, true) }
16 else trigger Response(client, false) } Sunny-Extended

Note that this is not possible to achieve in the existing Sunny
model, since Sunny does not support such a general way of
triggering events. Events in Sunny have to be explicitly bound
to UI components on client machines that trigger events as a
result of a user action.3

This demonstrates that, by relying on explicitly defined
events, in the event-driven programming model we might need
to declare separate events to achieve additional behavior even
if it conceptually represents the same or related functionality
within the application. In our case, we had to declare a new event
that represents the response sent back to the client. Thus, such in-
herent splitting of behaviors in event-driven programming might
hinder the ability to define and reason about complex interactions
and communication patterns within the distributed application.

3.1.5 Programming against the Redis Store
The support for a uniform interface for storing data inside a
key-value store, readily accessible from different nodes in the
system, makes key-values stores a popular choice when im-
plementing conceptually simple (and data-centered) distributed
applications, as is the case with messaging applications. While
key-value stores such as Redis provide flexible access to the
stored data, even though communication between nodes can
be handled through the store itself, it is usually handled indepen-
dently. We assume the message posting functionality is located
on the server, which is invoked by clients by supplying the values
for the user and the message. (To focus on the model itself, we
omit the actual communication between clients and the server.)

We implement message sending by using the exported API
calls to access the state of the application that is stored in the
key-value store. As a first step, we initialize the key-value
store, by specifying parameters that determine how can the
key-value store be accessed (we omit the details of defining
the configuration object conf [8]):
1 val redis = Redis(conf) // initialize the KV store Redis

Importantly, to handle potential failures in API calls issued
to the Redis store (e.g. due network unavailability), scredis
encapsulates API calls as futures in Scala—a programming
abstraction that is often used to handle asynchronous calls and
operations that might fail [29, 47]. We implement the message
sending functionality with Scala for-comprehensions that
ensure that only when all accesses to the key-value store (which
are asynchronously invoked) succeed, the computation in the
body (within yield) can take place [8, 47]:

3 Note that Sunny also includes reactive support (not considered here), which
tracks dependencies on the data model and allows implementing such behavior
as an reactive update of a view on the client [46].
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2 def postMsg(usr: String, msg: String): Future[Boolean] = {
3 for (isIn← redis.isMember("joined", usr);
4 if (isIn); // true if user in the set with key "joined"
5 _← redis.lPush("msgs", msg); // append mesasge
6 _← redis.set("last", "Last: " + msg))
7 yield true }} Redis

where placeholders _ designate unused return values from
futures (which e.g. might signal how many rows were updated).
The result of the for-comprehension is another future, composed
of futures that represent individual calls to the store. Scredis
supports higher-level API calls, like isMember and lPush, that
communicate with the key-value store with POST/GET requests
in the background, but transform the request and data according
to various supported Scala types, like Set and List.

The resulting future can be invoked to asynchronously
issue calls to the key-value store in the order specified in the
for-comprehension and return Scala Success only if all calls
succeeds. To get and process the final result of the composition
of our calls to the key-value store, we handle the resulting future
(on the server) with:
8 def respond(succeeded: Boolean) = ... // send the response
9 postMsg(user,msg) onComplete {

10 case Success(res)⇒ respond(res.isSucc)
11 case Failure(ex)⇒ respond(false) } // failure Redis

Where onComplete specifies code to execute for both cases: if
the future succeeds or fails. In case of successful invocation of
all API calls we send the response back to the client, otherwise
we handle the failure. We omit sending the response back to the
client and comment on some of the possible implementations
subsequently.

It is important to note that while key-value stores are becom-
ing more flexible and robust to allow developing distributed
applications around them, they clearly cannot handle all the
potential aspects of a general purpose application (that requires
deriving more complicated views of the stored data model). In
most cases, key-value stores handle only storage (with distri-
bution and scalability across nodes), while the computation and
the communication between nodes is defined independently,
for each node. However, modern key-values stores (including
Redis) support realizing communication through the key-value
store itself, through mechanisms such as publish-subscribe (see
§ 6.2) that signal changes in the store, or simply with efficient
polling of the store [6, 8]. Interestingly, to some extent, they
enable reusing the sequential implementations by changing local
accesses to API calls. (In our example, in spite of using futures,
the code structure is similar to the sequential code from § 3.1.1.)
This model does not inherently provide any particular higher-
level abstractions to address some of the concerns of distributed
applications; as our running example shows, it is up to a particu-
lar framework to decide on the abstractions used, for example for
dealing with failures. Moreover, in terms of consistency, our im-
plementation is problematic since it issues requests to the store
in the particular order, while some subset of individual requests
might fail and leave the store in an inconsistent state. (To this
end, KV stores, including Redis, support specialized atomic op-

erations and transactions, which, in turn, are more complicated
to reason about and tend to affect performance [6, 59].)

3.1.6 The Akka Actor Model
The actor model, being based on actors as a first-class concept—
effectively, individual live components that encapsulate their
state and capture behavior only as a consequence of exchanging
messages with other actors—represents an excellent fit for
implementing distributed applications such as messaging-like
services [29].

A straightforward implementation of sending messages with
actors splits the behavior into two actors (two classes of actors),
one for both the server and the client. We start by defining mes-
sages that contain the needed information for the communication
between the server and clients within separate case classes,
1 case class Msg(usr: String, msg: String)
2 case class Response(successful: Boolean) Actor

in their respective fields.
The client is represented with the following actor class (as

a subclass of the standard Akka Actor class) [1]:
6 class ClientActor(server: ActorRef) extends Actor {
7 var user: String = ...
8 def notify(msg: String) = ... // handle notification
9 def send(msg: String) = { // asynchronous message send

10 server ! Msg(user, msg) }
23 } // we will add some code above later Actor

Given a reference to the server actor, invoking send will send
the given message (asynchronously, using !) with current values
of user and the given message. (We omit attaining the reference
to the server actor—Akka offers multiple different ways of
sharing references to actors within the system [1].) Note that
this snippet of code belongs to a larger implementation, thus
multiple lines are omitted and will be shown later.4

The server declares the message handler by overriding the
receive of the Actor super class:
24 class ServerActor extends Actor {
25 var messages = ...; var last = ...
26 var joinedUsers = ... // declare variables as before
27 def postMsg(usr: String, msg: String) = ...
28 // declare the same function as before
31 override def receive = { // define message handling
32 case Msg(usr, msg)⇒
36 val flag = postMsg(usr, msg) // posts the message
37 sender ! Response(flag) }} // respond Actor

which, upon receiving an instance ofMsg as a message, executes
postMsg (which is the same as in § 3.1.1), after which it sends
its result as a response to the client. Note that sender is implicit
in receive and designates the actor that sent the message that
is being handled; thus, the right target for sending the Response.

In addition, since we need to handle these responses on the
client, we add a method:
13 override def receive = { // handle the response
14 case Response(flag)⇒ notify(flag) } Actor

4 We hint the code structure with line numbers to pay a tribute to an old
procedural language BASIC, which was considered high-level long time ago.
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to define the receive handler in the Client actor that calls the
appropriate function to process the results (by invoking notify
with the result).

With actors in Akka we can straightforwardly make this
implementation distributed by providing a configuration that
defines mapping of actor names to particular nodes in the
system and instantiating clients with the appropriate server
reference. Although defining computations with separate actors
and explicit communication makes the model flexible, an
inherent drawback is that structure of the code in terms of actors
needs to match the structure of the distributed system. A decision
to change the data or computation might require disruptive
changes, not just to actor classes and handlers, but also messages.

3.1.7 Can We Retain Sequential Computation Model?
The main question we pose in this work is whether we can define
a programming model which heavily relies on the sequential
computation model for specifying the behavior, but does not
break it, nor significantly complicate it, in the process of
capturing aspects of the implementation inherent to the desired
distributed application. If so, the goal of such a programming
model would be to allow “lifting” conceptually simple programs
defined with sequential model of computation (which can be
independently executed and tested), to implementations of dis-
tributed applications. Since, in that case, additional information
about the distributed aspects of the system is inherently required
to fully characterize it, there needs to be a way to provide such
information. Such a programming model should allow flexible
and non-intrusive customization of parameters that dictate
distributed aspects, thus effectively choosing a point in the
trade-off space inherent to distributed systems.

3.1.8 Concepts of Programming with Scenarios
The central idea of our newly proposed programming model
revolves around a notion of a scenario. Scenarios are used to
capture parts of the overall behavior of a distributed system
from two different perspectives: a perspective of individual
fragments of the overall behavior that can be expressed in the
sequential computation model and a perspective of the complete
behavior within the desired distributed system.

Scenarios are the central abstraction that defines programs
in the scenario-based programming model. From one perspec-
tive, scenarios model the behavior of a distributed system when
viewed from the perspective of certain parties involved in the sys-
tem, under the condition that the semantics of such an interaction
described by the scenario is rightfully respected in the resulting
system. Importantly, the specified behavior has the property
that its semantics has to be captured with a sequential model of
computation. Therefore, by defining scenarios, developers are
effectively capturing fragments of interactions of the resulting
distributed system “projected out” as a sequential computation.

We divide scenarios into two types: basic scenarios and dis-
tributed scenarios. Both of them model (conceptually) the same
behavior, but from different perspectives (as mentioned before),
where distributed scenarios effectively just extend basic sce-

narios to define the role of their behavior within the distributed
system. Basic scenarios are represented as simple programs
(in our prototype, non-pure functions) that define the behavior
of a distributed system on an abstract level, where sequential
computation faithfully captures the intended behavior of the
system; effectively, the result of projecting out the executions of
the distributed system as a sequential computation, see § 4. All
the variables used in the function, i.e. its scope, also belong to the
basic scenario. On the other hand, distributed scenarios are basic
scenarios extended with three components: function mapping,
data mapping and a trigger. Trigger represents an occurrence of
an event that causes the behavior captured by the given scenario.
It defines how the scenario behavior starts manifesting itself in
the distributed system. The trigger might represent a stimulus
from the environment (e.g. a user making an input action on one
of the nodes) or the condition being made true (e.g. triggered at
the specified time). The function mapping specifies how are the
parameters of the scenario function (that represents the scenario)
populated, at the point of triggering. Once the developers define
nodes of the distributed system, the given data mapping specifies
the location of all variables used in the scenario function.

The key insight behind our programming model is that
behaviors captured by basic scenarios admit the semantics
of the sequential computation model. (The relation between
the behavior of a basic scenario and the resulting distributed
implementation is defined in § 4.) Importantly, the information
additionally captured by distributed scenarios is sufficient for
characterizing full implementations of distributed applications;
specifically, we show how scenarios can implement the
messaging application from the running example.

3.1.9 Implementing Message Sending with Scenarios
To use our programming model, we start by writing simple func-
tions that represent basic scenarios. In fact, the definition of the
sequential computation of postMsg (presented in § 3.1.1) already
represents the needed basic scenario. (Our prototype compiler
takes such functions and infers the intended behavior, i.e. com-
putation and state, that can be later distributed across nodes.)

Before beginning developing distributed scenarios, we spec-
ify the configuration of the system. We declare configuration
of nodes that participate in the desired distributed system:
1 class Server extends SingletonNode
2 class Client extends SpawningNode {
3 def notify(msg: String) = ... // same as before
4 var user: String } Scenario

This declaration specifies that there are two types of nodes
in the system, one for the server and one for client, where
SingletonNode designates a unique Server node (known to other
nodes), while the system might have multiple, and spawn new,
Client nodes. (This defines the client-server architecture, where
the system assumes all nodes know about the singleton node;
which is currently supported in our prototype implementation.)
Each Client node has variable user assigned to it. Note that
instances of these classes represent “logical” nodes, in the sense
they might be arbitrarily assigned to physical nodes. (We cur-
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rently do not do anything specific in terms of such deployment,
and rely on the Akka framework for those tasks; see § 4.)

We define the needed distributed behavior by enriching a
basic scenario that specifies the sequential behavior of sending,
with an appropriate specification for distributed aspects. The
distributed scenario can be defined as:
5 scenario Send {
6 @location(Server) { // same variables as in Sequential
7 var messages: List[String] = ... } // assigned to server
8 @trigger(Client.action)
9 @input(Client.user,Client.msg) // bind parameters

10 @output(res⇒Client.notify(res)) // handle return value
11 def behavior(usr: String, msg: String) =
12 postMsg(usr, msg) } // as defined before Scenario

The scenario defines its behavior with sequential computation
simply by calling the function postMsg (as we have defined
before, in the case of Sequential, see § 3.1.1). In addition, it also
captures other pieces of information that specify which nodes
are involved in the behavior, the location of used data variables,
and how the scenario is triggered. The @location annotation
specifies where is the annotated variable located, i.e. on which
nodes does it live; last, joined and messages are thus located on
the server node. (Note that, in this case, the same effect can be
achieved either by declaring variables inside the scenario object
and associating them with a location, or by explicitly declaring
them in nodes and then binding them as function arguments.)
In addition, the behavior function is annotated with @input
and @output that specify how are the values for the function
arguments populated, and where and how is the return value
processed, respectively. Here, parameter usr and msg originate
from the values Client.user and Client.msg, respectively, while
the resulting value is used to invoke notify, all located on the
Client node. The trigger designates that the scenario is explicitly
invoked with Client.action on the client (the system generates
this function and its body that starts the scenario).

Our system takes the scenario Send as input, performs a sim-
ple code analysis (to infer all the necessary information, such as
where to map certain portions of the computation) and generates
the code that matches the one given for the actor implementation
in § 3.1.6, i.e. in the case of Actor. Specifically, the system
generates given messages, two actor classes and their fields
and methods. Currently, the system executes each defined basic
scenario only on one node, while passing all the dependencies
(in this case only parameters usr and msg) in a message from
other nodes. (More details on the restrictions of the model and
the notion of a correct generated implementation are given in
§ 4.) By specifying the basic scenario as a sequential fragment of
system’s behavior (essentially the function postMsg) and after-
wards, associating the information about the distributed aspects
of the system (like data location), we achieved the conceptually
simple, but fully distributed, implementation of the messaging
application. Note that we first defined the behavior for posting
messages with a fully executable (and testable) sequential code
and then effectively lifted that code into a distributed application.

3.2 Implementing Multi-Node Message Notifications
As the next step in making the case study more realistic, we
consider a functionality that requires multi-node interaction. We
consider sending notifications to all users in the system whose
name is mentioned in the message, in case their status does not
say “do not disturb” (as modern messaging platforms, like IRC,
usually do). Since notifications are sent after a new message
is posted, the functionality potentially requires changing the
existing implementation. The need for disrupting existing
code when introducing such functionality is one of the main
motivation points behind our programming model.

From this section onward, we do not go into details of the im-
plementations in all the considered programming models; rather,
we focus on the most relevant comparisons and elaborate the
solutions provided by the scenario-based programming model.

3.2.1 Notifications in the Sequential Model
As done previously, we first write a simple sequential program
that captures the needed functionality:
16 class Client { // encapsulate client behavior
17 def notify(msg: String) = ... // display given notification
18 var usr: String = ...; var status = "Available" } Sequential

However, since the behavior inherently involves interaction
between multiple nodes, we arrive at an obstacle in the expres-
siveness of this model. One alternative is to capture the behavior
from the perspective of only one client that gets the notification:
19 if (status == "dnd") notify(“* New msg”) Sequential

(For brevity, we omit checking if the usr variable occurs in
the message.) Although quite disconnected from the actual
intended functionality (and seemingly useless overall) this
implementation indeed captures the behavior when viewed
from the given perspective. However, it is not clear what can
we do with such a sequential implementation: how to reuse it
or transfer it to fit one of the presented models for implementing
a distributed application.

On the other hand, if we try to capture the behavior in the
sequential computation model by defining multiple clients (as
some programming models do [15, 16, 19]):
20 val clients: List[Client] = ... // get clients as remote objects
21 for (c← clients) // loop through in some order
22 if (c.status == "dnd") c.notify(“* New msg”) Sequential

it becomes unclear whether such program, together with its
semantics, can translate to a distributed application without
prohibitive restrictions. Specifically, if we respect the semantics
of the sequential model, the flow of control from the server
to the clients (and back) must happen in the order dictated by
the loop traversal. In many distributed applications, including
the one in our case study, this is not acceptable since such a
restriction would incur high performance penalties; the optimal
implementation would send notifications without the need to
respect any particular order.

Due to the strictness of the sequential computation, i.e.
the mismatch in the semantics, implementing distributed
systems by modelling clients explicitly and respecting the
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sequential semantics may be practically unacceptable. One
potential solution is introducing constructs for relaxing the
semantics of sequential computation (e.g. to allow out-of-order
execution), which seems sufficient only in a limited set of
cases [16, 35]. Unlike other considered programming models,
which introduce additional abstractions, our model aims at fully
reusing sequential implementations without complicating the
computation model by only considering behaviors from the
perspective amenable to the sequential computation model.

3.2.2 Notifications as Events in Sunny
When implementing notifications in Sunny, we end up having a
similar issue as with returning a response to the client (described
in § 3.1.4), since we need to define a new event that needs
to be triggered after a message is received. In an extended
event-driven Sunny model, this could be achieved by adding
an additional status variable to the client node,
2 machine Client do ... // other variables unchanged
3 refs status: String end Sunny-Extended

declaring a new event to be triggered for notifications,
16 event Notify do
17 from serv: Server; to c: Client; params msg: String
18 requires { c.status != "dnd" && in(c.usr, msg) }
19 ensures { ... } // perform notification on the client
20 end Sunny-Extended

and finally, triggering the event Notify whenever a new message
is received. (We omit the code that triggers Notify, as it requires
similar changes as for implementing responses to message
sending; see § 3.1.4.) The event Notify simply checks the status
and whether the received message mentions the user in the
precondition, and performs notification if needed.

This programming model suffers from the need to modify
existing code when new behaviors are added. Note that not only
that we needed to change the definitions of machines, but the
existing SendMsg event as well (to trigger Notify). Although
flexible for defining additional behaviors and interactions
between multiple nodes (event-driven programming excels
at defining many-to-many communication patterns [25]), the
issue remains that conceptually connected behaviors are spread
across different abstractions that might need to be modified
when introducing new behaviors.

3.2.3 Reactive Notifications
To implement the notification functionality with functional
reactive programming, we need to bind the existing reactive
values—namely, the one resulting from new messages—to
behaviors located on all clients.

We simply bind the event that streams new messages, filter
the ones that succeeded, and send them to all clients:
27 val notification = successfulE.map(_.msg).toAllClients

The code uses previously declared event successfulE (in FRP
code, line 18; see § 3.1.2) and binds it to be sent to all clients.
Afterwards, on the client, we use the event to invoke the
notification for all messages that mention the given user:

28 val cn = ... // bind the notification on the client
29 val status: Beh[String] = text("available")
30 cn.zip(status).zip(user).filter({ case ((msg, st), user)⇒
31 st != "dnd" && msg contains user }).map(_⇒
32 notify("∗" + msg)) FRP

On the client, we combine the behavior of the current status
and value usr to invoke notify if needed. (We omit the code that
binds the behavior cn, which represents received notifications.)

Note that while we reused previously declared event
successfulE, adding notifications would require modifying the
existing implementation if the binding of behaviors was not
structured such that the appropriate event (which passes the
right information needed for notifications), was already exposed.
Moreover, note that the natural solution of binding events of all
successful message postings to all clients, and then filtering to
invoke functionality if needed, might incur significant penalties.
On the other hand, a better solution could be to check to which
clients should the event be bound on the server (as discussed in
§ 3.2.6); a solution that tends to be less straightforward in FRP
and forces developers to explicitly think about the boundaries
between nodes and the overall structure of the system.

3.2.4 Notifications with Actors
The flexibility of the actor model allows us to implement the
additional notification functionality with a few changes to the
existing code. Assuming the server maintains a list of all clients
in the Server class (as actor references, that might be located
on remote nodes [1]),
29 val clients: List[ActorRef] = ... Actor

we create a new message class for signalling notifications,
3 case class NotifyMsg(msg: String) Actor

and add code for sending notification messages after a new
message has been received,
32 case Msg(usr, msg)⇒ ... // code the same as before
34 for (client← clients) client ! NotifyMsg(msg) Actor

which uses a simple for loop to send messages to all clients.
Note that although the sending is executed in the given particular
order, it is executed asynchronously, thus no blocking is incurred
(and the code does not match the behavior defined by the
sequential semantics in § 3.2.1). Afterwards, we add additional
code to the Client class to handle notifications at the client:
11 var status = "available"
13 def receive = { ... // handle additional message class
15 case NotifyMsg(msg)⇒ if (status != "dnd" &&
16 msg.contains(user)) notify("∗" + msg) } Actor

As described before, the code simply examines the status and
the current message and invokes notify if needed.

Although all the required changes are conceptually simple
overall, the implementation of this additional functionality
requires multiple, relatively smaller, separate changes that
are dispersed across the existing actor code. The additional
functionality requires changing at least the code of all the partic-
ipating actors. Note that, had we decided to check whether users
are mentioned in the message on the server (for performance rea-
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sons), we would not only need to move the part of the condition
from the client to the server actor, but also write code to manage
and appropriately update the variable used in that condition.

3.2.5 Notifications in Other Programming Models
We omit detailed analysis of implementations of notifications in
the case of stream programming and key-value stores. In the case
of Akka streams, the implementation would be similar in struc-
ture to the one given for FRP, since the structure of bindings of
reactive behaviors in FRP is similar to the one for stream binding
we showed previously. Implementing notifications with a key-
value store would effectively use the same approach of accessing
appropriate parts of stored state as in the case of message send-
ing; however the concerns of disseminating notifications would
need to be handled separately as well, as previously discussed.

3.2.6 Implementing Notifications with a Scenario
One of the key points behind introducing the new scenario-based
programming model is to allow implementing new functionality,
like notifications in this case, while focusing solely on the
conceptual logic of the functionality without the need to consult,
or introduce changes to, the existing code.

We define a new scenario that implements the notifications
functionality without changing the existing code:
13 scenario Notify {
14 @location(Client) def notify(msg: String) = ... // as before
15 @location(Server) var last: String // put into scope
16 @input(Client.status,Client.user) // bind inputs
17 @trigger def cond(status: String, name: String) =
18 status != "dnd" && last.contains(name)
19 @output(Client.notify) def action = "∗" + last } Scenario

The scenario is declared to be triggered with a trigger condition
that starts a scenario when the given predicate (function cond,
of type Boolean) becomes true. The trigger might happen as
a consequence of other behaviors in the system, i.e. execution
of other scenarios. Our prototype compiler analyzes all the code
in the current implementation (more specifically, the existing
scenario defined before, in § 3.1.9) to determine all possible
places where the condition can trigger. Currently, the compiler
considers all statements after which the condition might be true
in a pessimistic fashion (possibly emitting condition checks at
places where they might not be necessary). Next, it determines
that message should be sent from the server to all clients and
splices the code that represents the behavior, defined by action,
into the implementation of the server. In this case, action simply
returns last (located on the server); this value will be sent and
used as an argument to notify on the client. Our compiler, when
given the two input scenarios Send and Notify, produces the
same code as the Actor implementation given in the previous
section (§ 3.2.4), including the new class for notification
messages (Actor, line 3), the modified handler that uses a for
loop to send notifications (lines 32-37), and the message handler
on the client that handles notifications (lines 15-16).

This example demonstrates the modularity of adding new
functionality in the scenario-based programming model. The

Notify scenario demonstrates that some behaviors might be trig-
gered as consequences of other behaviors indirectly, by defining
triggers that depend on the application state. In certain devel-
opment scenarios, as in the case of adding notifications, such
behaviors are more easily captured with such a predicate on the
application’s state. Importantly, note that we did not merge mes-
sage sending and notifications into a single scenario—although
this can be achieved in our model, such an implementation
would not precisely capture the intended behavior, with respect
to the strict interpretation of the sequential model semantics
within a scenario (as discussed in § 3.2.1). We define message
sending and notifications as two separate scenarios since in that
case we can precisely capture the behavioral fragments of the
distributed application in the sequential model (with guarantees
of the sequential semantics covering the necessary portions
of the behavior) and allow an efficient resulting implementation
(that sends notifications our of order, as given in § 3.2.4).

Note that the body of action simply returns last (the last
message). Our model could be extended to support declaring
a trigger as a consequence of the SendMsg scenario and extend
the scope to allow using the current message from that scenario.
(Note that, this would be semantically different, as it would
make notifications strictly dependent on the scenario Send.)

Optimizing Notification Sending One (mentioned) opti-
mization of the functionality would be to track and check
usernames on the server and send notifications only to those
users who are mentioned in the message. (Such optimizations are
required for a reasonably practical distributed chat application.)

To emit an implementation that performs a local check
before executing the whole scenario, we add a special
annotation @replicated; see § 4.4.1. If Client.user is annotated
with @replicated(Server), the compiler infers that the value is
accessible on the server as well and generates the optimized
implementation (which, in addition, handles data replication).

This optimization demonstrates the advantage of the sep-
aration of concerns, where small changes in the specification of
distributed aspects lead to a substantially different implementa-
tion. In contrast to other approaches that might require structural
code changes, here, adding one annotation is sufficient.

3.3 Chat Topics and Handling Consistency
As the last piece of the functional requirements we consider, we
explore functionality that operates on the same data as previously
described behaviors, but might represent a challenge for incorpo-
rating it into the existing system due to data consistency concerns.
It allows setting a discussion topic for the room, which in turn
sends an appropriate message to all clients to notify them that the
topic has changed (like in e.g. IRC). We model this functionality
with a special command message that is sent to the server node,
after which the server has the responsibility to change the topic.

An interesting observation and a challenging aspect of this
functionality is handling the data consistency with respect to
posting messages and receiving them on clients on the one hand,
and changing the topic and topic notifications at clients on the
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other. If the system exhibits an execution with a particular order
of concurrent requests for sending a message and changing the
topic, then observing those requests on the clients in different
order might lead to inconsistent views (of the last message and
the topic notification). Specifically, this might mean that a user’s
message is seen as posted in a different topic. Here, we consider
causal consistency, which dictates that behaviors which are
potentially causally related are seen by every node of the system
in the same order [40]. (The details about consistency concerns,
and guarantees in our model, are given in § 4.3.)

For brevity, we analyze approaches that are directly related
to the solution in the scenario-based model and comment on the
required implementation changes for the other programming
models.

3.3.1 Changing Topics in Sequential Code
We model the behavior with a simple function that modifies
the last message and notifies clients:
16 class Client { ...
23 def changeTopic(topic: String) = {
24 last = "Now discussing: " + topic
25 notify("Topic: " + topic) }} Sequential

Note that, as in the case of implementing notifications, the
behavior is conceptually simple and can be expressed with
straight-line sequential code. However, we encounter issues
similar to the ones we had when expressing notifications in the
sequential model: it is unclear how should the defined function
be executed in a distributed fashion across different nodes, and
how should we model the message dissemination and behaviors
on the clients. Moreover, the sequential computation model
is oblivious to the notion of data consistency.

3.3.2 Changing Topics with Actors
Due to the possibility of concurrent execution of existing and
new behaviors that might access and modify the same parts
of the application’s state, we have to enforce the right level of
consistency in potentially conflicting behaviors. In the actor
model, this usually reduces to preventing reordering of sending
and handling of certain messages on different nodes. Here, the
inconsistent view might occur if we allow clients to observe
message sending and topic changing in different orders. To
prevent receiving those messages out of order on the client,
since messages for conflicting behaviors originate on the server,
it is sufficient to impose an ordering on those messages and
make sure clients handle them in the correct order.5

Since we need to establish an ordering between messages,
we also need to change the existing class for notification
messages and add a new class of messages for topic changes,
while including an index, used for ordering, in both of them:
4 case class NotifyMsg(ind: Int, m: String) // change existing
5 case class TopicChangeS(topic: String) // handled at server
6 case class TopicChange(ind: Int, topic: String) Actor

5 Akka framework can guarantee that messages get delivered in the same order
as they were sent by a particular actor, but only between two actors; nevertheless,
we consider a more general solution for ensuring consistency.

Note that this requires changing all the places where NotifyMsg
was sent or received in the existing code.

The server actor now needs to track the current index of the
message that was delivered last and use it when sending either
of the two messages. We declare a variable to track the index
and define a case handler for changing the topic:
24 class ServerActor extends Actor { ...
30 var currentIndex = 0
31 override def receive = { ... // add a new case
38 case TopicChangeS(topic: String) {
39 last = "Now discussing: " + topic
40 currentIndex += 1 // update the index
41 for (client← clients) client !
42 TopicChange(currentIndex, topic) } } Actor

In addition, we also need to change the code that sends
NotifyMsg (inside the receive in the server actor), to include the
correct index of the message:
33 currentIndex += 1 // update the index
34 for (client← clients) client !
35 NotifyMsg(currentIndex) Actor

The client uses stashing, a feature in Akka that allows storing
messages to be handled later [1]. We need to add and modify the
handling of messages on the Client to use currentIndex, stashing,
and later handling, messages received out of order. We do this
for both notification and topic change messages:
17 case m@TopicChange(name)⇒
18 if (m.ind == currentIndex + 1) {
19 notify("Topic: " + name) // notify the user
20 currentIndex += 1; hStash() // handle stashed messages
21 } else stash() // stash the messages
22 case NotifyMsg(product)⇒ ... // similar Actor

When the client receives a TopicChange message, it first checks
whether the received message is the next message the client can
handle, by comparing the last index the client saw (currentIndex)
and the index of the message (m.ind). If the message is next
in the sequence, the client handles it by notifying the user about
the topic change, updates the current index, and handles the
stashed messages. We omit the definition of hStash; it simply
goes through all the stashed messages and delivers them in order.
Otherwise, the message is not delivered at that point as it is
received out of order. Such messages are stashed to be handled
later by calling stash [1]. (We omit the modifications to the code
for handling NotifyMsg, as it handles comparing and updating
currentIndex similarly as in the handler of TopicChange.)

Although quite flexible in that it offers controlling the way
messages are communicated and delivered, like custom orders
of message delivery in this case, the actor model might require
heavy disruptive changes to the existing implementations. Note
that the implementation of the new functionality required not
only disruptive changes to the existing code, but also adding
substantial amount of boilerplate code that was needed for
delivering messages in the specific order. Moreover, it required
inspecting all places in the code where involved messages are
sent or received. Although Akka provides built-in support for
features like message stashing and customizing actor mailboxes,
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handling distributed aspects such as consistency usually
requires fairly general, but ultimately application-specific
mechanisms, thus ultimately manual effort (such as identifying
and ordering appropriate messages) [1, 29].

3.3.3 Changing Topics with a Simple Scenario
In the scenario-based programming model, we again only need
to declare one additional, relatively simple scenario to achieve
the needed functionality, without making any changes to the
existing code, thanks to guarantees of the compiler for ensuring
consistency in the resulting implementation.

We declare a new scenario TopicChange that achieves the
needed functionality and allows issuing requests for changing
the topic on the client:
20 scenario TopicChange {
21 @location(Server) var last: String // put into scope
22 @trigger(Client.topicAction) // new client method
23 @input(Client.msg) @output(Client.notify)
24 def action(name: String) = {
25 last = "Now discussing: " + name
26 "Topic: " + name }} Scenario

This scenario gets triggered when a user-defined (to be
generated) method topicAction is invoked on the client. Since
the scenario function action updates a variable bound to the
server and takes an input parameter located on the client (we
reuse msg), this scenario gets triggered at a client and processed
at the server. Output of action is bound as an argument to notify
that is located on the client (as defined in § 3.2.6). Therefore,
the scenario sets the last seen message on the server (variable
last) and notifies all clients about the topic change.

Note that we did not explicitly specify the consistency of
data and behaviors that are involved in this scenario and existing
scenarios from before. Our compiler uses a simple program
analysis to check whether scenario behaviors might trigger at
different nodes but modify the same variables. If so, it ensures
that ordering of scenario executions, when observed at any node
in the system, is preserved. (Our prototype guarantees causal
consistency of scenarios, as described in § 4.3). The compiler
generates the same code as presented in the Actor case, which
tracks indexes and performs message stashing.

This example demonstrates that our programming model
allows defining and intuitive reasoning about behaviors, while
the consistency is implicitly guaranteed. This is done automat-
ically, without any additional input from the programmer, due
to the compiler ensuring the given semantics. Additionally, the
sequential code that models the behavior of changing topics
is again safely reused.

3.3.4 Changing Topics in Other Models
In other considered models, preventing inconsistencies requires
manually preventing reordering of certain requests or relying
on provided centralized means for data control:

• In the event-driven model, reordering needs to be prevented
manually (e.g. by explicitly marking events and enforcing
their ordering). Therefore, developers need to reason and

identify potential conflicts between events. Note that Sunny
does not suffer from this problem directly, since it orders
all possible events on the single server and manages view
updates for all clients (this might come at high performance
costs, as the server becomes a bottleneck) [46].
• In reactive and stream programming, consistency is implic-

itly preserved if potentially dependent requests are grouped
as a single event that is delivered to all clients: in that case,
all values are guaranteed to be delivered in the same order
as they are created on the server. However, if behaviors are
bound separately, in general, there are no guarantees on the
ordering and consistency needs to be ensured by additional
means or specialized propagation algorithms [24, 42].
• In our example with Redis, we could delegate preserving

consistency to the store by grouping dependent data and
declaring it with a stronger consistency level or perform
the requests in a transactional way (sacrificing the amount
of allowed concurrency and performance) [6].

3.4 The Role of the Sequential Model
The goal of our case study was to analyze the development
process of a conceptually simple distributed application that
exhibits a complex resulting implementation, throughout the pro-
cess of adding new requirements. We believe the chosen example
captures the requirements that are common to a wider range
of modern distributed applications. Since some requirements
cannot be directly handled in existing programming models,
developers often face subtle difficulties and potential pitfalls dur-
ing development, depending on the model they chose. Through
examining the advantages and drawbacks of existing approaches,
we showed that the scenario-based programming model offers
a separation of concerns that exposes conceptual behaviors
in the sequential model, delays dealing with the complexity
inherent to distributed applications, and allows hiding much
of the implementation details behind declarative specifications.

3.4.1 Expressiveness of Analyzed Approaches
Most of the programming models we analyzed rely on the se-
quential computation model to some extent, as the basis for
expressing computation, and use additional means to specify
distributed aspects (such as communication and concurrency)
of the intended application, while alleviating some of the burden
of handling those aspects (usually by managing parts of the low-
level implementations). However, the extent of this support tends
to be limited to a certain class of supported applications; this
comes at the expense of losing flexibility for implementing even
conceptually simple applications outside that class. Therefore,
these models tend to become too strict and default to a sub-
optimal predefined behaviors (often unacceptable) that might
end up hurting performance and the ability for further customiza-
tion; both of which are often necessary properties for distributed
application development. In general, implementing such applica-
tions amounts to additional complexity that usually needs to be
handled manually, using lower-level language constructs. One
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of the main points of our analysis was to examine how disruptive
is the transition of development and reasoning, when going from
the sequential model to the model that achieves full distributed
implementations, depending on various requirements.

3.4.2 Shared Aspects Between Different Models
Although we have identified several categories of programming
models, many of their concrete representatives overlap on the
adopted ideas and programming abstractions. Some of the
overlaps include the support for: reactive client views in event-
driven programming model Sunny [46], publish-subscribe
support in Redis [6], and most of the actor functionality and
features from the Akka framework naturally supported in Akka
streams [1]. Nevertheless, our aim was to present main ideas
of each approach that are faithful in spirit to the category they
represent. In spite of a non-negligible overlap, we believe our
analysis captures a representative sample of modern approaches
for development of distributed applications, together with
their shortcomings, to motivate an alternative, potentially more
suitable, paradigm.

4. Scenario-Based Programming Model
In this section we describe the scenario-based programming
model in more detail and define its key components. We present
language elements and their semantics (that any chosen realiza-
tion of the programming model should be compliant with) that
capture all the needed properties of the model. We restrict possi-
ble executions of valid generated implementations, with respect
to given specifications. We assume code fragments that represent
basic scenarios (in a sequential model) are defined as simple
functions within an existing host language and they follow its
operational semantics (as shown in § 3). Our prototype compiler
takes as input, as well as generates, code written in Scala [47].

4.1 Programming in Two Separate Phases
Since the goal of the programming model is to allow capturing,
reasoning and testing behaviour of the system with sequential
computation model, and later adding additional specification
to produce a full implementation, the compiler should allow
specifying scenarios in two incremental phases:

Sequential computation phase In the first phase,
developers identify and capture fragments of system’s behavior
with basic scenarios, which are simply represented with function
(closure) definitions. This phase effectively corresponds to
writing simple programs in the host language, while having the
opportunity to use its compiler and execute them sequentially.

Distributed computation specification phase In the sec-
ond phase, developers specify how the captured fragments par-
ticipate in the resulting distributed system by enriching basic sce-
narios with additional information that is sufficient to fully char-
acterize the implementation. Developers need to add annotations
to basic scenarios (from the first phase) to define distributed sce-
narios and specify the node configuration of the resulting system.

4.2 Scenario as a Language Element
The notion of a scenario is based on the idea of capturing an
independent, conceptually self-contained, fragment of com-
putation within the desired distributed application. We define
a basic scenario to consist of a simple function together with
all variables that are accessed within the function, i.e. a subset
of variables in its scope (as described in § 3.1.8). On the other
hand, the definition of a distributed scenario needs to capture
additional information that determine the distributed aspects
of the application and allow generating a full implementation.

A program consists of definitions of distributed scenarios
and nodes of the system. We define distributed scenarios as an
extension of basic scenarios with specifications of distributed
aspects. A distributed scenario s=(sb,sd) is defined with two
components:

basic scenario sb = (f,V ), where f is a function with
a set of free variables V (that are used inside f )

distributed specification sd = (t, M, Mf ), which is
associated with a basic scenario sb, where t is the scenario
trigger, M is mapping of free variables of sb to nodes, and Mf

defines binding of function arguments and the return value.
In our prototype, nodes are defined by extending predefined

Node classes, where all declared fields are associated with the
containing node (as shown in § 3.1.9). Distributed scenarios
are declared using the keyword scenario (which just represents
a special object in Scala). Scenario objects define one function
that represents the basic scenario, as well as the used variables
that are allocated to nodes by using the @location annotation.
Other distributed aspects are given as annotations to that func-
tion: @trigger (given a function) defines the trigger, and @input
and @output bind the function arguments and the return value.

4.3 Scenario Semantics
Intuitively, the second phase should result in an implementation
of a distributed system that behaves according to both the
behavior defined with sequential execution of basic scenarios
and the distributed specifications. We define the semantics of
scenarios by constraining possible observable behaviors across
all executions of the resulting distributed system.

4.3.1 Semantics of Executing a Single Scenario
To capture the fact that a basic scenario is fully and faithfully
represented in an execution of the generated distributed system,
we consider a projection of the execution on each node in the
system. We say that a basic scenario is correctly matched in the
execution of the system if: some node executing an operation
op1 causes some other node to executeop2, only if executing the
scenario (i.e. its function) in the sequential model would execute
op1 beforeop2 (i.e. projected operations belonging to a scenario
are executed in the same order), where the state used by op1 and
op2 satisfies the distributed specification for that scenario.

Figure 1 depicts a correct matching. Boxes designate
executions of potentially multiple operations, from a message
receive (or a scenario trigger, in the case of the initial dotted
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Figure 1. Scenario matched in a distributed execution.
Timelines denote execution traces on different nodes, boxes the
start and end of executions, and arrows denote communication.

arrow) that initiates the behavior on the given node, to the time
the node sends a message to another node (or ends the scenario).
The three given sequences of operations a, b, and c belong to
a single scenario (i.e. its function). The sequential execution
of the scenario is depicted on the seq. line. Within the whole
system, the scenario is triggered at the node n1 and in turn
causes flow of messages and fragments to be executed on n2 and
n3. Therefore, assuming the basic scenario specifies a sequential
execution order as given on the seq. line (and the state used in a,
b, and c satisfies to the specification), since the execution order
of operations matches the sequential execution of the scenario,
the given scenario is correctly matched in this execution.

4.3.2 Semantics of Scenario Composition
Intuitively, we define a composition of multiple scenarios as
valid if for all possible executions of the implemented system,
each executed operation and communication belongs to an exe-
cution trace that correctly matches at least one defined scenario.
In addition, for all defined scenarios there needs to exist some ex-
ecution of the system that contains a flow that correctly matches
it. This ensures that all the specified functionality is indeed
respected by the system, with respect to the programming model:
nothing is missed or artificially introduced by the compiler.

Figure 2 depicts two scenarios, s1 and s2, with dotted line
boxes. Even though their executions overlap across different
nodes and within node n3, we map operations to corresponding
scenarios with respect to the used state and given distributed
specification. Thus, if we assume that program defines only the
two given scenarios, since the given execution of the distributed
system correctly matches both scenarios, this execution trace
of the resulting implementation is considered valid.

4.3.3 Scenario-Based Consistency
Having the semantics of scenario composition defined, there
remains the issue of consistency across multiple scenario
executions. Such an execution is similar to an execution of
concurrent transactions on a multicore machine (with a subtle
difference of semantically grouping operations that belong
to the same scenario, which might be executed on different
nodes). Since different scenarios might run concurrently, span
across multiple different nodes, and involve reading and writing
overlapping subsets of the application’s state, allowing arbitrary

executions in the system might violate desired assumptions
about data consistency. This is not isolated only to concurrent
executions of different scenarios, but also of the same scenario;
such executions often span across different physical nodes,
since scenarios capture behaviors with respect to the node
type, which might be instantiated at different nodes during the
system’s execution (as it was the case in § 3).

Since scenarios capture fragments of behaviors that are con-
ceptually self-contained, the goal of our programming model is
to enable natural and convenient reasoning about (possibly con-
current) executions of scenarios within the resulting distributed
system. To that end, we define consistency requirements that
allow developers to view scenarios as happening atomically.
(Note that this is conceptually different than providing atomicity
of request handling, often supported in other approaches [19,
46, 57].) We introduce linearization points for scenarios, which
allow reasoning about end-effects of possible executions as if
whole scenarios executed atomically. Such a notion is reused,
but slightly modified from the traditional definition of a lineariza-
tion point, as it is applied to whole scenarios [31]. In Figure 2, the
dots, in their respective boxes, designate scenario linearization
points; even though scenarios might overlap in execution on dif-
ferent nodes, linearization points allow us to reason about their
execution (i.e. their observable effects) as if they were happening
atomically at the designated points (in time). The linearization
points for scenarios s1 and s2 are defined with f1 and f2 on the
seq. timeline. This particular execution trace entails the same ef-
fects as executing scenarios s1 and s2 in that order sequentially.

Semantic Dependencies Between Scenarios Guaranteeing
linearization points of scenarios alone is not sufficient for
avoiding inconsistent state or improper ordering of scenarios
(as demonstrated in our case study § 3, in the case of changing
topics). Even if linearizable, scenarios might start executing
(concurrently on multiple different nodes) as a consequence
of other scenarios; in such cases scenario linearization points
need to be ordered according to such (semantic) dependencies.
Therefore, arbitrary orderings of linearization points are not
acceptable in general. To achieve the desired consistency guar-
antees, we can impose additional rules on scenario executions,
according to the dependencies defined by triggers. Effectively,
our model allows choosing a consistency model for scenario
executions, with respect to such dependencies, including some
well-studied models in distributed computing, such as strong
and causal consistency (which our prototype uses) [49, 57].

We describe the intuition behind defining different consis-
tency models with respect to linearized executions of scenarios.
To that end, we consider the system and its execution given in Fig-
ure 2, with only two scenarios s1 and s2. Here, the linearization
points of scenarios, f1 and f2 on the line seq., dictate the possi-
ble observable effects of the whole execution as if the system ex-
ecuted the two scenarios in the given order. A valid execution is
then defined in the spirit of classical reasoning about consistency:
the effects of the execution must be equal as if the scenarios were
executed in some order that is compliant with the chosen con-
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Figure 2. Multiple scenarios matched in a distributed execution

sistency model. Therefore, in the example from Figure 2, valid
effects of executing scenarios in the distributed system must cor-
respond to executing f2 after f1 sequentially, assuming that the
order is consistent with the semantics of defined scenarios—e.g.
for causal consistency defined below, f2 does not cause f1.

Causally Consistent Scenarios For brevity, we only define
causal consistency for scenarios [49] (that is currently supported
in our prototype). We define causality of scenarios through
triggers: if a scenario can cause another scenario to start, the two
scenarios are causally related. We require that if an execution
of scenario s1 caused the trigger for scenario s2 (on the same or
different node), then their linearization points must respect the
causal ordering. Namely, we reuse the standard definition of the

“happened-before” relation and apply it to scenario linearization
points [31, 40]. We define that s1 happened before s2 if either:

• some operation of s1 occurred before some operation of
s2 on at least one node, or s1 caused the trigger of s2
• exists s3 that happened before s2 and s1 happened before s3

Valid implementations may allow only executions that respect
this definition of causality. (We showed an implementation that
satisfies this requirement in § 3.3.)

4.4 Implementation Concerns
Our prototype implementation is itself written in Scala and
uses the Leon synthesis framework to parse and analyze
scenario definitions and specifications, as well as to generate the
resulting actor implementations [38]. The compiler processes
scenarios one by one, producing an intermediate executable
implementation after each step. The generated implementation
relies on a small library that implements predefined constructs
from the programming model using the Akka framework. All
the synthesized implementations follow the constraints of the
presented semantics and assume causal consistency of scenarios.

4.4.1 Extensions of the Basic Model
Our programming model allows multiple extensions for support-
ing a wider class of applications and optimized implementations.
Our prototype supports the annotation @replicated(n) which
designates that the value is replicated on the node n. For such

values our compiler allocates the data on all the specified nodes
and emits additional code that propagates the value as soon
as it’s updated (akin to “push-based” reactive updates [13]).
The messages for the state replication are ordered to achieve
consistent view of data at times of scenario execution.

5. Future Work and Vision
We envision a more general, highly expressive language with
a compiler that supports efficient program analyses and emits
optimized implementations for a wide range of distributed appli-
cations (that go beyond the requirements considered in § 3). The
language, together with the compiler, i.e. the synthesizer, should:

support syntax that allows convenient definition and reusabil-
ity of scenarios depending on already defined fragments,
through language features such as inheritance

define full operational semantics of the language and allow
extensions such as different node classes and communication
patterns to widen the class of supported applications

provide choice of consistency levels in a non-intrusive way

leverage program reasoning within the compiler to avoid
using pessimistic mechanisms (e.g. for consistency) if it
can be statically proved that they are not necessary

require less input by supporting partial programs (e.g. that
omit full data mappings) and strengthening the synthesizer

generate higher-level calls to external frameworks to reuse
common functionality (e.g. for communication or storage)

6. Related Work
This presentation focuses on the detailed analysis of only a
subset of related programming models (presented in § 2), with a
goal to summarize different related, but fundamentally distinct,
perspectives on programming models for distributed systems.
Note that not only other programming models might be suffi-
cient in implementing certain pieces of functionality of our case
study, they might be a better fit than some of the analyzed ones.

6.1 Analyzed Programming Models
In this section, we expand the description and general discussion
about programming models we analyzed in our case study.

Reactive Programming One of the difficulties in implement-
ing interactive distributed applications is the “callback hell”
problem—the excessive use of callbacks (imperative compo-
nents that are invoked in response to asynchronous events) which
results in complex control flow within and across different parts
of the application [13]. Such code can be very difficult to reason
about, especially since callbacks might modify application’s mu-
table state. Reactive programming (RP) model tries to avoid this
problem by capturing control flow and values changing over time
behind clean abstractions [13, 52, 58]. Although initially pro-
posed for modelling applications with dependent values in cus-
tomized domains (such as programming animations), the model
has been applied to distributed programming in several practical
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frameworks and languages [13, 22]. One of the central notions
in RP is a behavior, which abstracts a value that can change
over time. The dependencies between behaviors are tracked:
changes to any behavior automatically cause recalculation of all
dependent behaviors. Functional Reactive Programming (FRP)
does this by composing pure, side-effect free behaviors (also
known as signals) and events [50, 58], while other frameworks
use mechanisms such as reactive collections [4, 13].

Although offering flexibility in declaring dependencies
between reactive values, the mechanisms for defining them tend
to be rigid and need to be declared explicitly; hence, adding new
functionality often requires heavy modifications of the existing
code [50]. Due to relying on the structure of reactive dependen-
cies, enforcing different consistency models, especially between
unrelated behaviors, can be hard to achieve [24]. Moreover, RP
approaches tend to be specialized towards restricted classes of
applications (e.g. with a single server, reactivity only on clients
[4]) or adopt communication schemas that do not offer handling
of concerns such as scalability and consistency [13, 24, 42].

Programming with Streams Programming with streams
focuses on structuring programs as collections of modules
that compute in parallel and communicate data via channels
[53, 55]. Stream programming approaches offer primitives
for constructing and managing streams and can be found
implemented in various paradigms: logic, functional, imperative
programming. Similarly in the basic idea to RP, they use
abstractions that capture and transform sequences of values,
albeit with different mechanisms and constructs [36, 50]. Even
though they offer more explicit control of the flow of values and
robust handling of changes within the system, they suffer from
issues similar as in RP. Akka streams represents a modern and
evolving instantiation of the model that tries to remedy some
of those issues by allowing more control over the streams [5, 9].

Event-driven Programming Event-driven programs are
organized around event processing [23, 26, 33, 46]. Event-
driven programming models thus mainly focus on representing
applications as sets of events that occur in the system, usually
modifying its state. The goal is to allow developers to focus on
the business logic encapsulated with events, while alleviating
the burden of managing communication and distribution to
the underlying runtime. We analyzed Sunny, a high-level (and
multi-tier) event-driven model that targets programming web
applications with independent events and clear separation of
the data model, views, and behavior [46].

Event-driven models are often inflexible for defining com-
plex behaviors and communication patterns, since such patterns
require defining multiple dependent events and handling their
dependencies, in spite of those events representing the same
behavior [46]. The concerns of the performance of event
processing, event ordering and data consistency usually require
manual effort from programmers; event-driven approaches
offer only limited predefined data allocation models (such as
a central storage) and mechanisms for event control.

Actor Model The actor model gained popularity for devel-
oping distributed systems in the recent years and spawned
multiple implementations in both academia and industry
[1, 12, 17, 34]. In addition to representing concurrently
executing units that communicate only by exchanging messages,
actors impose additional restrictions such as data encapsulation
and non-blocking communication, which are crucial properties
for reasoning, robustness and scalability [10, 32, 34]. The
model itself focuses on concurrent execution, while modern
implementations allow allocation and communication between
actors deployed across a network of nodes [1].

Although very general and flexible for implementing dis-
tributed applications of various architectures and requirements,
actor model is often viewed as low-level: complex communi-
cation patterns force implementations to be spread into multiple
message sends and handlers across different actors [29, 48].
With actors, developers need to structure their actor code accord-
ing to appropriate data placement and communication patterns.
Often, to achieve favorable performance, developers cannot rely
on the predefined features such as location-transparency (due
to performance considerations) and default schedulers (due
to dependencies between messages) [48, 56].

Key-Value Stores Distributed key-value stores provide
strong support for data-centric distributed applications and
allow easy control of aspects such as consistency levels,
availability, as well as horizontal scaling [18, 57, 59]. They
allow managing, evolving, and specializing data to support
data-driven distributed applications, while offloading the
burden of managing fault tolerance and replication needed for
scalability. In contrast to other programming models, key-value
stores clearly separate the concerns of storing and handling data,
and implementing business logic, which has to be achieved
separately. Even though the functionality of key-value stores is
often limited, coupled with a good interface, the model provides
additional features such as storing structured data and robust
access through protocols like REST [8, 59].

Besides focusing only on managing data, key-value stores
usually offer only a limited set of consistency modes that can
be set in a coarse-grain fashion, usually per different segments
of the store [6, 57]. This makes them harder to use if nodes
have different consistency requirements, effectively pushing
the concerns back to the application logic.

6.2 Other Related Approaches and Techniques
Next, we present other approaches and techniques related to
high-level programming of distributed systems.

Programming with RPCs Many approaches leverage some
form of remote procedure calls to simplify achieving commu-
nication and abstracting away the necessary boilerplate code be-
hind seemingly standard procedure calls [3, 4, 16, 19, 22]. RPC
tries to remove unnecessary difficulties of building distributed
systems like timing and communication in the context of dis-
tributed execution environments [15]. Interestingly, some of the
emphasized issues of the analyzed models we discussed in § 3,
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are related to the ones present in the RPC model and pointed out
in prior work [54]. One of the main concerns with RPCs is inabil-
ity to interchangeably mix normal calls and RPCs, due to both
semantic (e.g. interference of global variables) and performance
issues. (Functional approaches solve the former class of issues [3,
19].) Behaviors with complex communication patterns, even if
conceptually coherent, might require splitting them into multiple
RPC calls [54]. Scenario-based model separates the two respon-
sibilities of programming to capture necessary information at
the right level of abstraction and avoid such issues. Interestingly,
it shares some of the potential issues with RPCs, like agreeing
on completion and failure handling [54]. While such issues are
inherent to the distributed nature of systems, our approach emits
code that might employ external mechanisms to solve them.

Publish-Subscribe Model The ability to define flexible
many-to-many communication through channels and sub-
scriptions offers an advantage for implementing a large class
of distributed systems [16]. Many approaches incorporate
publish-subscribe functionality, some of them mixing it with
other models [4, 19, 22, 25, 42, 59]. On top of providing flexible
means of connecting nodes (e.g. by transparently subscribing
to topics), some approaches allow more complex patterns by
composing subscriptions [16, 19]. However, publish-subscribe
model often entails either inflexible runtime, or manual handling
of lower-level details (which hinders the ability to schedule
computation or allocate state on different nodes) and distributed
aspects like consistency.

Distributed Dataflow Dataflow languages model distributed
applications as reactive networks which propagate signals, syn-
chronously or asynchronously between their components [11,
30, 45, 53]. They resemble programming with streams, in terms
of both expressiveness and issues, and are often considered as
a specialized category of stream processing [30]. Many of such
languages focus on programs in specific settings, such as real-
time and critical systems like microcontrollers, which then map
to specific low-level components. In distributed settings, they of-
ten exhibit performance issues and need to rely on specific sched-
ulers and lightweight threads to manage computations [53].

Language Design for Distribution A large body of research
in programming languages brought many languages, such as Oc-
cam, Ada, and Linda, with primitives based on message passing,
rendezvous, and remote procedure calls [14]. Moreover, con-
structs in certain paradigms were utilized for handling aspects
like communication and error handling [30, 39, 43]. Recently, re-
searchers started recognizing the role of data semantics for such
concerns; conflict-free replicated data types, albeit currently lim-
ited, offer guarantees for consistency even with eventual commu-
nication [45]. Prior work that aims at specifying concerns (such
as concurrency) orthogonally to sequential implementations ex-
tends languages with aspects [21] and pragmas [35]. While such
approaches usually rely on deterministic code transformations,
in our approach, distributed specifications dictate searching for
a correct implementation in a potentially large space.

Code Generation and Program Analysis The idea of in-
creasing the level of abstractions in programming, to the point of
declarative specifications, was attracting interest for a long time
[28, 38]. By leveraging program analysis techniques, the goal
is to allow programmers focus on editing high-level code and
specifications, rather than final (optimized) implementations
[38, 46]. Many systems rely on program analysis in order to
generate and optimize (certain parts of) distributed applications
[11, 19, 33]. Our approach is well aligned with this idea, with
a strong emphasis on program analyses for searching for, or
synthesizing, efficient implementations that satisfy distributed
aspects given as specifications.

Large Scale Distributed Processing Systems An interesting
line of research involves programming models in the context of
large scale distributed architectures. Many large scale processing
systems provide frameworks based on specialized abstractions
such as resilient distributed data types from Apache Spark,
Google’s MapReduce model of distributing computation, and
publish-subscribe mechanisms like Apache Kafka. While these
systems are usually built with low-level primitives (like RPCs),
their frameworks do not expose them; their model is usually
specialized towards specific kinds of distributed computation
and is not flexible to address user-specific requirements.

Multi-Tier Programming Models Developing distributed
applications in a single language (and framework) is an idea
shared by many approaches [3, 19, 20, 37, 50]. The focus of
multi-tier approaches includes strong static checking, handling
low-level boilerplate code, and leveraging programming abstrac-
tions across tiers (usually, for web technologies). However, these
approaches tend to rely on some existing model for handling dis-
tributed aspects, such as RPCs ([3, 19]) and reactive components
([50]) for communication, and as such, offer similar perspectives
(and issues) for development of distributed applications.

7. Concluding Remarks
We posed, and made an attempt to answer, a fundamental ques-
tion about the sequential computation model and its relevance
and applicability in the development of modern distributed sys-
tems. There are several conclusions we arrived at based on our
exploration of the practice of programming distributed applica-
tions. Although sequential computation is used as basis in many
approaches for programming distributed systems, the inherent
complexity of dealing with distributed aspects is the essence of
a large set of issues during development. Our perspective on the
sequential computation model is that it remains a crucial com-
ponent in the specification of a distributed system’s behavior. To
emphasize it, we hinted at a programming paradigm shift that
could free the sequential model from the inherent complexity
of distributed systems and allow retaining its simplicity.

We proposed scenario-based programming as a case in point
and a step towards achieving the paradigm shift. By separating
the concerns of modelling the sequential behavior of the ap-
plication, the programming model allows specifying distributed
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aspects, including data and computation location, reaction to
stimuli, and data consistency, by writing orthogonal constraints
without disrupting the existing code. We look forward to seeing
the model as a fully-developed language and hearing reports on
it from researchers and practitioners that explore this frontier.
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