
Asymptotically optimal planning under
piecewise-analytic constraints

William Vega-Brown and Nicholas Roy

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
{wrvb,nickroy}@csail.mit.edu

Abstract. We present the first asymptotically optimal algorithm for
motion planning problems with piecewise-analytic differential constraints,
like manipulation or rearrangement planning. This class of problems is
characterized by the presence of differential constraints that are local
in nature: a robot can only move an object once the object has been
grasped. These constraints are not analytic and thus cannot be addressed
by standard differentially constrained planning algorithms. We demon-
strate that, given the ability to sample from the locally reachable subset
of the configuration space with positive probability, we can construct ran-
dom geometric graphs that contain optimal plans with probability one in
the limit of infinite samples. This approach does not require a hand-coded
symbolic abstraction. We demonstrate our approach in simulation on a
simple manipulation planning problem, and show it generates lower-cost
plans than a sequential task and motion planner.

1 Introduction

Consider a robot tasked with building a structure; a general-purpose planning al-
gorithm for such a task must infer plans that respect both kinematic constraints,
such as joint limits and collision between moving objects, as well as differential
constraints, such as the limitation that the robot must be in contact with an
object in order to affect its configuration. There exist provably asymptotically
optimal algorithms for motion planning under analytic differential constraints.
However, problems that involve discrete decisions, such as whether to grasp or
release an object, cannot be described by analytic differential constraints.

This class of problems includes all contact-based manipulation. In the assem-
bly task, for instance, the robot must decide where to place any object it sets
down. This decision will affect all future decisions, as once the object has been
set down, the robot cannot affect its position without grasping it again. While
standard algorithms can decide how to place an object, they cannot make opti-
mal decisions about where to place the object. See fig. 1 for a simple illustration
of this problem.

There are two families of approaches to address this problem. One option is
to break up the planning problem into a sequence of simpler planning problems
in which the constraints are analytic. For example, the robot may first use a task



(a) (b)

Fig. 1: a: In this block pushing problem, the triangular robot seeks to move both the
red blocks into the shaded room. b: A locally-optimal decision early on in the plan
can have dramatic consequences later. Because it placed the first block just over the
threshold of the door to the target room, the robot cannot move the second block
without grasping the first block again.

planner to choose a sequence of high-level actions, such as grasping or placing a
component. A motion planner can then generate a detailed plan corresponding
to each action.

Substantial research effort has gone into accounting for the interplay between
the high-level task planner and the low-level geometric motion planner.For exam-
ple, Kaelbling and Lozano-Pérez [10] use a hierarchy to guide high-level decision
making, resolving low-level decisions arbitrarily and trusting in the reversibil-
ity of the system to ensure hierarchical completeness. Wolfe et al. [17] ensure
hierarchical optimality by expanding high-level plans in a best-first way, using
domain specific subtask irrelevance detection to increase efficiency. Krontiris and
Bekris [13] use a backtracking search as a low-level planner in the context of a
high-level task planning problem. While these approaches are often computation-
ally efficient, the guarantees they provide are hierarchical : they will return the
best feasible plan that can be expressed within the task hierarchy they search.
These hierarchies are typically hand-coded and domain-specific; the quality of
the solution and the reliability of the planner hinges on the existence of a con-
cise symbolic description of the planning domain, which may be expensive or
impossible to find.

An alternative strategy is to solve the problem in the joint configuration
space of the robot and objects, modifying differentially constrained planning
algorithms like RRT* [11] to account for non-analytic differential constraints.
This approach avoids the need for hand-coded motion primitives or a symbolic
representation of the domain and allows for guarantees of probabilistic com-
pleteness under various assumptions. For example, Van Den Berg et al. [16]
present a probabilistically complete algorithm for planning in domains including
moveable objects. Hauser and Latombe [5] and Berenson et al. [2] show how to
plan when the differential constraints create a fixed, finite set of manifolds on
which the dynamics are unconstrained, as when a single object may be lifted
or dragged. The core idea of both algorithms involves building many separate
planning graphs on subsets of the configuration space and connecting them to
formulate a global planner. Others have expanded on this idea to choose which
local planning graphs to construct in an automated fashion. For example, Jail-



let and Porta [8] construct an atlas of local planning graphs and use that atlas
to search for paths on manifolds. Their approach allows for efficient planning
in situations where working in the ambient space would be prohibitively ex-
pensive. While their algorithm is asymptotically optimal, it cannot be directly
applied to problems with non-analytic constraints. Algorithms that do apply to
non-analytically constrained domains, such as Hauser and Ng-Thow-Hing’s ex-
tension of their earlier work [6], are probabilistically complete but are not known
to be asymptotically optimal.

In this work, we present two algorithms that are provably asymptotically op-
timal for problems involving differential constraints that are piecewise-analytic,
a broad class that includes manipulation planning problems. Our first algorithm
extends the result of Hauser and Ng-Thow-Hing to ensure asymptotic optimal-
ity, much as the PRM* algorithm [11] extends the PRM algorithm [7]. This
extension leads to a provably optimal but prohibitively computationally expen-
sive algorithm; our second algorithm mitigates this complexity by factoring the
configuration space. Our key analytical result is that we can ensure asymptotic
optimality by considering only a finite collection of subsets of the configuration
space, each of which is subject only to analytic constraints. By building a graph
on each of these subsets and connecting the resulting collection of graphs, we can
construct a random graph that spans the configuration space; as the collection
grows sufficiently large, it will contain a near-optimal plan with probability one
and an optimal plan in the limit of infinite samples. We show experimentally
that these algorithms obtain plans with lower cost than conventional sequential
task and motion planning approaches.

2 Background and notation

Formally, we can define a differentially-constrained planning domain by a tuple
(f,X ), where X is an N -dimensional Riemannian manifold with tangent bun-
dle TX defining the configuration space, and f : X × TX → Rk is a set of
k constraints on the allowable motions, K < N . We assume this manifold is
specified by an embedding into a higher-dimensional Euclidean space, such that
it can be represented as the zero level set of some function g : X → RM ,
N < M . Then a continuous function σ : [0, T ] → X is a feasible path if
f(σ(t), σ̇(t)) = 0∀t ∈ [0, T ]. We denote the set of feasible paths in a given
domain by ΣX . Note that this formulation can model kinematic constraints,
such as collisions between objects or joint limits, and dynamic constraints.

We define a planning problem as a tuple (x0,XG, c), where x0 ∈ X is an
initial configuration, XG is a set of goal configurations, and c : Σ → R+ is a
piecewise Lipschitz continuous cost function. We restrict our attention to prob-
lems where the cost of a path is independent of the time taken to traverse the
path; accordingly, the cost of a plan is the line integral of the cost function over
the path.



Definition 1. A solution to a planning problem (x0,XG, c) in a domain (f,X )
is a continuously differentiable path σ∗ : [0, T ]→ X , where

σ∗ = arg min
σ∈ΣX

∫ T

0

c(σ(t))‖σ̇(t)‖dt (1)

s.t. f(σ(τ), σ̇(τ)) ≥ 0 ∀τ ∈ [0, T ] (feasibility)

σ(0) = xs, σ(1) ∈ Xg

We can solve problems of this form under a variety of conditions, by con-
structing and searching a random geometric graph. A random geometric graph
GRGG
n = (V, E) is a graph whose vertices are a randomly chosen finite set of con-

figurations V ⊂ X , and whose edges are paths between nearby configurations,
with adjacency determined using simple geometric rules. There are many motion
planning algorithms that exploit this underlying concept; see LaValle [14] for a
survey.

Planning algorithms based on random geometric graphs are provably optimal
under a variety of conditions. For holonomic systems, Karaman and Frazzoli [11]
demonstrated that a random geometric graph with n vertices drawn uniformly
at random from the configuration space X will contain an optimal path with
probability one in the limit as n→∞. This result was proven for a graph with
an edge between any pair of samples with geodesic distance less than γX ( logn

n )
1
k ,

provided the straight-line path between those vertices is collision free; γX is a
constant depending only on the manifold X and k is the dimensionality of the
configuration space X . The same authors extended this result [12] to the broad
class of non-holonomic real analytic dynamical systems. Note these approaches
can be applied to planning on manifolds, assuming we know how to sample ran-
dom configurations from the manifold and how to connect nearby configurations.

The class of systems addressed by these algorithms does not include many
systems of practical interest in robotics. Consider a simple model of object ma-
nipulation. A holonomic robot is tasked with moving K boxes. When in con-
tact with a box, the robot can rigidly grasp the box, so that the robot-box
pair behave as a single rigid body as long as the box is grasped. Any box not
grasped by the robot does not move. The robot can release a grasped box at
any time. This model avoids much of the complexity of real contact dynam-
ics; there is no consideration of momentum, or even of form or force closure.
These constraints can be written explicitly; we define the indicator function
fcontact : SE(2)× SE(2)→ {0, 1} such that for any object o, fcontact(xr, xo) = 0
if the robot can grasp the object when the robot pose is xr and the object pose
is xo, and fcontact(xr, xo) = 1 otherwise. Then the constraints on permissible
motions can be expressed as

fcontact(xr, xo)ẋo = 0 ∀o. (2)

Because the support of the function fcontact(xr, xo) is compact, the function is
not analytic. Note that although fcontact is not smooth, a similar result holds for
smooth constraints, provided they have compact support.



Non-analytic constraints cause motion planning algorithms to fail for a simple
reason: arbitrary pairs of configurations can be quite close in geodesic distance
but require very long trajectories to connect. Consider two world configurations
where the position of each object is perturbed slightly from one configuration to
the other; to move the world from the first configuration to the second, the robot
must travel to each object in turn. Typical PRM* implementations use either
straight-line connections or two-point boundary value solvers as local planners;
in order to apply an algorithm like PRM* to this domain, we would need a more
powerful local planner capable of computing the very long path between the orig-
inal and perturbed configurations. Similarly, the rapid exploration of algorithms
like the RRT* is dependent on a steer function that finds a plan that moves
toward an arbitrary configuration; in manipulation planning problems, simple
implementations of the steer function may not bring the world configuration
closer to a perturbed configuration, leading to slow exploration. Note this does
not constitute a proof of incompleteness of RRT* or PRM* in problems with
non-analytic constraints; little is known about the completeness or optimality
of sampling-based motion planning in settings where the geodesic distance does
not accurately capture the complexity of moving between configurations.

3 Modes and orbits

Although the conditional constraints that are a fundamental characteristic of
manipulation planning domains cannot be represented as analytic differential
constraints, they can be represented using the more general class of piecewise-
analytic constraints. We define a function f as piecewise-analytic if there exists
a finite setM of NX connected Riemannian manifolds {Xi}NX

i=1, each a subset of

the configuration space X , such that X =
⋃NX
i=1 Xi and such that the restriction

of f to the interior of Xi is analytic for each i. Following Alami et al. [1] and
Hauser and Latombe [5], we refer to the manifolds Xi as modes. In the simplified
block-pushing problem with k blocks, there are k+ 1 modes: one describing the
motion of the robot when not in contact with any blocks, and one for each block
describing the evolution of the system when the robot grasps that block.

Recall that in our block-pushing problem, a block moves only if grasped by
the robot. Consequently, it is impossible to move between arbitrary configura-
tions on a mode without grasping and releasing blocks—that is, without switch-
ing modes. Consider the mode defined by which block the robot has grasped;
the reachable configurations within this mode are defined by the locations of all
the other blocks. We will refer to the collection of configurations reachable from
an arbitrary configuration as an orbit.

Formally, an orbit OXi
(x) of a mode Xi through a configuration x ∈ Xi is the

subset of Xi connected to x by a feasible path that lies wholly on the manifold
Xi. Because the constraints are analytic on each mode, the orbits are disjoint
submanifolds of the same dimensionality [15]. This means that a planning prob-
lem where the start and goal states both lie on the same orbit is straightforward
to solve using standard sampling-based planning techniques. The key to our ap-
proach is recognizing that we can solve arbitrary planning problems in a given
domain by choosing a finite set of orbits, building a random geometric graph



on each orbit, and connecting the resulting set of graphs. In the sections that
follow, we will describe in detail how to construct and link these graphs in a
way that preserves the optimality guarantees of the PRM* while also remaining
computationally tractable.

Note that as with most sampling-based motion planning algorithms, we do
not require an explicit geometric representation of the modes or orbits in order to
plan; we require only the ability to sample from them. This may be non-trivial,
as standard rejection-sampling approaches will fail if the modes or orbits have
dimension less than that of the configuration space. However, for many prob-
lems of interest, it is straightforward to write subroutines that uniformly sample
configurations from a given orbit. These subroutines are also a prerequisite for
many other manipulation planning algorithms.

For the purposes of this work, we assume that the modes and orbits are
exogenously given in a form that permits sampling. That is, we assume that
given a configuration x, there exists a subroutine modes(x) that returns a list of
identifiers of the modes that contain x, a subroutine sample(x) that generates a
configuration chosen uniformly at random from orbits containing x, and a sub-
routine sample boundary(x) that generates a configuration uniformly at random
from the boundary of one of the orbits containing x, such that the probability of
the generated sample belonging to any boundary manifold is greater than zero.

4 Algorithms

We first describe the implementation of our algorithms on the block-pushing do-
main, then describe the general formulation. The complexity of the algorithms in-
volved leads to unwieldy pseudocode; instead, we provide an open source Python
implementation1 of the algorithms described here. In addition to the subroutines
sample and sample boundary mentioned in section 3, we assume we have a local
planner available, which must satisfy several regularity conditions described in
section 5.

Our algorithms both follow the same basic procedure: we construct an im-
plicit random geometric graph by choosing a set of configurations (the vertex
set) and specifying a subroutine to generate the neighboring configurations for
a given vertex. In addition to a problem specification (x0, XG, c), we take as
input an integer parameter n. As n increases, the size of the graph increases,
which increases the computational resources required to search for a trajectory
but also improves the quality of the path returned.

Two vertices x and x′ are connected by an edge in our graph if the geodesic
distance on some orbit including x and x′ is less than a critical threshold value
depending on n. We use the local planner to determine the cost of an edge; if
the local planner cannot find a feasible path, perhaps due to the presence of
an obstacle, the edge is assigned a cost of ∞. Together, the vertex set and the
neighbor function specify an implicit random geometric graph. An eager PRM*
implementation would explicitly evaluate the cost of every edge; instead, we
lazily evaluate only those edges that may be part of an optimal path.

1 https://github.com/robustrobotics/forgg

https://github.com/robustrobotics/forgg


We then search the implicit random geometric graph using the A* algorithm
of Hart et al. [4]. Only when a vertex is expanded do we actually invoke the local
planner to determine whether it can generate a collision-free feasible trajectory
to any of the neighbors of the expanded vertex; if it can, the neighboring vertex
is added to a priority queue with priority equal to the minimal cost to reach that
vertex. Note that this idea of lazily searching a random geometric graph is not
novel; the core idea was described by Bohlin and Kavraki [3], and recent work
from Janson et al. [9], among others, suggest this approach can be significantly
more efficient than RRT* or searching an explicit graph constructed with the
PRM* algorithm. The innovation in our approach is the way in which we con-
struct the graph, which ensures that the graphs constructed on each orbit are
constructed in a way that ensures asymptotic optimality.

4.1 Orbital Bellman trees

To extend the asymptotic optimality of PRM* to problems with piecewise-
analytic constraints, we must ensure that as the graph size n tends to infinity,
the number of orbits on the connected component containing xs tends to infinity
and that the number of samples on each of those orbits tends to infinity. Building
on the Random-MMP algorithm described by Hauser and Ng-Thow-Hing [6], we
provide a graph construction and search algorithm that incrementally builds the
graph such that as n increases, the graph contains an increasing number of sam-
ples from an increasing number of orbits yet remains connected with probability
one as n→∞.

The algorithm has two free parameters, ν ∈ (0, 1) and η ∈ (0,∞). Increasing
η increases the number of edges in the graph by inflating the radius defining
whether two vertices are connected. ν represents a trade-off between exploring
the interior of each orbit and exploring the relations between different orbits.

We initialize the vertex set to include the initial configuration x0 and place
the initial configuration in a priority queue with priority zero. We then repeat-
edly remove the lowest-cost vertex from the queue and perform two algorithmic
operations. First, we check whether the removed vertex belongs to any orbits
that do not contain samples and add samples from those orbits if so. Concretely,
if we remove the vertex x from the priority queue and for some mode M con-
taining x the orbit OM(x) does not contain any samples, we call the subroutine
sample n times to sample n configurations from OM(x). Then for each modeM′
adjacent to M, we call the sample boundary subroutine νn times to generate
νn samples from the intersection of OM(x) and M′. Finally, we build a search
index such as a k-d tree or a cover tree from the n samples, to enable efficient
lookup of the neighboring vertices.

Second, we perform a standard iteration of A*, considering the neighbors of
x on each orbit to which it belongs. For each neighbor x′, we evaluate the cost
of the path returned by the local planner from x to x′; if that cost is finite, we
add the neighbor x′ to the priority queue as usual. The algorithm terminates
when a vertex is expanded that lies in Xg, when the queue is empty, or when
a predefined maximum number of samples have been removed from the priority
queue.



As the search proceeds, this process grows a graph of interconnected or-
bits. We refer to this graph construction as a random orbital geometric graph
(ORGG), as it is a random geometric graph that respects the structure of the
orbits created by the constraints. As with any best-first search algorithm, the
search produces a tree in which each vertex v is labelled with the minimal cost of
a path through the ORGG from the start vertex to v, the parent of each vertex
except the start vertex lies along that minimum cost path. We refer to this tree
as an orbital Bellman tree, as the cost to reach each vertex satisfies Bellman’s
equations; we refer to the search algorithm as the orbital Bellman tree (OBT)
algorithm.

The OBT algorithm is asymptotically optimal for any ν, η if the set of neigh-
bors of a given vertex includes all configurations within a distance rO(n), for
each orbit O containing the configuration. The function rO(n) is determined
by ν, η, the dimensionality dO, and the Lebesgue measure vol(O) of the orbit,
where the measure is induced by the volume form of the manifold O. As with
other sampling-based motion planners, the Lebesgue measure of the orbit can
be approximated using rejection sampling.

rO(n) = (1 + η)γO

(
log n

n

)1/dO

(3)

γO = 4

(
(1 +

1

dO
)
vol(O)

ζdO

) 1
dO

(4)

ζdO =
πdO

Γ (dO2 + 1)
(volume of a dO-sphere)

Note this connectivity radius is nearly identical to that presented by Karaman
and Frazzoli; the only change is the factor of 4 in γ, which is needed to ensure
optimality when the path obtained is on a different orbit from the optimal path.

OBT is different from Random-MMP in two important ways. First, OBT
obtains provably asymptotically optimal paths across each orbit by constructing
an optimal random geometric graph on each orbit. Random-MMP instead adds a
single path across an orbit to a configuration on another mode; finding this path
is sufficient to guarantee completeness but not optimality. Second, by choosing
a fixed fraction of samples from each orbit to be from the intersection of the
orbit and the adjacent modes, OBT ensures that enough orbits are considered
to guarantee optimality.

4.2 Factored orbital Bellman trees

The OBT algorithm is extremely computationally intensive. Each new orbit
considered requires sampling n new configurations and building a new search
index; this takes O(n log n) time per orbit. Consider the block-pushing problem;
every grasp configuration is a part of two orbits, as the robot can either maintain
the grasp and move with the object or immediately drop the object at that
location and move only itself. This means that we must consider n new orbits
whenever the robot grasps an object. Consequently, the number of samples we



must store grows exponentially with the number of objects the shortest plan
must grasp. There are K objects to grasp whenever the robot is not holding an
object. Each time we consider a possible set of grasps and releases, we generate
O(Kn) samples and take O(Kn log n) time, and the OBT algorithm does so
for each combination of grasps and releases, leading to O((Kn log n)d) time and
O(Kdnd) space to search through all possible combinations of objects to grasp
and locations to release in a sequence of d grasps.

One avenue toward reducing this computational burden is to take advantage
of the structure of the problem domain to reduce the number of samples and
search indices we must generate. The block-pushing domain has a key feature
that makes this possible: the constraints that define the modes and orbits factor,
allowing us to consider different parts of the configuration space independently.
The constraint that an object cannot move unless grasped is unary: it does not
affect the permissible locations of the other objects. The constraint that the
robot is grasping an object is binary: it affects the robot and the object, but has
no effect on the configurations of the other objects.

We can encode this structure in a factor graph representing the uniform
distribution over a mode. The vertices of this factor graph represent the config-
uration of each object, and the unnormalized factors are the constraints defining
the orbits. We can generate samples from this uniform distribution over a mode
by sampling from each connected component of this factor graph independently
and then taking the Cartesian product of the resulting sample sets. We can
exploit this factorization to generate samples from the full configuration space
efficiently.

In the block-pushing domain, this factored sampling amounts to sampling a
set of poses of each object and a set of grasping poses of the robot for each object.
A graph whose vertices are the union of the products of these sets of poses is
an orbital random geometric graph. Because the vertices of such a graph are
generated by factoring the uniform distribution over a mode, we refer to this
graph construction as a factored orbital random geometric graph (FORGG).
This factorized sampling strategy can be generalized to arbitrary configuration
spaces and sets of constraints, and will be beneficial if the factor graph encoding
a uniform distribution over a given orbit has multiple connected components.
Arbitrarily complex models of contact dynamics satisfy this requirement due to
the local nature of contact dynamics.

The algorithm that constructs and searches a factored orbital random geo-
metric graph closely resembles the OBT search algorithm, with the key distinc-
tion that the samples are generated from independent factors. Accordingly, we
refer to this search algorithm as the factored orbital Bellman tree (FOBT). On
the block pushing problem, this reduces the amount of space needed to store
the orbital geometric graph from O((nk)D) to O(nk) and the amount of time
required from O((kn log n)D) to O(kn log n), with no dependence on D, the
number of grasps in the shortest solution. Note that we have not avoided the ex-
ponential cost of graph search; the search itself still takes O(bd) time and space,
where b is the graph branching factor and d is the depth of the shortest solution.
Although this is only a constant factor improvement, it represents a significant
practical advance.



5 Analysis

We now prove the asymptotic optimality of OBT and FOBT, subject to a
regularity condition on the local planner used. For brevity, we present sev-
eral propositions without proof; proofs of these propositions are available in
our supplementary material. In addition to the piecewise-analyticity of the con-
straints, we require an additional technical condition on the local planner π
used to connect nearby states. First, there must exist a radius r0 > 0 such
that the planner will return a feasible path if invoked to connect two config-
urations that lie inside an open geodesic ball of free space with radius less
than r0. Second, for any ε > 0 there must exist rε > 0 such that for all
x, x′ ∈ M : dM(x, x′) < rε, LM(π(x, x′)) < (1 + ε)dM(x, x′). If a local plan-
ner has these two properties, we say it is locally complete. Note that a local
planner that connects trajectories with geodesic curves is locally complete.

Theorem 1 (Optimality of OBT). Given a planning problem (xs, Xg, c) in
a domain (X, f), let cn be the shortest path between xs and Xg on an orbital
random geometric graph Gn with n vertices, built using a locally complete local
planner. Then P({lim sup

n→∞
cn = c∗}) = 1.

5.1 Construction of a sequence of paths

Let σ̄∗ be an optimal solution to the planning problem. Decompose σ̄∗ into a
sequence of M paths {σ∗m}m∈[1,M ], each lying on a single manifold.

σ̄∗ =

M⊕
m=1

σ∗m (5)

Define ϕm ∈ VM as the mode on which the path σ∗m lies. Let dm be the dimen-
sionality of the orbit containing σ∗m. Let d̄ be the maximum dimension of any
intersection orbit expressed in the path: dim(ϕm ∩ ϕm+1) ≤ d̄∀m.

Because the modes are analytic manifolds, there exists δ > 0 such that each
path σ∗m is homotopy-equivalent to a path that lies in the union of the δ-interior
of the mode ϕm, an open ball of radius δ whose closure contains σ∗m(0), and an
open ball of radius δ whose closure contains σ∗m(1). Define the weakly monoton-
ically decreasing sequence {δn}n∈Z.

δn = min
(
δ, n−

1
2d̄

)
(6)

Clearly, this sequence satisfies 0 < δn ≤ δ and limn→∞ δn = 0; let n0 = min{n ∈
Z : δn < δ}. Because the problem is δ-robust, there exists a sequence {σ̄n}n∈N
such that σ̄n has δn-clearance. Decompose each path σ̄n into a sequence of M
paths σn,m, just as with σ̄∗.



5.2 Construction of balls on the intersections between modes

Define r∩,n,m = amn
− 1

2d̄ , where am is recursively defined to ensure that if a leaf
intersects r∩,n,m, it also intersects r∩,n,m+1.

aM = δ (7)

am = sup{a > 0 : ∀y ∈ B(σn,m, a) sup
t∈(0,1)

inf
y′∈Om(y)

d(σn,m(t), y′) < am+1} (8)

Note that r∩,n,m ≤ δn ∀m for large n. For each path σn,m, define the region
B∩,n,m as the geodesic ball centered at σn,m(0) on the manifold ϕm−1∩ϕm with
radius r∩,m,n, Let E∩,n,m be the event that the ball B∩,n,m contains a sample:
that is, E∩,n,m occurs when the intersection of the vertex set Vn and the ball
B∩,n,m is nonempty. Let A∩,n =

⋂
mE∩,n,m be the event that each ball B∩,n,m

contains a sample.

5.3 Construction of balls on an arbitrary orbit

Fix θ ∈ (0, 1) and r > 0; let σ : [0, 1]→M be a feasible path on a modeM such
that there exist real numbers t−, t+, 0 ≤ t− < t+ ≤ 1 and the following conditons
hold: for all t ∈ (t−, t+), σ(t) ∈ Intr(M); for all t ∈ (0, t−], σ(t) ∈ Br(σ(t−));
and for all t ∈ [t+, 1), σ(t) ∈ Br(σ(t+)). Then there exists a finite collection
of configurations Y (σ, y0, r) = {yk} drawn from the orbit containing y0 with
the property that if zk ∈ B(yk,

r
4+θ ), zk+1 ∈ B(yk+1,

r
4+θ ) are two vertices in an

orbital random geometric graph, the OBT algorithm will call the local planner for
the pair (zk, zk+1), and the local planner will succeed. We provide a construction
of Y in two steps. First, we consider the part of the path that lies in the r-
interior of the manifold. Define a strictly monotonically increasing sequence (tk)
as follows.

τ0 = t− (9)

τk+1 = sup
τ∈(τk,t+)

{dM(σ(τk), σ(τ)) <
θr

4 + θ
)} (10)

Let K be the smallest integer k such that τk = t+. Define (xk)k∈[K] so that
xk = σ(τk). Define (yk)k∈[K] so that d(yk, xk) < r

4+θ ; by the assumptions on
the leaf, such a sequence must exist. Define the set of balls Bkk∈[K], where
Bk = B(yk,

r
4+θ ).

Let zk be an arbitrary configuration in Bk.

d(zk, xk) ≤ d(zk, yk) + d(yk, xk) ≤ r

4 + θ
+

r

4 + θ
≤ r (11)

d(zk+1, xk) ≤ d(zk+1, yk+1) + d(yk+1, xk+1) + d(xk+1, xk)

≤ θr

4 + θ
+

r

4 + θ
+

r

4 + θ
≤ 2 + θ

4 + θ
r ≤ r (12)

d(zk, zk+1) ≤ d(zk, xk) + d(xk, zk+1) ≤ 2

4 + θ
r +

2 + θ

4 + θ
r ≤ r (13)



From eq. (13), if the set of vertices includes a configuration in each of the pair of
balls Bk and Bk+1, the local planner will be invoked for the pair; from eq. (11)
and eq. (12), both samples lie inside the ball B(xk, r), and therefore by the
assumptions of the theorem the local planner will succeed if called. Note that
with the exception of τK , sequential centers σ(τk) and σ(τk+1) are separated by
θr

4+θ ; if L(σ) is the length of the path, it follows that

K ≤
⌈

4 + θ

θr
L(σ)

⌉
+ 1. (14)

Next, we consider the part of the path that lies near the boundary. We will
prove the result for t ∈ (0, t−), assuming t− 6= 0; the proof for t ∈ (t+, 1) is
similar. Fix an arbitrary y0 ∈ ∂M∩ L such that d(σ(0), y0) ≤ r

4+θ . Define a
chart φy0

: U ⊂M→ S × V ×W in collar coordinates, such that S ⊆ R≥0, V ⊆
Rk−1,W ⊆ Rn−k. Note that the coordinate s is equal to the minimum distance
of a configuration to the boundary of the manifold. Note also that S × V is
diffeomorphic to a subset of the leaf O; any curve with for which the coordinates
in W are constant will be a feasible path. For sufficiently small r, such a chart
must exist [15]. Without loss of generality assume φy0(y0) = (0, 0, 0).

Assume r is small enough that Br(σ(t−)) ⊂ U . Choose y− ∈ O such that
d(y−, σ(t−)) ≤ r

4+θ , and define φy0
(y−) = (s−, v−, 0). Let yk = φ−1

y0
((1 −

αk) 3r
4+θ + αks−, αkv−, 0), where α1 = 0 and the sequence (αk) is defined re-

cursively as follows.

αk+1 = sup
α∈(αk,1)

{d(yk, yk+1) <
2r

4 + θ
} (15)

Note that the total distance from y0 to y− is upper-bounded.

d(y0, y−) ≤ d(y0, σ(0)) + d(σ(0), σ(t−)) + d(σ(t−), y−) (16)

≤ r

4 + θ
+ 2r +

r

4 + θ
=

10 + 2θ

4 + θ
(17)

Since with the exception of the first and last centers the distance between suc-
cessive centers (yk) is at least 2r

4+θ , this part of the construction adds at most

2 + ( 10+2θ
4+θ r)/(

2
4+θ r) = 7 + θ ≤ 8 configurations to the set.

The following claim is proven as proposition 1 in our supplementary ma-
terial; we omit the proof here. If the set of vertices includes configurations
zk ∈ B(yk,

r
4+θ ) and zk+1 ∈ B(yk+1,

r
4+θ ), these configurations will be con-

nected by an edge. Similarly, if the set of vertices includes y0 and a configuration
zk ∈ B(yk,

r
4+θ ), those vertices will be connected by an edge.

If t+ 6= 1, we can apply a similar construction at the other end of the path.
In total, we have constructed a set of at most

Kσ =

⌈
4 + θ

θr
L(σ)

⌉
+ 17 (18)



balls, such that if each ball contains a sample, the resulting graph will contain
a path with the desired properties. Then the cardinality of the set Y (σ, y0, r) is
upper-bounded by

⌈
4+θ
θr L(σ)

⌉
+ 17.

We now apply the construction Y (σ, y0, r) to each mode. If the event E∩,n,m

occurs, there exists some yn,m,0 ∈ B∩,n,m ∩ Vn. Let rn,m = γm( logn
n )

1
dm . Let

Yn,m = Y (σn,m, yn,m,0, rn,m). LetKn,m = card(Yn,m). LetBn,m,k be the geodesic
ball centered at yn,m,k of radius 1

4+θ rn,m. Let En,m,k be the event that the in-
tersection of the vertex set Vn and the ball Bn,m,k is nonempty. Let An be the
event that all balls on each mode contains a sample. Note that An occurs only
if A∩,n occurs, as An is meaningful only if there exists an yn,m,0 ∈ B∩,n,m to
define the orbit on which Yn,m is defined. By construction, if An occurs, then
algorithm OBT will return a solution with finite cost.

5.4 Bounding the cost of the path returned

Fix an arbitrary β ∈ (0, 1), and assume there exists xm ∈ B∩,n,m ∀m. For each

yn,m,k, define a smaller ball B̃n,m,k with the same center and radius
βrn,m

4+θ . Let
In,m,k be the indicator for the event that the intersection of the vertex set Vn
and the ball B̃n,m,k is nonempty.

In,m,k =

{
1 card(B̃n,m,k ∩ Vn) > 0

0 else
(19)

Let Sn,m,k =
∑M
m=1

∑Kn,m

k=1 In,m,k be the number of smaller balls {B̃n,m,k} con-

taining a configuration, and let Kn =
∑M
m=1Kn,m be the total number of smaller

balls. If the cost function c is Lipschitz continuous, then for any ε > 0, θ > 0
there exists α > 0, β > 0, n0 > 0 such that if Sn ≥ αKn, then for all n > n0,
c(σn) ≤ (1 + ε)c∗ (proposition 2 in the supplement). Let An,α,β be the event
that Sn ≥ αKn.

We can then upper-bound the probability that the path returned by OBT
has cost more than 1 + ε times the optimal cost in terms of the probabilities
P(A∩,n), P(An|A∩,n), and P(An,α,β |A∩,n) (proposition 3 in the supplement).

P(cn ≥ (1 + ε)c∗) ≤ P(A∩,n) + P(An|A∩,n) + P(An,α,β |A∩,n) (20)

Since each of the terms on the right side of eq. (20) is summable (proposition 4,
proposition 5, and proposition 6 in the supplement) the term on the left side
of eq. (20) is summable. Consequently, the term on the left side of eq. (20) is
summable.

∞∑
n=1

P(A∩,n) <∞,
∞∑
n=1

P(An|A∩,n) <∞,
∞∑
n=1

P(An,α,β |A∩,n) <∞ (21)

∴
∞∑
n=1

P(cn ≥ (1 + ε)c∗) <∞ (22)



Therefore, by the Borel-Cantelli lemma, the event that the algorithm returns a
feasible path with cost less than (1 + ε)c∗ occurs infinitely often as n→∞. The
sequence cn then converges almost surely to c∗.

The proof of asymptotic optimality of FOBT employs the same geometric
construction as for OBT. We need only modify the proof that the terms on the
right side of eq. (20) are summable. The first two terms can be shown to be
summable using identical logic to OBT, by noting that a ball in a product space
contains a product of smaller balls in each component space and applying the
union bound. The third term requires more effort to adapt, as the proof relies on
the independence of the small balls. However, we can define a looser bound that
does not require independence (proposition 7 in the supplment). Due to space
constraints, we omit this construction here.

6 Computational experiments

We implemented FOBT for the simplified block-pushing problem (fig. 2a). The
goal is to move the block labelled ‘box1’ into the region shaded red, past a move-
able obstacle. The planner must either decide to go around or must choose where
to place the moveable object to get it out of the way. For comparison, we con-
sidered a simple task and motion planning algorithm approach, labelled TAMP.
The TAMP planner can invoke a motion planner as a subroutine to accomplish
a set of tasks, such as grasping an object or moving a grasped object to one of
a fixed, hand-coded set of regions. In practice, this amounts to evaluating both
sensible plans and choosing the one with the lower-cost solution.

As expected, we find that while TAMP can often quickly find a solution, more
computational time does not allow that solution to be improved. In contrast,
FOBT continues to perform better as the available computational time increases.
Note that TAMP is suboptimal because it can only consider a finite set of goal
locations; this set does not grow as n increases. By injecting domain knowledge in
the form of a better task hierarchy, it is likely the TAMP planner could find plans
as good as FOBT; FOBT finds these plans without such domain knowledge.

The quantitative comparison in fig. 2c highlights the main deficiency of
FOBT: it is computationally demanding. As the parameter n increased above
1000, the implementation exhausted available memory and the algorithm failed
due to space constraints. Improving the computational efficiency of FOBT is an
important avenue for future work. Augmenting our algorithm with intelligent
heuristics or nonuniform sampling strategies derived from domain knowledge
could greatly increase computational efficiency.

7 Conclusion

To our knowledge, these are the first algorithms for asymptotically optimal mo-
tion planning that are applicable to piecewise-analytically constrained problem
domains like manipulation planning. We note that the ideas in these algorithms
can likely be combined with the ideas in many other sampling-based motion
planning and graph search algorithms. This would improve performance and



(a) (b) (c)

Fig. 2: Plans obtained with FOBT and TAMP for a simple block pushing problem.
The goal is to move the block labeled ‘box1’ to the region shaded in red, but the most
direct path is blocked by another box. (a): The four-step plan obtained by FOBT.
(b) A simpler, but more expensive, plan returned by a sequential task and motion
planning algorithm. (c) Quantitative comparison of the cost of the plan returned and
the computational time used for various graph sizes with both methods.

extend our results to domains such as kinodynamic planning, planning under
uncertainty, and adversarial planning. In particular, if we combine symbolic task
hierarchies with asymptotically optimal motion planning algorithms like the ones
presented here, we can perhaps create task and motion planning algorithms with
strong asymptotic performance guarantees.

In addition, our analytical results provide a foundation for a rigorous evalua-
tion of the performance gap between hierarchically optimal planners and asymp-
totically optimal planners like those presented here. In principle, we could uti-
lize such a bound to learn better symbolic representations, rather than requiring
they be hand-coded by domain experts. This presents a promising route toward
linking recent advances in planning and unsupervised learning.
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A Proofs

Proposition 1. Let {yk} be a set of configurations near the boundary con-
structed as in the proof of theorem 1. Then if the set of vertices includes config-
urations zk ∈ B(yk,

r
4+θ ) and zk+1 ∈ B(yk+1,

r
4+θ ), these configurations will be

connected by an edge. Similarly, if the set of vertices includes y0 and a configu-
ration zk ∈ B(yk,

r
4+θ ), those vertices will be connected by an edge.

Proof. Let zk be an arbitrary configuration drawn from B(yk,
r

4+θ ) ∩O. For all

k ≥ 1, a pair of configurations (zk, zk+1) is separated by a distance less than r
and lies in an open ball centered at yk+1.

d(zk, zk+1) ≤ d(zk, yk) + d(yk, yk+1) + d(yk+1, zk+1)

≤ r

4 + θ
+

2 + θr

4 + θ
+

r

4 + θ
≤ r (23)

d(zk, yk+1) ≤ d(zk, yk) + d(yk, yk+1)

≤ r

4 + θ
+

2r

4 + θ
r ≤ 3r

4 + θ
≤ d(yk+1, ∂M) (24)

From eq. (23), if a random sample exists in the pair of balls Bk and Bk+1, the
local planner will be invoked for the pair; from eq. (24), both samples lie inside
the open ball B(yk,

3r
4+θ ), and therefore by the assumptions of the theorem the

local planner will succeed if called.
Similarly, any configuration z1 ∈ B(y1,

r
4+θ ) is separated from y0 by a dis-

tance less than r, and both z1 and y0 lie in the closure of an open ball centered
at y1.

d(z1, y0) ≤ d(z1, y1) + d(y1, y0) ≤ r

4 + θ
+

3r

4 + θ
≤ r (25)

Therefore, if the set of sampled configurations include both y0 and any configu-
ration in the ball B(y1,

r
4+θ ), the local planner will be invoked and will succeed

for the pair.

Proposition 2. Fix α, β ∈ (0, 1). Let Yn,m = (yn,m,k) be an ordered sequence of
Kn,m configurations such the distance from ym,n,k to the center of the ball Bn,m,k
is less than 1

4+θ rn,m for all k (each large ball contains a configuration) and is

greater than than β
4+θ rn,m for at most αKn,m of the configurations (αKn,m of

the small balls do not contain a configuration). Let σ′n,m be the concatentation
of the result of an η-complete local planner called for each pair (yn,m,k, yn,m,k+1)
in the sequence. Then for any objective function

c(σ) =

∫ 1

0

h(σ(τ))
√
gϕm(σ̇(τ), σ̇(τ)) dτ (26)

with h(x) a Lipschitz continuous cost function, and any ε > 0, there exists a
constant nε > 0 such that for all n > nε, c(σ

′
n,m) < (1 + ε)c(σn,m).



Proof. Consider a path σ on a Riemannian manifold M with metric g. We
assume without loss of generality that the path is parameterized such that it
has constant speed: if l(σ, τ) denotes the length of the path which follows σ and
stops at σ(τ), then we assume l(σ, τ) = τ l(σ, 1).2

Let σ′ be a constant-speed path segment with the following properties.

dM(σ(0), σ′(0)) ≤ r0 (29)

dM(σ(1), σ′(1)) ≤ r1 (30)

It follows that we can bound the distance between corresponding points on either
path; let L = lM(σ) and L′ = lM(σ′).

dM(σi(τ), σ′i(τ)) ≤

{
τL+ τL′ + r0 τ ∈ [0, 1

2 ]

(1− τ)L+ (1− τ)L′ + r1 τ ∈ [ 1
2 , 1]

(31)

Since the cost function h is Lipschitz-continuous, there exists a constant Ch such
that h(x′) < h(x) +ChdM(x, x′). We can then bound the cost of the path σ′ in
terms of the cost of the path σ.

c(σ′) =

∫ 1

0

h(σ′(τ))
√
gM(σ̇′(τ),σ̇′(τ)) dτ (32)

=

∫ 1

0

h(σ′(τ))L′ dτ (33)

≤
∫ 1

0

[h(σ(τ)) + ChdM(σ(τ), σ′(τ))]L′ dτ (34)

≤ c(σ)
L′

L
+ ChL

′

[∫ 1
2

0

τ(L+ L′) + r0 dτ + L′
∫ 1

1
2

(1− τ)(L+ L′) + r1 dτ

]
(35)

≤ c(σ)
L′

L
+ ChL

′(
L+ L′

4
+
r0 + r1

2
) (36)

Let σn,m,k be the segment of the path σn,m between the centers of the balls
Bn,m,k and Bn,m,k+1, and let σ′n,m,k be the result of an η-complete local planner

2 Note that an objective function of the form

c(σ) =

∫ T

0

h(σ(τ))
√
g(σ̇(τ), σ̇(τ)) dσ (27)

is invariant to a reparameterization of the path: if τ ′ is a strictly monotonically
increasing function of τ , then∫ T ′

0

h(σ(τ ′))
√
g(σ̇(τ ′), σ̇(τ ′)) dτ ′ =

∫ T

0

h(σ(τ))
√
g(σ̇(τ), σ̇(τ)) dτ (28)

and we can freely reparameterize the path to be constant speed without changing
its cost.



called on the samples inside Bn,m,k and Bn,m,k+1. Let Ln,m,k = lϕm
(σn,m,k) and

L′n,m,k = lϕm
(σ′n,m,k).

Recall that for an η-complete planner π, for any ε > 0 there exists rε > 0
such that for all x, x′ ∈ M : dM(x, x′) < rε, LM(π(x, x′)) < (1 + ε)dM(x, x′).
Because the optimal path is differentiable, for any ε > 0 there exists nε > 0
such that for all n > nε, Ln,m,k ≤ (1 + ε) θ

4+θ rn. Let σ′n,m =
⊕
σ′n,m,k; because

c(σ1 ⊕ σ2) = c(σ1) + c(σ2), we can bound c(σ′n,m) for n sufficiently large.

c(σ′n,m) =
∑
k

c(σ′n,m,k) (37)

≤
∑
k

c(σn,m,k)
L′n,m,k
Ln,m,k

+ ChL
′
n,m,k(

Ln,m,k + L′n,m,k
4

+
rk + rk+1

2
)

(38)

≤ c(σn,m)(1 + ε)
θ + 2β + 2α(1− β)

θ
+
∑
k

r2
n,mChf1(ε, θ) (39)

≤ c(σn,m)(1 + ε)(1 +
2

θ
(α+ β − αβ)) + f2(ε, θ)

(
log n

n

)1/dm

(40)

Here, f1 and f2 are functions of ε and θ independent of n. Since log n/n is
decreasing in n, and since by assumption cσn,m

is finite and nonzero, this implies
that for any ε′ > 0, there exists nε′ > 0 such that for all n > nε′ we have
c(σ′n.m) ≤ (1 + ε′)c(σn,m).

Proposition 3. For any ε, there exist α, β, θ such that for sufficiently large n,
the following inequality holds.

P(cn ≥ (1+ε)c∗) ≤ P(A∩,n)+P(An|A∩,n)+P(An,α,β |A∩,n) (eq. (20) revisited)

Proof. The proof consists of three arguments. First, if An,α,β ∩ An occurs, for
any ε > 0 there exists nε > 0 such that for all n > nε, there exists a feasible
path through the graph Gn with cost less than (1 + ε)c∗ (proposition 2).

Second, A
(n)
n,α,β ∩ An occurs only if A∩,n occurs. In order to have samples

from any ball on an orbit, we must first include that orbit in our sampling.
Finally, we conclude the following.

P(cn ≥ (1 + ε)c∗) ≤ P(A∩,n ∩An ∩An,α,β) (proposition 2)

≤ P((A∩,n ∩An ∩An,α,β) ∪ (A∩,n)) (De Morgan’s laws)

≤ P(An ∩An,α,β |A∩,n)P(A∩,n) + P(A∩,n) (Union bound)

≤ (P(An|A∩,n) + P(An,α,β |A∩,n))P(A∩,n) + P(An,∩)
(Union bound)

≤ P(A∩,n) + P(An|A∩,n) + P(An,α,β |A∩,n) (P(A∩,n ≤ 1))



Proposition 4. There exists A,B ∈ R+ such that P(A∩,n) is upper bounded by
exp(−AnB).

Proof. Let A∩,n,m =
⋂m
m′=1E∩,n,m′ be the event that the first m intersection

balls contain a sample. We can bound the probability of A∩,n in terms of the
sum of probabilities of the partial events A∩,n,m.

P(A∩,n) = 1− P(A∩,n) (41)

= 1−
M∏
m=1

P(E∩,m|A(n)
∩,m−1) (42)

≤
M∑
m=1

P(E∩,m|A(n)
∩,m−1) (43)

Let A∩,n,0 be a placeholder event with probability 1 to simplify notation.
If A∩,n,m occurs, the set B∩,n,m∩Vn is nonempty; let x be a configuration in

B∩,n,m ∩Vn. LetM∩ = Oϕm(x)∩ϕm+1, and let let d∩ be the dimensionality of
M∩. When the vertex x is expanded, OBT will sample νn configurations from
Oϕm(x) ∩ ϕm+1.

P(E∩,m|A(n)
∩,m−1) is the probability that none of the νn uniformly generated

samples from M∩ lie inside B∩,n,m(x). Because M∩ is a Riemannian manifold,
for any ε > 0, there exists rε > 0 such that

vol(B∩,m) ≥ (1− ε)ζd∩rd∩∩,n,m ∀rn < rε (44)

where the volume is taken on M∩. If we sample uniformly from M∩, we can

upper bound P(E∩,m|A(n)
∩,m−1).

P(E∩,m|A(n)
∩,m−1) =

(
1− vol(B∩,m)

vol(M∩)

)νn
(45)

≤ exp

(
−νnvol(B∩,m)

vol(M∩)

)
(46)

≤ exp

(
−νn

(1− ε)ζd∩r
d∩
∩,n,m

vol(M∩)

)
(47)

≤ exp

(
−νn (1− ε)ζd∩ad∩m n−

d∩
2d̄

vol(M∩)

)
(48)

≤ exp
(
−Amn1− d∩

2d̄

)
(49)

= exp(−AmnBm) (50)

Here, Am and Bm are constants that do not depend on n. Since by definition
d∩ ≤ d̄, Bm = 1− d∩

2d̄
> 0.

Finally, since P(A∩,n) ≤
∑M
m=1 P(E∩,m|A(n)

∩,m−1), we can conclude there exist

finite, positive A and B such that P(A∩,n) ≤ exp(−AnB).



Corollary 1. P(A∩,n) is summable.

∞∑
n=1

P(A∩,n) <∞ (51)

Proof.

∞∑
n=1

P(A∩,n) ≤
∞∑
n=1

exp(−anb) (52)

<

∫ ∞
0

exp(−atb) dt (53)

=
1

b
a−

1
b

∫ ∞
0

s
1
b−1 exp(−s) ds (54)

=
1

b
a−

1
bΓ (

1

b
) (55)

<∞

Proposition 5. There exists A > 0, B > 1 such that P(An|A∩,n) is upper
bounded by An−B.

Corollary 2. P(An|A∩,n) is summable.

∞∑
n=1

P(An|A∩,n) <∞ (56)

Proof. We can bound P(An|A∩,n) with the union bound.

P(An|A∩,n) ≤
M∑
m=1

Kn,m∑
k=1

P(En,m,k|A∩,n) (57)

Because ϕm is a Riemannian manifold, for any ε > 0, there exists rε > 0 such
that

vol(Bn,m,k) ≥ (1− ε)ζdmrdmn,m ∀rn < rε (58)



where the volume is taken on ϕm. OBT selects n samples uniformly from each
orbit it considers; we can then upper bound P(En,m,k|A∩,n).

P(En,m,k|A∩,n) =

(
1− vol(Bn,m,k)

vol(Oϕm(xm))

)n
(59)

≤ exp

(
−n vol(Bn,m,k)

vol(Oϕm
(xm))

)
(60)

≤ exp

(
−n (1− ε)ζdm

vol(Oϕm
(xm))

(
γm

4 + θ

( log n

n

)1/dm
)dm)

(61)

≤ exp

(
−
(

γm
4 + θ

)dm (1− ε)ζdm
vol(Oϕm

(xm))
log n

)
(62)

= n−Bm (63)

Here, Bm =
(
γm
4+θ

)dm (1−ε)ζdm
vol(Oϕm (xm)) is a constant that does not depend on n.

Therefore, for sufficiently large n, we have an upper bound on P(An|A∩,n).

P(An|A∩,n) ≤
M∑
m=1

Kn,m∑
k=1

n−Bm (64)

=

M∑
m=1

Kn,mn
−Bm (65)

≤
M∑
m=1

4 + θ

γm
(
log n

n
)−1/dmCmlϕm

(σn,m)n−Bm (66)

≤
M∑
m=1

Amn
1

dm
−Bm (67)

≤ An−B (68)

Here, A and B are constants that do not depend on n; the last line follows by
taking B = minm{Bm − 1

dm
}. Define γ̄m.

γ̄m = 4

(
(1 +

1

dm
)
vol(Oϕm(xm))

ζdm

) 1
dm

(69)

Provided we choose γm > γ̄m for each m, there exists ε, θ such that B > 1.

Proposition 6. For any α ∈ (0, 1), β sufficiently small, there exists A > 0 such
that for all n sufficiently large, the following inequality holds.

P(An,α,β |A∩,n) ≤ exp(−An1/d̄) (70)



Corollary 3. P(An,α,β |A∩,n) is summable.

∞∑
n=1

P(An,α,β |A∩,n) <∞ (71)

Proof. The proof employs a Poissonization argument. Since A∩,n occurs, for
any m ∈ [M ] there exists xm ∈ B∩,n,m. Let Vn = {vi}i∈N be a set of con-
figurations drawn independently and uniformly from Oϕm

(xm). Fix λ ∈ (0, 1),
and let Poisson(λn) be a Poisson random variable with parameter λn; then

Ṽn = {vi}i∈[Poisson(n)] is an homogeneous Poisson point process with intensity
n/vol(Oϕm

(xm). We refer to this process as Pνn.

Recall In,m,k is the event that B̃n,m,k(xm), the small ball of radius
βrn,m

4+θ

and center xn,m,k, does not contains a sample. Let Sn,m =
∑Kn,m

k=1 In,m,k be
the total number of small balls for the segment σ̃n,m(xm, ·) that contain no

points. Let Ĩn,m,k be the indicator for the event that Ṽn ∩ B̃n,m,k is empty,

and S̃n,m =
∑Km,n(xm)
k=1 Ĩn,m,k. Then the event {S̃n,m ≥ αKn,m} is a decreasing

event: if it occurs for some n, it occurs for all n′ > n. Consequently, we can
bound the probability of the event {Sn,m ≥ αKn,m} in terms of the probability

of the Poissonized event {S̃n,m ≥ αKn,m}.

P({S̃n,m ≥ αKn,m}) ≤ P({Sn,m ≥ αKn,m}) + P({Poisson(λn) > n}) (72)

The latter term decays exponentially with n; this can be derived from a
Chernoff bound argument.

P({Poisson(λn) > n}) ≤ exp(− (1− λ)2

1 + λ
n) (73)

The first term can be bounded in several ways; the simplest is to note that
for sufficently small β, the balls are disjoint and the number of samples in each
ball are independent. The probability of Ĩn,m,k can be computed directly.

P(Ĩn,m,k) = exp

(
− vol(B̃n,m,k)

vol(Oϕm
(xm))

λn

)
(74)

Because Ĩn,m,k are disjoint, S̃n,m is a binomial random variable with parameters

Kn,m and exp
(
− vol(B̃n,m,k

vol(Oϕm (xm))λn
)

. We can then upper bound the probability of

{Sn,m ≥ αKn,m} for any α > pn,m.

P({Sn,m ≥ αKn,m}) ≤ exp(−Kn,mD(α‖pn,m)) (75)

≤ exp(−2(α− pn,m)2Kn,m) (76)

≤ exp(−Amn1/dm) (77)

Note that Am ∈ R+ is a constant independent of n. Since pn,m is decreasing in
n, for any α there is a finite n0 such that for all n > n0, pn,m < α.



Combining results, we can bound the probability of the desired event.

P({Sn,m ≥ αKn,m}) ≤ exp(−Amn1/dm) + exp(− (1− λ)2

1 + λ
n) (78)

Since Sn =
∑
m Sn,m, we can bound P(An,α,β |A∩,n) with an application of

the union bound.

P(An,α,β |A∩,n) ≤
∑
m

P({Sn,m ≥ αKn,m}) ≤ exp(−An1/d̄)

Proposition 7. Let {(Ml, gl)}Ll=1 be a set of L Riemannian manifolds, and let
X =M1×· · ·×ML be their Cartesian product endowed with the product metric

dX : X ×X → R+, defined as dX (x, x′)2 =
∑l
i=1 di(xi, x

′
i)

2. Let r ∈ R+, and fix
a set {xm ∈ X}Mm=1. Define xm,l ∈ Ml such that xm = xm,1 × · · · × xm,L. Let
Bi = {x ∈ X : dX (x, xi) < r} be the ball of radius r centered at xm. Let Pl be
a Poisson point process with intensity νl, defined on manifold Ml. Let P be the
product of those L Poisson point processes, such that if Xl is a point set drawn
from Pl, X1 × · · · ×XL is a point set drawn from P. Then the probability that
that more than αM balls do not contain any points in a draw from P is bounded
from above by a function of ν, α, and r. In particular, for any ε > 0, there exists
Kε > 0 such that

P(SX ≥ αM) ≤ 1 + ε

α2

L∑
l=1

exp(−ν vol(Bl)) (79)

if ν vol(Bl) > Kε ∀l ∈ [1, L].

Proof. Define the ball Bi,l = {x ∈ Mi : d(xi, x) < r
L}. Let Ii,l be the indicator

for the event that Bi,l contains no points; let Ii be the indicator for the event

that Bi contains no points. Note that
∏L
l=1Bi,l ⊂ Bi, and therefore if there is a

point in each of Bi,l∀l ∈ [1, L], then there is a point in Bi. Define Sl =
∑M
i=1 Ii,l

and SX =
∑M
i=1 Ii; it follows that SX ≤

∑
l Sl.

Let p̄l = exp(−ν vol(Bl)). We can compute the expected value of SX from the
linearity of expectation, independently of the location or shape of the regions.

E[Sl] =

M∑
i=1

E[Ii] = Mp̄l (80)

The variance of the sums can be computed from the expectations of the
indicators and the expectations of their pairwise products.

Var[Sl] =

M∑
i=1

M∑
j=1

E[IiIj ]− E[Ii]E[Ij ] (81)

For i = j, we have E[IiIi] = E[Ii] = p̄. For i 6= j, we cannot compute the indicator
product independently of the location or shape of the regions; however, we can



obtain upper and lower bounds. The product of indicators IiIj = 1 if and only
if there is no sample in Bi or Bj ; this is the same as the event that there is no
sample in the region Bi ∪ Bj . The volume of the union of two regions is more
than the volume of either region and less than the volume of both regions; thus,
vol(B) < vol(Ri ∪Rj) < 2vol(B), and in turn we can then bound E[IiIj ].

exp(−2νvol(B)) ≤ E[IiIj ] ≤ exp(−νvol(B)) (82)

Thus, the variance Var[Sn] can be bounded from above and below.

M(p̄l − p̄2
l ) ≤ Var[Sl] ≤M2(p̄l − p̄2

l ) (83)

The sums Sl are independent; we can obtain the mean and variance of their
sum.

E[

L∑
l=1

Sl] = M

L∑
l=1

p̄l (84)

Var[

L∑
l=1

Sl] =

L∑
l=1

Var[Sl] ≤M2
L∑
l=1

p̄l − p̄2
l (85)

We can then bound the probability that more than αM balls have no samples
from above.

P(SX ≥ αM) ≤ P(

L∑
l=1

Sl >
αM

L
) (86)

= P(

L∑
l=1

Sl − E[

L∑
l=1

Sl] ≥ (α−
L∑
l=1

p̄l)M) (87)

≤
Var[

∑L
l=1 Sl]

Var[
∑L
l=1 Sl] + (α−

∑L
l=1 p̄l)

2M2
(Cantelli’s inequality)

≤
∑L
l=1 p̄l − p̄2

l∑L
l=1 p̄l − p̄2

l + (α−
∑L
l=1 p̄l)

2
(eq. (85))

The third line holds only if α ≥
∑
p̄l. Note that the expression in the last line

is on the order of 1
α2

∑L
l=1 p̄l as pl tends to zero. In particular, for any ε > 0,

there exists Kε > 0 such that

P(SX ≥ αM) ≤ 1 + ε

α2

L∑
l=1

exp(−ν vol(Bl)) (88)

if ν vol(Bl) > Kε ∀l ∈ [1, L].
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