
Automating Commutativity Analysis at the Design Level

Greg Dennis, Robert Seater, Derek Rayside and Daniel Jackson
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge MA 02139, USA

{gdennis, rseater, drayside, dnj}@mit.edu

Abstract

Two operations commute if executing them serially in ei-
ther order results in the same change of state. In a system
in which commands may be issued simultaneously by differ-
ent users, lack of commutativity can result in unpredictable
behaviour, even if the commands are serialized, because one
user’s command may be preempted by another’s, and thus
executed in an unanticipated state.

This paper describes an automated approach to analyzing
commutativity. The operations are expressed as constraints
in a declarative modelling language such as Alloy, and a
constraint solver is used to find violating scenarios. A case
study application to the beam scheduling component of a
proton therapy machine (originally specified in OCL) re-
vealed several violations of commutativity in which requests
from medical technicians in treatment rooms could conflict
with the actions of a beam operator in a master control
room. Some of the issues involved in automating the analy-
sis for OCL itself are also discussed.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking
F.4.3 [Mathematical Logic]: Formal Languages—Alloy
H.1.2 [Information Systems]: User/Machine Systems

General Terms

design, human factors, reliability, verification

Keywords lightweight formal methods, model checking,
testing, formal specification, concurrency, critical systems,
commutativity, case study, proton therapy, radiation ther-
apy, Alloy, OCL

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISSTA’04 July 11-14, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-820-2/04/0007 ... $5.00.

1 Introduction

Two operations α and β are said to commute if the sequence
αβ leaves the system in the same state as the sequence βα.
Knowing whether operations commute or not can be useful
in a number of contexts. In transaction systems, for exam-
ple, it can be used for concurrency control; in compilers, it
can be used to find opportunities for parallelization; and, as
we shall see, in a multi-user system, it can be used to identify
pairs of operations that may confuse human operators.

Suppose that operations α and β do not commute, and that
user A commands α at (almost) the same instant as user
B commands β. Depending on which operation is executed
first, one or other of the users might be surprised by the
result. The design of the system can mitigate this effect in
various ways (that are beyond the scope of this paper), but
nothing can be done until the scenarios in which it arises
have been identified.

This paper introduces automated design-level commutativ-
ity analysis to determine which pairs of operations do or
do not commute, given a design expressed in a declarative
modelling formalism. This analysis can alert the designer
to potential commutativity issues before the system is de-
veloped, and thereby lead to an improved design and test
cases.

The problem of checking commutativity of two operations
is reduced to a constraint solving problem. We express each
operation as a constraint in the Alloy modelling notation [8].
The assertion that two operations commute is itself a con-
straint, whose negation is satisfied by scenarios in which
commutativity fails. The Alloy Analyzer [12] translates con-
straints to boolean formulas, and solves them with the aid
of off-the-shelf SAT solvers [7]. Usually, when two opera-
tions do not commute, a violating scenario is found in a few
seconds.

We applied this approach to a component of a proton ther-
apy machine that schedules radiation treatments amongst
several treatment rooms. This automatic beam scheduler
(ABS) is in essence a queuing mechanism that automatically
determines which treatment room will receive the beam.
The ABS itself executes in a single thread, and so from the
perspective of the computer all operations occur in a serial
order. However, the ABS has multiple simultaneous users,
in the various treatment control rooms and in the master
control room.

Most previous work on commutativity has focused on how
knowledge of commutativity can be used for concurrency
control, but has not provided a mechanical means for deter-
mining which operations do or do not commute [19, 3, 20].
Program analyses have been developed to determine auto-
matically if two procedures commute, but this determination
is typically based on whether the procedures may modify
the same object [16]. For the ABS system, such an analysis
would be far too conservative. We know that the procedures
all modify the same core object: the beam request queue.
We need to determine, at the design level, which pairs of op-
erations will leave that object in the same state, regardless
of the order in which the operations are executed.

We formulate our commutativity analysis as a constraint
satisfaction problem in the declarative object modelling lan-
guage Alloy [12]. This mode of expression is more convenient
than formulation in a conventional model checker, because
Alloy supports complex data structures and modular anal-
ysis, and because the temporal logic used by most conven-
tional model checkers does not provide a means to compare
the states that result from two different actions being per-
formed.

Furthermore, the developers of the ABS originally specified
its design in OCL (the Object Constraint Language [17]),
which is semantically similar to Alloy. The current state
of the art in OCL tools supports evaluation of constraints
with respect to given instances, but cannot find instances
satisfying a constraint. These tools cannot therefore perform
commutativity analysis. Alloy’s analyzer, in contrast, can
search large spaces for counterexamples to assertions; the
particular analysis problem of this study was well within
Alloy’s capability.

The main contributions of this paper are:

• a technique for automated design-level commutativity
analysis;

• a report of a case study applying this analysis to a
radiation therapy machine component;

• a discussion of our experience in translating OCL to
Alloy, and the obstacles that would have to be overcome
to perform the analysis on OCL directly.

2 Context: The Therapy Control System

The Northeast Proton Therapy Center (NPTC) installation
has at its core a cyclotron that generates a beam of pro-
tons. The beam is multiplexed amongst several treatment
rooms, each with its own gantry and nozzle for positioning
the beam. Technicians in a master control room supervise
the cyclotron and allocate the beam to treatment rooms.
Each treatment room is paired with a treatment control
room, in which clinicians enter and execute treatment pre-
scriptions.

The patient is placed on a couch that is electromechanically
positioned by staff within the treatment room. The beam
emitter is also positioned, and its aim verified by staff us-
ing X-rays and lights attached to the emitter. The staff
then leave the room, and the treatment is initiated from the
treatment control room. Treatment consists of irradiating
a specific location on the patient using a beam of protons
with a defined lateral and longitudinal distribution.

The machine is considered safety critical primarily due to
the potential for overdose—treating the patient with radi-
ation of excessive strength or duration. The International
Atomic Energy Agency lists 80 separate accidents involving
radiation therapy in the United States over the past fifty
years [15]. Infamous amongst these accidents are those in-
volving the Therac-25 machine [10], in whose failures faulty
software was a primary cause. More recently, software ap-
pears to have been the main factor in similar accidents in
Panama in 2001 [4].

The NPTC system was developed in the context of a sophis-
ticated safety program. Unlike the Therac-25, the NPTC
system makes extensive use of hardware interlocks, and has
a redundant PLC-based system running in parallel with the
software control system. Video cameras inside the control
room allow the technicians to view internal mechanisms, in-
cluding a lead beam stop that can be inserted to isolate
the treatment room from the cyclotron. The software itself
is instrumented with abundant runtime checks, including a
heartbeat monitor to ensure continued operation of critical
processes. A detailed system-level risk analysis was per-
formed. The software implementation was heavily tested,
and manually reviewed against rigorous coding standards.

2.1 Automatic Beam Scheduler

Currently, Treatment Control Room (TCR) operators con-
tact the Master Control Room (MCR) by telephone to re-
quest the beam. The MCR operator allocates the beam to
one of the treatment rooms. When the beam is allocated to
a room, the operator of that room (and that room alone)
can instruct the beam to fire, and, if the beam fires, it will
be directed to that room (and that room alone). Allocat-
ing the beam does not turn it on, although deallocating the
beam will turn it off.

The NPTC proposes to automate this procedure by adding
an Automatic Beam Scheduler (ABS) component, with the
intent of lightening the burden of the MCR operator, and
improving throughput of the machine, thus serving more
patients. The ABS will automate the task of deciding when
and to which room the beam should be allocated. Under the
new procedure, TCR operators will submit beam requests
to the ABS, indicating one of three priority levels:

1. Service Priority (lowest): for testing the machine,
calibrating it, and performing research;

2. Normal Priority: for typical requests;

3. High Priority: in cases where the patient is young,
restless, or anesthetized. These are not emergencies,
but should be handled before less urgent cases.

The ABS maintains a data structure with a slot for the
currently allocated request, and a queue of pending requests.
Once the TCR of the allocated room releases the beam, the
ABS automatically allocates the beam to the request at the
head of the queue. The queue is by default ordered first-in
first-out, but the ordering is complicated by priority levels
and the possibility of manual intervention.

The following commands are issued from the TCRs:

• RequestBeam issues a normal or service priority re-
quest for a given room.

• RequestBeamHighPriority issues a high priority re-
quest for a given room. If the currently allocated re-
quest is not of high priority, RequestBeamHighPri-
ority moves the currently allocated request back to
the pending queue and allocates the new high prior-
ity request. Otherwise it will insert the high priority
request in the queue.

• CancelBeamRequest deletes a pending request from
the queue.

• ReleaseBeam deletes an allocated request, if one is
currently allocated. If the beam is firing in the allo-
cated room, this operation turns it off.

The following commands are issued from the MCR:

• StepUp moves the selected request one step closer to
the front of the queue, but never moves a lower priority
request in front of a higher priority request;

• StepDown moves the selected request one step closer
to the back of the queue, but never moves a higher
priority request behind a lower priority request;

• Flush deletes all requests of a given priority from the
queue;

• FlushAll deletes all requests from the queue, regard-
less of priority.

2.2 Potential Risks of the ABS

The Master Control Room (MCR) operator and the Treat-
ment Control Room (TCR) operators issue commands asyn-
chronously to the Beam Scheduler. If two non-commuting
commands, α and β, are issued by different operators at
almost the same time, processing α before β could yield a
different state than processing β before α. Consequently,
operators would not be able to predict the results of their
actions. In contrast, if α and β commute, then neither op-
erator is surprised, regardless of their order.

Prior to the analysis, we realized that certain pairs of com-
mands issued to the Automatic Beam Scheduler (ABS)
clearly did not commute. Consider the case in which the
MCR operator issues a FlushAll (emptying the queue of
pending requests) at approximately the same time as the
TCR operator issues a RequestBeam (adding a request to
the pending queue); depending on the order of their execu-
tion, the resulting queue could either have a single request
or be completely empty. In the latter case, a new request
would have been inadvertently flushed.

Though inadvertent flushing may be relatively benign, the
possibility of other unexpected actions being taken by the
ABS is more worrisome. Since the ABS cannot actually
turn the beam on, a reordering cannot cause the beam to be
fired unintentionally. However, scenarios in which the beam
is wrongly allocated or deallocated are still problematic.

For example, if a beam is unintentionally allocated to a low-
priority request, it could cause a higher priority request to
languish in the queue, waiting for the beam to be free again.

On the flip side, an unintentional deallocation of the beam
can turn off the beam prematurely. Worse, a deallocation
of the beam is often followed by an automatic allocation of
another request in the queue, thereby producing potentially
long delays before treatment can continue in the interrupted
room. Preparing and angling the beam and positioning and
anesthetising the patient can take an hour, so a premature
termination of the treatment would be at best inconvenient.
At worst, it will result in an uneven or unknown dose being
delivered, complicating future treatments.

3 Commutativity Analysis

Commutativity analysis is applicable to any system in which
commands are executed atomically but asynchronously, and
have state effects that are not always orthogonal to each
other. In short, it checks whether executing a command
α before a command β has the same effect as executing β
before α. If not, unexpected and possibly undesirable results
can occur when both are issued simultaneously.

A word of clarification: Commutativity analysis does not
consider now non-atomic operations performed at the same
time can interleave to yield unacceptable results (such as
read/write race conditions); it is an analysis of how atomic
operations issued at roughly the same time can be ordered
in such a way as to yield unwanted results. Lack of commu-
tativity is not necessarily an error, but should be addressed
either internally or in the user interface.

3.1 Commutativity Properties

Given any two atomic operations α and β, commutativity
comprises two properties: diamond equivalence and diamond
connectivity [Figure 1].

1. diamond equivalence: If αβ and βα can both occur
from the same initial state — their preconditions are
met — then the states that result from applying αβ or
βα to the initial state should be observably equivalent
(although not necessarily strictly identical).

Therefore, if two diamond-equivalent operations are is-
sued at the same time by different users, it does not
matter which is executed first. If two commands fail di-
amond equivalence, then human operators cannot pre-
dict the state of the system after executing one of the
commands. The commands might be accepted, but
due to an unexpected ordering, result in surprising and
undesirably results.

2. diamond connectivity: If αβ can occur and β can
occur from the initial state — their preconditions are
met — then βα can also occur in the initial state.

Therefore, if two diamond-connected operations are is-
sued at the same time, then the execution of one cannot
preclude the execution of the other. If two commands
fail diamond connectivity, then human operators can-
not predict whether or not those commands will be
accepted by the system. Even if the command is legal
to execute when the operator decides to execute it, an
unfortunate reordering may result in it being rejected
anyway.

Figure 1 Commutativity properties

diamond equivalent and
diamond connected.

(i) operations andα β
commute; they are both

cannot
execute

cannot
execute

βα(iii) three ways in which operations and may fail to be diamond connected.
(ii) operations and doα β

 not satisfy the diamond
 equivalence property.

β

β α

α β

β α

α β

β α

α β

β α

α

α

α

β

β

execute

Sα Sα

Sβα

Si

Sα

Si

Sα Sα

Sf

Si

S

Si

Sα Sα

Sαβ execute
cannot cannot

αα

Sαβ Sβα

Si

Sα S

We will express an operation as a constraint parameterized
by its pre-state S and its post-state S′, explicitly separating
the pre- and post-conditions (which are likewise represented
as parameterized constraints):

Op(S, S′) = Pre(S) ∧ Post(S, S′) (1)

Note that our pre-conditions represent guards and not dis-
claimers, so that an operation invoked in a state that vi-
olates a pre-condition will be explicitly rejected. For two
operations α and β, we therefore have:

Opα(S, S′) = Preα(S) ∧ Postα(S, S′)
Opβ(S, S′) = Preβ(S) ∧ Postβ(S, S′) (2)

The operations Opα and Opβ are diamond-equivalent if for
all states Si, Sα, Sβ , Sαβ , Sβα:

Opα(Si, Sα)∧Opβ(Sα, Sαβ)∧
Opβ(Si, Sβ) ∧Opα(Sβ , Sβα)

⇒ Sαβ = Sβα (3)

And the operations Opα and Opβ are diamond-connected if
for all states Si, Sα, Sβ :

Opα(Si, Sα) ∧Opβ(Si, Sβ) ⇒ Preα(Sβ) ∧ Preβ(Sα) (4)

Note that for any pair of operations, there are three ways in
which the diamond connectivity property can be violated:
(1) when the first operation blocks the second, (2) when the
second blocks the first, and (3) when they mutually block
each other. All three scenarios are depicted in Figure 1.

Two additional comments on these properties are in order.
First, the initial state Si should be restricted to a legal states
satisfying the invariants; clearly it is unproductive to find an
instance of non-commutativity that begins from an illegal
state.

Second, it is important to note that if an operation were
non-deterministic, it would fail the diamond equivalence
test even when combined with a no-op (since two differ-
ent outcomes can be produced from a single state). A more
sophisticated notion of commutativity could be developed
to identify the additional non-determinism that arises from
asynchronous interleavings. However, in our case – and we
suspect in most contexts in which the notion will be useful
– the operations are deterministic, so a simpler definition
will do. Determinism of an operation is an easy property to
check, as explained below (in Section 5.2).

That said, there is a harmless form of non-determinism aris-
ing from the treatment of states as atoms in their own right.
Just like the objects in an object-oriented program, two dis-
tinct states can be observationally equivalent. This can be
handled either by ‘canonicalizing’ the state (with a con-
straint that requires distinct states to be observationally
distinct), or by replacing equality tests on states with equiv-
alence tests (using an auxiliary predicate that defines equiv-
alence of states in terms of their components). We chose the
second approach, which is why the Alloy formulation of the
commutativity test (in Figure 4) has equivQueues (e1, e2) in
place of e1 = e2.

3.2 Commutativity Analysis as Constraint Solving

To analyze the commutativity of the Beam Scheduler oper-
ations, we used the Alloy Analyzer, a constraint solver for
Alloy, a first-order relational logic similar to Z.

We began by translating the existing OCL model into Al-
loy. We modelled the basic entities in the Beam Scheduler
system and environment, the commutativity properties, and
the operations we wished to check for commutativity in Al-
loy. Next, we divided the operations into those performed by
the MCR operator and those performed by the TCR opera-
tor, and we formulated claims in Alloy that each MCR-TCR
operation pair satisfied both the diamond equivalence prop-
erty and the diamond connectivity property. Details of this
model can be found in Section 4.

To verify a claim, the Alloy Analyzer first negates the claim
and then proceeds to search for a scenario in which the
negated claim is true. If the model is a correct represen-
tation of the system, then such a scenario corresponds to
a counterexample to the claim. In our model, a counterex-
ample is an instance in which an MCR-TCR operation pair
yields different states depending on the order in which the
operations are applied.

3.3 On Finite Scope

The Alloy Analyzer does not symbolically prove whether
or not the instances of non-commutativity exist. Instead,
it exhaustively searches the entire state space of scenarios
within user-defined bounds. It is able to analyze millions
of scenarios in a matter of seconds. Consequently, failure
to find a counterexample does not constitute proof that the
claim is valid, but the reporting of a counterexample does
imply that it is invalid.

Each analysis in Alloy is parameterized by a scope, which
assigns a bound to each basic top-level type. The scope
is provided by the user as part of a command to check an
assertion or simulate a predicate. Since the search for a so-
lution is conducted only within the scope, the absence of a
counterexample does not necessarily indicate that a conjec-
ture is valid (nor does absence of an instance indicate that a
predicate is inconsistent). In practice, however, small scopes
suffice to find most flaws, and the user’s confidence increases
as the scope is increased.

4 Analysis of the Beam Scheduler

To perform the commutativity analysis, we began by trans-
lating the OCL model into the Alloy modelling language.

4.1 Sets and Relations

The first step in building an Alloy model is to declare the ba-
sic sets corresponding to the entities of the problem domain,
and the relations amongst them (Figure 2).

From the OCL, we identified the following basic sets: Re-
quest, Room, Priority, OrderID, and Queue. Here, the entity
Queue represents the entire state of the ABS, i.e., both the
currently allocated request and the actual queue of pending
requests.

The fields within signatures define relations over the signa-
ture types. In Figure 2 the room and priority fields are binary
relations, both of which map Requests to exactly one room
and exactly one Priority, respectively. The fields requests,
alloc, and pending are also binary relations, where the set
keyword allows these relations to map each Queue to zero or
more Requests. The last relation, order, is a ternary relation
that maps each Queue to a relation that maps requests in
that Queue to exactly one OrderID. In sum, a request has a
room and priority, and a queue has a set of allocated and
pending requests, and a mapping of those requests to their
order ids.

The effect of line 4 is to partition the set Priority into three
singleton subsets named Service, Normal, and High, repre-
senting the three possible priority levels of requests. The
constraint on line 18 makes the set of requests in the queue

Figure 2 Signatures

1 sig Room {}
2
3 abstract sig Priority {}
4 one sig Service, Normal, High extends Priority {}
5
6 sig Request {
7 room: Room,
8 priority: Priority
9 }
10
11 sig OrderID {}
12
13 sig Queue {
14 requests: set Request,
15 alloc, pending: set Request,
16 order: requests → one OrderID
17 }{
18 requests = alloc + pending
19 }

Figure 3 Some operations

1 pred preRequestBeam(q: Queue, r: Room, p: Priority) {
2 p in Normal + Service
3 r not in q.(pending + alloc).room
4 }
5
6 pred RequestBeam (q, q’: Queue, r: Room, p: Priority) {
7 preRequestBeam(q, r, p)
8 some req : q’.requests {
9 req.priority = p
10 req.room = r
11 p in Normal ⇒ NextOrderID(q, q’.order[req], Normal)
12 p in Service ⇒ NextOrderID(q, q’.order[req], Service)
13 no q.alloc ⇒ (q’.alloc = req) && (q’.pending = q.pending)
14 else (q’.alloc = q.alloc) && (q’.pending = q.pending + req)
15 }
16 q.order in q’.order
17 }

equal to the union of the set of allocated requests and the set
of those that are pending (note that every request is either
allocated or pending).

4.2 Operations

Having modelled the basic entities of our system, we pro-
ceeded to translate the eight OCL operations on these enti-
ties into Alloy.

We modelled all these operations as Alloy predicates. To
check for diamond connectivity, we factored out the precon-
ditions of each operation into separate predicates so they
could be independently invoked.

To illustrate, an Alloy formulation of the RequestBeam op-
eration is shown in Figure 3. Recall that RequestBeam ac-
cepts a room and a priority as arguments and adds a request
with that room and priority to the list of pending requests in
the queue, providing there is no allocated or pending request
for that room and the priority level is Service or Normal.

The precondition of RequestBeam is given in the Alloy pred-
icate preRequestBeam. To avoid code duplication, Request-
Beam begins by ‘invoking’ preRequestBeam; this simply has
the effect of including the constraints of the latter in the
former (appropriately instantiated). It also stipulates that
there be a request in the post state with the given room and
priority in the queue.

4.3 Checking Commutativity

To check the diamond equivalence and diamond connectivity
properties, we created Alloy assertions, which are formulas
the Analyzer can check for validity. We wrote two assertions
for each MCR-TCR operation pair: one to encode the dia-
mond equivalence formula (Formula 3), and one to encode
the diamond connectivity formula (Formula 4). For each
assertion, we added a check command to verify the asser-
tion within a scope of 6. The assertions and commands to
check the diamond equivalence of CancelBeamRequest
and StepUp and the diamond connectivity of Request-
Beam and ReleaseBeam are shown in Figure 4. (The
Invariants predicate in the assertions constrains the initial
state to be a legal state; see section 5.3.)

Figure 4 Commutativity property assertions

1 assert Cancel StepUp Equiv {
2 all s, m1, m2, e1, e2: Queue, rq1, rq2: Request {
3 (Invariants(s) && CancelBeamRequest(s, m1, rq1) &&
4 StepUp(m1, e1, rq2) && StepUp(s, m2, rq2) &&
5 CancelBeamRequest(m2, e2, rq1))
6 ⇒ equivQueues(e1, e2)
7 }
8 }
9 assert Request Flush Connect {
10 all s, m1, m2: Queue, r: Room, p1, p2: Priority {
11 (Invariants(s) && RequestBeam(s, m1, r, p1) &&
12 Flush(s, m2, p2))
13 ⇒ (preFlush(m1, p2) && preRequestBeam(m2, r, p1))
14 }
15 }
16 check Cancel StepUp Equiv for 6
17 check Request Flush Connect for 6

4.4 Results

The commutativity analysis was performed on a Win-
dows XP machine with an Intel Pentium III 597 MHz proces-
sor with 192 MB of RAM. Each of the thirty two commands
were executed in a scope of six, and ranged in execution
time between three and one hundred seconds. The following
operation pairs were found not to commute:

• RequestBeam/RequestBeamHighPriority and
Flush/FlushAll violate diamond equivalence. If a
RequestBeam and a FlushAll happen at the same
time, the result is either an empty queue (if the flush
is last) or a single request allocated (if the request is
last). In the former case, the last request is mistakenly
flushed.

• CancelBeamRequest and StepUp/StepDown
violate diamond connectivity and diamond equivalence.
If the cancel happens first, then StepUp/StepDown
fails because the request is no longer pending – a
violation of diamond connectivity. A second, more
subtle case violates diamond equivalence: When
the request above the request being stepped up is
cancelled, the stepped-up request might remain at
its current position in the queue (if the StepUp
comes first) or move up past the request ahead of the
canceled request (if the CancelBeamRequest comes
first). An analogous scenario applies to StepDown.

• CancelBeamRequest and Flush/FlushAll violate
diamond connectivity. If a CancelBeamRequest is
issued at the same time as a Flush or a FlushAll
command and the request to be cancelled is flushed
before the cancel is performed, then the CancelBeam-
Request will fail.

We also applied the analysis to some TCR/TCR op-
eration pairs and found some additional cases of non-
commutativity:

• RequestBeamHighPriority and ReleaseBeam vi-
olate diamond connectivity. Consider the scenario in
which a Normal or Service priority request R is allo-
cated. And suppose a command to release the beam
from request R is issued at the same time as a Re-
questBeamHighPriority. If the request is executed
before the release, R will be returned to the queue to
make way for the high priority request, and the subse-
quent ReleaseBeam will fail because its precondition
that the request be allocated is now false.

• ReleaseBeam and CancelBeamRequest violate di-
amond connectivity. When a ReleaseBeam occurs in
automatic mode, the scheduler automatically allocates
the next request. If the next request to be allocated is
simultaneously cancelled, the CancelBeamRequest
may succeed (if it comes first) or fail (if it comes sec-
ond).

• RequestBeam and ReleaseBeam violate diamond
equivalence. Consider an initial state where a Service
priority request is pending. If the beam is released and
then a Normal priority request is issued, the Service
priority request will now be allocated and the Normal
priority request will be pending. However, if a Normal
priority request is issued and then the beam is released,
the Normal priority request will be allocated and the
Service priority request will be pending.

5 Other Analyses

We also applied a variety of more conventional analyses to
the ABS case study, in addition to commutativity analysis.

5.1 Simulation and Sanity Checks

Simulation involves running test executions of operations
and subsequently examining the executed traces. Clearly,
simulation is far from a comprehensive analysis of a system;
but it can lend insight into the general operation of the sys-
tem, reveal egregious errors, and if the simulation scenarios
are chosen properly (or luckily), stumble upon more subtle
deficiencies.

The Alloy Analyzer will simulate any predicate, finding in-
stances that satisfy it (if they exist). We simulated several
of the operations in their original form, and also in a mod-
ified form in which we added various additional pre- and
post-conditions to explore executions of particular interest
(such as those that leave the queue empty, or change the
allocated request).

A sanity check is a non-trivial verification that the system
is not flawed in some fundamental way. For example, we
checked that StepUp (which moves a request one step closer

to the front of the queue) does not alter the set of requests
pending in the queue. Like simulation, sanity checks are
useful for uncovering basic faults in the system; but unlike
simulation, sanity checks are more comprehensive because
they can examine all traces within a given scope.

5.2 Determinism Checks

Often, an operation is assumed to be deterministic. As ex-
plained above, our formulation of commutativity requires
this. An operation Op(S, S′) is deterministic if, for every
pre-state S and possible post-states S′ and S′′,

Op(S, S′) ∧Op(S, S′′) ⇒ S′ = S′′ (5)

This conjecture can be written directly in this form in Alloy,
and checked automatically.

5.3 Invariant Preservation

An invariant is a property that should be preserved by every
operation; if it holds before the operation, then it must still
hold afterwards. For example, one invariant is that if the
pending queue is non-empty, then the beam is allocated to
some room. Any command that deallocates the beam must
ensure that another request is allocated if one is pending.

An invariant takes the form of a predicate on the state of
the system that is true if and only if the system is in a
correct state. Let Inv(S) represent our invariant. An oper-
ation Op(S, S′), a predicate on a pre-state and a post-state,
preserves the invariant if for all pre-states S and all post-
states S′,

Inv(S) ∧Op(S, S′) ⇒ Inv(S′) (6)

A solution to the negation of this formula corresponds to a
situation where the operation does not preserve the invari-
ant.

We expressed the invariants of the Beam Scheduler in a pred-
icate called Invariants shown in Figure 5. The predicate con-
sists of the following constraints:

• At most one request is allocated at any point in time;

• If no requests are allocated, then no requests may be
pending;

• If a high priority request is pending, then a high priority
request must be allocated;

• No request is both allocated and pending;

• No two requests in the queue (either allocated or pend-
ing) are for the same room;

• Any two pending requests of the same priority must
have different order identifiers.

We used the Alloy Analyzer to check that each operation
preserves the invariant listed in Figure 5. For each of the
eight operations in our model, we wrote an assertion encod-
ing the invariant preservation formula (Formula 6) in Alloy.
For example, the assertion that the ReleaseBeam opera-
tion preserves the invariant is shown in Figure 6.

Figure 5 Queue invariants

1 pred Invariants (q:Queue) {
2 lone q.alloc
3 no q.alloc ⇒ no q.pending
4 High in q.pending.priority ⇒ High in q.alloc.priority
5 no q.alloc & q.pending
6 no disj r,r’:q.requests | r.room = r’.room
7 all disj r,r’: q.pending |
8 (r.priority = r’.priority) ⇒ (q.order[r] != q.order[r’])
9 all disj r,r’:q.alloc |
10 (r.priority = r’.priority) ⇒ (q.order[r] != q.order[r’])
11 }

Figure 6 ReleaseBeam preserves invariant check

1 assert ReleaseBeamPreservesInv {
2 all q, q’: Queue, req: Request |
3 Invariants(q) && ReleaseBeam(q, q’, req) ⇒ Invariants(q’)
4 }

6 OCL Experience

The original design of the beam scheduler was expressed
in OCL [17], the constraint language of UML. The OCL
model was not mechanically checked, although a number
of analyzers for OCL have recently become available. In
this section, we review the errors we found by translation to
Alloy and subsequent analysis, and we discuss opportunities
for direct analysis of OCL itself.

6.1 Translation to Alloy

The translation from OCL to Alloy was straightforward.
OCL contexts were readily converted into Alloy signatures,
and OCL operations into Alloy predicates. The OCL specifi-
cation omitted frame conditions, relying on the reader’s in-
tuitions to provide them. They were therefore added to the
Alloy specification. The lack of a frame condition is readily
exposed by invariant checking, so, with the Analyzer’s help,
it is easy to determine where frame conditions are required.

To illustrate the directness of the translation, OCL formula-
tions of FlushAll and CancelBeamRequest are shown
in Figure 7 and their corresponding Alloy versions in Fig-
ure 8. As shown in the figures, it is necessary to add frame
conditions to the Alloy specification that FlushAll does
not change the allocated request and that CancelBeamRe-
quest does not change the allocated request nor the order
of the pending requests.

Figure 7 OCL Specification of FlushAll and Cancel-
BeamRequest

context BeamScheduler::flushAll()
post:

self.pendingRequests→size == 0

context BeamScheduler::
cancelBeamRequest(req: BeamRequest)

pre:
self.pendingRequests@pre→exists(r | r == req)

post:
not self.pendingRequests→exists(r | r == req)

Figure 8 Alloy Specification of FlushAll and Cancel-
BeamRequest

pred FlushAll(q, q’: Queue) {
no q’.pending
q’.alloc = q.alloc

}
pred CancelBeamRequest(req: BeamRequest) {

req in q.pending
q’.pending = q.pending − req
q’.alloc = q.alloc
q’.order = q.order − req→OrderID

}

6.2 Errors Found in OCL Model

The ready availability of automatic analysis results in higher
quality models, with fewer errors. Neither the commutativ-
ity analysis nor the more conventional analyses of Section 5
can be applied directly to the original OCL model, due to
the limitations of the available OCL tools.

Not surprisingly, subjecting the OCL model to analysis (in-
directly, via translation to Alloy) exposed a variety of small
flaws. Most of these were minor and were easy to correct.
Some, such as the misspelling of association names, would
have been caught by syntax and type checking. Others re-
quired simulation to expose logical inconsistency. Opera-
tions differed, for example, about whether order ids of pend-
ing requests increased or decreased towards the front of the
queue, and whether order ids were unique (some operations
testing this explicitly, and others assuming it).

6.3 Solving Versus Evaluation

The analysis offered by OCL tools differs fundamentally
from Alloy’s. The primary analysis they offer, in addition
to syntax and type checking, is evaluation, in which the user
provides an instance, and the tool checks whether it satisfies
a constraint by evaluating each subexpression and assigning
true or false to the constraint as a whole. Alloy, in contrast,
offers solving, which involves searching to find an instance
satisfying a given constraint.

Evaluation helps, but can be tedious to use, since a value
must be given for every single set and relation. An earlier
version of Alloy offered evaluation also, but it was rarely
used, since it is usually easier to specify a particular instance
as a partial constraint, letting the solver fill in the details,
and specifying more if the expected instance is not obtained.

Analyses that reveal subtle bugs in a model – such as check-
ing preservation of invariants, or the commutativity analysis
of this paper – require solving. It is therefore worth consid-
ering what might be done to bring such analysis to OCL.

6.4 Syntactic Issues

OCL and Alloy are, at heart, very similar languages. Both
are designed for lightweight modelling via constraints. Al-
loy’s syntax is based on the traditional syntax of first order
logic, and the relational operators of Z; OCL’s syntax is in-
fluenced by Smalltalk, and has a more operational flavour.

For example, the set comprehension defining the pending
requests that have service priority is written in Alloy as

{r: Request | r in q.pending and r.priority = Service}

and in OCL as

self.pending→select(r | r.priority == #SERVICE)

(where q and self are the respective names for the current
queue state). Alloy’s relational operators also admit more
succinct forms that are favored by experienced users (but
less readable by novices), such as

q.pending & priority.Service

(in which priority.Service navigates backwards from the ser-
vice priority to a set of requests). For analyzability, however,
these syntactic differences are immaterial.

6.5 Semantic Issues

OCL has a more complicated semantics than Alloy for two
reasons. First, its type system is based on object-oriented
programming languages, so typecasts are required (and may
fail). Second, whereas Alloy treats associations uniformly as
relations, and navigation as relational image, OCL has a va-
riety of special cases. An association of zero/one multiplicity
is treated as a function whose navigation may result in an
undefined value. An association of zero or more multiplicity
is treated as a relation whose navigation may result in the
empty set. Navigating from a set gives a bag, but navigat-
ing from a bag gives another bag, so that a navigation via a
single relation is different from a navigation via more than
one. There are also implicit flattenings that are applied.

These complications should not affect the fundamental an-
alyzability of the language, although they would make im-
plementation much more challenging. Alloy reduces to a
small relational kernel, which makes it possible to confine
the analysis proper to a much simpler backend. The first
task in developing an analysis for OCL would be to design
such a kernel for it.

In terms of expressive power, Alloy and OCL are incom-
parable. Alloy includes transitive closure as an operator,
so it can express reachability properties that cannot be ex-
pressed in OCL. But OCL allows sets of sets to be created,
and nested to arbitrary depth (although its quantifiers are
first order). Alloy’s translation from relational logic to SAT
[7] will therefore not be applicable to OCL directly. There
are two causes for optimism, however.

First, the higher-order features of OCL are not often used.
OCL uses UML diagrams for declaring sets and relations,
so nested sets cannot be declared, and only arise when con-
structed as an expression. Associations can yield ordered
sets or sequences, but these are rarely used, and when they
are used, could often be eliminated. In ‘Royal and Loyal’,
the running example in the OCL textbook [18], only one as-
sociation yields an ordered set, for representing the service
levels of a loyalty program. It would not affect the model as
a whole to order the service levels globally with a homoge-
neous association on the service level class. The only other

examples of potentially higher-order features in the book are
in stand-alone expressions and not in model constraints.

Second, even when higher-order features are used, it may be
possible to render them first-order by a subtle change to the
semantics. This is what Alloy does. In Alloy, higher-order
objects (such as sequences and sets of sets) are represented
as atoms. For example, the declaration

sig MySet {elements: set X}

declares a set of atoms MySet and a relation elements map-
ping each to a set of atoms drawn from X. Analysis involves
finding values for these sets and the relation. In almost all
cases, this allows MySet to be viewed as a set of composite
values, each holding a set of elements. But occasionally the
encoding is exposed. For example, the assertion

assert {all s: set X | some ms: MySet | s in ms.elements}

admits a (counterintuitive!) counterexample in which My-
Set is simply made empty. There are ways to mitigate this
problem when it does arise, but there is no free lunch: higher
order logic cannot be reduced to first order logic. Since OCL,
like Alloy, does not allow higher-order objects to be declared,
this approach should work well for it too.

OCL has the standard built-in types of a programming lan-
guage. Some of these are either already in Alloy (integers
with addition and subtraction, for example) or could be pro-
vided in a library module (strings, for example). Real num-
bers with multiplication and division are a serious obstacle
however, since they are not supported even by specialized
decision procedures.

7 Related Work

Work related to our analysis fall roughly into four cate-
gories: conventional model checking, concurrency control,
parallelizing compilers, and OCL analysis.

7.1 Conventional Model Checking

There are three obstacles to performing commutativity anal-
ysis with conventional model checking [13, 9, 5], as opposed
to using a declarative modeling language such as OCL or
Alloy.

Limitations of temporal logic The most fundamental ob-
stacle is that conventional model checkers require properties
to be expressed in temporal logic. However, temporal logic
does not provide a means to compare the states resulting
from two different action sequences. Nor is it possible to
determine if those two action sequences originate from the
same state. These two tasks are fundamental to determin-
ing if two commands commute; one must compare the states
resulting from the possible orderings of the commands when
executed from a common pre-state.

Non-modularity Another drawback of conventional model
checking is that it is not modular with respect to operations.
A model checker typically checks that a given property holds
not for all executions of an operation but for all reachable
states. An operation cannot therefore be checked in isola-
tion, and an analysis like our commutativity analysis, which
requires considering all possible pre-states, cannot be done.
Generating a set of pre-states is not possible for an explicit
model checker, such as SPIN [5], but might be done in a
symbolic model checker such as SMV [11] (using the trans
facility), although it is still unclear how one would encode
the commutativity checks.

Lack of complex data structures Conventional model
checking does not support complex data structures as part
of the representation of state, and thus does not lend itself
to encoding the ABS priority queue in a natural fashion.
Java Path Finder [1] can handle complex data structures,
but would require formulating the model more concretely
in Java. SPIN/Promela [5] offers records and arrays, which
would probably suffice for this model, but would again re-
quire a less abstract and less succinct description.

7.2 Commutativity-Based Concurrency Control

Commutativity has been exploited for the purposes of con-
currency control in a number of different ways. Weihl used
the commutativity of operations to develop novel concur-
rency control algorithms [19]. Fekete et al expanded upon
this work to nested transaction systems [3]. More recently,
Fekete and Wu showed how identifying commutative op-
erations could yield greater concurrency in the context of
application code [20]. Unlike our work, these techniques
do not automatically determine the commutativity or non-
commutativity of operations, but presume it has been de-
termined in advance.

7.3 Parallelizing Compilers

Conservative commutativity analysis has been used in par-
allelizing compilers. Rinard and Diniz developed a tech-
nique for automated commutativity analysis to parallelize
computations that manipulate dynamic, pointer-based data
structures [16]. In their method, symbolic execution is used
to determine whether reordering two operations yields the
same final result. If the symbolic execution fails, the opera-
tions are conservatively assumed to not commute. If applied
to the case study presented in this paper, that analysis would
conservatively report that no operations commute because
they all operate on a common queue.

7.4 OCL

Alloy and OCL are superficially quite similar: both provide
a means to express declarative constraints about data and
transitions. However, one crucial difference is that Alloy
was designed to be an automatically analyzable language,
so that instances of models, and counterexamples to claims
can be machine-generated.

There has been recent work to make OCL machine-
analyzable (e.g. [2]), although the current state of tool sup-
port seems to be limited to syntax checking, type-checking,

and evaluation of constraints with respect to given instances
[14, 6]. Our experience reflects the observation of Hussmann
et al [6] that automated tool support greatly increases both
the correctness and utility of declarative object models.

8 Lessons Learnt

Analysis of the ABS case study suggested some lessons of
potential interest to researchers and practitioners.

8.1 Commutativity Analysis in General

We have demonstrated that commutativity analysis can be
useful in contexts where there are multiple operators, even
when the commands they execute are atomic and single
threaded. There is still a potential for “human concur-
rency” to effectively reorder pairs of commands; if the two
commands do not commute, potentially problematic non-
determinism is introduced. If the two possible orderings of
the commands have different effects on the system (i.e. if
the commands do not commute), then the operators cannot
predict the effects of their commands.

We analyzed the Automatic Beam Scheduler component of
a Proton Therapy Machine which was developed with rig-
orous coding standards and preceded by a thorough OCL
specification. Despite these precautions, our analysis re-
vealed several non-commuting pairs of operations with the
potential to produce problematic situations.

A pair of non-commuting operations is not in itself an er-
ror, but rather it is an indication of a concern that must be
addressed. Indeed, some operations fundamentally do not
commute (such requesting a beam request and flushing the
queue of requests), in which case the designers might re-
spond by adding blocks, warnings, or time delays to prevent
users from unwittingly issuing non-commuting commands in
rapid succession. Such solutions are not in the scope of this
paper, but are a topic for future work.

8.2 Using a Constraint Solver for the Analysis

We have also demonstrated the feasibility and benefits of
performing the analysis with a declarative constraint solver
(such as Alloy). Commutativity properties can be expressed
in a straightforward manner and automatically analyzed in
this context.

We translated existing OCL to Alloy, to be sure that our
model accurately reflected the actual design of the code,
and so that we could take advantage of Alloy’s automatic
analysis. However, such a translation is not necessary. Were
we starting from scratch, we could have modeled the ABS
directly in Alloy. Alternatively, a tool for automatic analysis
of OCL would have allowed us to work entirely in OCL.

That said, the translation from OCL to Alloy was straight-
forward. Four researchers spent roughly 20 person-hours
on the modeling process: around 4 person-hours writing the
actual model, around 4 person-hours understanding the gen-
eral documentation and background, and the remaining 12
person-hours understanding the details of the OCL specifi-
cation. The first version of the Alloy model was written from
scratch in about an hour by a researcher with a solid back-
ground in discrete mathematics, no background in formal

methods or OCL, moderate programming experience, and
limited prior experience with Alloy. As mentioned in Sec-
tion 4.4, the aggregate machine time for the entire analysis
was around 20 minutes.

8.3 The Role of Analysis

Commutativity analysis aside, the lightweight analyses we
applied to the Alloy model revealed a number of small errors
in the original OCL model. This is neither surprising nor an
indication of sloppiness on the part of the designers, given
the currently non-analyzable nature of OCL. Our case study
re-emphasizes the importance of the feedback and discipline
provided by a mechanical analyzer.

Acknowledgments

We appreciate the assistance of Dr. Jay Flanz of Mas-
sachusetts General Hospital, and Didier Leyman and
Philippe Thirionet of Ion Beam Applications (IBA).

This research was supported by: grant 0086154 (‘Design
Conformant Software’) from the ITR program of the Na-
tional Science Foundation; grant 6895566 (‘Safety Mech-
anisms for Medical Software’) from the ITR program of
the National Science Foundation; and by the High Depend-
ability Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

References

[1] Brat, G., Havelund, K., Park, S., and Visser,
W. Java PathFinder – A second generation of a Java
modelchecker. In Workshop on Advances in Verification
(July 2000).

[2] Clark, T., and Warmer, J., Eds. Object Modeling
with the OCL: The Rationale behind the Object Con-
straint Language. No. 2263 in LNCS. Springer-Verlag,
2002.

[3] Fekete, A., Lynch, N., Merritt, M., and Weihl,
W. Commutativity-based locking for nested transac-
tions. Journal of Computer and System Sciences 41, 1
(Aug. 1990), 65–156.

[4] Food and Drug Admininstration. FDA Statement
on Radiation Overexposures in Panama. http://www.
fda.gov/cdrh/ocd/panamaradexp.html.

[5] Holzmann, G. J. The Model Checker SPIN. IEEE
Transactions on Software Engineering 23, 5 (May
1997), 279–295.

[6] Hussmann, H., Demuth, B., and Finger, F. Modu-
lar Architecture for a Toolset Supporting OCL. In Pro-
ceedings of UML 2000: Advancing the Standard (York,
UK, Oct. 2000), A. Evans, S. Kent, and B. Selic, Eds.,
no. 1939 in LNCS.

[7] Jackson, D. Automating First-Order Relational
Logic. In Proc. ACM SIGSOFT Conf. Foundations of
Software Engineering (FSE) (Nov. 2000).

[8] Jackson, D., Shlyakhter, I., and Sridharan, M. A
micromodularity mechanism. In ACM SIGSOFT Con-
ference on Foundations of Software Engineering / Eu-
ropean Software Engineering Conference (Vienna, Sept.
2001).

[9] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.
Dill, and L.J. Hwang. Symbolic Model Checking:
1020 States and Beyond. In Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Sci-
ence (Washington, D.C., 1990), IEEE Computer Soci-
ety Press, pp. 1–33.

[10] Leveson, N. G., and Turner, C. An investigation of
the Therac-25 accidents. IEEE Computer 7, 26 (1993),
18–41.

[11] McMillan, K. L. Symbolic Model Checking. Kluwer
Academic Publishers, 1993. http://www.cs.cmu.edu/
~modelcheck/smv.html.

[12] MIT Software Design Group. The Alloy Analyzer.
http://alloy.mit.edu.

[13] Queille, J.-P., and Sifakis, J. Specification and Ver-
ification of Concurrent Systems in CESAR. LNCS 137
(1982), 337–351.

[14] Richters, M., and Gogolla, M. OCL: Syntax, Se-
mantics, and Tools. In Clark and Warmer [2], pp. 42–
68.

[15] Ricks, R. C., Berger, M. E., Holloway, E. C., and
Goans, R. E. REACTS Radiation Accident Registry:
Update of Accidents in the United States. International
Radiation Protection Association, 2000.

[16] Rinard, M. C., and Diniz, P. C. Commutativity
analysis: A new analysis technique for parallelizing
compilers. ACM Transactions on Programming Lan-
guages and Systems 19, 6 (1997), 942–991.

[17] Warmer, J., Ed. Response to the UML 2.0 OCL
RfP (ad/2000-09-03). Object Management Group, Jan.
2003. Revised submission, version 1.6. OMG Document
ad/2003-01-07.

[18] Warmer, J., and Kleppe, A. The Object Constraint
Language: Getting your models ready for MDA, 2nd ed.
Addison-Wesley, Aug. 2003.

[19] Weihl, W. E. Commutativity-based concurrency con-
trol for abstract data types. IEEE Transactions on
Computers 37, 12 (1988), 1488–1505.

[20] Wu, P., and Fekete, A. An empirical study of com-
mutativity in application code. In Proceedings of Inter-
national Database Engineering and Applications Sym-
posium (Hong Kong, July 2003).

