
86 ANALYZABLE MODELS FOR SOFTWARE DESIGN · DRAFT

Exercises

3.1 The following Alloy model constrains a binary relation to
have a collection of standard properties:

module properties

pred show () {
 some r: univ -> univ {
-- some r -- non empty
 r.r in r -- transitive
 no iden & r -- irreflexive
 ~r in r -- symmetric
 r.~r in iden -- functional
 ~r.r in iden -- injective
 univ in r.univ -- total
 univ in univ.r -- onto
 }
 }
run show for 4

A finite binary relation cannot have all these properties at once.
Which individual properties, if eliminated, allow the remaining
properties to be satisfied? For each such property eliminated, give
an example of a relation that satisfies the rest.

You can use the Alloy Analyzer to help you. The run command
instructs the analyzer to search for an instance satisfying the con-
straints in a universe of at most 4 atoms. To eliminate a property,
just comment it out (as done for non empty above).

If you’re not yet comfortable with the relational calculus style, you
can try a reformulate the properties with quantifiers. For example,
you might prefer this definition of totality:

all x: univ | some x.r

which you could check with an assertion like this:

assert Same {
 all r: univ -> univ |
 univ in r.univ iff (all x: univ | some x.r)
 }
check Same

ANALYZABLE MODELS FOR SOFTWARE DESIGN · DRAFT 87

3.2 When writing ‘navigation expressions’, it’s tempting to sim-
plify them, but not all simplifications are valid. For a given set s
and binary relations p and q, which of the following algebraic prop-
erties hold? If the property doesn’t hold, show a counterexample.

a. distributivity of join over union: s.(p+q) = s.p + s.q

b. distributivity of join over difference: s.(p-q) = s.p - s.q

c. distributivity of join over intersection: s.(p&q) = s.p & s.q

Here’s an example of how you might check the first using the Ana-
lyzer:

module distribution
assert union {
 all s: set univ, p, q: univ -> univ | s.(p+q) = s.p + s.q
 }
check union for 4

The command tells the analyzer to find a counterexample within
a universe of 4 elements. When you find that a property does not
hold, try and obtain the smallest counterexample you can, by re-
ducing the scope (eg, replacing for 4 by for 2), or by adding addi-
tional constraints (eg, #p < 2).

3.3 A tree is a relation that satisfies some properties. What ex-
actly are the properties? Express them in relational logic, and il-
lustrate with a few examples.

Here is a template to help you:

module tree
pred isTree (r: univ -> univ) { … }
run isTree for 4

You can replace the ellipsis by some constraints on the relation
r, and execute the command to visualize some sample instances.
You may need to add some constraints to make the instances non-
trivial.

3.4 A spanning tree of a graph is a subgraph that’s a tree and cov-
ers all its nodes. Make this definition precise, and give an example
of a graph with two distinct spanning trees. Here is a template to
help you:

88 ANALYZABLE MODELS FOR SOFTWARE DESIGN · DRAFT

module spanning
pred isTree (r: univ -> univ) { … }
pred spans (r1, r2: univ -> univ) { … }
pred show (r, t1, t2: univ -> univ) {
 spans (t1, r) and isTree (t1)
 spans (t2, r) and isTree (t2)
 t1 not = t2
 }
run show for 3

Spanning trees have many uses. In networks, they’re often used to
set up connections. In the Firewire protocol, for example, a span-
ning tree is automatically discovered, and the root of the tree be-
comes a leader that coordinates communication.

3.5 Suppose you are modelling each of the following relation-
ships as a binary relation. Say for each what properties (functional,
injective, reflexive, symmetric, transitive) you would expect the
relation to have, clarifying the relation’s meaning when necessary:

a. the sibling relationship, between children with the same par-
ents;

b. the links relationship, between a host on a network and the
hosts it is linked to;

c. the contains relationship, between a directory in a file system
and its contents;

d. the group relationship, between graphical elements in a draw-
ing program and groups (collections of elements that are se-
lected and deselected together);

e. the sameGroup relationship, between graphical elements in
the same group;

f. the supercedes relationship, between a file in one file system
and a file in another file system, which holds when the first
file is a newer version of the second file.

3.6 Suppose we model the map of the London Underground as
follows. A railway line R is modelled as a separate relation R_o for
each direction it goes in, with a suffix o indicating the compass
orientation, and the stations are represented by a set Station with

ANALYZABLE MODELS FOR SOFTWARE DESIGN · DRAFT 89

a subset L corresponding to the stations of each line L, and a scalar
for each station bearing its name.

For example, the Central Line runs east-west, so it will be repre-
sented by two relations Central_East and Central_West, and a set of
stations Central, which will include the station BondStreet. Separate
branches of a line are not modelled by separate relations, so if a
line branches, then in the direction of the split, there will be a sta-
tion mapped to more than one station.

Formalize each of these constraints, using comprehensions and
quantification as little as you can:

a. If you go westbound or eastbound on the Circle Line, you will
eventually get back to where you started.

b. You can change from the Jubilee Line to the Central Line at
exactly one station.

c. Aldgate is the last station on the eastbound Metropolitan
Line.

d. The Metropolitan Line westbound splits into two branches at
Harrow on the Hill.

e. The District Line westbound has two more splitting points
than the southbound East London Line.

f. The Central Line eastbound splits at some point into two
branches that come together again.

g. The Jubilee Line never splits, and the sequence of stations in
one direction is the exact reverse of the sequence of stations
in the other direction.

h. To get from St. John’s Wood to Oxford Circus, you can take
the Jubilee Line southbound (to Bond Street) and then take
the Central Line eastbound, or you can take the Jubilee Line
southbound (to Baker Street) and then take the Bakerloo
Line southbound.

Incidentally, you can find a map of the Underground online at
http://tube.tfl.gov.uk/. You don’t need it to complete this problem.
You also don’t need to use the Alloy Analyzer, although you might
find it helpful to simulate some constraints.

90 ANALYZABLE MODELS FOR SOFTWARE DESIGN · DRAFT

3.7 Transitive closure is not axiomatizable in first-order logic. In
short, that means that if you want to express it, you need a special
operator, because it can’t be defined in terms of other operators.
Here’s a bogus attempt to do just that; your challenge is to use the
Alloy Analyzer to find the flaw.

Recall that the transitive closure of a binary relation r is the small-
est transitive relation R that includes r. Let’s say R is a transitive
cover of r if R is transitive and includes r. To ensure that R is the
smallest transitive cover, we can say that removing any tuple a->b
from R gives a relation that is not a transitive cover of r. Formalize
this by completing the following template:

module closure

pred transCover (R, r: univ -> univ) { … }
pred transClosure (R, r: univ -> univ) {
 transCover (R, r) and …
 }

assert Equivalence {
 all R, r: univ -> univ | transClosure (R, r) iff R = ^r
 }
check Equivalence for 3

Now execute the command, examine the counterexample, and ex-
plain what the bug is. The official definition of UML 1.0 had this
problem [].

