Automatic Verification Of Finite State Concurrent Systems Using
Temporal Logic Specifications: A Practical Approach*

E.M. Clarke

Carnegie-Mecllon University

E.A. Emerson

University of Texas, Austin

AP, Sistla

Harvard University

Abstract:We give an cfficient procedure for verifying
that a finite state concurrent system meets a
specification expressed in a (propositional) branching-
time temporal logic. Our algorithm has complexity
linear in both the size of the specification and the size
of the global transition graph for the concurrent
system. We also show how the logic and our algorithm
can be modificd to handle fairness. We argue that this
technique can provide a practical alternative to
manual proof construction or use of a mechanical
theorem prover for verifying many finite state
concurrent systems.

1. Introduction.

I the traditional approach to concurrent program verification,
the proof that a program meets its specifications is constructed by
hand using various axioms and inference rules in a deductive
system such as temporal logic ([8], [6], [10]). The task of proof
construction is in general quite tedious, and a good deal of
ingenuity may be 1equired to organize the proof in a manageable
fashion. Mechanical theorem provers have failed to be of much

help due to the inherent complexity of even the simplest logics.

We argue that proof construction is unnecessary in the case of
finite state concurrent systems and can be replaced by a model
*The first and third authors were supported by NSF
Grant MCS-815553. 'The second author was partally
supported by a University of Texas Summer Research
Award and a departmental grant from IBM.

Permission to make digital or hard copies of part or al of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or afee.
© 1983 ACM 0-89791-090-7...$5.00

117

theoretic approach which will mechanically determine if the
system meets a specification expressed in propositional temporal
logic. The global state graph of the concurrent system can be
viewed as a finite Kripke structure, and an efficient algorithm can
be given 1o determine whether a given structure is a model of a
particular formula - ie. to determine if the program meets its
specification., The algonthm, which we call a model checker, is
similar to the global flow analysis algorithms used in compiler
optimization and has complexity lincar in both the size of the
structure and the size of the specification. When the number of
global states is not excessive (i.e. not more than a few thousand)
we believe that our technique may provide a useful new approach
only considers fair computations is given in section 4. Section 5
describes an experimental implementation of the extended model
checking algorithm and shows how it can be used to verify the
correctness of the Alternating Bit Protocol. In section 6 we
consider extensions of our logic that are more expressive and
investigate the complexity of model checkers for these logics. The
f)apcr concludes with a discussion of related work and remaining

open problems.

2. The Specification Language.
The syntax for CTL is given below. AP is the underlying set of

atomic propositions.

1. Every atomic proposition p € AP is a CTL formula.

2. 1f f1 and f2 are CTL formulae, then so are — fl,
f, A £, AXE), EXS, Alf, U}, and E[f, U £).

The symbols A and — have their usual meanings. X is the
nexttime operator; the formulae AXf1 (EXfl) intuitively means
that f1 holds in every (in some) immediate successor of the
current program state. U 1s the wntil operator; the formula
Alf, Uf] (E[f,Uf,)) intuitively means that for every computation

path (for some computation path), there exists an initial prefix of

the path such that f2 holds at the last state of the prefix and fl
holds at all other states along the prefix.

We define the semantics of CTL formulae with respect to a
labeled state-transition graph. Formally, a CTL structure is a
triple M = (S, R, P) where

1. S is a finite set of states.

2. R is a binary relation on S(R ¢ S x S) which gives the
possible transitions between states and must be total,
ie. VxeSdyeSxy)eR]

3. P is an assignment of atomic propositions to states i.e.
P:S— 2

A path is an infinite sequence of states (so, sy, Sy such that
Vi [(s, s, , P € Rl For any structure M = (S.R,P) and state
Sg€ S, there is an infinite computation tree with root labeled S

such that s — t is an arc in the tree iff (s,t) € R.

A structure

So
S
Sy
The corresponding tree
for start state Sg
So
T T
So S
S So So
Figure 2.1

118

We use the standard notation to indicate truth in a structure:
M, Sg = f means that formula f holds at state S in structure
M. When the structure M is understood, we simply write s, = f.
The relation ¥= is defined inductively as follows:

soi=p iff pe P(so).

sol=—vf iff not(sa = f).

sF=f) AL iff sy = flands) k= £,

sor-—- AXf1 iff for all states t such that (so,t) eR tF= fl‘
sol= E.Xfl iff for some state t such that (so,t) eR, tk= fl.

sok‘—' A[f1 U f2] iff for all paths (so. sl,...),
difi> 0As =LA ViD<j< i = Al

s EIf, U L)) iff for some path (5 Sy,
Jiliz 0As, = A Vil0 < <is =11

3. Model Checker

Assume that we wish to determine whether formula f_ is true in
the finite structure M = (S, R, P). We design our algorithm so
that when it finishes, each state will be labeiled with the set of
subformulae true in the state. We let label(s) denote this set for
state s. Consequently, M, s == fiff f ¢ labcl(s) at termination. In
order to explain our algorithm we first consider the case in which
each state is currently labelled with the immediate subformulae of

f which are true in that state.

We will use the following primitives for manipulating formulas

and accessing the labels associated with states:

e argl(f) and arg2(f) give the first and second
arguments of a two argument formula f such as
A[flUfz].

o labelled (s, f) will return true (false) if state s is (is not)
labelled with formula f.

o add _label(s, f) adds formula f to the current label of
state s.

Our state labelling algorithm (procedure tabel_graph (f)) must
be able to handle seven cases depending on whether f is atomic or
has one of the following forms: - fl, f1 A fz’ AXfl, EXfl,
A[fl 18] fz], or E[f1 U le. We will only consider the case in which f
= Alf; U f)] here since all of the other cases are either
straightforward or similar. For the case f = A[f1 U fz] our
algorithm uses a depth first search to explore the state graph. The
bit array marked{1: nstates] is used to indicate which states have

been visited by the search algorithm. The algorithm also uses a

stack ST to keep track of those states which require additional
processing before the truth or falsify of f can be determined. The
boolean procedure stacked(s) will determine (in constant true)
whether state s is currently on the stack ST.
begin

ST := empty_stack;

forall s € S do marked(s) : = false;

L:forallseS do

if = marked(s) then au(f;s,b)
end

The recursive procedure au(f,s,b) performs the search for

formula f starting from state s. When au terminates, the boolean

result parameter b will be set to true iff s k= f. The annotated code

for procedure au is shown below: .

procedure au(f,s,b)
begin

{If s is marked and stacked, return false (see lemma 3.1).
If s is already labelled with £, then return true. Otherwise,
if s is marked but neither stacked nor labelled, then
return false.}

if marked(s) then
begin
if stacked(s) then
begin
b : = false;
return
end ;
if labelled(s,f) then
begin
b := true;
returm
end;
: = false;
return
end;

{Mark state s as visited. Let f = Alf; U £,] If £, is true at
s, fis true at s; so label s with f and return true. If fl is not
true at s, then fis not true at s; so return false. }

marked(s) : = true;
if labetled(s,arg2(f)) then
begin
add_label(s,f);
b := true;
return
end
else if —labelled(s,argl(f)) then

119

begin
b := false;
return
end;

{Push s on stack ST. Check to see if f is true at all
successor states of s, If there is some successor state sl at
which f is false, then f is false at s also; hence remove s
from the stack and return false. If f is true for all
successor states, then f is true at s; so remove s from the
stack, label s with f, and return true.}

push(s,ST);
for all sl ¢ successors(s) do
begin
au (f;s1,b1);
if -bl then
begin
pop(ST);
b := false;
return
end
end;
pop(8T);
add_label(s,f);
b := true;
return

end of procedure au.

To establish the correctness of the algorithm we must show that

Vs [labelled (s,f) o sk=f]

holds on termination. Without loss of generality we consider only
the case in which f has the form A[f1 U £} We further assume
that the states are already correctly labelled with the subformulae
f, and f,. The first step in the proof is an induction on depth of
recursion for the procedure au. Let I be the conjunction of the
following eight assertions:

I1. All states are correctly labelled with the subformulae f;
and f,: Vs labelled(s.f) v s = £ | fori = 12.

12. The states on the stack form a path in the state graph:
Vi [1<i< length(ST) — (STG), STG+1)) €R].

13. The current state parameter of au is a descendant of the
state on top of the stack: (Top(ST),s) € R.

14, fl A = f2 holds at each state on the stack :
Vi [1<i<length(ST) — STG) =1 A -~ f2].

15. Every state on the stack is marked but unlabelled :
Vi [1<iclength(ST) — marked(ST()) A
~ labelled(ST(@), f)]

16. If a state is labelled with f, then it also marked and fis
true n that state:
Vs [tabelled(s,f) — marked (s) A's k= £].

17. If a state is marked but neither labelled with { nor on the
stack, then f must be false in that state:
s[marked(s) A = labelled(s,f) A
- 3if 1<iclength(ST) A's = ST[i]] — s=~f].

18. ST, records the contents of the stack: ST = STO.

We claim that if | holds before execution of au(f, s, b), then I will
also hold on termination of au; Moreover, the boolean result
parameter b will be true iff f holds in state s. In the standard
Hoare triple notation for partial correctness assertions the
inductive hypothesis would be

{I}au(f s, b) {I A (b= s =}

Once the inductive hypothesis is proved. the correctness of our
algorithm is casily established. If the stack is empty before the

call on au, we can deduce that both of the following conditions
must hold:

a. Vs [markcd(s) — [labelled(s, f) — sk= f]] (from 11).

b. Vs [markcd(s) — [~labelled(s,f) — sE=-f]]
(from 12, 13).

It follows that
V/s[marked(s) — flabefled (s,) « s=£1].

Because of the for loop L in the calling program for au, every
state will eventually be marked. Thus, when loop L terminates
Vs labelled (s, f) « sk=f] must hold.

Proof of the inductive hypothesis is straightforward but tedious
and will be left to the reader. The only tricky casz occurs when
the state s is marked and on the stack. In this situation the
procedure au simply sets b to false and returns. To sce that this is

the correct action, we make use of the following observation:

3.1 Lemma:
Suppose there exists a path (sl, Sgv wees S s in the state
graph such that 1<k < m and Vi[1<i<m — s, =
=1,). thens == Alf, Ut} O

129

Assuming that the states of the graph are already correctly
labelled with fl‘ and fz’ it is easy to sce that the above algorithm
requires time O(card(S) + card(R)). The time spent by one call of
procedure au excluding the time spent in recursive calls is a
constant plus time proportional to the number edges leaving the
state s. Thus, all calls to au together require time proportional to
the number of states plus the number of vertices since au is called

at most once in any state.

We next show how handle CTL formulas with arbitrary nesting
of subformulas. Note that if we write formula f in prefix notation
and count repetitions, then the number of subformulae of f is
cqual to the length of f.(The length of f is determined by
counting the total number of operands and operators.) We can
use this fact to number the subformulae of f. Assume that
formula fis assigned the integer i. If fis unary i.e. f= (op fl) then
we assign the integers i+1 through i + length(f)) to the
subformulae of fl. If f'is binary i.e. f = (op f1 fz) then we assign
the integers from i + 1 through i + length(f,) to the subformulae
of f1 andi + length(fl) through i + length(fl) + length(fz) to the
subformulae of £,. Thus, in one pass through f we can build two
arrays nf[l : length(f)] and sfl : length(f)] where nffi} is the i
subformula of f in the above numbering and sffi] is the list of the
numbers assigned to the immediate subformulae of the i
formula. For example, if f = (AU (NOT X) (OR Y Z)), then nf
and sf are given below:

nf[1] (AU (NOT X) (OR Y 2)) sf [1] (2 4)
nf[2] (NOT X) st [2] (3)
nf{3] X sf [3] nil
nf[4] (OR Y 2) sf [4] (5 6)
nf[5] ¥ st [5] nil
nf{6] z sf [6] nil

Given the number of a formula f we can determine in constant
time the operator of f and the number assigned to its arguments.
We can also efficiently implement the procedures "labelled” and
"add label". We associate with each state s a bit array L[s] of size
length(f). The procedure add label(s,fi) sets L[s}[fi] to true, and
the procedure labelled(s,fi) simply returns the current value of
L{s}(fi].

In order to handle an arbitrary CTL formula f we successively
apply the state labelling algorithm described at the beginning of
this section to the subformulas of f, starting with simplest (i.e.

highest numbered) and working backwards to f:

forfi:=

tength(f) step -1 until 1 do
label_graph (fi);

Since cach pass through the loop takes time O(size(S) + card(R)),

we conclude that the entire algorithm requires O(length(f)

- (card(S) + card(R))).

3.2 Theorem.
There is an algorithm for determining whether a CTL
formula f is true in state s of the siructure M = (S, R, P)
which runs in time O(length(f) - (card(S) + card(R))). O

We illustrate the mode] checking algorithm by considering a

finite state solution to the mutual exclusion problem for two

Fig. 3.2b : Global stote tronsition graph after termination of model
checking olgorithm.

121

processes Pl and P,. In this solution each process is always in one

of three regions of code:

Ni the Nongritical region,
Ti the Trying region,

orC, the Critical region.

A global sate transition graph for this solution is shown in figure
3.1a. Note that we only record tramsitions between different
regions of code; moves entirely within the same region are not

considered at this level of abstraction.

In order to establish absence of starvation for process 1 we
consider the CTI. formula T1 — AFC1 or, equivalently, —|T1 v
AFCl, where AFp = Aftrue U p] means that p occurs at some
point on all execution paths. In this case the set of subformulae
contains =T, v AFC,, =T, T,. AFC, and C,. The states of the
global transition graph will be labelled with these subformulae

during execution of the model checking algorithm. On
termination every state will be labelled with -lTl \ AFC1 as
shown in figure 3.1b. Thus, we can conclude that s, = AG(T, —
AFCl) where AGp = — Eftrue U —p] means that p holds globally
on all computation paths. It follows that process 1 cannot be
prevented from entering its critical region once it has entered its

trying region.

4, Introducing Fairness into CTL

Frequently, in verifying concurrent systems we are only
interested in the correctness of fair execution sequences. For
example, with a system of concurrent processes we may wish to
consider only those computation sequences in which each process
is executed infinitely often. When dealing with network protocols
where processes communicate over imperfect (or lossy) channels
we may also wish to restrict the set of computation sequences; in'
this case the unfair execution sequences ate those in which a
sender process continuously transmits messages without any
reaching the receiver. Since we are considering only finite state
systems, each of these notions of fairness requires that some
collection of states be repeated infinitely often in every fair
computation. It follows from [5] that correctness of fair executions
cannot be expressed in CTL. In fact, CTL cannot express the
property that some proposition Q should eventually hold on all

fair executions.

122

In order to handle fairness and still obtain an efficient model
checking algorithm we modifv the semantics of CTL. The new
logic, which we call CTLF, has the same syntax as CTL. But a
structure is now a 4-tuple (S, R. P, F) where S, R, P have the same
meaning as in the case of CTL, and F is a collection of subsets of
Sie Fc25 A pathpis fair iff the following condition holds:

Jor each c € F, there are infinitely many instances
on p at which some stale in ¢ appears.

CT1F has exactly the same semantics as CTL except that all
path quantifiers range over fair paths.

An execution of a system Pr of concurrent processes is some
interleaving of the execution steps of the individual processes.
We can model! a system of concurrent processes by a structure (S,
R, P) and labelling function L:R — Pr. S is the set of global
states of the system, R is the single step execution relation of the
system, and for each transition in R, L gives the process which
caused the transition. By duplicating each state in S at most
card(Pr) times, we can model the concurrent system by a structure
(S*, R* P* F), where each state in S* is reached by the execution
of at most one process, and F is a partitioning of $* such that each
element in F is the set of states reached by the execution of one
process: thus card(F) = card(Pr). The fair paths of the above
structure are exactly the fair execution sequences of the system of
concurrent processes. A similar approach can be used to model

network protocols (see section S).

We next extend our model checking algorithm to CT LF. We
introduce an additional proposition Q, which is true at a state iff
there is a fair path starting from that state. This can easily be
done, by obtaining the strongly connected components of the
graph denoted by the structure. A strongly connected component
is fair if it contains at least one state from each ¢, in F. We label a
state with Q iff there is a path from that state to some node of a
fair strongly connected component. As usual we design the
algorithm so that after it terminates each state will be labelled

with the subformulae of fo true in that state.

We consider the two interesting cases where f € sub(f,) and
either f = Efg U h]or f = A[g U h]. We assume that the states
have already been labelled with the immediate subformulae of f

by an earlier stage of the algorithm.

(1) f = E[gUh]: fistrue in a state iff the CTL formula Efg
U (h A Q)] is true in that state, and this can be determined using
the CTL model checker. A state s is labeled with fiff f is true in
that state.

() f = Alg Uh}: Itis casy to sec that Alg U h] = -~ (E[-h
U (—g A =h)] vV EG(=h)). For a state s we can easily check if s
k= E[-h U (g A —h)] using the previous technique. To check if
s F= EG(~h) we use the following procedure. Let Gy be the
graph corresponding to the above structure. From Gy, eliminate
all nodes v such that h € label(v) and let GR’ be the resultant
labeled graph. Find all the strongly connected connected
components of G’ and mark those which are fair. Ifsisin Gp’
and there is a path from s to a fair strongly component of Gg’
then s k= EG(=h); otherwise s k= =~ EG(=h). As in (i), s is
labeled with {'iff fis true in s.

If n = max(card(S), card(R)), m = length(f) and p = card(F),
then it can be shown that the above algorithm takes time

O(n-m-p).

5. Using the Extended Model Checker to
Verify the Alternating Bit Protocol

In this section we consider a more complicated example to
illustrate jair paths and to show how the Extended Model
Checking (EMC) system might actually be used. The example
that we have sclected is the Alternating Bit Protocol (ABP)
originally proposed in{2]. This algorithm consists of two
processes, a Sender process and a Receiver process, which
alternately exchange messages. We will assume (as in [11]) that
messages from the Sender to the Receiver are data messages and
that messages from the Receiver to the Sender are
acknowledgments. We will further assume that each message is
cencoded so that garbled messages can be detected. Lost messages
will be detected by using time-outs and will be treated in exactly

the same manner as garbled messages (i.c. as error messages).

Ensuring that each transmitted message is correctly received
can be tricky. For example, the acknowledgment to a message
may be lost. In this case the Sender has no choice but to resend
the original message. The Receiver must realize that the next
data message it receives is a duplicate and should be discarded.
Additional complications may arise if this message is also garbled
or lost. These problems are handled in the algorithm of [2] by
including with each message a control bit called the alternation
bit.

In the EMC system finite-state concurrent programs are
specified in a restricted subset of the CSP programming language
[7] in which only boolean data types arc permitted and ail
messages between processes must be signals. CSP programs for

the Sender and Receiver processes in the ABP are shown in

figures 5.1a and 5.1b. To simulate garbled or lost messages we
systematically replace each message transmission statement by a
(nondeterministic) alternative statement that can potentially send
an error message instead of the original message. Thus, for

example,

Receiver ! messO would be replaced by

[True — Receiver ! mess0
]
True — Receiver ! err]

A global state graph is generated from the state machines of the
individual CSP processes by considering all possible ways in
which the transitions of the individual processes may be
interleaved. Since construction of the global state graph is
proportional to the product of the sizes of the state machines for
the individual processes, various (correctness preserving)
heuristics are employed to reduce the number of states in the
graph. Explicit construction of the global state machine can be
avoided to save space by dynamically recomputing the successors
of the current state. The global state graph for the ABP is shown

in the figure 5.2.

Once the global state graph has been constructed, the
algorithm of section 4 can be used to determine if the program
satisfies its specifications. In the case of the ABP we require that
every data message that is generated by the Sender process is

eventually accepted by the Receiver process:

AG[gen_dm0 — AX[A[- (gen_dm0 V gen_dml) U acc_dm0]] A

AGlgen_dml — AX[A[- (gen_dm0 Vv gen dml) U acc_dm1]]

This formula is not true of the global state graph shown in
figure 5.2 because of infinite paths on which a message is lost or
garbled each time that it is retransmitted. For this reason, we
consider only those fair paths on which the initial state occurs
infinitely often. With this restriction the algorithm of section 4
will correctly determine that the state graph of figure 5.3 satisfies

its specification.

As of October 1982, most of the programs that comprise the
EMC system have been implemented. The program which parses
CSP programs and constructs the global state graph is written in a
combination of C and lisp and is operational. An efficient top-
down version of the model checking algorithm of section 3 has
also been implemented and debugged. The extended model
checking algorithm of section 4 (which only considers fair paths)

has been implemented in Lisp and is currently being debugged.

(Note: dm stands for data message; am stands for acknowledgement message.)

*{ gen_dm0;
RCV ! ém0;
*[Rev 2 am0 - exit;

RCV ? aml = RCV ! dm0;
0
RCV ? err = RCV ! émO;
]
gen_dml;
RCV ! dml;
*[rCV ? aml - exit;
0
?fv ? am0 - RCV ! dml;
RCV ? err = RCV | dml;
]

]

Figure 5.la: Sender Process (SND)

[«[SND ? @m0 exit;
SND ? daml - SND ! aml;

SND ? err -» SND ! aml;
]

acc_dm0;

SND ! am0O;

*[SND ? dml - exit;

0

SND ? @m0 — SND ! amO;
0

SND ? err = SND ! am0;
]

acc_dml;

SND ! aml;

FPigure 5.1b: Recelver Process (RCV)

Figure 5.2 Global stote tronsition groph for
olternating bit protocol.

- 124

6. Extended Logics

In this section we consider logics which are more expressive
than CTL and investigate their uscfulness for automatic
verification of finite state concurrent systems. CTL severely
restricts the type of formula that can appear after a path
quantifier. In CTL* we relax this restriction and allow an
arbitrary formula of linear time logic to follow a path quantifier.
We distinguish two types of formulae in giving the syntax of
CTL*: state formulae and path formulae. Any state formulae is a

CTL* formula.

<state-formula>:: = <atomic proposition> I
<state-formula> A <state-formula>
- <{state-formulad> |
E(<path-formula>)

<path-formula>:: = (state—formula)l
<path-formula> U <path-formula>‘
~<Kpath-formula> l
<path-formula> A <path-formula> |
X <path-formula> |
F<¢path-formula>

We use the abbreviation Gf for ~F—f and A(f) for -E—(f). We
interpret state formulae over states of a structure and path
formulae over paths of a structure in a natural way. The truth of
a CTL* formula in a state of a structure is inductively defined. A
formula of the form E(<path formulad) is true in a state iff there is
a path in the structure starting from that state on which the path
formula is true. The truth of a path formula is defined in much
the samge way as for a formula in linear temporal logic if we
consider all the immediate state - subformulae as atomic
propositions [S]. BT will denote the subset of the above logic in
which path formulae only use the F operator. CTL™ will denote

the subset in which the temporal operators X, U, F are not nested.

Fairness can be easily handled in CTL*. For example, the
following formula asserts that on all fair executions of a

concurrent system with n processes, R eventually holds:
A((GFP; A GFP, A ..GFP) — FR)

Here Pl, Pz""Pn hold in a state iff that state is reached by

execution of one step of process P,, P,...P , respectively.

6.1 Theorem.
The model checking problem for CTL* is
PSPACE-complete. O

Proof Sketch: We wish to determine if the CTL* formula fis
true in state s of structure M. 1.et g be a subformula of f of the
form E(g’) where g’ is a path formula not containing any path
quantifiers. For each such g we introduce an atomic proposition
Q.

g
subformula g in f by Qg. We modify M by introducing the extra

Let £ be the formula obtained by replacing each such

atomic-propositions Qg. Each Qg is true in a state of the modified
structure iff g is true in the corresponding state in M. The latter
problem can be solved in polynomial space using the algorithm
given in [13]. fis true atstate s in M iff £ is true in state s in the
modified structure. We successively repeat the above procedure,

cach time reducing the depth of nesting of the path quantifiers.

It is easily seen that the above procedure takes polynomial
space. Model checking for CTL* is PSPACE-hard because model
checking for formulas of the form E(g’), where g is free of path
quantifiers, is shown to'be PSPACE-hard in [13]. O

6.2 Theorem.
The model checking problem for BT (CTLY)

is both NP-hard and co-NP-hard, and is in Aé, . 0

Proof Sketch: The lower bounds follow from the results in
[13]. In[13] it was shown that the model checking problem for
formulas of the form F(g,), where g is free of path quantifiers and
uses the only temporal operator F, is in NP. Using this result and
a procedure like the one in the proof of previous theorem it is
easily seen that the model checking problem for BT is in Ag. A

similar argument can be given for CTL*. O

We believe that the above complexity results justify our
approach in section 5 where fairness constraints are incorporated
into the semantics of the logic in order to obtain a polynomial-

time model checking algorithm,

7. Conclusion

Much research in protocol verification has attempted to exploit
the fact that protocols are frequently finite state. For example, in
[15] and{14] (global-state) reachability tree constructions are
described which permit mechanical detection of system
deadlocks, unspecified message receptions, and non-executable
process interactions in finite-state protocols. An obvious
advantage that our approach has over such methods is flexibility;
our use of temporal logic provides a uniform notation for
expressing a wide variety of correctness properties. Furthermore,
it is unnecessary to formulate protocol specifications as
reachability assertions since the model checker can handle both

safety and liveness properties with equal facility.

The use of temporal logic for specifying concurrent systems
has, of course, been extensively investigated ([8}, [6], [10D.
However, most of this work requires that a proof be constructed
in order to show that a program actually meets its specification,
Although this approach can, in principle, avoid the construction
of a global state machine, it is usually necessary to consider a large
number of possible process interactions when establishing non-
interference of processes. The possibility of automatically
synthesizing finite state concurrent systems from temporal logic
But this

approach has not been implemented, and the synthesis algorithms

specifications has been considered in [3] and [9].

have exponential-time complexity in the worst case.

Perhaps the research that is most closely related to our own is
that of Quielle and Sifakis ([11}, [12]), who have independently
developed a system which will automatically check that a finite
state CSP program satisfies a specification in temporal logic. The
logical system that is used in [11], is not as expressive as CTL,
however, and no attempt is made to handle fairness properties.
Although fairness is discussed is [12], the approach that is used is
much different from the one that we have adopted. Special
temporal operators are introduced for asserting that a property
must hold on fair paths, but neither a complexity analysis nor an
efficient model checking algorithm is given for the extended

logic.

Acknowledeme

The authors wish to acknowledge the help of M. Brinn and
K. Sorenson in implementing an experimental prototype of the

system described in section 5.

References

1. M. Ben-Ari, Z. Manna, A. Pneuli. "The Logic of Nextime."
Eighth ACM Symposium on Principles of Programming
Languages, Williamsburg, VA (January 1981), 164-176.

2. K.A. Bartlet, R.A. Scantlebury, P.T. Wilkinson. "A Note on
Reliable Full-Duplex Transmission over Half-Duplex Links."”
Communications of the ACM 12, 5 (1969), 260-261.

3. E.M. Clarke, E.A. Emerson. Synthesis of Synchronization
Skeletons for Branching Time Temporal Logic. Proceedings of
the Workshop on Logic of Programs,Yorktown-Heights, NY,
Lecture Notes in Computer Scence #131, 1981,

4. E.A, Emerson, EM. Clarke. Characterizing Properties of
Parallel Programs as Fixpoints. Proceedings of the Seventh
International Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Science #85, 1981

126

5. E.A. Emerson, J.Y. Halpern. Sometimes and Not Never
Revisited: On Branching versus Linear Time. POPL 83

6. B.T. Hailpern, S. Owicki. Verifying Network Protocols Using
Temporal Logic. Tech. Rept. 192, Computer System Laboratory,
Stanford University, June, 1980.

7. C.A.R. Hoare. "Communicating Sequential Processes ."
Communications of the ACM 21, 8 (August 1978), 666-667.

8. Z. Manna, A. Pneuli. "Verification of Concurrent Programs:
The Temporal Framework.” The Correctness Problem in
Computer Science (R.S. Boyer and J.S. Moore, eds.),
International Lecture Series in Computer Scrence (1981).

9, Z.Manna, P. Wolper. Synthesis of Communicating Processes
from Temporal Logic Specifications, Proceedings of the
Workshop on Logic of Programs, Yorktown-Heights, NY, 1981,

10. S. Owicky, L. Lamport. "Proving Liveness Properties of
Concurrent Programs.” Stanford University Technical Report
(1980).

11. J.P. Quiclle, J. Sifakis. Specification and Verification of
Concurrent Systems in CESAR. Proccedings of the Fifth
International Symposium in Programming, 1981.

12. IP. Quiclle, J. Sifakis. "Fairness and Related Properties in
Transition Systems." IMAG, 292 (March 1982).

13. AP. Sistla, EM. Clarke. "Complexity of Propositional
Temporal Logic.” (1982).

14. D.P. Sidhu. Rules for Synthesizing Correct Communication
Protocols. PNL Preprint, to appear in SIGCOMM

15. P. Zafiropulo, C. West, H. Rudin, D. Cowan, D, Brand.
"Towards Analyzing and Synthesizing Protocols.” /EEE
Transactions on Communications COM-28, 4 (April 1980),
651-671.

