
Automatic Verification Of Finite State Concurrent Systems Using

Temporal Logic Specifications: A Practical Approach*

EM. Clarke

Cmmcgie-Mellon University

EA. Emerson

University of Texas, Austin

A.P. Sistla

Harvard University

Ahstract:We give an cfticicnt procedure for verifying

that a t%ute state concurrent systcm meets a

specification expressed in a (propositional) branching-

tirm temporal logic. Our algorithm has complexity

linear in both the size of the specification and the size

of the global transition graph for the concurrent

system. Wc also show how the logic and our algorithm

can be modified to handle fairness. We argue that this

tcchniquc can provide a practical alternative to

imanuai proof construction or use of a mechanical

theorem prover for verifying many finite state

concurrent systems.

1. lntntduction.

lri the traditional approach to concurrent program verification,

the proof that a program meets its specifications is constructed by

hand using various axioms and inference rules in a deductive

system such as temporal logic ([8], [6], [10]). The task of proof

construction is in general qtute tedious, and a good deaf of

ingenuity may be I equired to organize the proof in a manageable

fashion. Mechatucal theorem provers have failed to be of much

help due to the inherent complexity of even the simplest logics.

We argue that proof construction is unnecessary in the case of

finite state cmrcurrcnt systems and can be replaced by a model

——. ——————_____ ___ ___

*The tirst and rfurd authors were supported by NSF

Grant MCS-815553. ‘Ihe second author was patwally

supported by a University of Texas Summer Research

Award and a departmental grant from IBM.

Permission to copy without fee all or part of this material is granted
prowded that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To .opy

otherwise, or to republish, requires a fee and/or specific permission.

theoretic approach which will mechanically determine if the

systenl meets a specification expressed in propositional temporal

logic. The global s~te graph of the concurrent system can be

viewed as a fimte Kripke structure, and an efflcicnt algorithm can

be given to determine whether a gwen structure is a model of a

particular formula - i.e. to determine if the program meets its

specification. The algorlthm, which we call a model checker, is

similar to the global flow analysis algoritlrms used in compiler

optimization and has complexity linear in both the size of the

structure and the size of the specdication. When the number of

global states is not excessive (i.e. not more than a few thousand)

we believe that our technique may provide a usefid new approach

only considers fair compu[ut{ons is given in section 4. Section 5

describes an experimcnta] rmplemcntotlon of the extended model

checking algorithm and shows how it can be used to verify the

correctness of the Alternating Blt Protocol. In section 6 we

consider extensions of our logic that are more expressive and

investigate the complexity of model checkers for chcsc logics. The

paper concludes with a discussion of related work and remaining

open problems.

2. The Specification Lanqtraqe.

The syntax for CTL is given below. AP is the underlying set of

alomic propositions.

1. Every atomic proposition p .sAP is a CTL formula.

2. If fl and f2 are CTL formulae, then so are = fl,

fl A f2, AXfl, EXfl, A[fl U fJ, and E [fl U f2].

The symbols A and = have their usual meanings. X is the

nexftime operato~ the formulae AXfl (EXfl) intuitwely means

that fl holds m every (m some) immediate successor of the

current progrmn state. U ts the until operaton the formula

A[flUfJ (E[fIUfq]) intuittvcly means that for every computation

path (for some computauon path), there exists an initial prefix of

@ 1983 ACM 0-89791-090-7/83/001/0117 $00.75

117

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1983 ACM 0-89791-090-7…$5.00

the path such that f2 holds at tie last state of the prefix and fl

holds at all other states along the prefix.

We define the semantics of CTL formulae with respect to a

labeled state-transition graph. Formally, a CTL structure is a

triple M = (S, R, P) where

1. S is a finite set of states.

2. R is a binary relation on S(R L S x S) which gives the

possible transitions between swtes and must be total,

3. P is an assignment of atomic propositions to states i.e.

P: S+2AP.

A path is an infinite sequence of states (s@ Sl, ST...) such that

Vi [(s1, Si ~ ~) c R]. For any strucwr’e M = 6.fLpJ and State

SO(S, there is an irrfifii~e cornpu(ation tree with root labeled So

such that s --+ t is an arc in the tree iff (sjt) ~ R.

A structure

The corresponding tree
for start state SO

/sO\
s, S.2

I I

/s0\,2 [0
. . .
. ● ✎

● ✎ ●

Figure 21

We use the standard notation to indicate truth in a structure:

M, so t= f means that formula f holds at state so in structure

M, When the structure M is understood, we simply write So ~ f.

The relation # is defined inductively as follows:

Sol=p iff p c P(so).

Sok=+’ iff not(so t= f).

So+fl A :2 iff so 1= fland so k= fy

so+ Axfl iff for all srates t such that (sot) 6 R, t * fl.

Sok= Exfl iff for some state t such that (swt) < R, t 1= fr

sob= A[fl VTf2] iff for all paths (Sv sl,...),

~i[i >0 A Sik= f2A Vj[O <j < i-+sj 1= fill.

sol= E [fl U f2] iff for some path (sO su...),

~i[i 20 A Si + f2A ‘V’JIOSj < i+si + fl]].

3. Model Checker

Assume that we wish to determine whether formula f. is true in

the finite structure M = (S, R, P). We design our algorithm so

that when it tinishes, each state will be labelled with the set of

subformulae true in the state. We let label(s) denote this set for

states. Consequently, M,s 1= f iff f c label(s) at termination. In

order to explain our algorithm we first consider the case in which

each state is currently Iabelled with the immediate subformulae of

f which are true in that state.

We will use the following primitives for manipulating formulas

and accessing the labels associated with states:

● argl(f) and arg2(~ give the first and second

arguments of a two argument formula f such as

A[fl U f2].

● labelled (s, f) will return true (false) if states is (is not)

Iabelled with formula f.

● add-label(s, f) adds formula f to the current label of

states.

Our state label]ing algorithm (procedure Iabelgraph (f)) must

be able to handle seven cases depending OH wncther f is atomic or

has one of the following forms: - fl, fl A f,, AXfl, EXfl>.

A[fl U fJ, or E[fl U f2]. We will only consider the case in which f

= A[fl U fl] here since all of the other cases are either

straightforward or similar. For the case f = A[fl U f2] our

algorithm uses a deuth first search to explore the state graph. The

bit array marked[l: nstates] is used to indicate which states have

been visited by the search algorithm. The algorithm also uses a

118

stack ST to keep track of those states which require additional

processing before the truth or falsify off can be determined. The

boolean procedure stacked(s) will determine (in constant true)

whether states is currently on the stack ST.

begin

ST: = empty_stack;

for alls e S do marked(s):= false;

L: foralls6Sdo

if Y marked(s) then au(~s,b)

end

The recursive procedure au(~s,b) performs the search for

formula f starting from state s. When au terminates, the boolean

result parameter b will be set to true iffs k= f. The annotated code

for procedure au is shown below:

procedure au(f,s,b)

begin

{Ifs is marked and stacked, return false (see lemma 3.1).

If S is already labelled wifi f, men return me. o~e~ise,

if s is marked but neither stacked nor labelled, then

return fafse.}

if marked(s) then

begin

if stacked(s) then

begin

b:= false;

return

end;

if labelled(s,f) then

begin

b:=tme;

return

end;

b:= falsq

return

end:

{Mark states as visited. Let f = A[fl U f2]. If f2 is tme at

s, f is true ats; so labels with f and return true. If fl is not

true ats, then f is not true ats; so return false. }

marked(s): = true;

if labelled(s,arg2(f)) then

begin

add_label(s,f);

b:= true;

return

end

else if Ylabelled(s,argl(fl) then

begin

b : = false;

return

end;

{Push s on stack ST. Check to sce if f is true at afl

successor states ofs. If there is some successor state S1 at

which f is false, then f is false at s also; hence remove s

from the suck and return false. If f is true for all

successor states, then f is true ats; so removes from the

stack, labels with t and return true.}

push(s,ST);

for all S1 c successors(s) do

begin

au (f,sl,bl);

if lbl then

begin

pop(ST);

b:= fals~

return

end

end;

pop(ST~

add_label(s,~,

b:= true;

return

end of procedure au.

To establish the correctness of the algorithm we must show that

Vs clabelled (s,fl H sl=f]

holds on termination. Witbout loss of generality we consider only

the case in which f has the form A[fl U f2]. We further assume

that the states are already correctly labelled with the subforrnulae

fl and fz The first step in the proof is an induction on depth of

recursion for the procedure au, Let I be the conjunction of the

following eight assertions

IL M states are correctly Iahclled with the subformulae fl

and f~: Vs[labelled(s,f,) Hs K f,] for i = 1.2.

12. The states on the stack form a path in the state graph:

Vi [l<i< length(ST) -+ (ST(i), S’I’(i+ 1)) c R].

13. The current state parameter of au is a descendant of the

state orI top of the stack: (ToP(ST), s) c R.

14. fl A Y f2 holds at each state on the stack :

vi. [].~ i < lerrgth(ST) -+ ST(i) & fl A 1 ~].

119

15. Every state on the stack is marked but unlabeled :

Vi ~ lSiS@ltil(sT) ~ marked(ST(i)) A

- la’oclIed(ST(i), f)].

16. If a state is labelled with f, then it also marked and f is

true in that state:

Vs [Iabelled(s,f) ~ marked (s) As k= f].

17. If a state is marked but neither labellcd with f nor on the

stack, then f must be ~alse in that state

~s[markcd(s) A ~ labelled(s,~ A

7 ~i[l<iSlength(ST) As = ST[i]] -+ sI= -f].

18. STO records the contents of the stack: ST = STm

We claim that if 1 holds before execution of au(f, s, b), then I will

also hold on termination of au; Moreover, the boolean result

parameter b will be true iff f holds in state s. In the standard

Hoare triple notation for partial correctness assertions the

inductive hypothesis would be

{1} au (f,s, b) {I A (b-s & ~}.

Once the inductive hypothesis is proved, the correctness of our

algorithm is easily established. If the stack is empty before the

call on au, we can deduce that both of the following conditions

must hold:

a. ys [marked(s) - [labelled(s, f) -+ += ~] (from 11).

b. ‘V’S [marked(s) --i [mlabclled(s,f) -+ s~~f I]

(from 12, 13).

Itfollows that

Vs[markcd(s) ~ [labelled (s, f) w sF= f]].

Because of the for loop L in the calling program for au, every

state will eventually be marked. Thus, when loop L terminates

Vs[labclled (s, f) H s+f] must hold.

F’roofhf the inductive hypothesis is straightforward but tedious

and will be left to the reader. The only tricky ca~t cccurs when

the state s is marked and on the stack. In tltiis situation the

procedure au simply sets b to false and returns. To sce chat this is

the correct action, we make use of the following observation:

3.1 Leonna:

Suppose there e.yists a path (S1, S2 Sm, sk)in ihe slate

graph such [ha/ 1S k s m and Vi[1< i s m + si ~

- f,], thens, *1 A[fl U f,]. ❑

Assuming that the states of the graph are already correctly

Iabelled with fl, and f2, it is easy to see that the above algorithm

requires time O(card(S) + card(R)). llc time spent by one call of

procedure au excluding the time spent in recursive calls is a

constant plus time proportional to the number edges leaving the

smte s. Ilus, all calls to au together require time proportional to

the number of states plus the number of vertices since au is called

at most once in any state.

Wc next show how handle CTL formulas with arbitrary nesting

of subformulas. Note that if we write formula fin prctix noration

and count repetitions, then the number of sobformulae of f is

equal to the length of f. (The Icngth of f is determined by

counting the total number of operands and operators.) We can

usc this fact to number the subformulae of f. Assume that

formula f is assigned the integer i. If f is unary i.e. f= (op fl) then

we assign the integers i+ 1 through i + lcngth(fl) to the

subformulae of fl. If f is binary i.e. f = (OP fl f2) then we assign

the integem from i + 1 through i + length(fl) to the subformulae

of fl and i + length(fl) through i + length(fl) + length(f2) to the

subformulae of fz Thus, in one pass through f we can build two

arrays nfll : length(~] and sfll : length(~] where nfii] is the im

subfortmda off in the above numbering and sfii] is the fist of the

numbers assigned to the immediate subformulae of the iti

formula. For example, if f = (AU (NOT X) (OR Y Z)), then nf

and sf are given below:

nf[l] (AU (NOT X) (OR Y Z)) Sf [1] (2 4)
nf[2] (NOT X) Sf [2] (3)
nf[3] X Sf [3] nil
nf[4] (OR Y Z) sf [4] (5 6)
nf[5] Y Sf [5] nil
nf[6] Z sf [6] nil

Given the number of a formula f we can determine in constant

time the operator off and the number assigned to its arguments.

We can also efficiently implement the procedures “Iabellecf” and

“add_label”. We associate with each states a bit array L[s] of size

length(f). The procedure add_label(s,ti) sets L[s][fi] to true, and

the procedure labelled(s,fi) simply returns the current value of

L[s][fi].

In order to handle an arbitrary CTL formula f we successively

apply the state labelling algorithm described at the beginning of

this section to tic subformulas of f, starting with simplest (i.e.

highest numbered) and working backwards tot

120

for fi: = length(f) step -1 until 1 do

labclfiraph (fi);

Since each pass through the loop takes time O(sizc(S)

we conclude that the entire algorithm requires

(card(S) j- card(R))).

+ card(R)),

3.2 Theorem.

There is an algorithm for determining whether a CTL

fivrrrula f is (rue in slates of [he souc!ure M = (S,R, P)

which runs in ~ime O(lcngth(f) . (card(S) + card(R))). ❑

O(lcngth(f) We illustrate ~Ae model checking algorithm by considering a

finite state solution to the mufzd exclusion problem for two

o

7

Fig. 3.20: Globol stote transition graph for two process mutuol exclusion problem.

Fig. 3.2 b : Global state transition

checking olgorithm.

groph ofter termination of model

121

processes PI and PI In this solution each process is always in one

of Lhree regions of code:

N’i rhe Noncritical region,

Ti the ~rying region,

or Ci the Critical region.

A global state transition graph for this solution is shown in figure

3.la. Note ~hat we only record transitions between different

regiotw-of code; moves entirely within the same region are not

considered at this level of abstraction.

In order to establish absence ofs~arva~ion for process 1 we

consider the CTL formula Tl + AFCJ or, equivalently, lT1 V

AFCI, where AFP s A[troe U p] means that p occurs at some

point on all execution paths. In this case the set of subfonnulae

contains -IT1 v AFCl, -ITl, T]. AFCl and Cl. The states of the

global transition graph will be labelled with these subforcnulae

during execution of the model checking algorithm. On

tercnina~ion every state will be labcllcd with lTI v AJ?C1 as

shown in frgurc 3.lb. Thus, wc can conclude that so 1= AG(T1 a

AFCI) where AGP * 1 E[troe U -p] means that p holds globally

on all computation paths. lt follows that process 1 cannot be

prevented from entering its critical region once it has entered its

trying region.

4. Introducing Fairness into CTL

Frequently, in verifying concurrent systems we are only

interested in the correctness of fair execution sequences. For

example, with a sys~em of concurrent processes we may wish to

consider only those computation sequences in which each process

is executed infinitely Often. When dealing with network protocols

where processes communicate over imperfect (or Iossy) channels

we may also wish to restrict the set of computation sequences; irr

this case the unfair execution sequences are those in which a

sender Process continuously transmits messages without any

reachkg the receiver. Since we are considering only finite state

swtems, each of these notiol~s of fairness requires that some

collection of states be repeated infinitely often in every fair

computation. It follows from [5] that correctness of’ fair executions

cannot be expressed in CTL. In fact, CTL cannot express the

property that some proposition Q should eventually hold on all

fair executions.

In order to handle fairness and still obtain an efficient model

checking algorithm we modify the semantics of CTL. The new

logic, which we call CTLF, has the same syntax as CTL. But a

structure is now a 4-tuple (S, R. P, F) where S, R, P have the same

meaning as in the case of t3L, and F is a collection of subsets of

S i.e. F L 2s. A path p is fair iff the following condition holds:

for each c E II there are irrjlnitely many instances

on p ar which some sta/e in c appears.

Cfl F has exactly the same semantics as CrL except that all

path quantifiers range over fair paths.

An execution of a system Pr of concurrent processes is some

interleaving of the execution steps of the individual processes.

We can model a system of concurrent processes by a structure (S,

R, P) and labelling function L:R ~ Pr. S is the set of globsl

states of the system, R is the single step execution relation of the

system, and for each transition in R, L gives the process which

caused the transition. By duplicating each state in S at most

card(Pr) times, we can model the concurrent system by a structure

(S*, R*, P*, F), where each state in S* is reached by the execution

of at most one process, and F is a partitioning of S* such that each

element in F is the set of states reached by the execution of one

praess: thus card(F) = card(Pr). The fair paths of the above

structure are exactfy the fair execution sequences of the system of

concurrent processes. A similar approach can be used to model

nerwork protocols (see section 5),

We next extend our model checking algorithm to CTL ‘. We

introduce an additional proposition Q, which is true at a state iff

there is a fair path starting from that state. This can easily be

done, by obtaining the strongly connected components of the

graph denoted by the structure. A strongly connected component

is fair if it contains at least one state from each Ci in F. We label a

state with Q iff there is a path from that state to some node of a

fair strongly connected component. As usual we design the

algorithm so that after it terminates each state will be labelled

with the sub formulae off. true in that state.

We consider the two interesting cases where f c sub(fJ and

either f = E[g U h] or f = A[g U h]. We assume that rhe states

have already been labelled with the immediate subforrnulae off

by an earlier stage of the algorithm.

(i) f = E[g U h] : f is true in a state iff the CTL formula ~g

U (h A Q)] is true in that state, and this can be determined using

the CTL model checker. A state s is labeled with f iff f is true in

that state.

122

(ii) f = A[g U h] : It is easy to see that A[g U h] = m (E[Th

U (~g A qh)] V EG[-dI)). For a states we can easily check ifs

!= E[=h U (-g A Yh)] using the previous technique. To check if

s W EG(~h) we use the following procedure. Let CR be the

graph corresponding to the above structure. From GR eliminate

all nodes v such that h c label(v) and let GR’ be the resultant

labeled graph. Find all the strongly connected connected

components of CTR’and mark those which are fair. Ifs is in GR’

and there is a path from s to a fair strongly component of GR’

then s E= EG(+): otherwise s l== 7 EG(lh). As in (i), s is

labeled with f iff f is true ins.

If n = max(card(S), card(R)), m = length(o and p = card(F’),

then h can be shown that the above algorithm takes time

O(n ~m.p).

5. J&rm the Extended Model Checker to

Verifv the Alternating Bit Protocol

In this section we consider a more complicated example to

illustrate fair palhs and to show how the Extended Model

checking (,Eh4C) system might actually be used. The example

that we have selected is the Merrradrrg Bit Pro/ocol (ABP)

originally proposed in [2]. This algorithm consists of two

processes, a Sender proces~ and a Receiver process, which

ahemate]y exchmrge messages. We will assume (as in [11]) that

messages from the Sender to the Receiver are da~a messages and

that messages from the Receiver to the Sender are

ackrzowledgmerr~s. We will forther assume that each message is

encoded so that garbled messages can be detected. Lost messages

will be detected by using time-outs and will be treated in exactly

the same manner as garbled messages (i.e. as error messages).

Ensuring that each transmitted message is correctly received

can be tricky. For example, the acknowledgment to a message

may be lost. in this case the Sender has no choice but to resend

the original message. The Rcceivcr must realize that the next

data message it rccei} es is a duplicate and should be discarded.

Additional complications may arise if this message is also garbled

or lost. These problems are handled in the algorithm of [2] by

including with each message a control bit called the alternation

bit.

In the EMC system finite-state concurrent programs are

specified in a restricted subset of the CSP programnr ing language

[7] in which only boolean data types arc permitted and all

messages between processes must be ~ignak. CSP programs for

the Sender and Receiver processes in the A!3P are shown in

figures 5.la and 5.lb. To simulate garbled or lost messages we

systematically replace each message transmission statement by a

(nondeterministic) alternative statement that can potentially send

an error message instead of the original message. Thus, for

example,

Receiver ! messO would be replaced by

~roe ~ Receiver ! messo

❑

True ~ Receiver! err]

A global state graph is generated from the state machines of the

individual CSP processes by considering all possible ways in

which the transitions of the individual prwesses may be

interleaved. Since construction of the global state graph is

proportional to the product of the sizes of the state machines for

tie individual processes, various (correctness preserving)

heuristics are employed to reduce the number of states in the

graph. Explicit construction of the globs! state machine can be

avoided to save space by dynamically rccomputhrg the successors

of the current stitc. The global state graph for the ABP is shown

in the figure 5.2.

Once the global state graph has been constructed, the

algorithm of section 4 can be used to detcrmirrc if the program

satisfies its specifications. In the case of the ABP we require that

every data message that is generated by the Sender process is

eventually accepted by the Receiver process

AG[gen_dmO -+ AX[A[7 (gen_dmO V gen_dml) U acc_dmO]] A

AG[gen_dml + AX[A[= (gen_dmO v gen_dml) U acc_dml]]

This formula is not true of the global state graph shown in

figure 5.2 because of infinite paths on which a message is lost or

garb!ed each time that it is retransmitted. For this reason, we

consider only those fair paths on which the initial state occurs

infinitely often. With this restriction the algorithm of section 4

will correctly determine that the state graph of figure 5.3 satisfies

its specification.

As of October 1982, most of the programs that comprise the

EMC system have been implemented. Theprogram which parses

CSP programs and constructs the global state graph is written in a

combination of C and lisp and is operational. An efficient top-

down version of the model checking algorithm of section 3 has

also been implemented and debugged. ‘The extended model

checking algorithm of section 4 (which only considers fair paths)

has been implemented in LISP and is currently being debugged.

(Note: dm stands for data message; am stands for acknowledgement message.)

*[gen_dmO;
RCV ! dmOi

*[Rev ? amo + exit;

L1
Rcv ? aml ~ RCV ! dmO;

D
RCV T err + RCV ! dmO;

1
gen_dml;
RCV ! dml;
*[Rm ? ml - exit;

u—
RCV ? amO +- RCV ! dml;

Figure 5.la: Sender Process (SND)

*[●[SND ? dmO exit;

n..
SND ? dml -V SND ! aml;

0

SND ? err + SND ! aml;

1
acc_dmO;
SND ! amo;
*[SND ? dml -D exit;

IJ
~D ? dmO + SND ! amO;

~D ? err-+SND 1 amO;

acc dml;
SND—! ad;

1

Fi?ur. !5.M: Receiver Process (RCV)

ogen-dml

&occ-dml

.

Figure 5.2 Globol sfote transition groph for
olternoting bit protocol.

124

6. Extended Lociics Proof Sketch: Wc wish to determine if the CrL* formula f is

In this section we consider Iogics which are more expressive

than CTL and investigate their usefulness for automatic

verification of finite state concurrent systems. CTL severely

restricts the type of formula that can appear after a path

quantifier. In CIT.* wc relax this restriction and allow an

arbitrary formula of linear time logic to follow a path quantifier,

We distinguish two types of formulae in giving the syntax of

CTI.*: state formulae and path formulae. Any state formulae is a

CTL* formula.

<state-formula>:: = <atomic proposition> I

<state-formula> A <state-formtda>l

m <state-formula> I

E(<parh-formula>)

<path-formula>:: = <state-formulOl

<path-formula> U <path-fonrrulO\

A<path-formula> I

<path-formula> A <path-fonnulrO I

X <path-formula> I

F<path-formulb

We use the abbreviation Gf for 7F7f and A(f) for lET(f). We

interpret state formulae over states of a structure and path

formulae over paths of a structure in a natural way. The truth of

a CTL* ?ormula in a state of a structure is inductively defined. A

fommla of the form E(<path formula>) is true in a state iff there is

a path in the structure starting from that state on which the path

formula is ‘wue. The troth of a path formula is defined in much

the same way as for a formula in linear temporal logic if we

consider all the immediate state - sub formulae as atomic

propositions [5]. BT* will denote the subset of the above logic in

which path formulae only use the F operator. CTL+ will denote

the subset in which the temporal operators X, U, F are not nested.

Fairness can be easily handled in CTL*. For example, the

following formula asserts that on all fair executions of a

concurrent system with n processes, R eventually holds:

A((GFP1 A GFP2 A ...GFPn) -+ FR)

Here Pp P2,...Pn hold in a state iff that state is reached by

execution of one step of process Pv P2...Pn, respectively.

6.1 Theorem.

The model checking problem for CTL* is

PSPACE-cornplete. El

true in state s of structure M. l,et g be a subformula off of the

form E(g’) where g’ is a path formula not containing any path

quantifiers. For each such g we introduce an atomic proposition

Qg. Let f be the formula obtained by replacing each such

subformula g in f by Qg. Wc modify M by introducing the extra

atomic-propositions Qg. Each Qg is true in a state of the modified

structure iff g is true in the corresponding state in M. The latter

problem can bc solved in polynomial space using the algorithm

given in [13]. f is true at state s in M iff f is true in states in the

modified structure. We successively repeat the abo},e procedure,

each time reducing the depth of nesting of the path quantifiers.

It is easily seen that the above procedure takes polynomia3

space. Model checking for CrL* isPSPACE-hard because model

checking for formulas of the form E(g’), where g“ is free of path

quantifiers, is shown to’be l%PACE-hard in ~ 3]. •l

6.2 Theorem.

The model checking problem for BT* (r3L*)

is both NP-hard and co-NP-hard, and is in A:. c!

Proof Sketch: The lower bounds follow from the results in

[13]. In [13] it was shown that the model checking problem for

formulas of the form F(g’), where g is free of path quantifiers and

uses the only temporal operator F, is in NP. Using this result and

a procedure like the one in the proof of previous theorem it is

easily seen that the model checking problem for IIT* is in A;. A

similar argument can be given for CTL+. ❑

We believe that the above complexity results justify our

approach in section 5 where fairness constraints are incorporated

into the semantics of the logic in order to obtain a polynomia3-

time model checking algorithm.

7. Conclusion

Much research in protocol verification has attempted to exploit

the fact that protocols are frequently finite state. For example, irr

[15] and [14] (global-state) r-eachabilify tree constructions are

described which permit mechanical detection of system

deadlocks, unspecified message receptions, and non-executable

process interactions in finite-state protocols. An obvious

advantage that our approach has over such methods is flexibility;

our use of temporal logic provides a uniform notation for

expressing a wide variety of correctness properties, Furthermore,

it is unnecessary to formulate protocol specifications as

reachability assertions since the model checker can handle both

safety and liveness properties with equal facility.

125

The use of temporal Ioglc for specifying concurrent systems

has, of course, been extensively mvestlgated ([8], [6], [10]).

However, most of tlus work requires that a proof be constructed

in order to show that a program actually meets its specification.

Although this approach can, in principle, avoid the construction

of a global state machine, it is usually necessary to consider a large

number of possible process interactions when establishing non-

interference of processes. The possibility of automatically

synthesizing finite state concurrent systems from temporal logic

specifications has been considered in [3] and [9]. But this

approach has not been unplemented, and the synthesis algorithms

have exponential-time complexity in the worst case.

Perhaps the research that is most closely related to our own is

that of Quielle and Sifakis ([11], [12]), who have independentJy

developed a system which will automatically check that a finite

state CSP program satisfies a specification in temporal logic. The

logical system that is used in [11], is not as expressive as CTL,

however, and no attempt is made to handle fairness properties.

Although fairness is discussed is [12], the approach that is used is

much different from the one that wc have adopted. Special

temporal operators arc introduced for asserting that a property

must hold on fair paths, but neither a complexity analysis nor an

efficient model checking algorithm is given for the extended

logic.

Acknowledemen!

The authors wish to acknowledge the help of M. Brinn and

K. Sorenson in implementing an experimental prototype of tJre

system deacribcd in section 5.

References

1. M. Ben-Ari, Z. Manna, A. Pneuli. “TheLogico fNextime.’(

.Elghrh ACh4 Symposium on Principles of Programming

Languages, Williamsburg, VA (January 1981),164-176.

2. K.A. Bwtlet.R.A. Scantlebury,P. T.Wilkinson. “ANoteon

Reliable Full-Duplex Transmission o;er Half-Duplex Links.”

Communications of the ACM 12,5 (1969), 260-261.

3. E. M. Clarke, E.A. Emerson. SynrJrcsis of Synchronization

Skeletons for Branching T]me Temporal Logic. Proceedingsof

the Workshop on Logic of Programs,Yorktown-Heights, NY,

Lecture Notes in Computer Science #131, 1981.

5. E. A. Emerson, J.Y. Halpcm. Sometimes mrd Not Never

Revisited: On Branching versus Lmcm Time. POPL83

6. B.T. Hailpem, S. Owlcki. Verify mgNmwork Protocols Using

Temporal Logic. Tech. Rept.192, Compute rSystcmLaboratory,

Stanford Uni~ersity, June, 1980.

7. C. A. R. Hoarc. “CommunicatingS cqucntialP recesses.”

Commumcallons of [he ACM 21,8 (August 197$3),666-667.

8. Z. Manna, A. Pneuli. “Verificationo fConcurrentP rograrns:

lle Temporal Framework.” The CorrecmessP i-o/Jemin

Computer Sclence(R.S. BoyerandJ.S. A~oore, edsJ,

international Lecture Ser!es in Compufer Sctencc (1981),

9. Z. Manna, P. Wolper. Synthesis of Communicatmg Processes

from Temporal Logic Spcclticatlons, Proceedings of the

Workshop on Logic of Programs, Yorktown-Heights, NY, 1981,

10. S. Owickl, L. Lamport. “ProvingL ivenessProperdcsof

Concurrent Programs.” Slanford University Technical Report

(1980).

11. J.P. Quiche, J. Sif~kis. Spccifuation and Vcrificationof

Crmcurrent Systcmsin CESAl<. Procccdmgs of the Fifth

lntemational Symposium m Programmmg, 1981.

12. J.P. Quiche, J. Sifakls. “Fairness and Related Properties in

Transition Systems.” IIMAG, 292 (March 1982).

13. A.P. SistJa,E.M. Clarke. “Complexity of Propositional

Temporal Logic.” (1982). ‘

14. D.P. Sidhu. Rules for Synthesizing Correct Communication

Protocols. PNL Preprint, to appear in SIGCOMM

15. P. Zafiropulo, C. West, H. Rudin, D. Cowan, Il. Brand.

“Towards Analyzing and Synthesizing Protocols.” IEEE

Transactions on Communications COA4-28, 4 (April 1980),

651-671.

4. E.A. Emerson, E.M. Clarke. Characterizing Properties of

Parallel Programs as Flxpoirrts. Proceedings of the Seventh

Intematinnal Colloquium on Automata, Languages and

Programming, Lecture Notes in Computer Science #85, 1981.

126

