
 1

Case Study in Alloy Modeling: A Common Profile for Presence

Edmond Lau

Computer Science and Artificial Intelligence Laboratory: Software Design Group
Massachusetts Institute of Technology

Abstract
 Using Alloy as a software modeling tool, I conducted a
case study of a presence protocol by the Instant Messaging
and Presence Protocol working group. I questioned major
design choices and uncovered inconsistencies in the
Common Profile for Presence protocol – a protocol that
enables a client to subscribe to other clients and
subsequently receive notifications regarding changes in the
presence information of those clients.
 In this paper, I present the results of my modeling
experience. Both the formal analysis of the final model and
the rigorous thinking that accompanied the construction of
the model evoked a reconsideration of areas of interest;
these areas of interest included protocol operations,
subscription management, multi-located clients, privacy
concerns, and asynchronous notifications.
 My purpose in conducting this case study is to aid the
working group in its development of the instant messaging
and presence protocols and to demonstrate the utility of
abstract modeling in the early stages of software design. In
the absence of this modeling, the issues described in this
paper might have propagated into the implementation
phase of the protocol, thereby wasting future time and effort
investments. Software modeling thus serves as an
invaluable thinking aid during design.

1 Introduction
 The Instant Messaging and Presence Protocol (IMPP) 1
working group within the Internet Engineering Task Force
seeks to develop a common architectural standard for web-
based systems of presence awareness, presence notification,
and instant messaging. In particular, the group aims to
facilitate the creation of common channels among presence
services that allow clients to subscribe to each other and
receive notifications regarding future changes of state . The
common profile for presence (CPP) functions as a protocol
through which clients can subscribe and unsubscribe to a
presence service that sends out notifications regarding
changes in the presence information of other clients.
 IMPP has formalized an architecture for presence
awareness and notification. Like any other software system
or protocol, the design of the CPP architecture is perhaps
the optimal phase of design and development in which to
increase confidence and verify the soundness of the

1 The homepage for Instant Messaging and Presence Protocol Working
Group can be found at http://www.ietf.org/html.charters/impp-charter.html.

protocol. Software systems have lived or died by their
design, and building micromodels of crucial design
elements can often tilt the scales toward a stronger software
system.
 To demonstrate the feasibility and the benefits of
software modeling during a system’s design phase, I have
modeled CPP using the Alloy language and the Alloy
Analyzer and documented in this paper the important issues
that the modeling experience has revealed. In this paper, I
present the results of my Alloy modeling experience. Both
the analysis of the model itself and the thinking that
accompanied the experience of articulating a model have
helped to offer clarity and insight into the design of CPP;
both have shed light upon unconsidered design issues,
inconsistencies, and ambiguities in the CPP protocol. The
purpose of this paper lies not so much in answering all the
questions regarding the protocol, but in discovering which
questions remain yet to be answered.

1.1 Software Modeling as a Design Aid
 The engineer’s approach to solving a real-life problem
involves reducing the actual, complicated system that he is
faced with into a smaller, simpler, more tractable system
that still retains the salient features. Electrical engineers
approximate non-linear circuit elements using linear
equations; system engineers build diagrams of
communications and control systems; mechanical engineers
derive mathematical equations to describe physical
phenomena. The central theme among all of these
approaches rests in the judicious use of models to make
difficult problems solvable. And yet often times, software
engineers are left behind blindly hacking at code, making
surprisingly little use of this reductionist approach in
software design.
 Faced with a design problem, models need not
completely describe the actual system to be useful; in fact,
by focusing only on the relevant concepts and relations, one
can still greatly reduce the complexity of thousands of lines
of code and specifications into more manageable models.
Such modeling increases confidence regarding the
soundness of software design and reveals bugs early so that
less time and effort become wasted project investments.
Thus, software modeling functions as a valuable aid to
analyzing design problems in the initial stages of software
development and also to checking the robustness of
currently existing software.

 2

1.2 Background on the Alloy Analyzer
 The Alloy Analyzer 3.0 is a tool developed by the
Software Design Group at the MIT Computer Science and
Artificial Intelligence Laboratory to analyze models written
in Alloy – a simple declarative language used to describe
first-order relations between different elements. The formal,
mathematical nature of the Alloy language provides a
mechanism for the user to articulate the structure and the
properties that characterize a system.
 The beauty of this language is that the associated Alloy
Analyzer can simulate instances of the described model and
check for counterexamples against certain properties and
invariants assumed to hold true about the system. The tool
can simulate operation sequences, generate examples based
on system specifications , and check properties specified by
the user. The issues described in this paper were all raised
during an Alloy modeling experience; moreover, all
accompanying visualizations were generated using the
Alloy Analyzer 3.0 visualizer.
 More information regarding Alloy can be found at
http://alloy.mit.edu/.

2 Common Profile for Presence Protocol
 The Alloy model for the Common Profile for Presence
draws from the following two documents on the IMPP
charter webpage: “A Model for Presence and Instant
Messaging” (RFC2778) 2 and “A Common Profile for
Presence” (CPP).3 RFC2778 defines an abstract model and
language for talking about instant messaging and presence
systems; the CPP document describes a possible operational
sequence and discusses implementation issues regarding a
possible construction of a presence awareness and
notification system.
 In this section, I summarize the communication model
described in RFC2778 and the protocol operations
described in the CPP document. The analysis in the rest of
this paper primarily uses the CPP document to generate
unconsidered design issues and ambiguities, appealing to
RFC2778 only to point out inconsistencies between the two
papers.

2.1 Abstract Model of the Presence Service
 In the model defined by RFC2778, a presence service
functions as the server application that accepts, stores, and
distributes the presence information, i.e. location, of client
applications. It serves two types of clients: presentities and
watchers. Presentities consist of those clients that
communicate their presence information to the service for
storage and distribution; watchers comprise those that
request and receive presence information from the service.
Watchers fall into two different categories: fetchers, who

2 RFC2778 can be found at http://www.ietf.org/rfc/rfc2778.txt.
3 “A Common Profile for Presence” can be found at
http://www.ietf.org/internet-drafts/draft -ietf-impp-pres-04.txt .

request the current presence information of a particular
presentity from the presence service, and subscribers, who
request notifications for future changes in a presentity’s
presence information.

2.2 Protocol Operations
 The CPP document describes the basic operations that
comprise the presence protocol. Watchers invoke a
subscribe operation for to request presence information to
receive notifications regarding future changes of a target
presentity specified in the subscribe message. Upon
receiving the message, the presence service invokes a
response operation to indicate whether the subscription
succeeded or failed. If the subscription was successful, the
presence service invokes the notify operation to send the
target presentity’s presence information to the watcher.
 The subscribe operation also includes a duration field;
the presence service continues to notify the subscriber of
any future changes of state. A successful subscribe
operation with a zero duration functions as both a fetch
operation and also as an unsubscribe operation; in either
case, the presence service will notify the watcher of the
presentity’s information. In Section 4, I argue that this dual
meaning causes several design problems.
 In a typical interaction, a watcher subscribes to a
presence service to receive notifications regarding the
presence information of a presentity. If the subscription is
successful, the presence service notifies the watcher of the
presentity’s location and continues to send notifications
whenever the presentity’s information changes.

3 The Alloy Model
 This section outlines the basic signatures, predicates,
and patterns used in the Alloy model. Moreover, it explains
the correspondence between the Alloy elements and the
elements of the presence model described in the previous
section and examines the differences between the two
models. The complete cpp model is provided in the
appendix.

3.1 Alloy Signatures
 The Alloy model consists of the following basic
signatures, which can be considered to be sets:

sig Presentity {}
sig Watcher {}

sig Location {}
sig Hidden extends Location {}

sig Subscription {
 owner: Watcher,
 target: Presentity
}

 3

sig Notification {
 receiver: Watcher,
 target: Presentity,
 loc: Location
}

sig State {
 presenceInfo: Presentity ->+ Location,
 activeSubs: set Subscription,
 message: option Notification
}

 Most of the signatures follow straightforwardly from
the presence model. The Presentity and the Watcher
correspond to the two types of client applications of the
presence service. A Location represents the value of
presence information; Hidden denotes the location of a
presentity that has configured his access rules so as to
disallow watchers from retrieving his presence information.
A Subscription represents the result of a successful
subscribe operation; it includes owner and target
relations that specify the watcher who requested the
subscription and the target presentity whose presence
information is desired, respectively. A Notification
corresponds to the message sent by the notify operation; the
presence service sends the message to a receiver regarding
a change in a target presentity’s presence information to
the new value loc.
 A State is not explicitly described in the presence
model; it represents a snapshot of the presence service’s
state at a particular point in time. A sequence of ordered
states thus specifies a particular operation sequence of
interactions between the presence service and its clients.
The presenceInfo relation maps each presentity to its
location(s) at the time of the particular state. The
activeSubs relation describes the set of active
subscriptions; this set corresponds to a snapshot of the
subscription list maintained by the presence service. Finally,
the message relation optionally identifies a notification
that is sent by the presence service at that time.

3.2 Protocol Operations
 The Alloy model implements the following
fundamental operations of the CPP protocol as predicates:

pred move(s, s': State, p: Presentity,
 l: Location) {
 let pres = s.presenceInfo,
 pres' = s'.presenceInfo {
 l not in Hidden
 p->l not in pres
 let oldLoc = p.pres |
 pres' = pres - p->oldLoc + p->l
 }
}

pred hide(s, s': State, p: Presentity) {
 let pres = s.presenceInfo,
 pres' = s'.presenceInfo {
 some Hidden
 p in pres.(Location - Hidden)
 some oldLoc: p.pres |
 pres' = pres - p->oldLoc + p->Hidden
 }
}

pred subscribe(s, s': State, w: Watcher,
 p: Presentity) {
 some sub: Subscription + s.activeSubs {
 sub.owner = w
 sub.target = p
 s'.activeSubs = s.activeSubs + sub
 }
}

pred unsubscribe(s, s': State, w: Watcher,
 p: Presentity) {
 some sub: s.activeSubs {
 sub.owner = w
 sub.target = p
 s'.activeSubs = s.activeSubs - sub
 }
}

pred notify(s: State, w: Watcher,
 p: Presentity, l: Location) {
 some n: Notification {
 n = s.message
 n.receiver = w
 n.target = p
 n.loc = l
 }
}

 The move and hide operations allow a presentity to
change his current location from one state to the next, either
by updating its presence information to a new location or to
Hidden, respectively. The Alloy model assumes that any
location changes are immediately reflected in the presence
information of the presence service. The subscribe
operation corresponds to the one from the presence model
and adds a subscription to the presence service’s
subscription list. For simplicity, all subscribe operations
are assumed to succeed and no response operations are
required. Rather than modeling the unsubscribe
operation as subscribing with a zero duration, the model
abstracts away the implementation detail and explicitly
models an unsubscribe operation. Finally, the notify
operation communicates a notification from the presence
service to a watcher with a presentity’s updated location.
 Figure 1 shows a visualization of a basic two-state
operation sequence. In State_0, the presence server
contains no presence information. In State_1,
Watcher_0 invokes a subscribe operation on
Presentity_0, thereby creating a subscription in the
state’s activeSubs. As required by the protocol, a notify
operation occurs in response to the subscription, and
State_2 shows Notification_0 being sent to
Watcher_0 with Presentity_0’s location.

 4

Figure 1: A typical subscribe and notify operation sequence in CPP involves a SubscribeEvent (top visualization) followed by a
NotifyEvent (bottom visualization).

3.3 Event Modeling for Improved Visualizations
 The Alloy Analyzer visualizes signatures and relations
but not predicates; thus, visualizations based on a model
with the aforementioned signatures and predicates fail to
illustrate which operation occurs between each state. In
order to visualize the operations, I parallel each operation
with an Event signature:

abstract sig Event { pre, post: State,
 presentity: Presentity }
sig MoveEvent extends Event { newLoc: Location }
sig HideEvent extends Event {}
sig SubscribeEvent extends Event {
 subscriber: Watcher}
sig UnsubscribeEvent extends Event {
 unsubscriber: Watcher}
sig NotifyEvent extends Event { recipient: Watcher,
 changedLoc: Location }

 Then, by specifying the transitions between states and
by constraining only one event to occur between each pair
of states, I was able to perform projections onto Event and
easily visualize operation sequences like the one in Figure 1.

The following Alloy snippet illustrates this modeling
technique:

pred trans(s, s': State) {
 some e: Event {
 e.pre = s

e.post = s'

 (e in MoveEvent &&
 move(e.pre, e.post, e.presentity, e.newLoc) &&
 updateSubscriptions(e.pre, e.post)) ||

(e in HideEvent &&
 hide(e.pre, e.post, e.presentity) &&
 updateSubscriptions(e.pre, e.post)) ||

(e in SubscribeEvent &&
 subscribe(e.pre, e.post, e.subscriber,
 e.presentity) &&

 samePresenceInfo(e.pre, e.post)) ||
(e in UnsubscribeEvent &&
 unsubscribe(e.pre, e.post, e.unsubscriber,
 e.presentity) &&

 samePresenceInfo(e.pre, e.post)) ||
(e in NotifyEvent &&

 ...

 5

3.4 Differences between CPP and Alloy Model
 For the most part, I have strived to maintain the
integrity of the Alloy model and its correspondence with
the CPP description. Nonetheless, a number of differences
were judicially chosen to keep the model simple:

§ TransIDs, which are nonces used to correlate subscribe

and response operations, and SubscriptionIDs, which are
used to reference an existing subscription when
unsubscribing, have been ignored in the model as low-
level details.
§ The response operation that follows each subscribe

operation has also been omitted from the model because
it carried only a status flag and communicated no
presence information.
§ To represent the manipulation of access privileges to hide

presence information, a presentity moves into a Hidden
location. Besides stating that certain configurations of
access privileges may cause subscriptions to fail,
RFC2778 and the CPP document have both been silent
on how the presence information is represented.
§ Subscription duration values been omitted for simplicity.

 In addition to these differences, I have also made two
simplifying assumptions. First, the presence service is
considered to be a centralized server that handles requests
and responses; all changes in presence and location
information in the server are implicitly modeled through the
transition sequence of the server’s states. Second, I have
focused primarily on the presentities’ locations, but the
analysis for watchers’ locations would be similar.

4 Protocol Design Issues Identified
 This section formulates the findings and the analysis
that ensued from modeling the CPP protocol; the results are
formulated as design critiques categorized into several
overarching realms, with accompanying visualizations
generated by the Alloy Analyzer 3.0 visualizer. The
analysis uses the more concrete CPP document to introduce
unconsidered design issues and ambiguities, citing
appropriate sections of the protocol as necessary. It also
appeals to RFC2778 to illuminate apparent inconsistencies
that exist between the two papers. In considering the issues
identified, the important questions to ask include: Have
these design issues been considered? If so, what are the
answers? If not, the protocol may need to be revised to take
these issues into consideration.

4.1 Subscribe vs. Unsubscribe Operations,
 Fetcher vs. Subscriber
 A number of shortcomings and inconsistencies arise in
the CPP protocol's usage of a single subscribe operation to
handle fetching presence information, subscribing to the
presence information of a presentity, and unsubscribing

from that information. The CPP protocol essentially
overloads the subscribe operation with special and
seemingly incongruent interpretations when the duration is
zero, hinting to a questionable design choice. Pages 7-8 of
the CPP describe the dual meanings behind the message
subscribe 0:

 The difference between an unsubscribe and a fetch
operation appears to be whether the SubscriptID refers to an
existing subscription or is a new one. The first implication
of this design is the requirement of client-side state; each
watcher must maintain the SubscriptIDs of all of its existing
subscriptions. Given the simplicity of the CPP protocol, the
implementation detail begs the question of whether such a
requirement is indeed necessary; separate unsubscribe and
fetch operations would easily eliminate the client’s burden
of maintaining state information.
 In my attempt to articulate the subscribe and
unsubscribe operations in my Alloy model, I realized that
the overloading of the subscribe operation posed a number
of major issues, including:

1. What is the design reasoning behind not having separate
unsubscribe and/or fetch operations?
2. What is the justification for the requirement of client-
side state in subscriptions?
3. Why, as illustrated in Figure 2, does a watcher receive
more presence information when he has explicitly
expressed his desire not to receive any more such
information via an unsubscribe operation?
4. If a watcher is already subscribed to a particular
presentity, its fetch operation on that presentity will look
the same as an unsubscribe operation. Why can a
subscriber not send a one-time request for current presence
information of a target without terminating his subscription
of that target?

 The last of the above questions carries another
repercussion. The implementation detail of utilizing
subscribe 0 precludes a subscriber from simultaneously
acting as a fetcher for the same target. The mutual
exclusivity of subscribers and fetchers as subclasses of
watchers is inconsistent with the specification developed in
RFC2778, which makes no indication that the two types of

“When an application wants to terminate a subscription, it
issues a SUBSCRIBE 0 with the SubscriptID of an existing
subscription. Note that a notify operation will be invoked by
the presentity when a subscription is canceled in this fashion;
this notification can be discarded by the watcher. There is no
independent UNSUBSCRIBE operation.

When an application wants to directly request pres ence
information to be supplied immediately without initiating any
persistent subscription, it issues a SUBSCRIBE 0 with a new
SubscriptID. There is no independent FETCH operation.”

 6

Figure 2: An unsubscribe operation (top visualization) causes an undesired notification (bottom visualization).

watchers (fetchers and subscribers) must be disjoint groups
for a given target. On a behavioral level, fetchers and
subscribers perform fundamenta lly different tasks. Whereas
a fetcher requests the current value of a presentity's
presence information, a subscriber requests notifications of
future changes in some presentity's presence information.
On a more practical level, if a subscriber loses the most
recent notification from the presence service, he has no
mechanism of retrieving the current presence information
of the target presentity short of unsubscribing.

4.2 Subscription Durations
 A subscribe operation carries with it a watcher-
specified duration attribute specifying the desired number
of seconds that the subscription should be active. In
carefully perusing the CPP document and deciding whether
to include this notion of subscription durations and also the
related response operations in the Alloy model, I came upon
a number of issues.

 First, the description of the response operation, which
also contains its own duration attribute, offers no guarantee
that the subscribe operation’s requested duration is
followed:

The specification of subscription durations is
underspecified; the CPP protocol leaves unanswered how
exactly the duration of a subscription is determined. The
lack of a guiding principle or guarantee in the determination
of subscription durations raises a number of issues that
ought to be explicitly stated in the protocol specification:

1. If the response's duration can be different from duration
in the corresponding subscribe operation, which is followed?

“The response operation has the following attributes: status,
TransID, and duration…The 'duration' attribute specifies the
number of seconds for which the subscription will be active
(which may differ from the value requested in the subscribe
operation).”

 7

2. If the response's duration is followed, what is the purpose
of the subscribe operation's original "duration" time?
3. Can the response actually subscribe a watcher for a
longer period of time than the watcher intended under his
original subscribe operation?

 Second, the following rule described in CPP page 7,
which rejects a watcher’s subscribe operations if another
subscription to the same target already exists, also
elucidates additional limitations to the duration attribute’s
specification:

 In particular, the above rule precludes the ability to
extend or shorten subscriptions except in a roundabout way.
Subscribers cannot merely resend a subscribe operation
with a new duration operation that overwrites the pervious
one; rather, they must first unsubscribe and then re-
subscribe with the desired remaining time. Moreover,
because only subscribe 0 passes unchecked through the rule,
the notion of an incongruent design for subscriptions arises
once more and lends itself again to the question of why not
have separate unsubscribe and fetch operations instead of
subscribe 0. Nonetheless, the rule motivates the following
questions:

4. What does the duration attribute of a response operation
carry when the status is "failed"?
5. Why can a subscriber not change his subscription
duration by overwriting it and instead must first
unsubscribe and then re-subscribe with the desired
remaining time? What design benefit motivated the blanket
rejection of non-zero duration subscriptions with the same
receiver and target as a previous subscription?

4.3 Multi-located Presentities
 The proposed PRES URI scheme as documented in
Appendix A of the CPP protocol identifies clients with
syntax that follows the existing “mailto: URI” syntax, i.e.
“pres:edmond@mit.edu.” However, presentities may be
present at two or more locations at any given time; for
example, users of AOL Instant Messenger or MIT’s zephyr
can in fact be logged into two different machines and thus
be at two distinct locations.
 Assuming that the presence service must maintain a
mapping of each presentity to all of its locations, a number
of considerations arise regarding the CPP protocol. From
the perspective of the presentity, the following issues must
be considered:

1. How many locations can a presentity be at once, and
more generally, is a unique resource or identifier required
for each location of a presentity?
2. Will a subscriber receive notifications from the presence
service when the any of the presentity’s locations undergoes
a change?
3. If so, how can the watcher tell which location of the
presentity changed if presence notifications only indicate
the new location and not the old?
4. Can the same presentity at different locations have
different levels of access control? Can subscribin g to one
particular location's presentity succeed while another fails?

 The issue is further complicated by the fact that
watchers must not only deal with these multi-located
presentities, but may also themselves have multiple
locations. Thus, the following issues must also be addressed:

5. How many locations can a watcher be at once?
6. Should the watcher be able to subscribe to a presentity
only at a specified location if the presentity has multip le
locations? Or must he subscribe to them all?
7. Will the watcher at each location receive a separate
notification when a presentity to which he is subscribed
moves?
8. Will subscribing at one location subscribe just the
watcher at that location, or will it subscribe the watcher at
all locations?
9. Will responses be sent to just the watcher at the location
that interacted with the presence service or will they be sent
to the watcher at all locations?

4.4 Privacy Concerns
 RFC2778 defines a provis ion known as access rules
that presentities can manipulate to constrain how much
presence information the presence service divulges. CPP
touches upon these privacy issues, by providing a "failure
to subscribe" (CPP 7) response to be sent after subscription:

 However, the CPP protocol does not cover what
happens when access rules change after subscriptions are
already in progress. Under the current CPP scheme, no
provision for sending a similar "failure to subscribe" is
supported for subscriptions are currently in progress. Even
if a watcher may succeed in subscribing for a specified
duration, a presentity may decide later, before the
subscription expires, that he needs to keep his presence
information private. Clearly, privacy necessitates that no
further notifications be sent to the subscriber; however, if
no message is sent at all to the subscriber, then he is left

“If access control does not permit the application to request
this [subscribe] operation, a response operation having status
"failure" is invoked.”

“If the duration parameter is non-zero, and if the watcher and
target parameters refer to an in-progress subscribe operation
for the application, a response operation having status
"failure" is invoked.”

 8

Figure 3: The CPP protocol leaves unspecified what happens if Watcher_0 is subscribed to Presentity_0, but Presentity_0
manipulates his access permissions and decides to hide. Is the watcher notified that the presentity is hidden, which may step upon privacy
issues, or is the watcher left in the dark with the potentially out-of-date PresenceNotification_0?

with his most recent notification, which can potentially be
inaccurate and out-of-date. Figure 3 illustrates this dilemma.
 The only existing options for communicating the
change in access rules are by invoking response operations
or by sending notifications, both of which engender some
problems and inconsistencies. As described on page 4 of the
CPP protocol, response operations contain a nonce called
the TransID attribute which corresponds to the TransID of
the subscription to which it is responding. Utilizing
response operations to notify changes in access rules thus
necessitates the presence server storing all the TransID’s of
all active subscriptions, data which otherwise need not be
maintained. Moreover, describing the communication of
access rules as responses would be inaccurate since the
subscribers have made not actually made a request for that
information.
 On the other hand, the alternative to communicate the
change in access rules via sending notifications would be
inconsistent with RFC2778's definition of a Notification
operation on page 10:

 The inconsistency arises due to the fact that the
presence information itself has not changed; only the access
to that information has changed. Moreover, even if the CPP
protocol chooses to utilize the notification operation for the
purpose of informing subscribers of changed access rules, it
is unclear how the change can be expressed using the
notification attributes available in CPP: watcher, target,
TransID, and presence information.
 Hence, the following questions are broached:

1. What happens if a target decides to hide his presence
information or otherwise changes his access control while
subscriptions are in progress?
2. Will changing access rules generate a notification as in
the case of changing locations?
2. Should Watchers be notified that a presentity is hidden?
Or should the fact that the presentity is hidden be private
and itself be hidden from the Watcher?

4.5 Asynchronous Notifications
 The CPP protocol implicitly assumes that all
server/client communication operates instantaneously and
does not address issues regarding server overload or limited
bandwidth, both of which may cause messages to be
delayed. Clearly, this simplifying assumption will not
always hold, and the order and accuracy of certain time-
dependent operations may become compromised.
Provisions must be made to address the following issues:

1. If a presentity undergoes more than one state change,
either by changing location or by manipulating access rules,
before the presence service is able to send the information
to any subscribers, does the subscriber then receive a
notification regarding the most recent status change or
does he also receive backlogged notifications, which may
have become out of date?
2. If a watcher sends more than one request before the
presence service is able to respond, does the watcher
subsequently receive responses for just the most recent
message or for all the messages?
3. Does the presence service need to support the
maintenance of a queue of messages to be sent? If not, how
will the order of backlogged messages be guaranteed?

“NOTIFICATION: a message sent from the PRESENCE
 SERVICE to a SUBSCRIBER when there is a change in the
 PRESENCE INFORMATION of some PRESENTITY of
 interest, as recorded in one or more SUBSCRIPTIONS.”

 9

5 Conclusion
 This case study of the Common Profile for Presence
protocol illustrated the benefits of software modeling in
design. By using the Alloy Analyzer as a design aid, I
successfully identified inconsistencies between two
apparently similar design documents and illuminated a
number of issues that either escaped the CPP designers or
that possessed sufficient ambiguity to warrant further
refinement. Many of the design issues and inconsistencies
of the protocol documented in this paper would not have
been revealed this early in the design process without the
lightweight modeling made possible by the Alloy Analyzer.
I hope that the Instant Messaging and Presence Protocol
working group will find this analysis useful in refining the
CPP protocol.

6 Acknowledgements
 I would like to thank Professor Daniel Jackson for
discussing the case study with me and providing feedback
on both my Alloy model and on this written report.

7 Appendix

Attached below is the Alloy model for impp/cpp.

/**
 * A model of the IMPP Common Profile for Presence
 *
 * This model is based on the following two drafts:
 * Common Profile for Presence
 * Model for Presence and Instant Messaging
 *
 * They can be found at http://www.ietf.org/html.charters/impp-charter.html.
 *
 * In a typical interaction, a Watcher application attempts to
 * subscribe to a Presence Service to receive notifications
 * regarding the presence information, i.e. location, of a
 * Presentity. If the subscription is successful, the Presence
 * Service notifies the Watcher of the Presentity's location;
 * it continues to send notifications whenever the Presentity's
 * presence information changes.
 *
 * Differences between this alloy model and the paper model:
 *
 * -- TransIDs and SubscriptionIDs have been ignored in this model as
 * low-level details.
 * -- The Response Operation has been left out because it communicated
 * no presence information and carried only a status flag.
 * -- To represent the manipulation to access privileges to so that one's
 * presence information is not released, a Presentity moves into a
 * Hidden location.
 * -- Durations in Subscriptions have been replaced with an expiry relation
 * that points to the expiration time.
 *
 * Simplifying assumptions made in the alloy model:
 *
 * -- The Presence Service is considered to be a centralized server that
 * handles all the various requests. It is implicitly modeled through
 * the sequence of transitions of the Server's States: all information
 * regarding presence and location is assumed to be contained within
 * those states.
 */

module impp/cpp

open std/ord[State]

sig Presentity {}

sig Watcher {}

sig Location {}
sig Hidden extends Location {}

sig Subscription {
 owner: Watcher,
 target: Presentity
}

sig Notification {
 receiver: Watcher,
 target: Presentity,
 loc: Location
}

 11

-- State represents a snapshot of the Presence Service at some point in time
sig State {
 -- mapping of each presentity to current location
 presenceInfo: Presentity -> some Location,
 -- notification message to be sent, if presenceInfo just changed
 //message: sole Notification,
 activeSubs: set Subscription
}

fact BasicConstraints {
 all s: State |
 let n = s.message | n.loc = currentLoc(s, n.target)
 Notification in State.message
 Subscription in State.activeSubs
}

// event modeling
abstract sig Event { pre, post: State, presentity: Presentity }
sig MoveEvent extends Event { newLoc: Location }
sig HideEvent extends Event {}
sig SubscribeEvent extends Event { subscriber: Watcher}
sig UnsubscribeEvent extends Event { unsubscriber: Watcher}
sig NotifyEvent extends Event { recipient: Watcher, changedLoc: Location }

/***
 ** OPERATIONS
 ***/

pred move(s, s': State, p: Presentity, l: Location) {
 let pres = s.presenceInfo, pres' = s'.presenceInfo {
 l not in Hidden
 p->l not in pres
 let oldLoc = p.pres | pres' = pres - p->oldLoc + p->l
 }
}

pred hide(s, s': State, p: Presentity) {
 let pres = s.presenceInfo, pres' = s'.presenceInfo {
 some Hidden
 p in pres.(Location - Hidden)
 some oldLoc: p.pres | pres' = pres - p->oldLoc + p->Hidden
 }
}

pred subscribe(s, s': State, w: Watcher, p: Presentity) {
 some sub: Subscription + s.activeSubs {
 sub.owner = w
 sub.target = p
 s'.activeSubs = s.activeSubs + sub
 }
}

pred unsubscribe(s, s': State, w: Watcher, p: Presentity) {
 some sub: s.activeSubs {
 sub.owner = w
 sub.target = p
 s'.activeSubs = s.activeSubs - sub
 }
}

pred notify(s: State, w: Watcher, p: Presentity, l: Location) {
 some n: Notification {
 n = s.message
 n.receiver = w
 n.target = p
 n.loc = l
 }
}

 12

/***
 ** BASIC CONDITIONS
 ***/

pred subscribed(s: State, w: Watcher, p: Presentity) {
 some sub: s.activeSubs | sub.owner = w && sub.target = p
}

pred hidden(s: State, p: Presentity) {
 some currentLoc(s, p)
 currentLoc(s, p) in Hidden
}

fun currentLoc(s: State, p: Presentity): set Location {
 p.(s.presenceInfo)
}

/***
 ** CPP PROTOCOL
 ***/

pred NotifySubscriptionChanges() {
 all s: State - last() {
 let s' = next(s) {
 all p: Presentity, w: Watcher |
 (subscribe(s, s', w, p) || unsubscribe(s, s', w, p)) && !hidden(s,p) =>
 some s'': nexts(s') | notify(s'', w, p, currentLoc(s, p))
 }
 }
}

pred NotifySubscribersOfPresenceChanges() {
 all s: State - last() {
 let s' = next(s) |
 all sub: s.activeSubs, l: Location - Hidden |
 move(s, s', sub.target, l) =>
 (some s'': nexts(s') | notify(s'', sub.owner, sub.target, currentLoc(s', sub.target)))
 }
}

// if message operation occurs,
// then either location change, subscription, or unsubscription occurred some time before
pred NoNotifyUnlessSubscriptionOrLocationChange() {
 all s'': State - first(){
 no s''.message ||
 let n = s''.message |
 some s': prevs(s'') | let s = prev(s') |
 move(s, s', n.target, n.loc) && subscribed(s, n.receiver, n.target) ||
 subscribe(s, s', n.receiver, n.target) ||
 unsubscribe(s, s', n.receiver, n.target)
 }
}

fact NotificationRules {
 NotifySubscriptionChanges()
 NotifySubscribersOfPresenceChanges()
 NoNotifyUnlessSubscriptionOrLocationChange()
}

/***
 ** OPERATIONAL SEQUENCE: state -> event -> state
 ***/
pred init(s: State) {
 no s.message &&
 no s.activeSubs
}

 13

// event transitions: an event links a pair of states together
pred trans(s, s': State) {
 some e: Event {
 e.pre = s
 e.post = s'

 (e in MoveEvent && move(e.pre, e.post, e.presentity, e.newLoc) &&
 updateSubscriptions(e.pre, e.post)) ||
 (e in HideEvent && hide(e.pre, e.post, e.presentity) &&
 updateSubscriptions(e.pre, e.post)) ||
 (e in SubscribeEvent && subscribe(e.pre, e.post, e.subscriber, e.presentity) &&
 samePresenceInfo(e.pre, e.post)) ||
 (e in UnsubscribeEvent && unsubscribe(e.pre, e.post, e.unsubscriber, e.presentity) &&
 samePresenceInfo(e.pre, e.post)) ||
 (e in NotifyEvent && notify(e.post, e.recipient, e.presentity, e.changedLoc) &&
 samePresenceInfo(e.pre, e.post) && updateSubscriptions(e.pre, e.post))
 }
}

pred link(s, s': State, e: Event) {
 e.pre = s
 e.post = s'
}

pred updateSubscriptions(s, s': State) {
 s'.activeSubs = s.activeSubs
}

pred samePresenceInfo(s, s': State) {
 s.presenceInfo = s'.presenceInfo
}

// force exactly one thing to happen b/w each state
fact OperationSeq {
 init(first())
 all s: State - last() { let s' = next(s) | trans(s, s') }
 all e: Event | e.post = next(e.pre)
 no disj e, e': Event | e.pre = e'.pre && e.post = e'.post

 // match up Notifications with NotifyEvents and Notify Operations
 all n: Notification | some e in NotifyEvent |
 notify(e.post, e.recipient, e.presentity, e.changedLoc)
 all n: Notification | one s: State | notify(s, n.receiver, n.target, n.loc)
}

/***
 ** ANALYSES
 ***/

pred BasicSubscription() {
 some p: Presentity, w: Watcher {
 some s: State | subscribe(s, next(s), w, p)
 }
}

pred BasicNotification() {
 some p: Presentity, w: Watcher {
 some s: State | subscribe(s, next(s), w, p)
 some s: State, l: Location | move(s, next(s), p, l) && subscribed(s, w, p)
 }
}

pred HidingLeadsToNotification() {
 some p: Presentity, w: Watcher, s: State |
 subscribed(s, w, p) && hide(s, next(s), p)
}

 14

pred DoubleMove() {
 some p: Presentity, s: State, w: Watcher |
 let s' = next(s) | let s'' = next(s') {
 subscribed(s, w, p)
 some l: Location | move(s, s', p, l)
 some l': Location | move(s', s'', p, l')
 }
}

assert UpToDateNotification {
 let lastTwo = last() + prev(last()) |
 all s: State - lastTwo, p: Presentity, w: Watcher |
 let s' = next(s) |
 subscribe(s, s', w, p) && no Hidden =>
 some s'': nexts(s') | notify(s'', w, p, currentLoc(s'', p))
}

pred MultiLocatedPresentity() {
 some disj loc, loc': Location - Hidden, s: State, p: Presentity {
 p->loc in s.presenceInfo && p->loc' in s.presenceInfo
 let s' = next(s) |
 some w: Watcher | subscribe(s, s', w, p)
 }
}

pred UnsubscribeLeadsToNotification() {
 some s: State - last()|
 let s' = next(s) |
 some p: Presentity, w: Watcher |
 unsubscribe (s, s', w, p)
 no Hidden
}

pred Example () {
 let first = first() {
 let second = next(first) {
 let third = next(second) {
 let fourth = next(third) {
 let fifth = next(fourth) {
 some e: SubscribeEvent | link(first, second, e)
 some e: MoveEvent | link(second, third, e)
 //some e: NotifyEvent | link(second, third, e)
 }
 }
 }
 }
 }
 no Hidden
}

run BasicSubscription for 1 but 2 Event, 3 State
run BasicNotification for 1 but 4 Event, 5 State
run HidingLeadsToNotification for 1 but 2 Location, 3 Event, 4 State
run HidingLeadsToNotification for 1 but 2 Location, 4 Event, 5 State
check UpToDateNotification for 4 but 5 State

run MultiLocatedPresentity for 5 but 4 Event, 1 Presentity, 1 Watcher
run DoubleMove for 5 but 4 Event, 1 Presentity, 1 Watcher
run DoubleMove for 6 but 5 Event, 1 Presentity, 1 Watcher
run UnsubscribeLeadsToNotification for 3
run UnsubscribeLeadsToNotification for 4 but 2 Location, 1 Watcher, 1 Presentity
run UnsubscribeLeadsToNotification for 5 but 2 Location, 1 Watcher, 1 Presentity

run Example for 1 but 2 State
run Example for 2 but 3 State
run Example for 3 but 4 State
run Example for 1 but 5 Event, 1 SubscribeEvent, 1 MoveEvent, 2 NotifyEvent, 6 State

