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Exercises

3.1 The following Alloy model constrains a binary relation to 
have a collection of standard properties:

module properties

pred show () {
 some r: univ -> univ {
--  some r     -- non empty
  r.r in r    -- transitive
  no iden & r  -- irreflexive
  ~r in r    -- symmetric
  r.~r in iden  -- functional
  ~r.r in iden  -- injective
  univ in r.univ -- total
  univ in univ.r -- onto
  }
 }
run show for 4

A finite binary relation cannot have all these properties at once. 
Which individual properties, if eliminated, allow the remaining 
properties to be satisfied? For each such property eliminated, give 
an example of a relation that satisfies the rest.

You can use the Alloy Analyzer to help you. The run command 
instructs the analyzer to search for an instance satisfying the con-
straints in a universe of at most 4 atoms. To eliminate a property, 
just comment it out (as done for non empty above).

If you’re not yet comfortable with the relational calculus style, you 
can try a reformulate the properties with quantifiers. For example, 
you might prefer this definition of totality:

all x: univ | some x.r

which you could check with an assertion like this:

assert Same {
 all r: univ -> univ |
  univ in r.univ iff (all x: univ | some x.r)
 }
check Same
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3.2 When writing ‘navigation expressions’, it’s tempting to sim-
plify them, but not all simplifications are valid. For a given set s 
and binary relations p and q, which of the following algebraic prop-
erties hold? If the property doesn’t hold, show a counterexample.

a. distributivity of join over union: s.(p+q) = s.p + s.q

b. distributivity of join over difference: s.(p-q) = s.p - s.q

c. distributivity of join over intersection: s.(p&q) = s.p & s.q

Here’s an example of how you might check the first using the Ana-
lyzer:

module distribution
assert union {
 all s: set univ, p, q: univ -> univ | s.(p+q) = s.p + s.q
  }
check union for 4

The command tells the analyzer to find a counterexample within 
a universe of 4 elements. When you find that a property does not 
hold, try and obtain the smallest counterexample you can, by re-
ducing the scope (eg, replacing for 4 by for 2), or by adding addi-
tional constraints (eg, #p < 2).

3.3 A tree is a relation that satisfies some properties. What ex-
actly are the properties? Express them in relational logic, and il-
lustrate with a few examples.

Here is a template to help you:

module tree
pred isTree (r: univ -> univ) { … }
run isTree for 4

You can replace the ellipsis by some constraints on the relation 
r, and execute the command to visualize some sample instances. 
You may need to add some constraints to make the instances non-
trivial.

3.4 A spanning tree of a graph is a subgraph that’s a tree and cov-
ers all its nodes. Make this definition precise, and give an example 
of a graph with two distinct spanning trees. Here is a template to 
help you:
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module spanning
pred isTree (r: univ -> univ) { … }
pred spans (r1, r2: univ -> univ) { … }
pred show (r, t1, t2: univ -> univ) {
 spans (t1, r) and isTree (t1)
 spans (t2, r) and isTree (t2)
 t1 not = t2
 }
run show for 3

Spanning trees have many uses. In networks, they’re often used to 
set up connections. In the Firewire protocol, for example, a span-
ning tree is automatically discovered, and the root of the tree be-
comes a leader that coordinates communication.

3.5 Suppose you are modelling each of the following relation-
ships as a binary relation. Say for each what properties (functional, 
injective, reflexive, symmetric, transitive) you would expect the 
relation to have, clarifying the relation’s meaning when necessary:

a. the sibling relationship, between children with the same par-
ents;

b. the links relationship, between a host on a network and the 
hosts it is linked to;

c. the contains relationship, between a directory in a file system 
and its contents;

d. the group relationship, between graphical elements in a draw-
ing program and groups (collections of elements that are se-
lected and deselected together);

e. the sameGroup relationship, between graphical elements in 
the same group;

f. the supercedes relationship, between a file in one file system 
and a file in another file system, which holds when the first 
file is a newer version of the second file.

3.6 Suppose we model the map of the London Underground as 
follows. A railway line R is modelled as a separate relation R_o for 
each direction it goes in, with a suffix o indicating the compass 
orientation, and the stations are represented by a set Station with 
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a subset L corresponding to the stations of each line L, and a scalar 
for each station bearing its name.

For example, the Central Line runs east-west, so it will be repre-
sented by two relations Central_East and Central_West, and a set of 
stations Central, which will include the station BondStreet. Separate 
branches of a line are not modelled by separate relations, so if a 
line branches, then in the direction of the split, there will be a sta-
tion mapped to more than one station.

Formalize each of these constraints, using comprehensions and 
quantification as little as you can:

a. If you go westbound or eastbound on the Circle Line, you will 
eventually get back to where you started.

b. You can change from the Jubilee Line to the Central Line at 
exactly one station.

c. Aldgate is the last station on the eastbound Metropolitan 
Line.

d. The Metropolitan Line westbound splits into two branches at 
Harrow on the Hill.

e. The District Line westbound has two more splitting points 
than the southbound East London Line.

f. The Central Line eastbound splits at some point into two 
branches that come together again.

g. The Jubilee Line never splits, and the sequence of stations in 
one direction is the exact reverse of the sequence of stations 
in the other direction.

h. To get from St. John’s Wood to Oxford Circus, you can take 
the Jubilee Line southbound (to Bond Street) and then take 
the Central Line eastbound, or you can take the Jubilee Line 
southbound (to Baker Street) and then take the Bakerloo 
Line southbound.

Incidentally, you can find a map of the Underground online at 
http://tube.tfl.gov.uk/. You don’t need it to complete this problem. 
You also don’t need to use the Alloy Analyzer, although you might 
find it helpful to simulate some constraints.
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3.7 Transitive closure is not axiomatizable in first-order logic. In 
short, that means that if you want to express it, you need a special 
operator, because it can’t be defined in terms of other operators. 
Here’s a bogus attempt to do just that; your challenge is to use the 
Alloy Analyzer to find the flaw.

Recall that the transitive closure of a binary relation r is the small-
est transitive relation R that includes r. Let’s say R is a transitive 
cover of r if R is transitive and includes r. To ensure that R is the 
smallest transitive cover, we can say that removing any tuple a->b 
from R gives a relation that is not a transitive cover of r. Formalize 
this by completing the following template:

module closure

pred transCover (R, r: univ -> univ) { … }
pred transClosure (R, r: univ -> univ) {
 transCover (R, r) and …
 }

assert Equivalence {
 all R, r: univ -> univ | transClosure (R, r) iff R = ^r
 }
check Equivalence for 3

Now execute the command, examine the counterexample, and ex-
plain what the bug is. The official definition of UML 1.0 had this 
problem [].


