
focus

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E M a y / J u n e 2 0 0 0 I E E E S O F T W A R E 63

that basic techniques provided a major
improvement.

We took a component of a deployed air
traffic control system written in about
80,000 lines of C++ code, replaced it with a
new version in Java about one-fifth of the
size, and demonstrated that the system still
performed its primary functions. Although
our new version only performs the original
component’s essential functions, we could
extend it to cover the full functionality
without substantially changing its architec-
ture. In this article, we explain how we
achieved this simplification and what les-
sons we drew from it, in particular for in-
dustrial practice and computer science edu-
cation. (See the “Organizing and Reverse
Engineering” sidebar for a discussion of
how we organized the case study and re-
verse engineered the code.)

Overview of CTAS

The Center/TRACON Automation Sys-
tem (CTAS) is a suite of tools to help con-
trollers manage air traffic flow at large air-
ports. (Don’t confuse CTAS with its ana-
gram TCAS, which is a different system
installed on-board aircraft that warns pilots
of impending collisions.)

In the US, the rate at which aircraft can
land at airports is the limiting factor in air
traffic flow. CTAS increases the landing rate
through automated planning. As input,
CTAS receives the location, velocity, and
flight plans of all aircraft near an airport,
along with weather data, information about
available runways and standard landing
patterns, and controller commands. CTAS
combines this information with models of
the descent rates and other characteristics

focus
Redesigning Air Traffic Control:

An Exercise in
Software Design

Daniel Jackson and John Chapin, MIT Lab for Computer ScienceThis case study
demonstrates how
basic software en-

gineering tech-
niques can make a

complex system
dramatically sim-
pler. The authors

describe lessons
learned from re-

verse engineering
an air traffic con-
trol system with a

variety of tools
and redesigning it
to be smaller, sim-

pler, and more
flexible.

M
any managers believe that improved process is the key to bet-
ter software, and that technology is a second-order effect. We
disagree. In this project, we dramatically simplified a complex
software system, using basic software engineering techniques

of the sort commonly taught in university courses but still not widely used
in industry. The case study’s original purpose was to explore the power of
advanced techniques such as object modeling; we were surprised to discover

experience report

of specific aircraft to accurately predict air-
craft trajectories as much as 40 minutes in ad-
vance. This information feeds into dynamic-
planning algorithms that suggest a landing
sequence that minimizes unused landing slots.
A CTAS installation at Dallas/Fort Worth Air-
port (DFW) has improved the sustained land-
ing rate by 10%—a major success.

CTAS contains two primary tools. Low-
altitude controllers who manage the air-
space near an airport use the Final Ap-
proach Spacing Tool (FAST), while high-
altitude controllers who manage aircraft
further away use the Traffic Management
Advisor (TMA). Both tools involve largely

the same set of software components.
Figure 1 shows sample output from TMA,

a timeline for aircraft crossing the boundary
from the high-altitude domain to the low-al-
titude domain.

Figure 2 shows the architecture of CTAS
in the TMA configuration. The Communica-
tions Manager (CM) sits at the center, where
it acts as a message switch moving data
among the other components, and maintains
the database of aircraft information (posi-
tion and velocity, aircraft type, and so forth).
The Input Source Manager (ISM) collates in-
put data streams such as radar feeds and
flight plans. The algorithmic processes are

6 4 I E E E S O F T W A R E M a y / J u n e 2 0 0 0

The case study ran as a one-semester
graduate seminar entitled “6.894:
Workshop in Software Design” (see
http://sdg.lcs.mit.edu/~dnj/6894).
Twelve students and three faculty mem-
bers participated.

Organization
We started by reverse engineering

the existing system. Based on the result-
ing list of problems and proposed solu-
tions, we decided to reimplement the
CM completely rather than modify the
existing code. After substantial design
work, the students spent three weeks in
implementation and at the end success-
fully demonstrated basic system opera-
tion with the new CM.

Written in Java, the new component
had about 50 classes and 10,000 lines
of code. Handling of messages depended
on a script about 1,800 lines long (of
which 1,450 came verbatim from the
previous C version of the CM). One of
the teams built a compiler especially for
the project that processed this script into
about 2,000 lines of Java. The compiler
itself was 10,000 lines of C++; its cost
was not justified within the scope of the
project, but might have paid off had we
reimplemented the CM in its entirety. A
separate paper describes the message
scripting language and compiler.1

Reverse-Engineering Efforts
The case study began with an effort to

understand the existing design of CTAS in

general and the CM in particular. We
used our ignorance of the existing design
as an opportunity to experiment with sev-
eral reverse-engineering tools. Of the les-
sons this experience provided, the most
interesting perhaps was realizing how
dramatically coding style affects the utility
of analysis tools.

The documentation for CTAS includes
motivation and architecture overview
(http://ctas.arc.nasa.gov), software
structures (www.ctas-techxfer.com), user
manuals, and research papers on the
underlying algorithms.2 However, there
appears to be no document that ex-
plains in high-level terms what the sys-
tem computes or what assumptions it
makes about its environment. Nor is
there a design document that describes
the relationship between the CTAS com-
ponents: how they communicate, what
services they offer, and so forth. We
were forced to infer this information
from the code, a challenge common to
many commercial development efforts.

We used three off-the-shelf tools and
built two others. We also spent consider-
able time simply reading the code, a task
much eased by NASA’s consistent naming
and code layout standards.

Imagix
This commercial visualization tool con-

structs a cross-reference database from
the source code and uses it to generate
sophisticated reports and diagrams
(www.imagix.com). We used it to gener-

ate a variety of call graphs. Its ability to
abstract by showing calls between files
rather than individual procedures was es-
sential. It could handle the entire CM, and
we generated some useful call graphs
from it. We tried to use its impressive ar-
ray of cross-referencing relations to com-
pute an approximate object model from
the header files, but were not successful.

Lackwit
This research tool uses type inference

to analyze data structures in large C
programs.3 Lackwit generated a data-
base representing the entire CM in
about 80 Mbytes, and we used it suc-
cessfully to answer queries about where
in the code particular data structures
were used. We also used it to construct
a call graph showing only those proce-
dures involved in the direct handling of
an aircraft record.

Lackwit can make semantic distinctions
that syntactic tools such as Imagix cannot.
For example, one query asked where val-
ues held in a particular integer variable
might flow. This variable held an identi-
fier for a Route Analyzer process. The
variables and data structure fields that
Lackwit identified could not have been
found with grep, because although many
of these had a name ending “ra_index”,
not all did, and their type was not suffi-
cient to distinguish them.

Unfortunately, a bug in Lackwit pre-
vented us from analyzing static proce-
dures (of which several were crucial),

Organizing and Reverse Engineering

the Route Analyzer (RA) and Trajectory
Synthesizer (TS), which collectively predict
paths and arrival times for aircraft, and the
Dynamic Planner (DP), which computes
runway assignments and suggested delays.

In addition to its primary functions as
message switch and database, the CM acts
as the main process, responsible for initial-
izing most of the other processes and termi-
nating them when they appear to be behav-
ing inappropriately. Neither FAST nor TMA
can run without the CM, and if the CM
dies, the system dies with it. In contrast, the
system can tolerate failures of algorithmic
or user interface processes.

Reasons for a Case Study on CTAS
and CM

CTAS is an attractive subject for a case
study for several reasons.

■ It is a prime example of infrastructural
software: software that operates vital sys-
tems such as transportation, medicine,
power, and so forth. Working on CTAS
lets us evaluate the viability of software
engineering techniques for this important
class of software systems.

■ CTAS is large enough to present the
complexities typical of large-scale soft-
ware, rather than a small safety-critical

M a y / J u n e 2 0 0 0 I E E E S O F T W A R E 65

and Lackwit’s handling of type casts was
not as good as advertised.

CodeSurfer
This program slicer was in beta

release (www.grammatech.com/ prod-
ucts/codesurfer/codesurfer.html) at the
time of our project. CodeSurfer offered
the most powerful features of the three
off-the-shelf tools: it can generate pro-
gram slices and display them graphi-
cally or textually. This would have let us
show, for example, the code that might
affect the value of a field in the aircraft
database. Unfortunately, the CM proved
too large for CodeSurfer to analyze
directly.

Although CodeSurfer does not scale to
the same size systems as Lackwit does, it
provides more detailed semantic informa-
tion than the type inference algorithms
used in Lackwit. For example, it is flow
sensitive. Furthermore, we would proba-
bly have had more success were it not for
some flaws in the beta release that have
now been corrected.

Concordance generator
One team of students constructed an

ad hoc tool that generated a Web-view-
able function concordance. When a
function name was entered into the
HTML form, the tool displayed an entry
giving the function’s arguments and re-
sults, a list of calling and called func-
tions, and frequently a two-line specifica-
tion. We cross-linked these entries to the

code for easy navigation. The tool also
generated diagrams showing call graphs
of various forms; functions appearing in
the graph could be selected by regular
expression matches against their names.

The concordance generator proved
extremely useful as an aid to studying
the code. Its success was due, in retro-
spect, to several factors:

■ The Web interface is hugely benefi-
cial: it spares the user the effort of
setting up the tool, learning how to
invoke it, and dealing with the query
syntax. It also eliminates all problems
of platform dependence, because the
tool runs on a single machine.

■ By employing AT&T’s dot graphing
program (www.research. att.com/
sw/tools/graphviz/) as a back end,
the tool could respond to queries
with well-formatted, easy-to-read di-
agrams.

■ The tool exploited NASA’s rigorous
coding standards: almost every func-
tion in the code had a standardized
header with a brief specification and
list of arguments, much in the style of
JavaDoc, and these were brought out
in the concordance enabling readers
to rapidly learn the meaning of a
function.

Message sequence chart generator
The same group that developed the

function concordance also built a post-
processor that converted message traces

into message sequence charts, which show
messages as horizontal lines between ver-
tical lines that represent processes execut-
ing through time. This tool made it much
easier to understand the protocols between
the CM and the other components, which
was a vital step in successfully replacing
the CM.

Results
Our archaeological work on the ex-

isting CTAS system uncovered some pre-
viously unknown problems with the CM
implementation, indicating that our re-
verse engineering reached below the
surface level. A primary reason we
could do this so quickly is the effective
coding and commenting standards that
NASA followed, which enabled Imagix
and the concordance generator to sup-
port effective and rapid study of how
various functions were implemented.

References
1. E. Kohler, M. Poletto, and D. Montgomery,

“Evolving Software with an Application-Spe-
cific Language,” ACM SIGPLAN 1999 Work-
shop on Compiler Support for System Software
(WCSSS ’99), ACM Press, New York, 1999,
pp. 94–102.

2. T.J. Davis, K.J. Krzeczowski, and C. Bergh,
“The Final Approach Spacing Tool,” Proc. 13th
IFAC Symp. Automatic Control in Aerospace,
Pergamon, Oxford, UK, 1994, pp. 73–79.

3. R. O’Callahan and D. Jackson, “Lackwit: A
Program Understanding Tool Based on Type In-
ference,” Proc. Int’l Conf. Software
Engineering, IEEE Computer Soc. Press, Los
Alamitos, Calif., 1997, pp. 338–348.

device. The code of CTAS is about half
a million lines long.

■ CTAS is not a strawman. Although most
of NASA’s efforts have been directed to-
wards algorithmic aspects of CTAS, not
its software engineering aspects, it is a
well-constructed piece of software. In-
deed, the US Federal Aviation Adminis-
tration has officially adopted CTAS for
nationwide deployment. As part of this
effort, the FAA has hired Computer Sci-
ences Corporation to extend CTAS with
additional features. Even without CSC’s
extensions, the “research” version stud-
ied here is in daily use at DFW.

Within CTAS, this case study focused on
the CM. While the algorithmic components
are well understood and stable, the CM has
grown steadily over the development cycle
and has become the repository for various
unrelated features, which were placed there
only because they have no obvious home
elsewhere in the system. As a result, the CM
is complicated and its design is less elegant
than the design of the rest of CTAS. It is also
a single point of failure, so its reliability is
particularly critical. Its source code is in
about a hundred files and is about 80,000
lines long, of which about a quarter are
comments.

The Existing Design
The existing CM design uses a functional

decomposition. One module handles addi-
tion and deletion of flight plans, for exam-
ple, another module interacts with the ISM,
and a third maintains the assignment of air-
craft to RAs. This design’s control flow is
implicit. There is a Motif user interface—
not for the air traffic controller, but for sys-
tem administrators to configure the CM it-
self. The main processing loop runs when
called periodically by Motif.

Here is a partial list of problems identi-
fied in the existing design and addressed by
the redesign.

■ Blocking sends. The NASA developers re-
garded this as the most serious problem.
Because the sending of messages uses

blocking primitives, the CM could be-
come deadlocked. At certain points, the
CM would create more messages than the
algorithmic processes could handle. It
would fill its outgoing buffers and stall,
waiting to write more. Meanwhile, an al-
gorithmic process would send a message
to the CM and stall if the CM did not
process it. To mitigate this problem, the
NASA team modified the CM to batch
messages into groups of limited size. This
causes considerable complexity in the cur-
rent design and also makes the system’s
behavior as a whole hard to analyze.

■ Failures. The system is not fault-toler-
ant. Although it can withstand the loss
of an algorithmic process or a user in-
terface, the CM is a single point of fail-
ure. If it crashes, the entire system must
be rebooted. The FAA has specified that
no system outage is to last longer than
25 seconds, yet it takes longer than that
to restart the system and refill the air-
craft database with fresh records.

■ Monitoring. The FAA would like to add
various monitoring features to CTAS
that would let its behavior be continu-
ally evaluated, both to measure per-
formance and detect symptoms of im-
pending failure. Adding this to the
existing CM is difficult, because it is not
clear what the impact of inserted code
would be, nor is it easy to find points in
the code that should be instrumented.

■ Complexity. The NASA developers are
dissatisfied in general with the CM’s com-
plexity. Having never had the opportunity
to redesign it, they have watched with
concern as it has become increasingly
complicated. The CM has become un-
wieldy, showing the properties of all soft-
ware systems whose structure has de-
graded: small changes are hard to make
and analyzing even simple properties of
the CM as a whole is close to impossible.

We decided to focus our redesign effort
on reducing the CM’s complexity, con-
vinced that many of the other problems
would be ameliorated as a byproduct of this
effort. Our design addressed the problems

6 6 I E E E S O F T W A R E M a y / J u n e 2 0 0 0

DAL1991 DAL1991

NTS172 NTS172

EGF894 6

AAL652 2

EGF050
AAL774 2

EGF586

EGF050

EGF894

AAL652

EGF784 3
LN210WL 1

ASE926 ASE926

05

10

15

20

EGF586 3

MF
AQ AQ

ALL RWY ALL RWY

Figure 1. CTAS output, in timeline form. A marking on the central timeline of 10 in-
dicates 10 minutes from the current time. The appearance of EGF586 on the left at
6.5 minutes from now indicates the time at which Air France 586 will arrive at the
domain boundary if it follows its current trajectory. The appearance of “EGF586 3”
on the right at about 9.5 is a suggestion to delay the aircraft by 3 minutes.

of blocking and monitoring sends explicitly.
We believe that other commercial systems
might achieve the benefits we gained by fo-
cusing on complexity reduction, especially if
they have evolved over a number of years.

We did not address the fault-tolerance is-
sue as part of our group project, but one stu-
dent designed an architecture that wraps and
replicates the CM, demonstrating a success-
ful implementation of this scheme by the end
of the term. In our redesign, we also sepa-
rated those parts of the state that cannot be
trivially reconstructed on reboot from the
rest, intending that these might eventually be
stored in a persistent database.

The New Design
In our redesign, we investigated how the

CM might look if NASA could redesign it
from scratch. Our new design, shown in Fig-
ure 3, is dramatically simpler than the exist-
ing design. What surprised us was not just
that we could simplify the design so exten-
sively, but that we were able to do it using
such standard and well-known techniques:

■ Data abstraction. The existing design is
built in a traditional, procedure-oriented
style, in which procedures communicate
by arguments and global variables that
are bound to elaborate record structures
defined in header files. Most of the re-
design’s components, in contrast, are ab-
stract data types that encapsulate data
structures and prevent direct access.

■ Infinite queues. The redesign uses a stan-
dard message queue abstraction. By pro-
viding an illusion of an infinite queue
with nonblocking reads and writes, it
lets users write client code without any
concerns for deadlock. We thus avoided
the complexities that arose in the exist-
ing design from the need to avoid filling
the outgoing buffers. This data abstrac-
tion is more intricate than the others.
Unlike a traditional passive data abstrac-
tion, the infinite queue is active: it uses
its own internal thread to move mes-
sages from the application-level virtual
buffer to the limited-capacity operating
system queue.

■ Generic message processor. The existing
design handles messages in a traditional
style. A large case statement branches on
the message type, and the message is

then deconstructed and copied into a lo-
cal record by type-specific code. The
message-handling code is long and com-
plicated, and there is much replication.
In our redesign, a generic processor finds
a handler appropriate to an incoming
message by looking up its type and the
type of the component that sent it in a
table. Code that executes for all mes-
sages regardless of message type is fac-
tored out, so that each handler is simpler
than a branch of the case statement in
the existing system. Message handler
registration is dynamic, making it easy
to change the association between mes-
sage types and handlers during execu-
tion. This simplifies monitoring: for ex-
ample, incoming messages of a given
type can be tracked by adding a new
handler registered for that type.

■ Uniform external interfaces. The exist-
ing CM has two input modes: in opera-
tion it receives input messages from the
ISM component, while during testing it
uses a different software subsystem to
read input from a file. In our redesign,
all input to the CM is via messages. To

M a y / J u n e 2 0 0 0 I E E E S O F T W A R E 67

HCS PAS

TMA advisories

General message Multiple message Weather data

Tracks, flight plans

PAMRI/E

TMA advisories

4D trajectories,
 ETAs

Weather data,
route, AC state

Tracks,
flight plans,
controller inputs

Radar
messages,

tracks,
flight plans

Tracks,
flight plans,

weather data,
controller

inputs

ISM

CM

HDAR

RA

TS

ETAs

Tracks,
flight plans

Flight plan
info, STAs

Flight plan info,
configuration changes,
ETAs, STAs

CM
DP

ETA
HCS

HDAR
ISM

NMC
PAMRI/E

PAS
PGUI

RA
STA

TGUI
TS

WDAD
WDPD

Communication manager
Dynamic planner
Estimated time of arrival
FAA host computer system
Host data acquisition and router
Input source manager
National Meterological Center
PMRI emulator (legacy interface)

Pseudo aircraft system
Planview GUI
Route analyzer
Scheduled time of arrival
Timeline GUI
Trajectory synthesizer
Weather data acquisition daemon
Weather data processing daemon

Flight plans,
configuration

Shared
memory
interface

Tracks,
flight plans,
weather data,
ETAs, STAs

Flight plan
info, STAs

PGUI

TGUI DP

NMC

WDPD

WDAD

Weather file

Figure 2. Architec-
ture of CTAS in TMA
mode.

run the system from the recorded data,
we implemented a process that mas-
querades as the ISM, reading the file of
recorded data and generating messages
that are indistinguishable to the CM
from real ISM messages. This scheme
simplifies the CM and makes playback
mode a better predictor of real behavior.

■ Message-handler language. Rather than
writing the message handlers by hand in
Java, we chose to generate the handler
code from a domain-specific message
handling language. This language was
designed to accommodate the existing C
header file descriptions of message for-
mats, so that we only had to write small
code fragments to indicate, for example,
how message fields should map to data-
base records. (The design of the lan-
guage and its compiler is orthogonal to
the rest of the design.1)

These techniques let us reimplement the
primary CM functionality in 15,000 lines of
Java, less than 20% of the previous amount
of C++ code. This result is qualified, how-
ever, by several factors. We did not imple-
ment the administrative user interface used
to configure CTAS. Also, we reused code
from the existing CM in two areas: file pars-
ing and message formats. The CM reads in
the airport and airspace configuration from
a file, from which it populates its internal
data structures; we saw no benefit in rewrit-
ing this code, so we wrapped it in native
Java methods. In our design, the recorded
data file is parsed in a separate process,
which we chose to code in C so that we
could use existing parsing code. As we’ve
discussed, our message-handler compiler
(whose code size is not included in the line
count above) also exploited existing C
header files to generate code that extracts
fields from messages.

Lessons Learned
Following are the opinions of the authors,

and not necessarily the consensus of the class
as a whole.

Simple designs are possible
The most obvious lesson is that a complex

and successful software system can be dramat-
ically simplified. The new design is not only
simpler, but is more flexible, easier to analyze,

and easier to tune. This is an example of
Hoare’s maxim that “inside every large pro-
gram is a small program trying to get out.”

Standard software engineering techniques
work

Our project was not intended to demon-
strate that standard techniques, such as data
abstraction,2,3 would solve the problem. In
fact, we had hoped to experiment with more
advanced techniques, in particular object
modeling. But we brought about such major
improvements using standard techniques
alone that we never progressed to more am-
bitious ones.

In the last few years, the focus of debate
about software development has moved
from technology to process. More compa-
nies appear to be concerned with their orga-
nization’s maturity level than their engi-
neers’ technical education. Our experience
suggests that before considering refinements
of process, it might be worth evaluating the
potential of well-understood software engi-
neering notions that have yet to be applied
to the system at hand.

From an educational point of view, our
experience suggests that undergraduate com-
puter science courses should emphasize basic
notions of modularity, specification, and
data abstraction, and should not let these be
displaced by more advanced topics, such as
design patterns, object-oriented methods,
concurrency, functional languages, and so
on. In our experience, professional develop-
ers usually show much more sophistication
in their use of algorithms than in their un-
derstanding of abstraction, which is usually
more critical to a development’s success. Per-
haps this indicates that undergraduate teach-
ing in algorithms is simply more effective
than in software engineering. But it might
suggest that our curricula toward issues of
programming in the small, to the detriment
of the needs of industry.

Coding standards are vital
Our reverse-engineering efforts benefited

immeasurably from NASA’s rigorous coding
standards. Before embarking on a major de-
velopment, it might be worth considering
what kinds of tools might later be used to an-
alyze the code, and how lexical and syntactic
conventions might make their task easier and
more productive. Bill Griswold has coined the

The new design
is not only

simpler, but is
more flexible,

easier to
analyze, and

easier to tune.
This is an

example of
Hoare’s maxim

that “inside
every large
program is a

small program
trying to get

out.”

6 8 I E E E S O F T W A R E M a y / J u n e 2 0 0 0

term information transparency to
describe code that has been writ-
ten with analysis in mind, and
makes a compelling argument for
paying attention to this aspect of
design.4

Reverse-engineering tools work
Although we spent much time

reading code, tools made a big
difference. Their contribution
was not so much in generating
representations that could replace
the code in reasoning about it,
but rather in rapidly directing us
to the relevant parts of the code
pertinent to the question at hand.

High-level models are vital
Most of our reverse-engineer-

ing efforts focused on answering
basic questions about the behav-
ior of the system as a whole and
the assumptions it makes about
the aircraft behavior and air-
space structure. CTAS’s documentation, al-
though several hundred pages long, does not
include any system-level models that address
these issues.

This is typical of industrial development
environments. Such models are time-con-
suming and difficult to construct, and they
can seem unnecessary to expert developers
who have already formed them inside their
heads. But the price paid for their omission
is high. New developers who join a team
acquire expertise in a slow and error-prone
fashion, often from the code. Expert devel-
opers might have inconsistent models of the
system, but, because these are not articu-
lated, do not discover the inconsistencies
until integration.

Most worryingly, we can miss the forest
for the trees: the most basic and fundamen-
tal issues often get only scant attention be-
cause of pressure to meet deadlines and re-
solve low-level implementation problems.
For example, the CTAS documentation does
not explain the fundamental issue of how
aircraft are related to identifiers. It does
mention that, because the FAA computer
can pass to CTAS both the record for the ar-
rival of a flight and the one for its scheduled
departure from the same airport, an aircraft
cannot be identified by its call sign alone.

This problem arose during a test at DFW
and was fixed by appending the departure
airport to the call sign. It is not obvious that
even this is good enough, because if the FAA
computer can send flight plans even before
the flight has taken off, it might include
flight plans for the same flight on two differ-
ent days. In fact, the FAA’s computer system
holds at most one day’s worth of flight
plans, but this assumption is not docu-
mented anywhere. An upgrade to the FAA
system that lets it store more flight plan in-
formation might thus cause a serious failure,
and it is not hard to imagine the impact of
such a change being overlooked.

Careful construction of an object model5

would resolve issues of this sort early on in
development, resulting in simpler, safer, and
more economical software. An object model
is simply one way to describe the abstract
state of a system or its environment; what
matters is not how the state is described but
whether it is described at all. A report on
the development of CDIS, an en route air
traffic control system, corroborates this: it
attributes only 8% of the total project effort
to the task of constructing a specification of
abstract states and operations, and claims
that eliminating this phase would have in-
creased the cost of the project overall.6

M a y / J u n e 2 0 0 0 I E E E S O F T W A R E 69

Timed
event

Timed
event

Timed
event

Message
def.

Ti
m

eo
ut

No
tif

y
in

co
m

in
g

Code
generation

Ha
nd

le
in

co
m

in
g

Ti
m

eo
ut

Read thread Connection
thread

Creates

Outgoing

Incoming

Write thread

Ti
m

eo
ut

Scheduler

In
co

m
in

g
Q

Ou
tg

oi
ng

 Q

Process

Message
handler

send(...)

send(...)

M

M

M

M
M

M

M M

M

Network

Compiler

Figure 3. Informal ar-
chitectural sketch of
our new design of the
CM.

The value of component specifications is
now widely accepted. High-level models are
perhaps even more important, because they
are harder to extract from the code, and
have a greater impact on the system as a
whole. In addition, they are considerably
cheaper to construct than precise compo-
nent specifications.

T he FAA is under pressure from air-
lines and air traffic controllers to
field the current version of CTAS

more widely as soon as possible. The delay
that a redesign of CTAS would introduce
cannot currently be justified, whatever the
benefits. Whether the FAA is open to re-
design in the long term is a different ques-
tion. The FAA has reportedly set aside some
tens of millions of dollars for the CSC effort
to make CTAS more robust and add moni-
toring and control features. Our work
demonstrates that a redesign of at least the
CM is possible and would result in a smaller
and simpler system, which could conse-
quently be expected to be more robust.

More generally, our work supports an
unpublished hypothesis articulated some
years ago by Mahadev (Satya) Satya-
narayanan of Carnegie Mellon University.
He suggested that the common experience
of deployed software systems both growing
in size and degrading structurally as new
features are added is an artifact of insuffi-
cient resource investment. A system to
which sufficient attention is paid should ac-
tually shrink over time, as the developers
improve their understanding of the problem
and take advantage of more powerful tools.
We observed this effect quite strongly in this
case study. Our redesign benefited signifi-
cantly from Java, a standard tool not avail-
able when CTAS development began, the
message-handling script compiler, an appli-
cation-specific tool developed after studying
the CM’s implementation, and a simple infi-
nite queue data abstraction, which solved a
problem whose importance was not recog-
nized until the system had been imple-
mented and its dynamic behavior became
evident.

Finally, our work underlines the power
of software engineering fundamentals such
as data abstraction, consistent coding style,
and a design focus on simplicity. Both edu-
cators and industrial developers would do
well to renew their focus on these well-un-
derstood techniques rather than letting
them slide in favor of currently fashionable
approaches.

Acknowledgments
Most of the reverse-engineering and implemen-

tation work was done by 11 students: Michelle
Antonelli, Eric Bothwell, Chandrasekhar Boyapati,
Tim Chien, Eddie Kohler, Charles Lee, SeungYong
(Albert) Lee, David Montgomery, Massimiliano
Poletto, Phil Sarin, Ilya Shlyakhter, and Tony Wen.
Nadine Alameh and Mark Schaefer contributed in the
reverse-engineering phase. In addition to the authors,
one other faculty member, James Corbett (visiting
from the University of Hawaii), contributed to the
reverse engineering and to the design.

We are very grateful to our colleagues at NASA
Ames for their help and encouragement: to Heinz
Erzberger, CTAS’s Chief Scientist at NASA, for his
early enthusiasm that got the project going; to Michelle
Eshow, the manager of the CTAS development, to
Karen Tung Cate, her assistant lead, and to John
Robinson, aerospace engineer, for their time in explain-
ing CTAS to us, and for visiting us at MIT and review-
ing our design work. Thanks also to Rick Lloyd and
Ted Roe of Lincoln Laboratories for giving us their in-
sights into CTAS and to John Hansman of the MIT
Department of Aeronautics and Astronautics for teach-
ing us some basic notions of air traffic control.

We thank Imagix Corp. and Grammatech Inc. for
generously providing free licenses to the class for use
of their reverse-engineering tools, John Blattner of
Imagix for his helpful advice, Robert O’Callahan for
help with his Lackwit tool, and Jean Foster and Alex
Prengel in the faculty liaison office of Athena at MIT
for setting up the class infrastructure.

References
1. E. Kohler, M. Poletto, and D. Montgomery, “Evolving

Software with an Application-Specific Language,” ACM
SIGPLAN 1999 Workshop on Compiler Support for
System Software (WCSSS ’99), ACM Press, New York,
1999, pp. 94-102.

2. D. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Comm. ACM, Vol. 15, No. 12,
Dec. 1972, pp. 1053–1058.

3. B. Liskov and J. Guttag, Abstraction and Specification
in Software Development, MIT Press, Cambridge,
Mass., 1986.

4. W.G. Griswold, Coping with Software Change Using
Information Transparency, Tech. Report CS98-585,
Dept. of Computer Science and Eng., Univ. of Califor-
nia, San Diego, 1998.

5. D. Jackson, Alloy: A New Object Modelling Language,
Tech. Report 797, MIT Lab. for Computer Science,
Cambridge, Mass. 1999.

6. A. Hall, “Using Formal Methods to Develop an ATC
Information System,” IEEE Software, Vol. 13, No. 2,
1996, pp. 66–76.

7 0 I E E E S O F T W A R E M a y / J u n e 2 0 0 0

About the Authors

Daniel Jackson is an associate pro-
fessor of com-
puter science
at the
Massachusetts
Institute of
Technology,
where he is
the coleader
of the Soft-
ware Design

Group with John Chapin and holds the
Ross Career Development Chair in Soft-
ware Technology. His research interests in-
clude all areas of software design, cur-
rently focusing on notations for design,
tools for automatic analysis of designs,
and tools for reverse engineering of code.
He is a member of the IFIP Working
Groups on Programming Methodology and
on Software Requirements Engineering,
and serves as associate editor of ACM
TOPLAS and TOSEM. Contact him at MIT,
Laboratory for Computer Science, 545
Technology Sq., Cambridge, MA 02139;
dnj@lcs.mit.edu; sdg.lcs.mit.edu/~dnj.

John Chapin is an assistant profes-
sor of com-
puter science
at the Massa-
chusetts Insti-
tute of Tech-
nology, where
he is the
coleader of
the Software
Design Group
with Daniel Jackson. His research inter-
ests include a wide range of design ques-
tions in computer science and software
engineering, including operating systems
design, multiprocessor memory systems,
software engineering for parallel servers,
and the foundations of parallel computa-
tion. Contact him at MIT, Lab. for Com-
puter Science, 545 Technology Sq., Cam-
bridge, MA 02139; jchapin@lcs.mit.edu;
sdg.lcs.mit.edu/~jchapin.

