
1

Chord: A Peer-to-Peer Protocol
Hoeteck Wee

May 1, 2003

. Motivation
We analyze a distributed lookup service used in Internet peer-to-peer applications [1,
2]. Given that each node only stores partial information about the global state, how do
we ensure that lookup queries are correctly passed on from node to node and that they
will terminate with the correct answer?

It is often difficult to predict the behavior of large distributed systems and to analyze
the performance of algorithms in these systems. Problems often surface with boundary
cases and are hard to detect since these cases do not occur often in practice. Errors are
also occasionally introduced in the transition from design to implementation.

e present work was initiated to address this problem. By having a small compact
model of the Chord system, we could quickly verify the correctness of the lookup rou-
tines in small networks and in boundary cases. In addition, this model could be quickly
extended to check new routines as well as claims and hypotheses on the behavior of the
system (prior to a theoretical analysis) without the need for a complete implementa-
tion. ey could also be used to check that different variations of the same routine do in
fact return the same results. Finally, having a concrete model provides a good middle-
ground in the transition from abstract algorithm design to actual code development in
providing a formal specification of the algorithm.

[1] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions. ACM SIGCOMM 2001, San Diego, CA, August 2001, pp. 149-160.

[2] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, Hari Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications. IEEE/ACM Transactions on Net-
working, vol. 11 no. 1, February 2003, pp. 17-32.

. Description
We begin with a ring of identifiers in a cyclic ordering. Each node in a Chord network
has a unique identifier in the ring, and the main routine in Chord that we are interested
in is the one called find_successor that starting with any node and given a destination

2

identifier, finds the node closest to the given identifier (more precisely, the nearest node
whose identifier comes after the destination identifier).

Each Chord node only stores partial information about the global state. More precisely,
it only knows about the identifiers of a small number of nodes in the network, and this
information is stored locally in a “finger table”. In addition, we require that each node
knows about the node closest to it. Upon receiving a find_successor query, a Chord
node routes the query to the node closest to the destination identifier in the finger table.
is process is repeated until the query reaches the node in the network closest to the
destination identifier, when returns a pointer to itself.

In a typical peer-to-peer file-sharing application, Chord nodes correspond to hosts on
the network, and files are stored on the host whose node identifier is closest to the iden-
tifier assigned to the object (for instance, a hash of the file contents). e find_successor
routine can then be used to look up file locations on the network.

In our model, the configuration of the Chord network at each time step is identified
with a state. In each state, we have a set of active nodes, and we associate each active
node with a piece of node data that stores its finger table. (Note: the notion of an active
node is not defined in the references; it’s something that we introduced.) Once we fix a
state (and therefore the network configuration), the find_successor routine is fully de-
terministic, and returns a fixed answer for each starting node and identifier. erefore,
we model the routine as a relation find_successor in the node data that maps identifiers
to the corresponding nearest nodes.

In specifying the finger table, we drop the constraint that the finger table entries must
be spaced out according to some exponential relation. We allow any “finger table” set-
tings, as long as it contains a pointer to the successor node. e lookup routines are still
guaranteed to work correctly in this setting, except with a loss of efficiency, which we
are not concerned with in our analysis.

. Model Commentary
1.3: Here, we define the identifiers, along with a next relation.

1.4: is reachability constraint is necessary and sufficient to describe a ring-like struc-
ture with a single connected component.

1.6: e less-than relation holds if and only if i strictly precedes j in the order starting at
from (which corresponds to i lying in the set [from,j) in [2]). Notice that we cannot sim-
ply specify that j lies in the transitive closure of the next relation starting at i, because of
transitive closure is the entire ring. Instead, we use the transitive closure of the modified
relation next’, in which we remove next relation pointers into the from node.

3

1.10: e less-than-equal relation holds if and only if i precedes or equals j in the order
starting at from (which corresponds to i lying in the set [from,j] in [2]).

1.14: In an earlier version, nodes were defined to be a subset of id. Here, Node is defined
as a separate signature with a unique identifier.

1.17: e NodeData signature models the local state information in each node, as well
as the method calls closest_preceding_finger and find_successor, which are modeled as
relations. e next field is a pointer to what the node thinks is its successor node, and
the finger relation corresponds to entries in the finger table; it maps an identifier to what
the node thinks is the closest node to that identifier, or to nothing, if there is no finger
table entry corresponding to that identifier.

1.20 By representing the closest_preceding_finger and find_successor as relations
within a NodeData signature, we avoid more complex ternary relations that take a node,
an identifier (and maybe even a state if we want to model temporal transitions) and
return a node. On the other hand, calling these routines becomes a little clumsier since
we will have to retrieve the corresponding NodeData. An alternative (as was done in an
earlier version) is to represent the closest_preceding_finger and find_successor routines
as functions, but the recursive nature of these routines means that we could easily end
up requiring a higher-order quantifier.

1.24: e State signature models the overall configuration of a Chord network at a fixed
point in time. Each such configuration has an active set of nodes, and a relation data
that maps each active node to NodeData. Note that we have a fixed set of Node across
different states; what changes from state to state is the set of active nodes in each state,
and the binding between the node and its NodeData.

1.25: e notion of inactive nodes is not explicitly presented in [1,2], and does in fact
complicate the specifications since we need to add the additional restriction that a node
is active. In fact, the omission of this restriction caused a number of subtle bugs in the
development of this model!

1.29: is captures exactly the only constraint we impose on the finger table, that it con-
tains a pointer to the (alleged) successor node, and this value, by definition (as that used
in [1]), is the same as the value in the next field.

1.34: is describes the correctness condition for the next fields, namely that they do
point to the respective successor nodes. e criteria is that for all active nodes: (1) there
is no other active node between this active node and its successor; (2) this active node is
not the same as its successor unless there is exactly one node in the network; and (3) the
successor node is an active node. ere are no constraints on inactive nodes.

1.42: is describes the correctness condition for the finger table entries. e criteria is
similar to that defined in fun-next-correct, and states that for all active nodes and each

4

non-degenerate entry in its finger table: (1) the finger table entry points to an active
node; and (2) there is no other active node between the identifier and the node in the
finger table entry.

1.48: is function essentially defines the closest_preceding_finger relation by specify-
ing the properties that we will like the closest_preceding_finger routine to return, which
is identical to the correctness condition for the finger table entries, except that we want
no active node between the node in the finger table entry and the identifier (instead of
no active node between the identifier and the node in the finger table entry). In [1,2],
the closest_preceding_finger routine works differently; it runs a for loop through the
finger table entries.

1.57: Here, we define the find_successor relation by using the recursive find_successor
routine in [2].

1.67: We require that our definitions of closest_preceding_finger and find_successor
does apply in every state.

1.74: Here, we check that we can in fact generate examples containing exactly one node
and correct next and finger table entries to ensure that we have not over-constraint
the system. is could happen for instance, if any of NextCorrect, FingersCorrect,
find_successor or closest-preceding-finger were incorrectly defined, leading to an over-
constraint that cannot be satisfied with exactly one node. e analyzer generated an
example here.

1.81: We extend the over-constraint checks to systems with 4 identifiers, 2 nodes and
one state. e analyzer also generated an example here.

1.88: is describes the correctness conditions that we want the find_successor routine
to satisfy, namely that it does in fact return the closest node.

1.96: Here, we check that we can generate examples with correct finger table entries and
where find_successor returns the right answer.

1.103: Here, we check that we can generate examples with correct next entries but some
incorrect finger table entry.

1.110: FindSuccessorWorks asserts the correctness claim. It says that if the finger table
entries are correct for all the active nodes, then find_successor works correctly.

1.114: StrongFindSuccessorWorks asserts a stronger correctness claim. It says that as
long as the next entries are correct for all the active nodes, then find_successor works
correctly, even when the remaining finger table entries may be incorrect.

1.118: is command instructs the analyzer to evaluate the claim FindSuccessorWorks
for all situations involving at most 4 identifiers, 4 nodes and one state. No counterex-
ample is found (even if there are inactive nodes). It is important here that we have pre-

5

viously generated examples with correct finger table entries to ensure that we are not
checking the claim against an empty set.

1.118: is command instructs the analyzer to evaluate the claim StrongerFindSucces-
sorWorks for all situations involving at most 5 identifiers, 5 nodes and one state. Again,
no counterexample is found (even if there are inactive nodes).

1.1 module published_systems/chord
1.2
1.3 sig Id {next: Id}
1.4 fact {all i: Id | Id in i.*next}
1.5
1.6 fun less_than (from, i,j: Id) {
1.7 let next’ = Id$next - (Id->from) | j in i.^next’
1.8 }
1.9
1.10 fun less_than_eq (from, i,j: Id) {
1.11 let next’ = Id$next - (Id->from) | j in i.*next’
1.12 }
1.13
1.14 sig Node {id: Id}
1.15 fact {all disj m,n: Node | m.id != n.id}
1.16
1.17 sig NodeData {
1.18 next: Node,
1.19 finger: Id ->? Node,
1.20 closest_preceding_finger: Id ->! Node,
1.21 find_successor: Id ->! Node
1.22 }
1.23
1.24 sig State {
1.25 active: set Node,
1.26 data: active ->! NodeData
1.27 }
1.28
1.29 fact {
1.30 all s: State | all n: s.active |
1.31 n.s::data.next = n.s::data.finger[n.id.next]
1.32 }
1.33
1.34 fun NextCorrect (s: State) {
1.35 all n: s.active | let succ = n.s::data.next {

6

1.36 no n’: s.active - n | less_than (n.id, n’.id, succ.id)
1.37 succ != n || #s.active = 1
1.38 succ in s.active
1.39 }
1.40 }
1.41
1.42 fun FingersCorrect (s: State) {
1.43 all nd: s.active.s::data | all start: (nd.finger).Node |
1.44 nd.finger[start] in s.active &&
1.45 no n’ : s.active | less_than (start, n’.id, nd.finger[start].id)
1.46 }
1.47
1.48 fun ClosestPrecedingFinger (s: State) {
1.49 all n: s.active | let nd = n.s::data |
1.50 all i: Id | let cpf = nd.closest_preceding_finger[i] {
1.51 no n’: (nd.finger[Id] + n) - cpf | less_than (cpf.id, n’.id, i)
1.52 cpf in nd.finger[Id] + n
1.53 cpf.id != i || # s.active = 1
1.54 }
1.55 }
1.56
1.57 fun FindSuccessor(s: State) {
1.58 all n: s.active | let nd = n.s::data | all i: Id {
1.59 nd.find_successor[i] =
1.60 if (less_than_eq (n.id, i, nd.next.id) && n.id != i) || # s.active = 1
1.61 then nd.next
1.62 else
1.63 (nd.closest_preceding_finger[i].s::data.find_successor)[i]
1.64 }
1.65 }
1.66
1.67 fact {
1.68 all s : State {
1.69 ClosestPrecedingFinger(s)
1.70 FindSuccessor(s)
1.71 }
1.72 }
1.73
1.74 fun ShowMe1Node () {
1.75 all s : State | NextCorrect(s) && FingersCorrect(s)
1.76 State.active = Node

7

1.77 }
1.78
1.79 run ShowMe1Node for 2 but 1 State, 1 Node
1.80
1.81 fun ShowMeGood () {
1.82 all s : State | NextCorrect(s) && FingersCorrect(s)
1.83 State.active = Node
1.84 }
1.85
1.86 run ShowMeGood for 4 but 1 State, 2 Node
1.87
1.88 fun FindSuccessorIsCorrect(s: State) {
1.89 all i: Id | all n: s.active |
1.90 let succ = (n.s::data).find_successor [i] {
1.91 succ in s.active
1.92 no n’: s.active | less_than (i, n’.id, succ.id)
1.93 }
1.94 }
1.95
1.96 fun ShowMeCorrectSuccessorEg() {
1.97 State.active = Node
1.98 all s: State | FingersCorrect(s) && FindSuccessorIsCorrect(s)
1.99 }
1.100
1.101 run ShowMeCorrectSuccessorEg for 3 but 1 State
1.102
1.103 fun ShowMe3 () {
1.104 all s : State | NextCorrect(s) && !FingersCorrect(s)
1.105 State.active = Node
1.106 }
1.107
1.108 run ShowMe3 for 5 but 1 State
1.109
1.110 assert FindSuccessorWorks {
1.111 all s: State | FingersCorrect(s) => FindSuccessorIsCorrect(s)
1.112 }
1.113
1.114 assert StrongerFindSuccessorWorks {
1.115 all s: State | NextCorrect(s) => FindSuccessorIsCorrect(s)
1.116 }
1.117

8

1.118 check FindSuccessorWorks for 4 but 1 State
1.119 check StrongerFindSuccessorWorks for 4 but 1 State

. Variations
In the pseudocode presented in [1, 2], there is some ambiguity as to what the expres-
sion (n, n.successor] means in boundary cases where there is exactly one node and
n.successor = n. e intention of the authors is that the set includes n. We consider
variations of the alloy model with the bug where the set (n, n] does not include n, and
observe how it affects the closest_preceding_finger and the find_successor routines.

.. A Faulty Variant of closest_preceding_finger

Suppose we change ClosestPrecedingFinger as follows:

1.120 fun ClosestPrecedingFinger’ (s: State) {
1.121 all n: s.active | let nd = n.s::data |
1.122 all i: Id | let cpf = nd.closest_preceding_finger[i] {
1.123 no n’: (nd.finger[Id] + n) - cpf | less_than (cpf.id, n’.id, i)
1.124 cpf in nd.finger[Id] + n
1.125 cpf.id != i
1.126 }
1.127 }

e only change here is in the last line 1.125, where we removed the clause

1.128 || #s.active =1

from 1.53. e assertion FindSuccessorWorks still holds for scope up to 4, but
ShowMe1Node fails to generate an example! is is an example of a over-constraint,
where the inconsistency only shows up when there is exactly one node. What happens
here is that the model requires that a closest preceding finger node has a distinct identi-
fier from the input identifier, but this cannot happen if there is exactly one node and if
the input identifier equals that of the node.

.. A Faulty Variant of find_successor

Consider the following pseudocode segment from [2]:

1.129 n.find_successor(id)
1.130 if (id in (n, n.successor])
1.131 return n.successor;
1.132 else
1.133 n’ = closest_preceding_finger(id);

9

1.134 return n’.find_successor(id);

In the buggy scenario with a single node, the if loop always terminates at 1.131, leading
to an infinite loop.

Consider the corresponding change to FindSuccessor as follows:

1.135 fun FindSuccessor’(s: State)
1.136 all n: s.active | let nd = n.s::data | all i: Id {
1.137 nd.find_successor[i] =
1.138 if (less_than_eq (n.id, i, nd.next.id) && n.id != i)
1.139 then nd.next
1.140 else
1.141 (nd.closest_preceding_finger[i].s::data.find_successor)[i]
1.142 }
1.143 }

e only change here is in the fourth line 1.138, where we removed the clause || #
s.active = 1 from 1.60. Again, if there is exactly one node in the network, the if loop in
this case always proceeds to the else clause, and since closest_preceding_finger always
returns n (the only node in the network), we end up with a tautological statement:

1.144 nd.find_successor[i] = n.s::data.find_successor)[i]

is means that there is no additional constraint placed on find_successor, other than
that its return type is Node. Now, if there is no distinction between active and inactive
nodes, that is, we have exactly one active node in the network and no inactive ones,
find_successor will return the right answer due to the type constraint, therefore obscur-
ing the bug. On the other hand, since we have introduced inactive nodes, the assertion
FindSuccessorWorks now fails with exactly one active node and some inactive node(s),
with find_successor returning an inactive node.

