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Abstract— We present CELLO (Covariance Estimation and
Learning through Likelihood Optimization), an algorithm for
predicting the covariances of measurements based on any
available informative features. This algorithm is intended to
improve the accuracy and reliability of on-line state estimation
by providing a principled way to extend the conventional fixed-
covariance Gaussian measurement model. We show that in ex-
periments, CELLO learns to predict measurement covariances
that agree with empirical covariances obtained by manually
annotating sensor regimes. We also show that using the learned
covariances during filtering provides substantial quantitative
improvement to the overall state estimate.

I. INTRODUCTION

Reliable state estimation, often using information from
multiple sensors, is essential for all robotics applications.
Many state estimation problems are well-represented by
temporally discrete hidden Markov models, with a latent
state x; € RY at time t¢;, and a corresponding observation
z; € RP. Using knowledge of the distributions over the
initial state p(xg), the transitions between states p(x;|x;—1),
and the observations p(z;|x;), together with the sequence of
received observations {z, . .., z; }, we may make inferences
about the latent states.

In real problems, these distributions are unknown. In
order to make meaningful inferences, we are forced to
choose approximations. To be useful, these approximatine
distributions must be accurate enough to meet the constraints
of the problem, while also permitting tractable filtering given
the computational resources available—that is, they must
permit efficient computation of an approximate posterior
distribution for x; conditioned on all previous observations
{z| k € [1,i]} from the approximating measurement distri-
bution p(z;|x;).

For a wide range of problems, these constraints are
satisfied by choosing both p(z;|x;) and p(x;|x;—1) to be
multivariate normal distributions. Given deterministic (and
possibly non-linear) functions f(x) and h(x) describing
respectively the nominal state transition and measurement,
along with symmetric positive definite matrices Q and R to
parameterize the covariances associated with the state tran-
sition and measurement distributions, the model distribution
may be written

x; ~ N (fi(xi-1), Qi) (D
Z; ~ N (h(Xl), Rz) . (2)
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The choice of multivariate normal distributions allows us
to capture our estimate X; as a multivariate Gaussian, with
deterministic update functions for mean and variance.

Xi ~ N (py, 34) 3)
i = Ku(xi-1,2i, Qi—1,Ry) )
3i=Ks(x-1,2;,Qi—1,R;) )

The form of these update functions is prescribed by the
chosen filter. If the transition and measurement functions are
linear, then the Kalman filter [1] is the optimal choice; if
they are nonlinear, there are a variety of suitable extensions,
such as the extended [2] or unscented [3] Kalman filters.

In practice, this formulation works extremely well over
a large space of problems. Provided the underlying distri-
butions are unimodal and have effectively infinite support,
the mean and covariance are often representative of the
problem of interest even if the noise is not truly Gaussian,
and the Kalman filter is fast enough to scale to very large
or fast systems. The Kalman filter also provides a principled
way of fusing data from multiple sensors. The measurement
covariance R; associated with each sensor defines the weight
the estimator places on the measurements of that sensor, as
well as how the estimate covariance X; evolves, and how
rapidly the estimate mean g, adapts to new data.

The sensitivity of the performance of the Kalman filter to
the values of the measurement and process noise covariances
R and Q presents an often overlooked limitation: while
there exist principled ways of determining suitable functions
f(x) and h(x), there are few approaches to determining the
corresponding covariance terms. Most implementations of
the Kalman filter assume fixed Q and R, taken as either
equal to the empirical covariance of a body of sample
data, or treated as parameters to be tuned. There is in
general no reason to expect them to be time-invariant; in
many cases sensor performance may vary with environmental
parameters. Vision-based systems will degrade in darkness
and at high speeds, while range-finding systems may perform
poorly when faced with reflective or transparent surfaces, or
when no surface is in range of the sensor. Moreover, if the
measurement incorporated into the estimator is the output of
an algorithm, such as a scan-matcher or visual odometry
system, then algorithmic idiosyncrasies can further cause
the covariance to vary. Choosing an appropriate covariance
matrix becomes a matter of touch and tuning, and is generally
settled by trading off the cost of uncertainty associated with
an inflated covariance against the risk of inconsistency or
incorrectness if the covariance is set too small.



Our approach is to attempt to predict the instantaneous
measurement covariance R,;, based on a vector of predictors,
¢ € RM, computed from any data available to the estimator:
features of the raw data an algorithm operates on, ancillary
data produced by the algorithm, position in space, or even the
current state estimate—anything expected to correlate with
measurement covariance. The covariance associated with any
given measurement is then given by

R; = R(9;) (6)

We use machine learning techniques to learn patterns from
data drawn from experiments in the problem domain, rather
than attempting to form an analytical estimate of this map-
ping.

In this paper, we present CELLO (Covariance Estimation
and Learning through Likelihood Optimization), a novel
algorithm for predicting the instantaneous covariances as-
sociated with sensor measurements. This algorithm extends
the notion of an empirical covariance to describe a mapping
from predictors to covariances, representing the covariance
at any point in the predictor space as a weighted sum of outer
products over body of training data. A method is presented
for optimizing this weighting function to obtain maximal
performance from a given body of data; by exploiting finite
support in the weighting function and using existing data
structures for fast nearest neighbor searches, we enable fast
prediction at run-time.

We begin by outlining the theoretical roots of the algo-
rithm, then describe in detail the methods used both for
learning and to make predictions. We then describe our
experimental results, both in simulation and on a micro
air vehicle. We show the algorithm quantitatively improves
estimates obtained from Kalman filtering, and is capable
of making fast predictions even on very high-dimensional
predictor spaces: our experiments included as many as thirty-
eight predictors. Finally we describe limitations and possible
routes to overcome them.

II. RELATED WORK

The problem of learning a covariance mapping from data
has attracted attention for many years. There have been many
attempts to learn the covariances of many individual algo-
rithms; Brenna [4], for instance, presented extensive work on
covariance estimation for a laser scan matching algorithm.
Most such efforts are tightly coupled to their parent algo-
rithm, and they rarely generalize well. One early attempt at
generalized covariance estimation was the adaptive Kalman
filter [5], which modifies the elements of the measurement
noise covariance R and the process noise covariance QQ on-
line. This learning relies purely on local noise characteristics;
it is a reactive, rather than a predictive, scheme. Changes in
the noise parameters will always be delayed while adaption
occurs. This greatly reduces its effectiveness in cases of
abrupt dramatic changes, as in outlier rejection.

Attempts to quantify the volatility of markets have led to
advances by the computational finance community, yielding
state-space methods like the multivariate dynamic linear

models of Quintana and West [6], as well as regressive
models like multivariate ARCH and its derivatives [7].
These methods are related to CELLO in that they also
form weighted sums over outer products of prior data to
generate their covariance predictions; however, they predict
the instantaneous covariances as a time series, rather than as
a map from an arbitrary predictor space, and as such share the
disadvantages of the adaptive Kalman filter: they are reactive
rather than predictive.

Bayesian non-parametric methods for covariance predic-
tion have begun to emerge in the machine learning commu-
nity. Wilson and Ghahramani [8] presented a kernel-based
method which predicts a Wishart distribution over possible
covariance matrices, along with a framework for doing
Bayesian inference on such a model. While their formulation
performs well for high-dimensional predictions, learning is
prohibitively slow for high-dimensional feature spaces or
large sample sizes. Further, prediction under the model is
comparatively slow, rendering the algorithm unsuitable for
use online. The multi-kernel Gaussian process of Melkumyan
and Ramos [9] offers a different approach; rather than form
an explicit distribution over positive definite matrices, it
employs Gaussian processes to generate distributions over
the elements of such matrices, using the choice of kernel
to ensure positive definiteness. Like the Wishart process, it
requires O(N) kernel computations to make a prediction,
which will in general be too slow for online predictions.
Other multi-output kernel methods, such as that of Alvarez
et al. [10], have similar drawbacks.

III. OUTER PRODUCT ESTIMATION

Our goal is predict the covariance associated with sensor
measurements. We define e; € RP as a vector representing
measurement error:

e, =7Z; — h(Xi) (7)

We assume this error vector is drawn from a point in
predictor space ¢; € RM, and that the error is due to
measurement stochasticity; we assume it to have mean zero,
and denote its covariance as R;. We seek to predict this
covariance given the predictor vector ¢;: R; = R(¢;). We
assume that we have available a data set

Note that a data set of this type requires that we have access
to the error vectors e;, implying accurate knowledge of the
true system state. In practice, this translates to requiring the
training data be taken in a controlled environment, where
state estimation is not an issue.

A. Local Empirical Covariance

In the limit of infinite training data, the maximum like-
lihood estimate of R(¢) is the empirical covariance of all
error vectors drawn from point ¢.

R(¢, 1 . 9
(¢;) = SN 114) , Z b=, €Kek )



The indicator function 14 —¢, is equal to 1 if the subscripted
condition is true and 0 otherwise. In practice, this approach
is nearly useless; collecting data from the exact same point
in feature space is difficult or impossible. To circumvent this
limitation, we must incorporate data from points near the
target point, but it is unclear which subset of D should be
used to provide a good estimate of R for a given ¢.

To decide which subset of data may be incorporated,
we first explicitly define the notion of ‘nearness’. We then
demonstrate that in the limit of infinite data and assuming
continuity of the optimal map from predictors to covariances,
taking the empirical covariance of error samples with as-
sociated predictors lying in a neighborhood of a test point
will always converge to an estimate which differs from the
optimal map by an amount bounded in the radius of the
neighborhood. It follows that by shrinking that neighbor-
hood, the error bound can be made arbitrarily small.

Let the function R(¢) be a Lipschitz continuous map
from RM, the space of predictors, onto RP*P > 0, the
space of symmetric positive definite matrices. This continuity
requirement is minimally restrictive; without it, the map
R(¢) may vary arbitrarily fast and we cannot do better than
the map described in equation (9). Given continuity, there
must exist a constant K such that

[R™ (¢)—R"™"(¢")| <Kp(o, ¢)

Here, superscripts indicate an element of a matrix, while
subscripts indicate sample indices; p(¢, ') is a distance
metric on the space of predictors. Using this metric we define
a ball B of radius e centered at ¢, and use the samples
contained in the ball to estimate R(¢,). We then have

V{m,n}€[L,p]. (10)

IR™™(¢) — R™(¢)| < Ke  YopeB, (I1)

Defining the matrices Ry = R(¢,) and A; = R(¢;) —
R(¢,), algebraic manipulation yields

E[e]'el] = R™ + A" (12)
R AZ mn
Varferep) = ¢ RO AT mAEn g
2ARI™ + A2 =

where |[M|™" = M™™M"™ — (M™")? is the complement
of the (m,n) second minor of M. Determining the mean and
variance of the outer product sum is then straightforward. We
let Ny be the number of samples in the ball, and note

(14)

. 1
ER™|=R{"+ — ) A" (15)
[ } 0 Ng ;
1 &
Var [R’”"} = N2 ZVar [el"e]] (16)
B

Noting that the magnitude of A" is bounded by Ke, we
have shown

E [R’”"} ~RI"| < Ke 17)
Var [R™"] < < Rol" L BTIRC AR )
Np | 2((Ry"™) + Ke)* m=n

where B™" = (R + R{"™ + 2R{™) is introduced to
simplify notation. Equation (I8) implies the variance on our
estimate will always converge to zero as the number of
samples tends to infinity, and equation implies it will be
a consistent estimate in the limit as € tends to zero. Given a
fixed amount of data, then, the choice of € balances accuracy
against precision of the estimate.

B. Learning the Metric

Choosing ¢ in a principled way requires knowledge not just
of R(¢), but also of the Lipschitz constant K; in practice,
neither is available. Moreover, it is not obvious what is a
sensible choice for p(¢,¢’): the elements of the vector ¢
may be taken from functions with vastly different scales, or
even different ranges. There is no intuitive way to compare
an image brightness to its contrast ratio, or a vehicle velocity
to a fraction of inliers. Heuristic estimates can be of some
assistance; we could, for instance, rescale each element to lie
between zero and one, given a known finite range of possible
values. However, doing so implicitly assigns each element
equal importance, tacitly asserting that the elements of Ry
are expected to vary at the same rate in every direction.

Given the difficulties in choosing a metric and a ball
radius €, we instead choose to learn these parameters from
data, which permits us to explicitly choose how to balance
the likelihood of our model against the precision of the
implied estimate. We set ¢ = 1 and choose a family of
distance metrics parameterized by a vector €; by rescaling
the distance metric we can effectively force the radius of the
ball to be whatever we wish. The simplest choice of distance
metric, and one that proved effective in experiments, is to
simply choose a scale factor for each element of ¢, and use
the Euclidean norm of this rescaled vector.

C. Non-Unit Weights

We may rewrite the local empirical sum of equation (T4)
in the form of equation (@), as a sum over all samples.

R(¢,) = (19)

1 N
75 1 e.e |
p(; o) <1€iCi
Zlf)(¢i7¢0)<1 i=1 ’

This is a weighted sum, where all weights have either
unit or zero magnitude. This choice of weighting function
is somewhat arbitrary; in general, any positive function
k(p(¢, ")) > 0 will still create valid covariance matrices.
Provided the function is decreasing in p(¢, ¢'), we can make
statements about the asymptotic error and variance of the
resulting matrices similar to those in section



Defining k; = k(p(;, ¢;)) and Neg = S |
equations analogous to equations (I3)) and (I7).

k;, we write

E [f{mn} — Rgnn + lA:rm (20)
lp ¢17 ¢O)
R | - Ry < KD SEERE0
E| < Zl e @n
Choosing k(-,-) decreasing in p,
p < € by construction, it follows that
N mn mn Zp qbw d)O)
E [R } RI™| < KZ N < e (22)

Non-unit weighting functions strictly reduce the bound on
our error between the estimated and optimal covariance map:
we can only improve the accuracy of our estimate by using
a radial weighting function. The corresponding result for
variance is

Var [R™" | = ki Var [e]"e]] (23)
&) =573 Z
1 Amn _"_ B'H’LTLKé m n
< Ni mm ~\2 i ’ (24)
of |2((R]™) 4+ K€)* m=mn

where € = va 1 %ﬁ%) < e. Since Nqg < Ng, non-unit
weighting functions décrease the precision of our estimate.
If samples are uniformly distributed in predictor—space with
sample density o, choosing a new radius ¢ > € such that
¢ = e will allow us to include an expected o ('™ — M)
additlonal samples, offsetting this loss. By choosing non-
unit weights and manipulating the weighting function, we
may expect to obtain increased precision and accuracy with

the same available data.

IV. COVARIANCE ESTIMATION

Given a dataset composed of sampled pairs of features and
errors, D = {¢,, e;}. the framework induces a general form
for predicted covariances.

R(¢) = ))eie; 25)

To make predictions, we also require a metric on the M-
dimensional space of predictors, p(¢,¢’) and a decreasing
positive weighting function k(p(¢, @')). While choosing
these functions optimally is an open question for future
research, simple choices perform well in practice.

We employ a scaled Euclidean form for the metric, pa-
rameterized by a vector 6.

ple.¢)=(p—¢') ©® O —¢)

The scale matrix © is chosen upper triangular, with nonzero
elements equal to the elements of the parameter vector 6;
forming the distance metric in this way guarantees positivity
for all 6. Moreover, if we choose a weighting function

(26)

k(p(p,d’)) with compact support, then we only need cal-
culate the weights for samples within a fixed distance of the
target point. Identifying these samples is the well-studied
problem of nearest neighbor search in a Euclidean space,
which may be done in sublinear time by storing {@®¢,|Vi €
[1, N]} in a k-D tree.

There are many suitable weighting functions k(p(¢, @'));
we chose the triangle function

K6, ) = {;—p(qb,qb)

for its simplicity. In practice, any decreasing positive function
will do, and the choice has minimal impact on the resulting
predictions.

The assumption of Gaussianity implies

e;~N (OP>R(¢i|0)) :

Using the standard Gaussian likelihood function, we may
evaluate the logarithm of the likelihood of this model for a
given parameter vector 6.

if p(¢,¢') <1

27
else

(28)

N

—% Z (log IR(¢;)| + eiTR(@)_lei) (29)

=1

L(0|D) =

The maximum likelihood parameters 6* = arg max £(0|D)

are the natural choice for making predictions. I-(iowever, this
choice risks overfitting. In addition, if the samples are not
uniformly distributed in the space of possible predictor vec-
tors, then the covariance predictions will be high-variance in
regions where data is sparse, and will become singular if the
number of available data pairs is less than the dimensionality
of the measurements.

We observe better results by including regularization in
two forms. First, we employ ‘leave-one-out’ validation in
the optimization; we evaluate the covariance of ¢, using
data tuples {¢;,e;|Vj € [I,N]\ i}—that is, all data
excluding the point of interest. Second, we include an explicit
regularization term in the optimization.

Z log(k

Including this term gives the optimizer an indication of how
to modify the parameter vector to increase data density.

If we define a regularization constant « € [0, 1] we may
write our objective function as

R(6|D) = p(®i, 9;))) (30)

N
> (1= @)Li(Ry[D) + aR;(6]D).

i=1

F(0|D) = (31)
Choosing « requires experimentation in the problem domain;
typical values are quite small, on the order of 10~3. Note that
this objective function is continuous and twice analytically
differentiable; since we have access to both the Jacobian and
the Hessian matrix, we may then perform optimization using
any desired method. Algorithm [I] presents a method employ-
ing stochastic gradient descent, which proved effective in
experiment.
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Fig. 1: Two-dimensional covariance learning. The blue ellipses are true measurement covariances drawn from the data set; the green ellipses
are the optimized estimated covariances, with results drawn from several independent data sets superimposed. In each case, the estimates
appear unbiased, and the variance of the covariance ellipses sampled from the learned model is visible smaller in places with more data.

Algorithm 1 Optimization Algorithm

Randomly initialize parameter vector @ and learning rate

n

repeat
T < SHUFFLE([1,...,N])
for i € 7 do

R, < PREDICTCOVARIANCE(¢p\")
6 «— 6 — nVFi(R;|D)
end for
until convergence
function PREDICTCOVARIANCE(¢)
R« Opxp
Ng <~ NEARESTNEIGHBORS(¢p)
for i € Ny do
R R+ k(p(, p;))eie; "
Negr <= Net + k(p(@, b;))
epd for R
R« NiﬁR
return R
end function

V. SIMULATION RESULTS
A. Dark Room

The algorithm was first validated in simulation on a
toy problem representative of target problem domains. We
consider a fictional robot taking position measurements in
a room of varying brightness. The fictional position sensor
performs well in the light, but poorly in the darkness; the
robot navigates the room, and compares its measurements to
ground truth values at many locations, storing the location
as a predictor vector ¢, and the difference between observed
position and true position as an error vector ;. This provides
the data set D required to use algorithm [I} we use the
Euclidean metric presented in equation (26), and learn the
elements of the scale matrix @. The results of the learning

process are presented in Figure (I, when (Ta) 100 and (Tb)
1000 samples were used for training.

B. Scan-Matching

The planar LIDAR unit is ubiquitous in two-dimensional
localization and mapping tasks; it returns range measure-
ments at a fixed sequence of angles, and provides an excellent
balance of small size, light weight, low price, and high
accuracy. The range scans may be used to build maps [11],
to localize within a known map [12], or—by matching
sequential scans—for motion estimation via dead reckoning
[13].

However, one limitation of the sensor that often creates
estimation challenges is its finite range. In a hallway-like
environment, where the laser can see the walls of the
hallway but not the ends, we expect a low uncertainty in
the direction of the walls, where information is available,
but a high uncertainty along the length of the hallway, where
information is missing. In the limiting case of parallel planar
walls and no sensor noise, we can obtain our transverse
position in the hallway exactly, but make no guess as to
our longitudinal position. This behavior can be very difficult
to capture with fixed measurement covariances without re-
sorting to modelling the range scan measurement in terms
of sophisticated environment-specific features.

We demonstrate the benefits of an adaptive covariance
scheme through prediction of the covariances of the trans-
form parameters between matched sequential simulated laser
scans in a hallway environment, using a predictor vector
composed of histograms of angles returning viable ranges,
and the angles formed by lines between sequential points.
The predicted covariance ellipses are drawn in figure () at
several locations in a hallway; the predictions consistently
align the covariance ellipse with the hallway, regardless of
the robot orientation.

We also simulate accelerometer data, and incorporate these
predicted covariances into an unscented Kalman filter. A
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Fig. 2: Learned measurement covariances (green) for a scan matching algorithm in a hallway, compared to fixed measurement covariances
(red) taken as the empirical covariance of the available sample data. Measurements are displacements between successive scans, consequently
they have the same domain as the position variables; covariance ellipses are presented at arbitrary scale, hence it is only the orientation and
eccentricity of these ellipses that is relevant. The learned covariances consistently indicate a large measurement variation in the longitudinal
direction, and a small variation in the transverse direction, reflecting the availability of information in only one direction. Note the learning
was done using predictor features taken purely from the scan, and not including the position or orientation of the robot—the rotation of the

ellipse is an emergent behavior.
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(c) Comparison of Simulated Covariances

Fig. 3: Comparison of filter performance using learned and fixed measurement covariances. Note that in contrast to ﬁgurelz these covariances
are state covariances. Covariances are drawn as 95% confidence margin ellipses at fixed time intervals. Each estimated covariance (dashed
lines) is the mean filter covariances for a given time interval i, E [X;], over 250 simulated trials. Each simulated covariance (solid lines) is the
covariance of the estimated trajectories for the time interval i, Cov [w,], again over 250 simulations. Filtering was done using an unscented
Kalman filter with noisy accelerometer data and the scan-matching output for measurements. Note the distortion of the ellipse in the learned
case, reflecting increased uncertainty in the longitudinal direction of the corridor. Note also that the fixed covariance scheme underestimates

its uncertainty in the longitudinal direction.

comparison of filter performance using (3a) fixed covariances
and (3B) learned covariances indicates the weaknesses of a
fixed covariance scheme; the filter underestimates its uncer-
tainty in the longitudinal direction but grossly overestimates
it in the transverse direction. The result is reflected in the
distribution of estimated trajectories (solid lines). The learned
covariance scheme does a much better job restricting its
estimates to the interior of the hallway.

VI. EXPERIMENTAL RESULTS

The learning and prediction process was experimentally
evaluated on the output of an optical flow algorithm, operat-
ing on an image stream from a downward facing camera on a
quad-rotor helicopter. The measurement vector z consists of
the apparent motion of the image along its two axes, along

with its apparent rotation and scale shift. By tracking the
motion of the image stream and assuming a flat ground
plane, it is possible to infer the motion of the vehicle:
image translation implies either roll, pitch, or horizontal
translation, while image rotation implies yaw and image scale
shift implies vertical motion. In low-texture environments, in
darkness, or when images are blurred by rapid motion, the
image registration process is impaired and motion estimates
degrade.

Eighteen predictors were chosen and calculated for each
image pair, to produce a predictor vector ¢; these predictors
were chosen to be indicative of image contrast and structure,
as well as the goodness of fit of the image registration
process. The vehicle was flown in a motion capture room; the
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Fig. 4: Comparison of marginal measurement covariances for the vertical (y) component of flow. Blue dots are sample error vectors;
covariances are drawn as 95% confidence margins. The labelled covariances are the empirical covariance of each region; the fixed covariance
is the empirical covariance of the entire data set; the CELLO predictions are the predicted covariances for each sample. Note how the learned
covariances offer increased flexibility, even within a known region; the regions of higher noise due to takeoff and landing are assigned an

appropriately larger covariance.

motion capture system provides extremely accurate measure-
ments of the vehicle state x, and this state information was
used to predict the measurements {h(x;)}. This allows us
to form the error vectors {e; = z; — h(x;)}, yielding a data
set of the form required for algorithm |I} The result of the
learning is shown in figure {@). These results were attained
in a few minutes on a desktop machine, given a data set of
approximately ten thousand samples, corresponding to just
under ten minutes of flight. In regions where the images are
of low quality, the image registration process performs errat-
ically; this is reflected by a covariance orders of magnitude
larger than is typical. Typically, such measurements would
be rejected by heuristic outlier detectors; such heuristics
require careful tuning to avoid discarding useful data while
ensuring all invalid points are discarded. CELLO handles
this rejection natively, assigning those points a covariance
large enough to mitigate any effect they would have on a
state estimate, with no tuning or other input from the user
required. Additionally, when the vehicle is stopped and the
impact of motion blur is completely eradicated, the image
matching process becomes very accurate, and the predicted
covariance is correspondingly small.

To illustrate the benefits of a predicted covariance scheme,
we compare the performance of predicted and labeled (i.e.
fixed) covariances in online state estimation using an un-
scented Kalman filter. The filter incorporates both optical
flow and accelerometer data; these sensors are in many
ways complementary. The accelerometer operates at a high
frequency and with reasonable accuracy; but observes only
the derivatives of the system state, and so must be integrated
twice, resulting in a large accumulated errors due to drift. The
optical flow sensor operates at a much lower frequency, but
provides measurements of velocity and height, greatly reduc-
ing drift errors. However, the covariance of the optical flow

sensor is highly environment-dependent, as seen in figure
(). Choosing a small fixed covariance for the measurement
model leads to filter divergence due to singularities in the
optical flow measurement function; choosing a large covari-
ance makes the filter slow to incorporate data. Adapting the
covariance using the predictions from CELLO allows for
the use of smaller covariances only when appropriate, and
creates a more robust and accurate filter, as seen in figure

®).
VII. CONCLUSION

We have presented a method for predicting the covariances
of sensor measurements given a vector of predictor functions.
This algorithm successfully formed covariances in different
regimes as well as a human could by hand-labelling the data;
it did so in an automated fashion and without any specific
knowledge of what those regimes might be. Furthermore, us-
ing these predictions in state estimation demonstrated at least
three concrete advantages over using fixed covariances. First,
they used available data more efficiently, producing more
consistent estimates in the domains tested. Second, the co-
variances estimated by the filter using adapted measurement
covariances better approximated the distribution of estimates
in simulation. Third, learned covariances provide an intuitive
and parameter-free way of handling outlier rejection in real
data, improving the robustness of the state estimator to un-
modeled sensor failures. These improvements came without
the introduction of any significant overhead in the estimation
process. We believe our algorithm represents a significant
practical advancement in on-line state estimation, replacing
the notoriously difficult process of tuning covariances and
heuristic parameters with a simple, automated procedure.
Future work includes developing better ways of selecting
features, applying the method to modeling the process noise
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Fig. 5: Online state estimation performance of an unscented Kalman filter using fixed and learned covariances to integrate optical flow and
accelerometer data. Only three of twelve states are displayed: the x position, the height above ground z, and the translational velocity in the
z direction. Fixed covariances the empirical measurement covariances of the manually annotated sensor regime. The adapted covariances
produced by CELLO allow for smaller covariances without introducing inconsistency, precluding the need for outlier rejection and allowing
the filter to safely place greater confidence in new data.

covariance, as well as mitigating the need for ground truth
knowledge of state.
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