
Separation of Concerns for Dependable Software Design
Daniel Jackson and Eunsuk Kang

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street, Cambridge, MA 02139

dnj@mit.edu

ABSTRACT
For ‘mixed-criticality’ systems that have both critical and
non-critical functions, the greatest leverage on dependabil-
ity may be at the design level. By designing so that each
critical requirement has a small trusted base, the cost of the
analysis required for a dependability case might be dra-
matically reduced. An implication of this approach is that
conventional object-oriented design may be a liability, be-
cause it leads to ‘entanglement’, and an approach based on
separating services may be preferable.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.4 Software/Program Verification; D.2.10 De-
sign.

General Terms
Design, Reliability, Languages, !eory, Verification.

Keywords
Dependability, software design, separation of concerns,
object-orientation, formal methods, trusted bases, decou-
pling, entanglement, mixed-criticality systems.

1. WHY CURRENT APPROACHES FAIL
Today’s software developers rely on two techniques to
make their software more dependable: process and testing.
In any large development, a defined software process is
essential; without it, standards are hard to enforce, issues
fall through cracks, and the organization cannot learn from
past mistakes. At minimum, a process might include pro-
cedures for version control, bug tracking and regression
testing; typically, it also includes standard structures for
documents and guidelines for meetings (eg, for require-
ments gathering, design and code review); and most ambi-

tiously includes collection of detailed statistics and explicit
mechanisms for adjusting the process accordingly.
Testing is used for two very different purposes. On the one
hand, it is used to find bugs. Structural tests exploit knowl-
edge of the structure of the software to identify bugs in
known categories. A mutation test, for example, might fo-
cus on the possibility that the wrong operator was selected
for an expression; a regression test is designed to detect the
reoccurrence of a particular flaw. For this kind of testing, a
successful test is one that fails, and thus identifies a bug.
On the other hand, testing can be used to provide evidence
of dependability. In this case, tests focused on particular
known bug categories are less useful (since a failure might
come from a category that has not been identified). Instead,
tests are drawn randomly from the ‘operational profile’ –
the expected profile of use – and statistical inferences are
made about the likelihood of failure in the field based on
the sampling carried out in the tests. For this kind of test-
ing, a successful test is one that succeeds, since a failing test
case might not only require a bug fix (which sets the testing
effort back to square one, since the target of the testing is
now a new program on which old results no longer obtain),
but provides direct evidence of low quality, thus altering
the tester’s assumptions and raising the bar for demonstrat-
ing dependability.
For modest levels of dependability, process and testing have
been found to be effective, and they are widely regarded to
be necessary components of any serious development. Ar-
guments remain about exactly what form process and test-
ing should take: whether the process should follow an in-
cremental or a more traditional waterfall approach, or
whether unit testing or subsystem testing should predomi-
nate, for example. But few would argue that process and
testing are bad ideas.
For the high levels of dependability that are required in
critical applications, however, process and testing – while
necessary – do not seem to be sufficient. Despite many
years of experience in organizations that adhere to burden-
some processes and perform extensive testing, there is little
compelling evidence that these efforts ensure the levels of
dependability required. Although it seems likely that the
adoption of rigorous processes has an indirect impact on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro!t or commercial advantage and
that copies bear this notice and the full citation on the !rst page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior speci!c permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

http://portal.acm.org/ccs.cfm?part=author&coll=portal&dl=GUIDE&row=D.2.4&idx=4&CFID=93262396&CFTOKEN=74254855
http://portal.acm.org/ccs.cfm?part=author&coll=portal&dl=GUIDE&row=D.2.4&idx=4&CFID=93262396&CFTOKEN=74254855

dependability (by encouraging a culture of risk avoidance
and attention to detail), evidence of a direct link is missing.
!e effectiveness of statistical testing lies at the core of the
difficulty, since the most likely way a process might estab-
lish dependability would be via testing – in the same way
that industrial manufacturing processes achieve quality by
measuring samples as they come off the assembly line. Un-
fortunately, even if the operational profile can be sampled
appropriately, and all other statistical assumptions hold, the
number of tests that is required to establish confidence is
rarely feasible. To claim a failure rate of one in R executions
or ‘demands’ to a confidence of 99% requires roughly 5R
tests to be executed [5]; similarly, a rate of one failure in R
hours requires testing for 5R hours. To meet the oft-stated
avionics standard of 109 failure per hour, for example,
would require testing for 5.109 hours – almost a million
years.

2. A DIRECT APPROACH
In the last few years, a different approach has been advo-
cated, drawing on experience in the field of system safety.
!e idea, in short, is that instead of relying on indirect evi-
dence of dependability from process or testing, the devel-
oper provides direct evidence, by presenting an argument
that connects the software to the dependability claim.
!is argument, which is known as a dependability case,
takes as premises the code of the software system, and as-
sumptions about the domains with which it interacts (such
as hardware peripherals, the physical environment and
human operators), and from these premises, establishes
more or less formally some particular critical properties.
!e credibility of a dependability case, like the credibility of
any argument, will rest on a variety of social and technical
factors. When appropriate, it may include statistical argu-
ments, although logical arguments are likely to play a
greater role. To argue that a component has a failure rate of
less than one in 109 demands, it may be possible to test the
component exhaustively, but if not, testing to achieve suffi-
cient statistical confidence is likely to be too expensive, and
formal verification will be a more viable option.
Formal methods will therefore likely play a key role in de-
pendability cases, since there are no other approaches that
can provide comparable levels of confidence at reasonable
cost. Note, however, that just as rigorous process does not
guarantee dependability, the use of formal methods does
not either. A formal verification is only useful to the extent
that it provides a critical link in the dependability argu-
ment. Insisting on the use of particular formalisms, or on
the elimination of particular anomalies, is a priori no more
likely to be cost effective than the imposition of any other
process practice (such DO178B’s requirement for MCDC

testing). For this reason, the claim that software is ‘free
from runtime errors’ should be taken with a grain of salt.
While it is certainly useful to know that a program will not
suffer from an arithmetic overflow or exceed the bounds of
an array, such knowledge does not provide any direct evi-
dence that the software will not lead to a catastrophic fail-
ure. Indeed, the construction of a dependability case may
reveal that the risk of runtime errors is not the weakest link
in the chain.

3. THE COST OF BUILDING A CASE
A great attraction of statistical testing is that its cost does
not depend on the size of the software being checked. Un-
fortunately, for the analyses that are more likely to be used
as the elements of a dependability case, and which rely on
examining the text of the software, cost increases at least
linearly with size.
!is underlines the importance of designing for simplicity.
!e smaller and simpler the code, the lower the cost of
constructing the case for its correctness; the additional
upfront cost of a cleaner design will likely prove to be a
good investment. But even if Hoare is right, and ‘inside
every large program there is a small one trying to get out’, it
may not be possible to find that small program, especially
the first time around.
A more realistic aim is to reduce not the size of the entire
program, but rather the size of the subprogram that must
be considered to argue that a critical property holds. !is
subprogram, the trusted base for the critical property, must
include not only the code that directly implements the rele-
vant functionality, but any other code that might poten-
tially undermine the property.
One might think that identifying trusted bases for proper-
ties in this way helps only because it allows the rest of the
program to be ignored. But an advantage may be gained
even if the trusted bases cover the entire program.
Suppose the dependability case must establish k properties
of the system, and that each property has a trusted base of
size B. !e analysis cost is likely to be superlinear; a reason-
able guess is that it will be quadratic, to account for the
interactions between parts. In that case, the total cost
would be kB2. Now if the trusted bases cover the entire
program (but do not overlap), the size of the total codebase
is kB. For the same codebase, but without a factoring into
trusted bases, the cost of the analysis would be k(kB)2,
which is larger by a factor of k2. Even if the analysis cost
were only linear in the size of the trusted base, the cost of
analyzing k properties on a codebase of size kB would be
k2B, compared to the cost kB of analyzing k properties,
each over a trusted base of size B.

!is analysis does not account for the possibility that the
effort involved in analyzing different properties might over-
lap. For example, if the reliability of communications chan-
nel is needed for multiple properties, it may be possible to
determine just once that the channel is reliable, so that its
code is analyzed a single time. In the classical approach to
verification (which has yet to be realized in full on a large-
scale system), each component is verified with respect to its
specification; the high level properties then require only an
analysis at the top-level using the specifications of the larg-
est components.
!e cost reduction due to this sharing of subanalyses is
likely to be a significant factor for systems in which the
critical properties that comprise the dependability claims
essentially cover the entire functionality. A medical device
such as an infusion pump or a pacemaker might fall in this
category; it is hard to imagine anything that could go
wrong in such a device without compromising its safety.
For most systems, however, different properties will be
critical to different degrees, and will therefore call for dif-
ferent levels of confidence and different levels of invest-
ment. Moreover, there will be large aspects of the function-
ality that will not require consideration in a dependability
case at all. For example, for an online bookstore, for the
functionality that deals with search, advertising and re-
views, conventional testing may suffice to establish confi-
dence that the application is deployable. In contrast, the
properties that credit card numbers are not leaked, or that
customers are billed for the amount indicated, might merit
construction of a dependability case.
For these mixed-criticality systems, the critical properties
are so partial with respect to the overall functionality that
there are few opportunities for shared subanalyses; the cost
of verifying a component to a specification that is sufficient
for the analyses of multiple properties will usually not be
justified. Moreover, the high variance in criticality will
make it worthwhile to split the system into multiple trusted
bases, ideally with smaller bases associated with the more
critical properties.

4. DECOUPLING MECHANISMS
!e trusted base of a critical property may be larger than
desirable for two distinct reasons. One is simply that the
code that implements the property is not as localized as it
might be. !e other is that the relevant code is localized
appropriately, but an analysis of additional modules is re-
quired in order to determine that their code is not relevant.
(Incidentally, one might think that the notion of trusted
base could be defined in execution rather than analysis
terms. A module might be included in the trusted base if its
failure can undermine the critical property. While such a

notion is possible, and was used by Parnas in defining his
uses relation [6], it turns out to be extremely tricky to pin
down, in large part because ‘failure’ is not well defined.)
!e trusted base idea thus provides a phasing of analyses.
In the first phase, a robust but inexpensive decoupling
analysis – conducted preferably at the design level – de-
termines which modules are in the trusted base and are
thus relevant; in the second phase, these modules are ana-
lyzed to ensure that the property holds.
In the simplest case, the decoupling analysis can rely on
physical isolation, but more often an appeal to a virtual
isolation is needed, made possible by a decoupling mecha-
nism. Such mechanisms are available at all levels. !e ma-
chine and its operating system may provide address space
separation, supporting the inference that distinct processes
run independently; a middleware platform may provide
communication channels with the implicit guarantee that
no other interactions are possible; and the programming
language may provide namespace access control and strong
typing, so that data can be encapsulated.
In all these cases, arguing for decoupling and thus shrink-
ing the trusted base will still require the discharging of
some assumptions. For example, in a language with strong
typing, establishing lack of interaction between two mod-
ules will require a simple argument that their namespaces
are disjoint (and if their types overlap, may also require an
aliasing/escape analysis). Such an analysis may be non-
trivial, but it is generally far cheaper than the subsequent
analysis that the relevant modules enforce the desired
property, thus justifying the phase separation and the no-
tion of the trusted base.
In contrast, if support for decoupling is lacking, there will
be no such cost differential, and a claim for a smaller
trusted base will be less useful. For example, in a program
written in an unsafe language (such as C), code in any one
module can in principle modify data accessed by another
(by exceeding the bounds of an array, for example, and
modifying arbitrary memory), whether or not there is any
overlap in their namespaces.

5. OBJECT-ORIENTED ENTANGLEMENT
A good software design, then, is one that (with the help of
available decoupling mechanisms) gives small trusted bases
for the critical properties. Finding a good design will obvi-
ously require insight, experience and domain expertise.
Nevertheless, it is worth asking whether the basic design
strategies that are conventionally used are a help or a hin-
drance.
From the perspective of dependability and trusted bases, it
seems that object-orientation may actually be a liability.
!e standard exhortation to group the common properties

of a domain entity into a single program object may not
only fail to aid in decoupling, but may make things worse,
by creating an unnecessary entanglement of features.
Consider, for example, the design of an online bookstore. A
standard domain model would likely include entities such
as Customer, Book, ShoppingCart, Order, CreditCard, etc.,
and when these entities are realized as classes in the code,
the associations between these would likely be represented
as fields (typically backed by the tables of a relational data-
base). Worse, these associations, being semantically bidi-
rectional, will often be supported in the code by bidirec-
tional references for easy navigation; for example, the field
that obtains a customer’s shopping cart will be matched by
a field from the shopping cart back to the customer.
As a result, code that should be irrelevant to a critical
property cannot be easily factored out. If the property, for
example, is that credit card numbers are not inadvertently
revealed, the entire Customer class will be relevant because
one of its fields holds a reference to the customer’s card;
and the ShoppingCart will be relevant because of its back
reference to Customer.
!ese observations mirror concerns that have been raised
before about object orientation. Roles embody the idea that
an object has distinct ways of participating in different
functions [7]. !e Visitor pattern [1], and more broadly
subject orientation [8] and aspect orientation [3] seek to
overcome the ‘tyranny of the dominant decomposition’ [8],
in which all functionality is decomposed across a single
object hierarchy that follows the structure of the problem
domain.
Rather than fixing the problems of object-orientation, it
may be simpler and more effective to structure a system
from the outset as a collection of independent services
(perhaps corresponding to Jackson’s subproblems [4]),
which are then implemented in a conventional style, and
connected together narrow interfaces.
In the bookstore example, searching for books, reviewing,
advertising, and billing might each be implemented as a
distinct service. To charge a customer’s credit card, a coor-
dination component might make a call on the billing serv-
ice using a customer identifier that is mapped internally by
the service to a credit card record. In a monolithic object-
oriented implementation, this identifier would be the ad-
dress of the customer object, and holding it would allow a
client access to all features of a customer. Here, in contrast,
use of the identifier for billing purposes is controlled by the
API of the billing service.
!is kind of separation of concerns is not new. But it does
not seem to be widely applied, and there is no systematic
design method that exploits it to the full.

6. A FOCUS ON DESIGN
In a mixed-criticality system such as an online bookstore,
the proportion of the code relevant to a critical property
(such as protecting credit cards) is likely to be low – per-
haps 5% or less. Designing for a small trusted base might
thus decrease the cost of constructing the dependability
case by a factor of 20, which is likely far more than can be
achieved by advances in the near future in language design,
static analysis or verification.
!is suggests that as a research field, software engineering
might do well to redirect its attention, placing less empha-
sis on languages and analyses, and more on design and
methodology. Research on design is harder to assess,
though, and the current taste for empirical evaluation
seems to drive research into the areas where potential gains
are the most immediate, and thus often the smallest. No
wonder that much research is now focused on ex post facto
analysis, and on the problems of legacy code.
Perhaps it’s time to redress the balance, and to focus again
on the fundamental problem of design. Analysis can help,
but dependability cannot emerge as an accident. It will
come for sure only by design.

7. ACKNOWLEDGMENTS
!e authors gratefully acknowledge support from the Na-
tional Science Foundation under grant 0541183 (Deep and
Scalable Analysis of Software) and from the Northrop
Grumman Cybersecurity Research Consortium.

8. REFERENCES
[1] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

[2] Daniel Jackson, Martyn !omas, and Lynette I. Millett, eds. Software
For Dependable Systems: Sufficient Evidence? !e National Acade-
mies Press, Washington, DC. 2007.

[3] Gregor Kiczales et al. Aspect-Oriented Programming. Proceedings of
the European Conference on Object-Oriented Programming, 1997.

[4] Robin Laney, Leonor Barroca, Michael Jackson and Bashar
Nuseibeh. Composing Requirements Using Problem Frames. Inter-
national Conference on Requirements Engineering, 2004.

[5] Bev Littlewood and David Wright. Some Conservative Stopping
Rules for the Operational Testing of Safety-Critical Software. IEEE
Transactions on Software Engineering, 23:11, 1997.

[6] David Parnas. Designing Software for Ease of Extension and Con-
traction. IEEE Transactions on Software Engineering, 5:2, 1979.

[7] Trygve Reenskaug, P. Wold and O. A. Lehne. Working With Objects:
"e Ooram Software Engineering Method. Manning/Prentice Hall,
1996.

[8] Peri Tarr, Harold Ossher, William Harrison and Stanley M. Sutton, Jr.
N degrees of separation: multi-dimensional separation of concerns.
International Conf. on Software Engineering, 1999.

http://portal.acm.org/author_page.cfm?id=81452606101&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Erich_Gamma
http://en.wikipedia.org/wiki/Richard_Helm
http://en.wikipedia.org/wiki/Richard_Helm
http://en.wikipedia.org/wiki/Ralph_Johnson
http://en.wikipedia.org/wiki/Ralph_Johnson
http://en.wikipedia.org/wiki/John_Vlissides
http://en.wikipedia.org/wiki/John_Vlissides
http://www.amazon.com/Trygve-Reenskaug/e/B001K7YZG2/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Trygve-Reenskaug/e/B001K7YZG2/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=O.%20A.%20Lehne
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=O.%20A.%20Lehne
http://portal.acm.org/author_page.cfm?id=81100131551&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436
http://portal.acm.org/author_page.cfm?id=81100131551&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436
http://portal.acm.org/author_page.cfm?id=81100333974&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436
http://portal.acm.org/author_page.cfm?id=81100333974&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436
http://portal.acm.org/author_page.cfm?id=81385594269&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436
http://portal.acm.org/author_page.cfm?id=81385594269&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436
http://portal.acm.org/author_page.cfm?id=81452606101&coll=GUIDE&dl=GUIDE&trk=0&CFID=93265129&CFTOKEN=11529436

