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ABSTRACT
For ‘mixed-criticality’ systems that have both critical and 
non-critical functions, the greatest leverage on dependabil-
ity may be at the design level. By designing so that each 
critical requirement has a small trusted base, the cost of the 
analysis required for a dependability case might be dra-
matically reduced. An implication of this approach is that 
conventional object-oriented design may be a liability, be-
cause it leads to ‘entanglement’, and an approach based on 
separating services may be preferable.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 Software/Program Verification; D.2.10 De-
sign.

General Terms
Design, Reliability, Languages, !eory, Verification.

Keywords
Dependability, software design, separation of concerns, 
object-orientation, formal methods, trusted bases, decou-
pling, entanglement, mixed-criticality systems.

1. WHY CURRENT APPROACHES FAIL
Today’s software developers rely on two techniques to 
make their software more dependable: process and testing.
In any large development, a defined software process is 
essential; without it, standards are hard to enforce, issues 
fall through cracks, and the organization cannot learn from 
past mistakes. At minimum, a process might include pro-
cedures for version control, bug tracking and regression 
testing; typically, it also includes standard structures for 
documents and guidelines for meetings (eg, for require-
ments gathering, design and code review); and most ambi-

tiously includes collection of detailed statistics and explicit 
mechanisms for adjusting the process accordingly.
Testing is used for two very different purposes. On the one 
hand, it is used to find bugs. Structural tests exploit knowl-
edge of the structure of the software to identify bugs in 
known categories. A mutation test, for example, might fo-
cus on the possibility that the wrong operator was selected 
for an expression; a regression test is designed to detect the 
reoccurrence of a particular flaw. For this kind of testing, a 
successful test is one that fails, and thus identifies a bug.
On the other hand, testing can be used to provide evidence 
of dependability. In this case, tests focused on particular 
known bug categories are less useful (since a failure might 
come from a category that has not been identified). Instead, 
tests are drawn randomly from the ‘operational profile’ – 
the expected profile of use – and statistical inferences are 
made about the likelihood of failure in the field based on 
the sampling carried out in the tests. For this kind of test-
ing, a successful test is one that succeeds, since a failing test 
case might not only require a bug fix (which sets the testing 
effort back to square one, since the target of the testing is 
now a new program on which old results no longer obtain), 
but provides direct evidence of low quality, thus altering 
the tester’s assumptions and raising the bar for demonstrat-
ing dependability.
For modest levels of dependability, process and testing have 
been found to be effective, and they are widely regarded to 
be necessary components of any serious development. Ar-
guments remain about exactly what form process and test-
ing should take: whether the process should follow an in-
cremental or a more traditional waterfall approach, or 
whether unit testing or subsystem testing should predomi-
nate, for example. But few would argue that process and 
testing are bad ideas.
For the high levels of dependability that are required in 
critical applications, however, process and testing – while 
necessary – do not seem to be sufficient. Despite many 
years of experience in organizations that adhere to burden-
some processes and perform extensive testing, there is little 
compelling evidence that these efforts ensure the levels of  
dependability required. Although it seems likely that the 
adoption of rigorous processes has an indirect impact on 
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dependability (by encouraging a culture of risk avoidance 
and attention to detail), evidence of a direct link is missing.
!e effectiveness of statistical testing lies at the core of the 
difficulty, since the most likely way a process might estab-
lish dependability would be via testing – in the same way 
that industrial manufacturing processes achieve quality by 
measuring samples as they come off the assembly line. Un-
fortunately, even if the operational profile can be sampled 
appropriately, and all other statistical assumptions hold, the 
number of tests that is required to establish confidence is 
rarely feasible. To claim a failure rate of one in R executions 
or ‘demands’ to a confidence of 99% requires roughly 5R 
tests to be executed [5]; similarly, a rate of one failure in R 
hours requires testing for 5R hours. To meet the oft-stated 
avionics standard of 109 failure per hour, for example, 
would require testing for 5.109 hours – almost a million 
years.

2. A DIRECT APPROACH
In the last few years, a different approach has been advo-
cated, drawing on experience in the field of system safety. 
!e idea, in short, is that instead of relying on indirect evi-
dence of dependability from process or testing, the devel-
oper provides direct evidence, by presenting an argument 
that connects the software to the dependability claim.
!is argument, which is known as a dependability case, 
takes as premises the code of the software system, and as-
sumptions about the domains with which it interacts (such 
as hardware peripherals, the physical environment and 
human operators), and from these premises, establishes 
more or less formally some particular critical properties.
!e credibility of a dependability case, like the credibility of 
any argument, will rest on a variety of social and technical 
factors. When appropriate, it may include statistical argu-
ments, although logical arguments are likely to play a 
greater role. To argue that a component has a failure rate of 
less than one in 109 demands, it may be possible to test the 
component exhaustively, but if not, testing to achieve suffi-
cient statistical confidence is likely to be too expensive, and 
formal verification will be a more viable option.
Formal methods will therefore likely play a key role in de-
pendability cases, since there are no other approaches that 
can provide comparable levels of confidence at reasonable 
cost. Note, however, that just as rigorous process does not 
guarantee dependability, the use of formal methods does 
not either. A formal verification is only useful to the extent 
that it provides a critical link in the dependability argu-
ment. Insisting on the use of particular formalisms, or on 
the elimination of particular anomalies, is a priori no more 
likely to be cost effective than the imposition of any other 
process practice (such DO178B’s requirement for MCDC 

testing). For this reason, the claim that software is ‘free 
from runtime errors’ should be taken with a grain of salt. 
While it is certainly useful to know that a program will not 
suffer from an arithmetic overflow or exceed the bounds of  
an array, such knowledge does not provide any direct evi-
dence that the software will not lead to a catastrophic fail-
ure. Indeed, the construction of a dependability case may 
reveal that the risk of runtime errors is not the weakest link 
in the chain.

3. THE COST OF BUILDING A CASE
A great attraction of statistical testing is that its cost does 
not depend on the size of the software being checked. Un-
fortunately, for the analyses that are more likely to be used 
as the elements of a dependability case, and which rely on 
examining the text of the software, cost increases at least 
linearly with size.
!is underlines the importance of designing for simplicity. 
!e smaller and simpler the code, the lower the cost of 
constructing the case for its correctness; the additional 
upfront cost of a cleaner design will likely prove to be a 
good investment. But even if Hoare is right, and ‘inside 
every large program there is a small one trying to get out’, it 
may not be possible to find that small program, especially 
the first time around.
A more realistic aim is to reduce not the size of the entire 
program, but rather the size of the subprogram that must 
be considered to argue that a critical property holds. !is 
subprogram, the trusted base for the critical property, must 
include not only the code that directly implements the rele-
vant functionality, but any other code that might poten-
tially undermine the property.
One might think that identifying trusted bases for proper-
ties in this way helps only because it allows the rest of the 
program to be ignored. But an advantage may be gained 
even if the trusted bases cover the entire program.
Suppose the dependability case must establish k properties 
of the system, and that each property has a trusted base of 
size B. !e analysis cost is likely to be superlinear; a reason-
able guess is that it will be quadratic, to account for the 
interactions between parts. In that case, the total cost 
would be kB2. Now if the trusted bases cover the entire 
program (but do not overlap), the size of the total codebase 
is kB. For the same codebase, but without a factoring into 
trusted bases, the cost of the analysis would be k(kB)2, 
which is larger by a factor of k2. Even if the analysis cost 
were only linear in the size of the trusted base, the cost of 
analyzing k properties on a codebase of size kB would be 
k2B, compared to the cost kB of analyzing k properties, 
each over a trusted base of size B.



!is analysis does not account for the possibility that the 
effort involved in analyzing different properties might over-
lap. For example, if the reliability of communications chan-
nel is needed for multiple properties, it may be possible to 
determine just once that the channel is reliable, so that its 
code is analyzed a single time. In the classical approach to 
verification (which has yet to be realized in full on a large-
scale system), each component is verified with respect to its 
specification; the high level properties then require only an 
analysis at the top-level using the specifications of the larg-
est components.
!e cost reduction due to this sharing of subanalyses is 
likely to be a significant factor for systems in which the 
critical properties that comprise the dependability claims 
essentially cover the entire functionality. A medical device 
such as an infusion pump or a pacemaker might fall in this 
category; it is hard to imagine anything that could go 
wrong in such a device without compromising its safety.
For most systems, however, different properties will be 
critical to different degrees, and will therefore call for dif-
ferent levels of confidence and different levels of invest-
ment. Moreover, there will be large aspects of the function-
ality that will not require consideration in a dependability 
case at all. For example, for an online bookstore, for the 
functionality that deals with search, advertising and re-
views, conventional testing may suffice to establish confi-
dence that the application is deployable. In contrast, the 
properties that credit card numbers are not leaked, or that 
customers are billed for the amount indicated, might merit 
construction of a dependability case.
For these mixed-criticality systems, the critical properties 
are so partial with respect to the overall functionality that 
there are few opportunities for shared subanalyses; the cost 
of verifying a component to a specification that is sufficient 
for the analyses of multiple properties will usually not be 
justified. Moreover, the high variance in criticality will 
make it worthwhile to split the system into multiple trusted 
bases, ideally with smaller bases associated with the more 
critical properties.

4. DECOUPLING MECHANISMS
!e trusted base of a critical property may be larger than 
desirable for two distinct reasons. One is simply that the 
code that implements the property is not as localized as it 
might be. !e other is that the relevant code is localized 
appropriately, but an analysis of additional modules is re-
quired in order to determine that their code is not relevant.
(Incidentally, one might think that the notion of trusted 
base could be defined in execution rather than analysis 
terms. A module might be included in the trusted base if its 
failure can undermine the critical property. While such a 

notion is possible, and was used by Parnas in defining his 
uses relation [6], it turns out to be extremely tricky to pin 
down, in large part because ‘failure’ is not well defined.)
!e trusted base idea thus provides a phasing of analyses. 
In the first phase, a robust but inexpensive decoupling 
analysis – conducted preferably at the design level – de-
termines which modules are in the trusted base and are 
thus relevant; in the second phase, these modules are ana-
lyzed to ensure that the property holds.
In the simplest case, the decoupling analysis can rely on 
physical isolation, but more often an appeal to a virtual   
isolation is needed, made possible by a decoupling mecha-
nism. Such mechanisms are available at all levels. !e ma-
chine and its operating system may provide address space 
separation, supporting the inference that distinct processes 
run independently; a middleware platform may provide 
communication channels with the implicit guarantee that 
no other interactions are possible; and the programming 
language may provide namespace access control and strong 
typing, so that data can be encapsulated.
In all these cases, arguing for decoupling and thus shrink-
ing the trusted base will still require the discharging of 
some assumptions. For example, in a language with strong 
typing, establishing lack of interaction between two mod-
ules will require a simple argument that their namespaces 
are disjoint (and if their types overlap, may also require an 
aliasing/escape analysis). Such an analysis may be non-
trivial, but it is generally far cheaper than the subsequent 
analysis that the relevant modules enforce the desired 
property, thus justifying the phase separation and the no-
tion of the trusted base.
In contrast, if support for decoupling is lacking, there will 
be no such cost differential, and a claim for a smaller 
trusted base will be less useful. For example, in a program 
written in an unsafe language (such as C), code in any one 
module can in principle modify data accessed by another 
(by exceeding the bounds of an array, for example, and 
modifying arbitrary memory), whether or not there is any 
overlap in their namespaces.

5. OBJECT-ORIENTED ENTANGLEMENT
A good software design, then, is one that (with the help of 
available decoupling mechanisms) gives small trusted bases 
for the critical properties. Finding a good design will obvi-
ously require insight, experience and domain expertise. 
Nevertheless, it is worth asking whether the basic design 
strategies that are conventionally used are a help or a hin-
drance.
From the perspective of dependability and trusted bases, it 
seems that object-orientation may actually be a liability. 
!e standard exhortation to group the common properties 



of a domain entity into a single program object may not 
only fail to aid in decoupling, but may make things worse, 
by creating an unnecessary entanglement of features.
Consider, for example, the design of an online bookstore. A 
standard domain model would likely include entities such 
as Customer, Book, ShoppingCart, Order, CreditCard, etc., 
and when these entities are realized as classes in the code, 
the associations between these would likely be represented 
as fields (typically backed by the tables of a relational data-
base). Worse, these associations, being semantically bidi-
rectional, will often be supported in the code by bidirec-
tional references for easy navigation; for example, the field 
that obtains a customer’s shopping cart will be matched by 
a field from the shopping cart back to the customer.
As a result, code that should be irrelevant to a critical 
property cannot be easily factored out. If the property, for 
example, is that credit card numbers are not inadvertently 
revealed, the entire Customer class will be relevant because 
one of its fields holds a reference to the customer’s card; 
and the ShoppingCart will be relevant because of its back 
reference to Customer.
!ese observations mirror concerns that have been raised 
before about object orientation. Roles embody the idea that 
an object has distinct ways of participating in different 
functions [7]. !e Visitor pattern [1], and more broadly 
subject orientation [8] and aspect orientation [3] seek to 
overcome the ‘tyranny of the dominant decomposition’ [8], 
in which all functionality is decomposed across a single 
object hierarchy that follows the structure of the problem 
domain.
Rather than fixing the problems of object-orientation, it 
may be simpler and more effective to structure a system 
from the outset as a collection of independent services 
(perhaps corresponding to Jackson’s subproblems [4]), 
which are then implemented in a conventional style, and 
connected together narrow interfaces.
In the bookstore example, searching for books, reviewing, 
advertising, and billing might each be implemented as a 
distinct service. To charge a customer’s credit card, a coor-
dination component might make a call on the billing serv-
ice using a customer identifier that is mapped internally by 
the service to a credit card record. In a monolithic object-
oriented implementation, this identifier would be the ad-
dress of the customer object, and holding it would allow a 
client access to all features of a customer. Here, in contrast, 
use of the identifier for billing purposes is controlled by the 
API of the billing service.
!is kind of separation of concerns is not new. But it does 
not seem to be widely applied, and there is no systematic 
design method that exploits it to the full.

6. A FOCUS ON DESIGN
In a mixed-criticality system such as an online bookstore, 
the proportion of the code relevant to a critical property 
(such as protecting credit cards) is likely to be low – per-
haps 5% or less. Designing for a small trusted base might 
thus decrease the cost of constructing the dependability 
case by a factor of 20, which is likely far more than can be 
achieved by advances in the near future in language design, 
static analysis or verification.
!is suggests that as a research field, software engineering 
might do well to redirect its attention, placing less empha-
sis on languages and analyses, and more on design and 
methodology. Research on design is harder to assess,  
though, and the current taste for empirical evaluation 
seems to drive research into the areas where potential gains 
are the most immediate, and thus often the smallest. No 
wonder that much research is now focused on ex post facto 
analysis, and on the problems of legacy code.
Perhaps it’s time to redress the balance, and to focus again 
on the fundamental problem of design. Analysis can help, 
but dependability cannot emerge as an accident. It will 
come for sure only by design.
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