
Generating Sparse Probabilistic Graphs for Efficient Planning in
Uncertain Environments

Yasmin Veys, Martina Stadler Kurtz, and Nicholas Roy

Abstract— Environments with regions of uncertain
traversability can be modeled as roadmaps with probabilistic
edges for efficient planning under uncertainty. We would like
to generate roadmaps that enable planners to efficiently find
paths with expected low costs through uncertain environments.
The roadmap must be sparse so that the planning problem is
tractable, but still contain edges that are likely to contribute to
low-cost plans under various realizations of the environmental
uncertainty. Determining the optimal set of edges to add to
the roadmap without considering an exponential number of
traversability scenarios is challenging. We propose the use of
a heuristic that bounds the ratio between the expected path
cost in our graph and the expected path cost in an optimal
graph to determine whether a given edge should be added to
the roadmap. We test our approach in several environments,
demonstrating that our uncertainty-aware roadmaps effectively
trade off between plan quality and planning efficiency for
uncertainty-aware agents navigating in the graph.

I. INTRODUCTION

In this work, we consider navigation in environments
where the traversabilities of many regions are unknown
prior to planning. Recent works [1], [2] have demonstrated
the effectiveness of representing uncertain environments as
weighted graphs with probabilistic edges, because they en-
able long horizon reasoning about the environmental uncer-
tainty and allow us to leverage existing algorithms, like those
developed for the Canadian Traveler’s Problem (CTP) [3],
[4], to produce navigation policies that minimize expected
costs. To guarantee the quality of the navigation solution,
however, we must guarantee the quality of our graph repre-
sentation. Existing approaches that use probabilistic graphs
to find high-quality plans in realistic environments often rely
on hand-designed graphs [2]. We would like to develop an
algorithm for constructing roadmaps that enable uncertainty-
aware planners to efficiently generate low-cost plans under
various realizations of the environmental uncertainty.

Generating roadmaps that enable efficient planning under
uncertainty requires trading off between competing objec-
tives. The graph must be sufficiently sparse to ensure plan-
ning is computationally feasible, but must still represent a
potentially exponential number of paths for the different
traversability scenarios. We must be selective when deciding
which edges to include in the graph, but it is unclear how
to determine the optimal set of edges without explicitly

All authors are with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology in Cambridge, USA.
{yveys,mstadler,nickroy}@mit.edu

This research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-17-2-0181.
Y. Veys acknowledges support from the Joseph T. Corso and Lily Corso
graduate fellowship. Their support is gratefully acknowledged.

Fig. 1: The robot navigates from one side of the lake to the other. If the bridge is
likely to be traversable, the roadmap should include the pink path so that the robot
can inspect the bridge’s traversability, as well as the two purple paths to allow the
robot to go across the bridge if it is traversable and around the lake if it is not. If
the bridge is likely untraversable, including those paths in the roadmap only increases
planning complexity without significantly improving planning performance. A sparser
graph that only has the blue path would still result in plans with expected near-optimal
costs. Since the green and blue paths are both known to be traversable, including the
longer green path in the roadmap is never useful.

considering every possible traversability scenario. For exam-
ple, consider a robot tasked with navigating in a park that
has an unreliable bridge (Fig. 1). The paths that should be
included in the roadmap depend on the probability that the
bridge is traversable. In small environments, we can reason
about all of the different traversability scenarios, but in large
environments, doing so becomes computationally intractable.

While there is a rich literature of roadmap generation
algorithms for planning in known environments, existing
methods are insufficient for environments with uncertain
regions. Existing techniques largely focus on generating
graphs that cover the agent’s configuration space, and many
rely on the ability to partition the state space into free and
obstacle regions [5]–[7]. For example, some algorithms use
comparisons with the best known path in the environment to
determine whether to add a new edge to the roadmap [8], [9].
Though these approaches work well in known environments,
they are not well-suited to our problem, since they do not
enable reasoning about traversability probabilities.

The contribution of this work is a method for efficiently
generating high-quality roadmaps for navigation in environ-
ments with uncertain regions. We begin by constructing a
graph that lies entirely in freespace. We then iteratively
augment it by adding probabilistic edges that are likely to
improve expected plan costs. The value of adding an edge to
the graph is determined by computing a metric that bounds
the ratio between the expected path cost in our graph and the
expected path cost in an optimal graph, which considers all
traversability scenarios. We provide analysis that shows we
can bound the expected suboptimality of local paths in our
graph, and test our approach in several environments, demon-
strating that our uncertainty-aware roadmaps effectively trade
off between plan quality and planning efficiency.

II. PROBLEM FORMULATION

A. Modeling Uncertain Environments

We would like to generate a roadmap for a 2D agent
navigating from start v0 to goal v⋆ in an uncertain environ-
ment. We assume that the environment can be decomposed
into regions with similar navigational properties (e.g., roads,
forests, fields, etc.) and that the traversabilities of the regions
are defined by a set of probability distributions that charac-
terize the environmental uncertainty.

We assume the agent’s environment is a polygon B that
can be decomposed into a set of nonintersecting, simple 2D
polygons S = {P1, . . . , Pb}, where each polygon is defined
by an ordered list of points p ∈ R2, Pi = {p1, . . . , pn}
(Fig. 2). We also assume access to a function f that maps
each region to a traversability probability, f : S → [0, 1];
for example, this function could be the result of assigning
a traversability probability to each class in an overhead
semantic segmentation of the environment. The regions that
are known to be traversable make up known freespace:
Xfree = ∪{Pi|f(Pi) = 1}. We assume that freespace is
connected and that v0, v⋆ ∈ Xfree such that the planning
problem is always feasible, as in the CTP solvers of [4].

At the start of a planning instance, the (hidden) ground
truth traversability wi ∈ {0, 1} of each region Pi is drawn
from an independent Bernoulli distribution with parameter
fi = f(Pi), and remains constant throughout the duration
of the trial. Borrowing from the CTP literature, which intro-
duces a similar concept, we name the assignment of regions
to traversabilities a weather, w = {w1, ..., wb} where w ∈
W , the set of all weathers. Then, the probability of a weather
w can be written as the joint probability of the individual
Bernoulli assignments, Φ = P[w] =

∏|w|
i=0(1−fi)

(1−wi)fwi
i .

B. Planning in Uncertain Environments

Given the environment abstraction, we model the planning
problem as a modified version of the CTP, a formalization
for navigation in a graph with probabilistic edges. In the
traditional formulation, the ground truth traversability of each
edge is drawn from an independent Bernoulli distribution,
and a weather refers to an assignment of the edges to their
traversabilities. An agent navigating in the graph observes
the ground truth traversabilities of the edges incident to its
current vertex and maintains a belief over the set of all
weathers. The objective of the CTP is to find an optimal
policy (i.e., a function that maps beliefs to actions) that
minimizes the expected cost of traveling from v0 to v⋆.

We adapt the CTP to consider weathers over regions,
rather than edges. We let the traversability of an edge be the
traversability of the region it intersects1, and we let τ : E →
(0, 1]2 be the function that returns the probability of an edge.
When a region is untraversable, all edges that intersect it are
untraversable and vice versa when a region is traversable.
Thus, when an agent observes the traversability of an edge,

1If an edge intersects more than one region, we can segment it such that
each segment only intersects one region.

2We exclude edges through untraversable regions (i.e., where τ(e) = 0).

Fig. 2: The robot is tasked with navigating through a park. The bridge over the lake
may or may not be traversable. We abstract the key regions in the environment as
polygons (using e.g., a semantically segmented overhead image): P1 and P2 represent
the lake, which is known to be untraversable. P3 represents the bridge, which has a
50% chance of being traversable. P4 represents the grove of trees, which has a 30%
chance of being traversable. In the weather w = {0, 0, 1, 1}, the bridge and forest
are traversable, while the lake is untraversable.

it learns the traversability of the region it intersects and of
all other edges that intersect that region. The objective of the
modified CTP remains the same, though the agent’s belief is
now over the set of region weathers. In this work, we assign
edge costs based on Euclidean distance.

C. Problem Formulation

The roadmap G = (V,E) we generate should enable an
agent to find low-cost plans from v0 to v⋆ in different weath-
ers (i.e., traversability scenarios), while remaining efficient to
build and plan in. This trade-off between the computational
efficiency of planning and the quality of the plan can be
formalized as the following optimization problem, where
tg(G), tp(G,w), and cp(G,w) are the computation time for
building the graph, the computation time for planning using
the graph, and the cost of the plan in the graph, given a
weather w, respectively.

G∗ = argmin
G

tg(G) + Ew∼P[w] [tp(G,w) + cp(G,w)] (1)

III. APPROACH

Unfortunately, directly solving (1) is intractable, as eval-
uating cp requires finding the optimal policy for the CTP,
which is known to be #P-hard [4], [10], and solving the CTP
to generate the optimal plan incurs tp, further complicating
the optimization. While we cannot explicitly solve (1), we
can optimize the structure of the graph such that tp and cp are
likely to be small. For example, removing all uncertain edges
from the graph would ensure that planning is efficient, but the
resulting plan may be relatively high cost. On the other hand,
constructing a dense graph that represents all possible paths
in the environment would likely result in expected low-cost
plans, but doing so would be expensive. We aim to achieve a
balance between these extremes by generating graphs that are
sparse, yet still capture high-quality paths in likely weathers.

A. Overview

We propose to leverage environmental structure to effi-
ciently select high-quality edges to add to the roadmap. In
our approach (Fig. 3), we construct a graph connecting v0
and v⋆ through freespace and then augment it by adding
shortcut edges through uncertain regions. To determine
whether a shortcut edge should be added, we compare its
cost and traversability probability to the existing path through
freespace. The resulting graph represents high-quality paths
in the environment, but is not optimized for an agent plan-
ning under uncertainty. To enable an agent to recover from

mistakes when planning, we also add recovery edges. We
also sparsify the roadmap by pruning vertices and edges that
do not significantly impact plan quality.

B. Graph Connecting Known Freespace

To ensure that our roadmap contains high-quality paths
through Xfree, we use a traditional roadmap method as a
foundation for our uncertainty-aware roadmap. This roadmap
can also be thought of as being risk-averse, as it does
not include paths that go through any uncertain regions.
Formally, we generate Gfree = (Vfree, Efree) such that
Vfree ∈ Xfree, and τ(e) = 1 ∀e ∈ Efree. In practice,
we select our freespace graph to be a reduced visibility
graph [11], [12]. To generate the reduced visibility graph, we
consider adding edges between all pairs of region vertices,
v0, and v⋆. If an edge lies entirely in freespace and is a
common tangent of the regions3, it is added to Efree and
its vertices are added to Vfree. The resulting graph Gfree is
known to contain the shortest Euclidean distance path from
start to goal in freespace, which can be found by running a
standard shortest path algorithm (e.g., A∗ [13]).

To sparsify Gfree, we remove vertices and edges that are
guaranteed not to lie on an optimal path using an admissible
ellipsoid heuristic [8]. More specifically, we remove vertices
and edges that lie outside of E(v0, v⋆), where E(u, v) =
{y ∈ R2|d(u, y) + d(y, v) ≤ cfreeu→v} and cfreeu→v is the length
of the shortest path between u and v in Gfree. Intuitively, the
length of the shortest path from u to v in the weather where
all of the regions are untraversable (i.e., cfreeu→v) is an upper
bound on the shortest path in any weather, since making a
region traversable cannot increase path costs. Thus, removing
vertices and edges that lie outside of E(v0, v⋆) has no impact
on expected path costs from v0 to v⋆.

C. Paths Through Uncertain Regions

We now augment Gfree by adding edges through uncer-
tain regions (i.e., shortcuts). The resulting augmented graph
is G = (V,E) where V = Vfree and E ⊇ Efree. A shortcut
through an uncertain region may be useful for planning if
the region is likely to be traversable or if the shortcut is
significantly shorter than the existing path through freespace.
Ideally, we would like to add edges to Gfree that maximally
decrease the ratio between the expected path cost from v0
to v⋆ in the resulting graph G versus an optimal graph G∗

that contains the shortest paths from v0 to v⋆ in all weathers.
Formally, we define δ : V × V ×G → R to be the expected
suboptimality of the paths between u and v in a given graph
G versus the optimal graph G∗,

δ(u, v,G) =
Ew∼P[w][cu→v;G]

Ew∼P[w][cu→v;G∗]
, (2)

where G∗ is the stacked visibility graph (SVG), constructed
by generating 2|S| reduced visibility graphs, one for each

3Traditional visibility graphs include edges that are not common tangents;
however these are known not to lie on optimal paths, so they can be removed.

Fig. 3: (a) The reduced visibility graph connecting v0 and v⋆ through freespace is
generated. (b) Vertices that are known not to improve paths between v0 and v⋆ are
pruned, along with their incident edges. (c) Shortcut edges are added to the graph when
the existing freespace paths are overly long. Many shortcut edges are added across the
likely traversable bridge. (d) There are two edges that must be segmented according to
their intersections with the bridge. The added vertices are shown in green. (e) Three
redundant edges through the bridge are pruned. (f) In the weather where the bridge is
traversable, the graph contains a near optimal path from v0 to v⋆.

weather4, and finding their union. We seek to minimize
δ(v0, v⋆, G) by adding high-quality shortcut edges to Gfree.

Determining the minimum set of edges that reduces
δ(v0, v⋆, G) is nontrivial. However, if while building the
graph, we realize that the expected cost of traveling between
a pair of vertices u and v is relatively high, then we can
add the edge eu,v to the graph in hopes of improving paths
between v0 and v⋆ that contain u and v. Specifically, for all
pairs of vertices u, v ∈ V , we propose to add the edge eu,v to
graph G′ during an intermediate step of the algorithm if the
expected suboptimality between u and v in G′ exceeds some
threshold k ≥ 1. Unfortunately, calculating δ(u, v,G′) is
generally expensive, so we instead calculate an upper bound.

We first consider an upper bound for the numerator, or
the cost of navigating in the graph G′ without the edge
eu,v . A conservative estimate of this cost is the length of
the shortest path from u to v in the freespace graph Gfree,
h := cfreeu→v . Thus, we have Ew∼P[w][cu→v;G

′] ≤ h. Next,
we consider a lower bound for the denominator, or the cost
of navigating in the optimal SVG. Employing the ellipsoid
heuristic mentioned previously, we know that all shortest
paths between u and v lie in an ellipse defined by h. When
the regions inside of the ellipse are all untraversable (with
probability ρb), the length of the shortest path from u to v in
the SVG is h. When all regions are traversable, the optimal
path is the straight-line edge eu,v , which has length ℓ. To
generate a lower bound, we assign the correct probability
to h and the rest of the probability to ℓ, Thus, we have
Ew∼P[w][cu→v;G

∗] ≥ ρbh+(1−ρb)ℓ. Applying the bounds,
we recover an upper bound γ(u, v)5 for δ(u, v,G′),

δ(u, v,G′) ≤ h

ρbh+ (1− ρb)ℓ
= γ(u, v). (3)

When the existing path through freespace is likely to be
useful (i.e., ρb ≈ 1) or when the straight-line edge is similar
in length to the freespace path (i.e., ℓ ≈ h), the upper

4The reduced visibility graph is built using the set of untraversable regions
defined by weather w.

5Note that h and ℓ are implicitly functions of u and v and that γ(u, v)
is not a function of a graph G′. γ(u, v) ≥ δ(u, v,G′) for all G′ where
G′ ⊇ Gfree, which is true by our construction.

bound tends to 1, implying that the shortcut edge should
not be added to the graph. We define a maximum acceptable
expected suboptimality, k, and iteratively add all shortcut
edges eu,v for which the upper bound γ(u, v) > k to generate
the final augmented graph G.

D. Discussion
While our algorithm adds the edge eu,v to the intermediate

graph G′ whenever γ(u, v) > k, doing so does not generally
ensure that the expected suboptimality between u and v in
the final graph G is upper bounded by k. We provide analysis
for when adding the edge may be overly conservative and
discuss the special cases for which δ(u, v,G) ≤ k.

For all pairs of vertices u and v, we decide whether to
add the edge eu,v to G′ based on the relationship between
the upper bound γ(u, v) and k. If γ(u, v) ≤ k, then we do
not add the edge and trivially, δ(u, v,G) ≤ γ(u, v) ≤ k.
If γ(u, v) > k, then we add the edge to G′, so the final
graph G contains eu,v . However, these properties do not
allow us to establish a relationship between δ(u, v,G) and
k. Adding the edge from u and v alone may not reduce
Ew∼P[w][cu→v;G] enough to ensure that δ(u, v,G) ≤ k if
there are alternate paths from u to v that are shorter than
the freespace path, but more likely than the straight-line
path. Thus, adding the edge may be overly conservative if
doing so does not significantly reduce δ(u, v,G). However,
conservatively adding edges does not increase expected plan
costs, although it may densify G.

While we cannot ensure δ(u, v,G) ≤ k in general, there
are some pairs of vertices for which our algorithm guarantees
δ(u, v,G) ≤ k. Given a pair of vertices u and v, consider the
set of unique shortest paths from u to v in all weathers. If
the only two paths in the set are the freespace path from u to
v and the straight-line edge, then our algorithm guarantees
that δ(u, v,G) ≤ k even when γ(u, v) > k and eu,v is
added. Intuitively, this situation arises when the optimal paths
between u and v are a function of the traversability of a
single region. Since there are only two optimal paths from u
to v and G contains both of them, we know that δ(u, v,G) =
1 ≤ k, even though γ(u, v) > k.

In practice, we can find the minimum k such that no
shortcut edges are added to Gfree, which we call kmax, and
then iteratively plan in graphs with decreasing values of k,
starting with kmax, until the allotted time to plan runs out.

E. Adding Recovery Paths
While the augmented graph G contains many high-quality

paths through the environment, it is not yet optimized for
planning under uncertainty and adaptation to sensed infor-
mation. If an agent discovers that a region is untraversable,
it should follow the boundary around the region to make
progress to the goal, rather than backtracking. To enable fail-
ure recovery during online planning, we segment the shortcut
and region boundary edges according to their intersections.

F. Removing Redundant Edges
When constructing G, the number of shortcut edges we

consider adding is on the order of |V |2, since we reason

Fig. 4: Edge Reduction Step

about all pairs of vertices. For very large graphs, adding
every edge that satisfies γ(u, v) > k may result in dense
graphs that are impractical to plan with. We could increase
k such that fewer edges are added, but the resulting graph
may continue to have clusters of edges with similar γ(u, v).
Consider the example in Fig. 4. γ(u, v) and γ(w, v) will be
almost identical in value, since edges eu,v and ew,v intersect
the same region. Removing one of them will not have a
significant impact on the expected path costs.

Therefore, we refine G by considering the set of edges
that intersect a given region and deleting redundant ones. By
construction, the endpoints of these edges lie on the boundary
of the region. We randomly sample one of the edges eu,v in
the set and delete all edges ew,v where rerouting the path
from w to v through eu,v does not increase the path cost
from w to v by too large a factor α > 1, which we choose.
We repeat this until there are no new edges to sample. This
step effectively increases our suboptimality bound from k to
αk, since the length of all paths in the graph are guaranteed
not to increase by more than α.

IV. EXPERIMENTAL RESULTS

A. Toy Environment

Fig. 5: Toy environment with long, thin obstacles. Darker colored regions have low
traversability probabilities, lighter colored regions have high traversability probabilities,
and white space is freespace. On the left is the dense, optimal stacked visbility graph
(SVG). On the right is our graph with k = 2.5. As expected, there are more shortcut
edges that go through likely traversable regions than likely untraversable regions.

We first tested our approach in a hand-designed, toy envi-
ronment with long, thin regions (Fig. 5). In this environment,
edges that cross likely traversable regions provide significant
improvements over the much longer paths through freespace.
We generated four graphs for comparison. We first modified
the k-PRM algorithm [5] to allow edges to cross uncertain
regions, which we segmented along obstacle boundaries (see
Section III-E). Our sampling strategy was proportional to
the region probabilities (e.g., a vertex sampled in a 40%
likely traversable region was rejected with 60% probability),
and we sampled 20 vertices for the toy environment and 50
vertices for the other environments. Each vertex was then
connected to its 5 nearest neighbors6. We then generated
the stacked visibility graph (i.e., the SVG defined in Section
III-C) that contains the shortest path between v0 and v⋆ for
every weather. Finally, we generated two graphs using our

6These parameters were chosen such that the resulting graphs were of
comparable size to ones produced by our approach.

approach: one where the expected suboptimality threshold
is k = ∞ (i.e., the freespace graph that has no shortcuts)
and one where k = 2.5. We let the edge reduction factor be
α = 1.5 for all of our experiments.

To evaluate graph quality, we calculated the average oracle
path cost and online path cost across 50 randomly sampled
weathers. The oracle path cost is the length of the shortest
path between v0 and v⋆, assuming that the traversabilities of
the regions are known. The online path cost is the total path
cost accumulated by an uncertainty-aware agent that makes
observations online and replans according to a CTP policy
generated using the optimistic rollout algorithm from [4].
If no path was found between v0 and v⋆ (i.e., if the graph
became disconnected), we considered that a failure weather.

In Table I, we report the time Tgen required to generate
each graph in seconds, along with |V | and |E|. We also report
the percentage of failed weathers for each graph, along with
the ratio between the average oracle path cost and the average
optimal path cost, RORA, which approximates the expected
suboptimality between v0 and v⋆ in G. We similarly report
the ratio between the average online path cost and the average
optimal path cost7, RCTP . Finally, we report the time Tplan

in seconds it took the planner to find a solution, averaged
over the number of weathers.

TABLE I: Toy Environment Results

Graphs Tgen |V | |E| Failure
RORA RCTP TplanRate

k = 2.5 0.068s 44 161 0% 1.07 1.09 1.72s
k = ∞ 0.066s 34 118 0% 1.43 1.43 0.85s

SVG 13.04s 375 1224 0% 1.00 1.05 76.65s
PRM 0.030s 57 133 8% 1.36 1.68 0.79s

We demonstrate that classical motion planning techniques
are unable to achieve a good balance between computational
efficiency and plan quality. Of the three approaches, the
optimal SVG had the lowest RORA and RCTP but the
highest Tgen and Tplan. The SVG’s planning performance is
near-optimal, because it explicitly considers all traversability
scenarios, but at the cost of computational efficiency. The
PRM graph, on the other hand, had the lowest Tgen and
Tplan but the highest RORA and RCTP . Since the algorithm
does not consider any environmental uncertainty, its planning
performance is poor, even though it is efficient. Our graph
with k = 2.5 was over 190 times faster to generate than
the SVG, 44 times faster to plan with, and was less than
10% worse in terms of path quality. In comparison to PRM,
we performed 29% better for the oracle path costs and 59%
better for the CTP path costs. Our graph took only twice as
long to generate and plan with. We also show improvement
over the freespace graph, with a 36% difference in RORA

and a 34% difference in RCTP .

B. Synthetic Polygonal Environments
We also tested our approach in 100 synthetic polygonal

environments (Fig 6). We randomly sampled points inside of

7We compared the online path cost to the optimal path cost, instead
of the optimal online path cost, because finding optimal CTP policies is
computationally expensive. The ratio we report is an upper bound.

Fig. 6: An example of a randomly generated environment with concave and convex
regions. The region in the middle is traversable, so the shortest path from the start
to the goal is a straight line (blue). As k decreases, more shortcuts are added to the
graph, and the length of the oracle path (red) approaches the optimal length.

the environment polygon B to generate a Voronoi decompo-
sition, and then merged and shrank the resulting Voronoi
polygons to create irregular, concave regions and narrow
paths of freespace. The traversability probabilities of the
regions were uniformly sampled from [0, 1]. A total of 1000
trials were generated by randomly sampling 10 start-goal
pairs per environment, discarding and re-sampling if the start
or the goal was not in freespace.

We report metrics for the modified PRM graph and our
approach with k = 2, 3, 4, 5, 6, and ∞. We chose not to
include the SVG as a baseline for computational reasons,
since the synthetic environments can have up to 25 regions.
The metrics are the same as for the toy environment, but
averaged over all trials. More specifically, for a given graph,
Tgen, |V |, and |E| are averaged over 1000 trials and RORA,
RCTP , and Tplan are averaged over all weathers in all trials
(i.e., 50,000 total planning instances).

TABLE II: Polygonal Environments Results

Graphs Tgen |V | |E| Failure
RORA RCTP TplanRate

k = 2 54.68s 188 525 0% 1.12 1.12 16.35s
k = 3 14.18s 145 396 0% 1.13 1.14 7.56s
k = 4 5.70s 124 330 0% 1.16 1.16 3.70s
k = 5 3.56s 114 303 0% 1.18 1.19 2.34s
k = 6 2.88s 110 289 0% 1.20 1.20 1.73s
k = ∞ 2.34s 104 268 0% 1.33 1.35 0.81s
PRM 0.29s 242 586 52.2% 1.47 1.57 12.18s

In these experiments, we compare the efficiency and
planning performance with varying k (see Table II). As we
decrease k, our graphs become increasingly dense, since
more edges satisfy γ(u, v) > k. Though the criteria is
calculated for all pairs of vertices, regardless of k, it becomes
more expensive to generate graphs with lower k due to the
edge reduction step, which reasons over the set of added
edges. Our densest graph with k = 2, takes 27 times longer
to generate than the freespace graph with k = ∞. In terms of
planning performance, we notice that both RORA and RCTP

monotonically decrease as we decrease k. Furthermore,
though our algorithm cannot guarantee that δ(v0, v⋆, G) ≤ k
(as shown in Section III-D), both RORA and RCTP are less
than k for all graphs generated by our approach. Our densest
graph, with k = 2, shows a 20% improvement in RORA and
RCTP over the freespace graph with k = ∞. Finally, we

note the trends in planning efficiency. Unsurprisingly, as k
decreases and the graph contains more uncertain edges, the
time required to plan increases. Because the time required
to plan is loosely a function of the number of edges in the
graph, we notice that the PRM takes almost as long to plan
in as the graph with k = 2, likely because they have a similar
number of edges. However, the PRM is over 180 times faster
to generate than the graph with k = 2.

C. MIT Environment

Fig. 7: (a) Overhead satellite image of MIT, taken from Google Earth. (b) Region
polygons derived from OpenStreetMap [14]. (c) The online path that the robot takes
as it traverses through campus (blue). The robot takes the shorter path through the
open passageway circled in green to avoid going around all of the buildings, and
then checks the traversability of the passageway circled in red, before taking the
shortest freespace path from the passageway to the goal. (d) Three passageways provide
potential shortcuts through buildings. The first and third are untraversable, while the
second is traversable. When the robot observes an untraversable shortcut, it takes the
shortest possible path to its next location using freespace and recovery edges.

Finally, we tested our approach in a real-world campus
environment with 60 total regions. The buildings and fields
were derived from OpenStreetMap [14], and walkways were
hand-annotated. Buildings are assumed untraversable, while
fields and walkways are traversable with 70% and 40% prob-
ability8, respectively. Five trial starts and goals were hand-
selected to capture semantically meaningful environmental
traversals. We generated the same set of graphs and metrics
as for the polygonal environments.

TABLE III: MIT Environment Results

Graphs Tgen |V | |E| Failure
RORA RCTP TplanRate

k = 2 142.38s 2090 7356 0% 1.03 1.28 112.31s
k = 3 103.52s 1868 6701 0% 1.04 1.31 75.16s
k = 4 96.25s 1727 6255 0% 1.04 1.35 55.07s
k = 5 93.81s 1649 6001 0% 1.04 1.36 42.10s
k = 6 92.70s 1611 5878 0% 1.04 1.38 36.94s
k = ∞ 90.85s 1513 5396 0% 1.56 1.56 3.92s
PRM 0.99s 1267 3050 80% 1.48 1.59 8.88s

We demonstrate that our approach enables an agent plan-
ning under uncertainty to generate high-quality navigation
plans with good recovery paths in a real-world urban envi-
ronment. The trends we see in the previous sections hold, so
for this experiment, we highlight two intuitive examples that
demonstrate the agent’s plan through the campus (Fig. 7).

8These probabilities were hand-selected using expert knowledge of the
environment.

V. RELATED WORKS

There exists a rich body of work that addresses the prob-
lem of roadmap generation in known environments. Some
roadmaps, such as visibility graphs [11], [12] and general-
ized Voronoi diagrams [15], are built deterministically, and
have optimality guarantees under specific distance metrics.
Sampling-based algorithms, which generate random graphs
through the environment, have been shown to be probabilis-
tically complete [5], [6], and can be modified to be asymp-
totically optimal [7]. Additionally, many heuristics have been
developed to practically improve the computational costs and
planning outcomes of sampling-based motion planners, from
intelligent sampling methods [16], [17] to graph sparsifica-
tion heuristics [8]. Other methods leverage results from graph
theory to generate high-quality roadmaps, such as adding
useful cycles [18], using graph spanners [9], and pruning
edges [19], [20]. While these techniques produce sparse,
high-quality roadmaps in known environments, they are not
well-suited to planning in uncertain environments, since they
are not designed to model environmental uncertainty.

Additionally, the problem of planning under uncertainty
has been addressed in various ways. Some approaches
use discretized representations of uncertainty for planning
(e.g., [21], [22]). However, these representations can become
computationally inefficient as the size of the environment
increases. Belief-space planners (e.g., [23]–[25]) construct
belief-space graphs that represent both the agent configura-
tion space and different realizations of the environmental un-
certainty. However, because these methods are not designed
to minimally represent environmental uncertainty, they can
become computationally intractable as the number of realiza-
tions increases. In our work, rather than generating a graph
that jointly represents configuration and belief space, we
focus on generating a representation of configuration space
that accurately represents the environment, including envi-
ronmental uncertainty, and is efficient for uncertainty-aware
planning (i.e., using Monte Carlo methods [4]). Finally,
other approaches have used overhead views (e.g., images
[1], [21], semantic segmentations [26]) to guide planning
under uncertainty. However, these approaches do not leverage
environmental structure during roadmap construction.

VI. CONCLUSIONS

In this work, we presented our approach for generating
sparse, high-quality probabilistic graphs in uncertain envi-
ronments. Using a metric that bounds the ratio between the
expected path cost in our graph and the expected path cost in
the optimal graph, we can determine what shortcuts are valu-
able to add to the underlying graph through known freespace.
We tested our approach in several environments, demonstrat-
ing that our uncertainty-aware roadmaps effectively trade off
between plan quality and planning efficiency. In future work,
we would be interested in generating these roadmaps using
polygons derived from real-world, semantically segmented
satellite images. It would also be interesting to study an
extension of the algorithm to higher dimensions (e.g., for
a quadrotor navigating in an uncertain 3D environment).

REFERENCES

[1] J. J. Chung, A. J. Smith, R. Skeele, and G. A.
Hollinger, “Risk-aware graph search with dynamic
edge cost discovery,” The International Journal of
Robotics Research, vol. 38, no. 2-3, pp. 182–195,
2019.

[2] M. Stadler, J. Banfi, and N. Roy, “Approximating the
value of collaborative team actions for efficient multi-
agent navigation in uncertain graphs,” Proceedings of
the International Conference on Automated Planning
and Scheduling, vol. 33, no. 1, pp. 677–685, 2023.

[3] C. H. Papadimitriou and M. Yannakakis, “Shortest
paths without a map,” Theoretical Computer Science,
vol. 84, no. 1, pp. 127–150, 1991.

[4] P. Eyerich, T. Keller, and M. Helmert, “High-quality
policies for the canadian traveler’s problem,” in Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 24, 2010, pp. 51–58.

[5] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Over-
mars, “Probabilistic roadmaps for path planning in
high-dimensional configuration spaces,” IEEE Trans-
actions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[6] “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

[7] S. Karaman and E. Frazzoli, “Sampling-based algo-
rithms for optimal motion planning,” The International
Journal of Robotics Research, vol. 30, no. 7, pp. 846–
894, 2011.

[8] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot,
“Informed RRT: Optimal sampling-based path plan-
ning focused via direct sampling of an admissible
ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE,
2014, pp. 2997–3004.

[9] J. D. Marble and K. E. Bekris, “Asymptotically near-
optimal planning with probabilistic roadmap span-
ners,” IEEE Transactions on Robotics, vol. 29, no. 2,
pp. 432–444, 2013.

[10] E. Nikolova and D. R. Karger, “Route planning un-
der uncertainty: The canadian traveller problem.,” in
AAAI, 2008, pp. 969–974.

[11] M. De Berg, Computational geometry: algorithms and
applications. Springer Science & Business Media,
2000.

[12] H. Rohnert, “Shortest paths in the plane with convex
polygonal obstacles,” Information Processing Letters,
vol. 23, no. 2, pp. 71–76, 1986.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal
basis for the heuristic determination of minimum cost
paths,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[14] OpenStreetMap contributors, Planet dump retrieved
from https://planet.osm.org, https : / / www .
openstreetmap.org, 2017.

[15] O. Takahashi and R. J. Schilling, “Motion planning
in a plane using generalized voronoi diagrams,” IEEE
Transactions on robotics and automation, vol. 5, no. 2,
pp. 143–150, 1989.

[16] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge
test for sampling narrow passages with probabilis-
tic roadmap planners,” in 2003 IEEE international
conference on robotics and automation (cat. no.
03CH37422), IEEE, vol. 3, 2003, pp. 4420–4426.

[17] B. Ichter, J. Harrison, and M. Pavone, “Learning
sampling distributions for robot motion planning,” in
2018 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2018, pp. 7087–7094.

[18] D. Nieuwenhuisen and M. Overmars, “Useful cycles
in probabilistic roadmap graphs,” vol. 1, May 2004,
446 –452 Vol.1, ISBN: 0-7803-8232-3.

[19] O. Salzman, D. Shaharabani, P. K. Agarwal, and
D. Halperin, “Sparsification of motion-planning
roadmaps by edge contraction,” The International
Journal of Robotics Research, vol. 33, no. 14,
pp. 1711–1725, 2014.

[20] F. Zhou, S. Mahler, and H. Toivonen, “Simplification
of networks by edge pruning,” vol. 7250, Jan. 2012,
pp. 179–198.

[21] L. Murphy and P. Newman, “Risky planning on prob-
abilistic costmaps for path planning in outdoor envi-
ronments,” IEEE Transactions on Robotics, vol. 29,
no. 2, pp. 445–457, 2012.

[22] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stach-
niss, and W. Burgard, “Octomap: An efficient prob-
abilistic 3d mapping framework based on octrees,”
Autonomous robots, vol. 34, pp. 189–206, 2013.

[23] S. Prentice and N. Roy, “The belief roadmap: Effi-
cient planning in belief space by factoring the covari-
ance,” The International Journal of Robotics Research,
vol. 28, no. 11-12, pp. 1448–1465, 2009.

[24] C. Phiquepal, A. Orthey, N. Viennot, and M. Tous-
saint, “Path-tree optimization in discrete partially ob-
servable environments using rapidly-exploring belief-
space graphs,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 10 160–10 167, 2022.

[25] D. Zheng and P. Tsiotras, “Ibbt: Informed batch belief
trees for motion planning under uncertainty,” arXiv
preprint arXiv:2304.10984, 2023.

[26] M. Everett, J. Miller, and J. P. How, “Planning be-
yond the sensing horizon using a learned context,”
in 2019 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2019,
pp. 1064–1071.

