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Abstract

We define an admissibility condition for abstrac-
tions expressed using angelic semantics and show
that these conditions allow us to accelerate plan-
ning while preserving the ability to find the optimal
motion plan. We then derive admissible abstrac-
tions for two motion planning domains with contin-
uous state. We extract upper and lower bounds on
the cost of concrete motion plans using local metric
and topological properties of the problem domain.
These bounds guide the search for a plan while
maintaining performance guarantees. We show that
abstraction can dramatically reduce the complexity
of search relative to a direct motion planner. Using
our abstractions, we find near-optimal motion plans
in planning problems involving 103 states without
using a separate task planner.

1 Introduction

Consider a problem domain like the one shown in figure [T}
A holonomic two-dimensional agent is tasked with navigat-
ing to a specified goal region as quickly as possible. The
path is blocked by doors that can only opened by pressing the
appropriate switch. Planning the sequence of switches to tog-
gle requires combinatorial search; deciding if a path exists to
each switch requires motion planning. As in many real-world
planning domains, such as object manipulation or navigation
among movable objects, the combinatorial search and motion
planning problems are coupled and cannot be completely sep-
arated.

A standard approach to making such problems computa-
tionally tractable is to use abstraction to reason about the
properties of groups of primitive plans simultaneously. For
example, we could choose a sequence of high-level opera-
tions using a task planner, ignoring the details of the under-
lying motion plan. If we later determine that we cannot find
a motion plan consistent with our high-level plan, we can use
that information to modify our high-level plan. For exam-
ple, [Gravot er al., 2005]] describe an integrated approach that
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2018]l containing additional proofs and exposition.

Goal Goal

(a) The door puzzle problem

(b) The optimal solution

Figure 1: The door-switch problem, an example task and motion
planning domain. A two-dimensional robot must navigate from the
start location to a goal location, but the way is obstructed by doors
that can only be opened by toggling a corresponding switch. The
optimal solution to this problem instance is to toggle the switches
in the order (1, 3,2,4,5) and then go to the goal set. Because the
size of the configuration space grows exponentially with the number
of doors, planning is computationally challenging. Abstraction can
render such planning problems tractable.

relies on a heuristic search for a high-level plan and uses mo-
tion planners as subroutines to deal with detailed geometry.
[Kaelbling and Lozano-Pérez, 2011/ use a hierarchy to guide
high-level decision making, resolving low-level decisions ar-
bitrarily and trusting in the reversibility of the system to en-
sure hierarchical completeness. Although these and other ap-
proaches (e.g., [Garrett et al., 2015; |(Cambon et al., 2009;
Srivastava et al., 2013])) vary in how they deal with the inter-
action between geometric planning and combinatorial search,
they share a common weakness: they can only make guaran-
tees about the plans they generate relative to the abstraction
they are provided. Even optimizing approaches ([Wolfe ez
al., 2010]) are generally limited to guarantees of hierarchical
optimality.

Angelic semantics ([Marthi et al., 2008]]) provide a way to
describe an abstraction that preserves optimality, but it is not
clear what criteria an angelic abstraction must satisfy in order
to make guarantees about the quality of synthesized plans. In
this paper, we describe conditions under which an abstraction
will preserve the ability to find the optimal motion plan while
accelerating planning. We derive abstractions for two con-



tinuous planning domains, and using these abstractions we
can dramatically reduce the complexity of search relative to
a direct motion planner. We find near-optimal motion plans
in planning problems involving 103 states without using a
separate task planner.

2 Problem Formulation

We are interested in planning problems involving some un-
derlying continuous configuration space X, such as the posi-
tion of a robot or the configuration of its joints. Our task is to
find a path through free space that starts in a specified state sq
and ends in a goal set Sgoa1. This goal set may be specified
implicitly, as the set of all states satisfying some constraint.

A path is a continuous map p : [0,1] — X. We define a
concatenation operator o for paths.

~ [pi(2t) ift <1
(prop2)(s) = {pg(Qt— 1) ifl<t<1
Let Px (S, S’) be the set of all paths starting in S C X and
ending in S’ C X. Letc : X x TX — Ry be a cost
function, where T'X is the tangent space of X'. We can define
an associated cost functional C : P — Rx.

Clpl = / e(p(t), p(t)) dt @

Because C is additive, C[p; o p2| = C[p1] + C[p2]. We define
the optimal cost function ¢* : 2% x 2% — R> as

c*(S,8") =inf{C(p) : p € Px(S,5")}. 3)
We define the e-approximate planning problem as the

search for apath p € Px({so}, Sy) with cost less than (1+€)
the optimal cost for any € € R>o U {o0}.

P €{p € Px({s0},99) : C(p) < (1 +€)c"(s0,9)} (4)
The case where ¢ = oo, when we wish to find any feasible
path to the goal set, is the problem of satisficing planning.
The case where € = 0 is optimal planning.

The set P (X, X) of all possible paths from all possible
start and goal locations is continuous and topologically com-
plex. To simplify planning, we assume we have available a
finite set Ag of primitive operators, low-level actions that can
be executed in the real world. The problem of construct-
ing such a set of operators in continuous motion planning
domains is well studied; in this document, we will assume
the set of operators are given by the edges in a probabilistic
roadmap (PRM*). That is, we randomly sample a finite set
of configurations V,, C X, and for each such configuration
v, we define an operator p,. The operator p,, ensures that the
robot will end at the state v if executed from any state in the
open ball of radius r,, around v, where 7, < (logn/n)"/?is a
radius that increases slowly with the size of the discretization.
Any feasible plan can be well-approximated by a sequence of
these randomly sampled operators as the number of sampled
configurations tends to infinity. For example, we can show
that if Ag ,, is the set of all paths through a PRM* with n
sampled configurations, then

nlirr;o inf{Clp] : p € A5, "Px({s0},Sy)} =
inf{C[p] : p € Px({s0},54)}. (5

ey

This was proven by [Karaman and Frazzoli, 2011] for the
case where the system is subject to analytic differential con-
straints, and by [Vega-Brown and Roy, 2016] when the sys-
tem has piecewise-analytic differential constraints (as in ob-
ject manipulation problems).

Because the set of primitive operators can grow quite large,
especially in problems with high-dimensional configuration
spaces, a direct search for primitive plans is computationally
intractable. Instead, we will use angelic semantics to encode
bounds on the cost of large groups of plans. We can use these
bounds to plan efficiently while preserving optimality.

3 Angelic Semantics

An abstract operator a represents a set a C Py of primitive
plans. Because the space of plans is infinite, we define oper-
ators implicitly, using constraints on the underlying primitive
plans. For example, in a navigation problem, we might define
an operator as any primitive plan that remains inside a given
set of configuration space and ends in a different set of con-
figuration space. This is depicted graphically in figure[2a} the
operator ags contains every path that is contained in region 2
and ends in region 3.

The concatenation of two operators a; o a; is an abstract
plan containing all possible concatenations of primitive plans
in the operators.

a;oa; ={p;op; :p; €a;,p; €aj,p;(1) =p;(0)} (6

The condition p;(1) = p,(0) is necessary to enforce that only
feasible plans are contained in a; o a;. In a problem with
nontrivial dynamic constraints, the condition would need to
be more complex. In figure we show samples from the
plan a;3 o ag3 o a3y o ayy, which contains paths that move
from region 1 to 2 to 3 to 4 to the goal. The concatenation
operation allows us to express complicated sets of plans in a
compact way.

Because our operators are defined implicitly, it can be diffi-
cult to find the best plan in the abstract plan, or even to decide
if there exists a plan consistent with the constraints of an ab-
stract plan. Note that it is easy to write down abstract plans
that are empty; in the toy navigation example in figure 2] the
plan a;5 o ag4 contains no primitive plans, as the intersec-
tion of regions 1, 2, and 3 is empty. For planning with ab-
stract operators to be feasible, we need a way to reason about
the primitive plans contained by an abstract plan without first
enumerating those primitive plans.

Specifically, we will develop a way to compare abstract
plans, and we will show this comparison is sufficient for plan-
ning. We do this using the valuation of an operator or plan.
A valuation V' [a] for an operator or plan a is the unique map
Via] : X x X — R that takes a pair of states and gives the
lowest cost path between the pair.

Vlia](s1,s2) = inf{C(0) : 0 € a,0(0) = s1,0(1) = s2}
)
Note that if there are no paths in a linking s; and so, then
Vla](s1, $2) = inf @ = oo.
Valuations allow us to compare abstract plans without ref-
erence to the primitive plans they contain. Given two abstract
plans p and p’, if we can prove that for any pair of states z, 2,



(a) Plans in operator az3 (b) Plans in a;2 0 a23 0 az4 0 asq

(c) Bounds for V[as] (d) Bounds for V[ai2 0 a3 0 ags 0 a4g|
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Figure 2: A schematic description of angelic semantics. Abstract operators (a) are sets of primitive plans, and can be defined implicitly in
terms of constraints. For example, the operator a3 contains all plans that end in region 3 and do not leave region 2. We can sequence abstract
operators into abstract plans (b). The red lines link the centroids of successive regions, while the black lines are randomly sampled primitive
plans representative of the abstract plan that move from regions 1 to 2 to 3 to 4 to the goal. We can use domain-specific information to
compute bounds on the cost of any plan in an operator stating from a specific set of states (c). Here, lower bounds are drawn using dashed
lines, while upper bounds are drawn in dotted lines. Note the dependence on the initial state: the cost of a plan starting in 1 N 3 is strictly
higher than the cost of a plan stating in 2 N 3. We can sequence these bounds (d) to compute bounds on the cost of an abstract plan. Finally, a
refinement of an abstract plan p (e) is a less abstract plan (f) p’ C p. Primitive plans in p’ are shown with heavy lines, while plans in p \ p’
are shown with finer lines.



either Vipl(z,2’) < VIp'|(z,2') or V[p'|(z,2') = oo,
then either there is a solution to our planning problem in p,
or there is no solution in p or p’. Either way, we do not
need to consider any plan in p’; we can prune p’ from our
search space. Under such a condition, we say that p dom-
inates p’ and we write V[p] < V[p’]. Similarly, if either
Vipl(z,2’) < VIp'|(x,2’) or V[p'](z,2') = oo, then we
say that p weakly dominates p’ and we write V[p] < V[p'].

Unfortunately, determining the valuation of an operator is
itself an optimization problem, and one that is not necessarily
any easier than the planning problem we are trying to solve.
In many cases, however, we can derive a computational ad-
vantage from reasoning about bounds on the valuation of an
abstract operator. By representing these bounds symbolically,
we will be able to reason without reference to the underlying
states or plans.

We first define bounds on the valuation of an operator over
a set of states.

Vi(a](s,s’) = inf{inf{V[p](s,s’) : s’ €s'} : s €s} (8)
Vulal(s,s’) = sup{inf{V[p|(s,s’) : s’ €s’'} : s €s} (9)

A symbolic valuation bound V[a] is a set of tuples
{(s,s',1,u)}, where s,s’ are symbolic states and I < u €

R0 U {co}. A bound V[a] is admissible if

(s, s, 1, u) € Vl]a] :
V(s,s',l,u) € Via] :

1 < Vplal(s,s’) (10)
u > Vylal(s,s). (11)
In words, a bound (s, s’, [, u) is admissible if for any state x

in s there exists a plan p ending in some state ' in s’ with
cost ¢ = C[p] bounded above by u and below by I. We can

also interpret a symbolic valuation bound V as a bound over
sets of states.

Vila)(s,s") =inf{l : (so,s1,l,u) € V[a],s Nsg # &,

s'Nsy # o} (12)
Vila)(s,s') =inf{u : (so,s1,1,u) € Vl[a],s C sg,s' C s1}.
13)

Note that if V([a] is admissible, then Vi[a](s,s’) <
Vi[a)(s,s') and Vis[a)(s,s’) < Vi[a](s,s’) for all abstract
state pairs s, s’ (see appendix [A] proposition|T)).

This observation has important consequences in a few in-
teresting limiting cases. A bound V[a] contains at least one
element (s,s’, [, u) where wu is finite only if then there must
be some plan in the operator a. A bound V[a] does not
contain an element (s,s’, [, u) where [ is finite only if a is
empty. Similarly, Vi;[a](s,s’) < oo implies a contains feasi-
ble plans connecting each state in s to some state in s’, while
Vi ]a](s,s’) = oo implies a contains no plan connecting a
state in s to a state in 8. In addition, if V[p] and V[p’] are
admissible, then V[pUp’] = V[p] UV [p/] is admissible (see
appendix [A] proposition[3|for a proof).

It is also important to recognize the state-dependence of
valuation bounds. Consider the operator a4 in figure [2c} the
operator is defined as containing any plan contained in region

3 that ends in region 4. Because regions 3 and 4 intersect,
the global lower bound on the cost of a plan in this operator
is zero. However, we can compute nontrivial bounds for spe-
cific states, or for specific sets of states. For example, paths
achieving lower and upper bounds are drawn from the ab-
stract states Ry N R3 and R; N Rs3 to the termination set of
the operator.

As we will see in sections and 4.3] for many domains
we will not need to write down a valuation explicitly. Instead,
we can use domain information to make metric computations
and generate the necessary elements of a valuation procedu-
rally. Moreover, by working with symbolic bounds we can
efficiently compute bounds on the cost of plans consisting of
sequences of abstract operators, without reference to a dense
discretization of the underlying space of plans. For example,

if we have bounds on a plan V[a] and an operator V[a’], we
can compute a bound V']a o a’].

Viaoa']| ={(s,s"”, | +1',u+u): (s,8,1,u) € Vl]a],
(s",8",1',u/) € V[a'],s' Cs"}U
{(s,8" 1+ 1" ,u): (s,s,1,u') € V]a],
(s",8",1',00) € V[a'],s' Ns" # @} (14)

If V[a] and V[a'] are admissible, then V[a o a’] is admissible
as well (see appendix [A] proposition 2] for a proof). We call
this process propagation. This process is depicted graphically

in figure
4 Admissible Abstractions

We will use angelic semantics to specify abstractions that en-
able efficient planning. Suppose that p, p’ are abstract plans,
with p C p’. Then p’ = p, since any plan in p is also in
p’—but because p is a smaller set than p’, our bounds may
tighter. If Vi7[p’] < Vi[p], then we can also conclude that
p’ \ p < p’. We can incrementally construct an increasingly
accurate estimate of V'[p] by iteratively considering smaller
and smaller subsets of an operator p and pruning those sub-
sets that cannot contain an optimal plan. This is depicted
graphically in figures [2¢] and

We can make precise the construction of these increasingly
fine subsets by introducing a refinement relation R C A* x
A*, where x denotes the Kleene closure. The elements of R
are ordered pairs (p, p’) such that p’ C p. We can construct
a relation R by defining a procedure to generate plans p’
given a plan p. First, define an operation HEAD : A* — A,
which takes a plan p and selects a single operator a from it
to replace with a more constrained refinement. We then de-
fine operations BASE : A* — A* and EXT : A* — A*
that return the part of p before and after HEAD(p), respec-
tively. Together, the three operators split a plan p into three
segments so that p = BASE(p) o HEAD(p) o EXT(p). Fi-
nally, we define a domain-specific relation R C A x A*; this
can be thought of as a function mapping an abstract operators
to a set of abstract plans. Then (p,p’) € R if and only if
p’ = BASE(p) o p” o EXT(p) and (HEAD(p),p”) € R.
If (a,p) € R, we call p a refinement of a; similarly, if
(p,p’) € R, we call p’ a refinement of p.



We can combine these elements into an abstraction over a
problem domain (X, ¢, sg, S4). Formally, an abstraction is a

tuple (S, A, R, V), where
e S is a collection of propositional symbols,

e A is a collection of operators, including a distinguished
top-level operator Act,

e R C A x A*is arefinement relation, and

Visa symbolic valuation bound.

The valuation bound encodes both the cost and the dynamics
of our problem domain. The refinement relation structures
the space of abstract plans.

Angelic planning algorithms accept an abstraction as an ar-
gument in much the same way that the A* search algorithm
[Hart et al., 1968] accepts a heuristic. This raises an impor-
tant question: under what circumstances will an abstraction
(S, A, R, V) allow us to find the optimal primitive plan for
a domain (X, ¢, s9,.S4), and to prove we have done so? We
will generalize the idea of an admissible heuristic to define
an admissible abstraction. As we will show in section[3] two
properties suffice.

Definition 1. An abstraction (S, A, R, V) defined over a
planning domain (X, ¢), is admissible if

1. For each abstract operator a € A, for each primitive
plan p in a, there is a refinement p of a such that p € p,
ie.,

Vae A, Vp €a,(a,p) ER:pEp. (15)

2. V is admissible, i.e., Vi[p] < V[p] = Vu[p| for each
abstract operator p € A.

The first property ensures that we do not “lose track” of
any primitive plans while refining a plan. Plans are only re-
moved from consideration when they are deliberately pruned.
The second property ensures that if abstract plans p, p’ € P,
where P is a collection of abstract plans, and Vi[p] <
V1[p’], then no optimal plan is in p’ and thus the best plan in
pis also in the set P’ = P\ {p’}. Taken together, these prop-
erties ensure that if P’ is the result of refining and pruning a
collection of plans P, then for every plan in P there is a plan
that is no worse in P’. If we start with the set Py = {Act}, no
sequence of refinement and pruning operations will discard
an optimal solution. This ensures completeness. To construct
planning algorithms, we simply need to choose an order in
which to refine and prune, and keep track of bounds to know
when we can terminate the search.

4.1 The Flat Abstraction for Graph Search

We illustrate the construction of an admissible abstraction
with graph search. Let G = (V, &) be a graph, where each
edge e € £ has an associated cost c.. Suppose our objective
is to find the shortest path to a goal node vy, € V and we have
an admissible heuristic & : V — R>q. Then the abstraction

Ag = (V,E U{AcT},V,R) is admissible, where

o Viac] = {({eo}, {e1}; ces o)
o VIACT] = {({v}, {vg}, h(v, ), 00) 1 v € V)}

e R is the union of {(ACT,e o ACT)Ve € &} and
{(AcT,e)Ve € € : e1 = vy}

Admissibility of V follows immediately from the admissi-
bility of h, and the admissibility of R is easily proven. By
definition, any primitive plan p is contained in ACT. Every
primitive plan in the abstract plan po ACT is of the form pop’.
Suppose the first primitive operator in p’ is e. For each such p
and p/, (ACT, e o ACT) € R. Therefore R is admissible, and
so Ag is admissible.

This demonstrates that the machinery of angelic abstrac-
tions is at least as general as heuristics in graph search: ev-
ery graph search problem can be reformulated as an abstract
search, using the edges to define a refinement operation and
an admissible heuristic to define lower bounds. Often, how-
ever, we can use domain-specific information to devise even
more informative abstractions. In the remainder of this sec-
tion, we will provide concrete examples of admissible ab-
stractions for a pair of simple continuous planning problems.

4.2 An Abstraction for Navigation

A common problem in robotics is navigating to some speci-
fied goal location in a structured environment. Simple heuris-
tics like the Euclidean distance to the goal work well in en-
vironments that are cluttered but largely unstructured, where
the distance is a good proxy for the true cost. In highly struc-
tured environments, however, the Euclidean distance can be
quite a bad proxy for cost. Consider the example in figure [0}
in which the robot starts just on the other side of a wall from
the goal. Using A* with a Euclidean heuristic requires search-
ing almost the entire space.

We can plan more efficiently by taking advantage of struc-
ture in the environment. Suppose we have a decomposition
of the environment into a finite set of overlapping regions, as
in figure [2] and we know which regions overlap. These re-
gions can be derived from a semantic understanding of the
environment, such as rooms and doorways, or they can be
automatically extracted using (for example) the constrained
Delaunay triangulation. Then any plan can be described by
the sequence of regions it moves through. We can use this
region decomposition to define an abstraction.

Let S = {R;}, where U;R;, = X, and let A = Ay U {a;; :
R; N R; # @} U {ACT}, where p € a;; if p(s) € R;Vs €
[0,1) Ap(1) € R;. The refinement can be defined as follows.

R = U{(ACT, a;; o ACT), (ACT,a;;)} U
{(aij,a o aij) : a(t) S Rin}U
{(aij,a) : a(t) € R;Vt,a(1) € cl(R;)}

(16)

We can use spatial indices like k-D trees and R-trees to
quickly find the operators that are valid from a particular
state. It is straightforward to show this refinement relation
is admissible (see appendix [A] proposition ).

If the cost function is path length, then we can compute
bounds using geometric operations. Executing the action a;;;
from a state in R; N R; would incur a cost at least as great as
the set distance inf{||s—s'|| : s € R;N Ry, s’ € R,NR;}. If
the intersections between sets are small and well-separated,
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Figure 3: Useful regions for defining abstract operators are nearly
convex. In all four examples here, the lower bound is given by the
Euclidean distance in work space. In a convex region (a), the gap
between the lower bound on the cost of a plan and the true optimal
cost is zero. In an e-convex region (b), the gap between the lower
bound [ on the cost of a plan and the true optimal cost ¢ is small:
I < ¢ < (1+¢€)l. Some regions are not e-convex for any finite €;
for example, the region might not be connected (c). This can hap-
pen even if the region is connected in the work space (d) if it is not
connected in configuration space. Here, the object cannot fit through
the narrow gap, and so the region is not e-convex. In the presence
of dynamic constraints, regions can fail to be path-connected even if
they are connected in the workspace.

this lower bound will be an accurate estimate. This has the
effect of heuristically guiding the search towards the next re-
gion, allowing us to perform a search in the (small) space of
abstract plans rather than the (large) space of primitive plans.
The Euclidean heuristic can deal with things like clutter and
unstructured obstacles, while the abstraction can take advan-
tage of structure in the environment.

Note that we have made no reference to the shape of the
regions, nor even to their connectedness. If regions can be
disconnected, for instance by an obstacle, abstract operators
can have no upper bound, which can lead the search to be
inefficient. On the other hand, if we require the regions to be
convex, then executing the action a;; from a state in Ry N
R; would incur a cost no greater than the Hausdorff distance
du(R; N Ry, R; N R;), where

dg(X,Y) = max(sup inf ||z — sup inf ||z — .
w(X.Y) = max(sup inf e~y sup inf |~ 1)

a7
Convexity is quite a strong requirement. In a cluttered en-
vironment, a convex representation may need to contain many
regions. We can relax the requirement of convexity, and gen-
eralize to costs besides path length, by defining e-convexity.

A region R is e-convex if
inf  Clp] < (1+¢€)|z—2|. (18)

PEPR(z,2’)

This is shown graphically in figure Intuitively, a region
is e-convex if the shortest path between any two points is

only slightly longer than the distance between the points.
For example, if X C R™, a convex region R cluttered with
convex objects of diameter less than d is e-convex, with

€E=T ; this is an elementary consequence of Jung’s

2(n11)
theorem [Jung, 1899].

4.3 An Abstraction for the Door Puzzle

The door puzzle introduced in the introduction combines the
motion-planning aspects of navigation with a high-level task
planning problem: the choice of which doors to open and in
which order. Unlike in the navigation problem, the config-
uration space for the door problem involves discrete compo-
nents: X C R? x {0,1}, where where N is the number of
doors. This creates an element of combinatorial search that is
not present in the navigation experiment.

We use the same region-based abstraction to guide the
search for motion plans, and construct a relaxed representa-
tion of the effects of toggling switches in PDDL by omitting
geometric constraints like collision. Using this representa-
tion, we can quickly compute a partial ordering on the se-
quence of switches that need to be pressed in order to reach
the goal. For example, in figure {] the path to the goal is
blocked by six doors. Before we can move towards the goal,
we must move to and press each of the six switches. This
leaves us with the task of computing a lower bound on the cost
to reach and toggle each switch. We can find such a bound
in two steps. First, we construct a directed graph whose ver-
tices are the possible effects of executing each operator, and
whose edges have weights that lower bound the cost of exe-
cuting each operator. This graph, and the minimum spanning
tree, are drawn in ﬁgure@ This reduces the problem of find-
ing a lower bound to solving a travelling salesperson problem
(TSP). While solving a TSP requires exponential time, we can
compute a lower bound on the cost of the optimal solution by
computing a minimum spanning tree of the directed graph—
and this is a computation that can be done in polynomial time
with standard methods. Although this bound neglects pos-
sible interactions between the operators, it is admissible; in
fact, it is an admissible special case of the more general (and
inadmissible) h,qq heuristic [Haslum and Geffner, 2000]. We
can use this bound to guide the search for a more detailed mo-

tion plan (figure fic).

5 Algorithms

We now describe several algorithms that leverage an admis-
sible angelic abstraction to search efficiently, even in high-
dimensional continuous spaces. Our algorithms are all de-
rived from the angelic hierarchical A* algorithm developed
by [Marthi et al., 2008]. We begin by reviewing this algo-
rithm (section @ then discuss a subtle variation that dra-
matically improves efficiency in some common degenerate
or nearly degenerate cases (section[5.2). Finally, we discuss
an extension that solves the approximately optimal planning
problem, embracing the key insights of weighted A* (sec-

tion[5.3)).
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Figure 4: In the problem shown in (a), it is easy to conclude that
all N = 6 doors must be opened before the robot can reach the
goal. However, there are N! = 720 possible orders in which we
might press the switches. We can bound the cost of any sequence by
solving a travelling salesperson problem (b, dotted lines), where the
edge costs are the minimal distance the robot must travel to move
between switches. Although this is an NP-hard problem, we can
compute a lower bound on the cost of a solution in polynomial time
by computing a minimum spanning tree (b, solid red line). This
allows the planner to quickly find a near-optimal solution (c).

5.1 Angelic A*

Angelic A* (algorithm |1 is a reformulation of the angelic
hierarchical A* algorithm [Marthi et al., 2008]. This algo-
rithm solves the optimal planning problem using a best-first
forward search over abstract plans.

The primary data structure maintained by our algorithm is a
tree. Each node in the tree is a tuple (a, p—, BASE(p), V[p])
representing a plan p = p_ o a, where

e a is an abstract operator,
e Dp_ is a pointer to the predecessor of the node,

e BASE(p) is a pointer to the base plan, which is used in
choosing refinements, and

e V[p] is an admissible bound on the valuation of p.

The root of the tree is the node
(9,2,9,{({xs}, {zs},0,0)}, representing the start of
any plan.

The main entry point for the algorithm is the SEARCH rou-
tine, which first constructs the root plan node (line [2) then
computes an initial abstract plan that includes all possible
primitive plans (line [5). This abstract plan is then added to
the plan queue (line [6).

Then, as long as a plan remains on the queue, AA* re-
peatedly finds the abstract plan in () with the lowest lower
bound (line[8)). If this plan is dominated by a previously dis-
covered plan, then the algorithm returns successfully, as any
remaining plan on the queue is also dominated. Otherwise,
AA* expands the active plan by computing its successors and
adding them to the queue if they cannot be pruned (lines
[I7). If the queue becomes empty without discovering a prim-
itive plan that reaches the goal, then no plan exists and the
algorithm returns failure.

AA¥* generates successors to a plan using the refinement
relation. It then constructs a set of child plans by selecting
one operator from the plan and replacing it with its refine-
ments. Any successor plan that cannot possibly contain an
acceptable solution is pruned, while any plan that could con-
tain an acceptable solution is added to the priority queue. The
algorithm terminates when we remove a plan from the queue
that is dominated by a previously expanded primitive plan.

We compute the valuation of each new plan incrementally
(line[28). If that new plan does not optimistically reach some
state with lower cost than a previously explored plan ending
with the same extension, we discard it (line . Otherwise,
we update the bounds on any plan with the current extension
to include the new plan (line [39). Next, if the upper bound
on the cost of reaching the goal under the new plan is better
than any previous plan, we record this new plan as the best
yet found (line[T6). Finally, if the lower bound on the cost of
reaching the goal under the new plan is better than the upper
bound under any previous plan, we add it to the set () of active
plans.

Marthi et al. showed this algorithm will return the optimal
refinement of the top-level operator ACT after a finite number
of iterations, provided the lower bound on the cost of every
operator is greater than zero.

Theorem 1. Algorithm[I|will return the optimal primitive re-
finement of the abstract plan ACT, provided the lower bound
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Figure 5: A schematic illustration of the process by which we construct successor plans. A plan is represented by a collection of nodes
representing operators. Each node has a pointer to its predecessor, and represents the concatenation of the predecessor with its operator. Each
node also has a pointer to a base node. To form the successors of a plan, we first break plan into three pieces: the base, the node after the base
(called the head), and the rest of the plan (called the extension). We then replace the head with a valid refinement, chosen to be optimistically
feasible. Finally, we propagate, creating new nodes corresponding to the operators in the refinement and the extension.

on the cost of every operator is strictly positive [Marthi et al.,
2008

However, if the abstraction is admissible, we can prove the
following stronger claim.

Theorem 2. [f the abstraction A is admissible and a feasible
plan exists, then algorithm/[l| returns an optimal sequence of
primitive operators in finite time, provided the lower bound
on the cost of every operator is greater than zero.

Corollary 1. If the set of primitive operators Ay ,, is asymp-
totically optimal (equation[3), then

lim Pr(C[SEARCH(A,)] < (1 +€)c")=1. (19
n—oo
Proof. See appendix [A] theorem 2] O

The distinction between these claims is subtle, but impor-
tant. Theorem [T]implies hierarchical optimality: if a plan is
returned, no better plan can be expressed as a refinement of
the top-level operator. Theorem |2|implies primitive optimal-
ity: if a plan is returned, no better plan exists. If we can
ensure our abstraction is admissible, then using our abstrac-
tion provides the same guarantees as a direct search over the
space of primitive plans, but may be much faster.

5.2 Acyclic Angelic A*

Algorithm [I] requires strictly positive lower bounds on the
cost of any operator. In discrete problems, this is reasonable
restriction, but it presents challenges in continuous problems.
For example, suppose we have a plan consisting of two oper-
ators a;; o a,/;» from our navigation abstraction. If the desti-
nation regions intersect—if I2; N R;- # @—then the largest
possible lower bound for the valuation of a; ;s is zero. This
phenomenon can lead to a zero-cost cycle: a sequence of op-
erators that can optimistically returns to a given state with
zero cost (figure [8a). Even positive cost-cycles are problem-
atic, if the lower bound [ on the cost of a cycle is much smaller
than the upper bound w: the algorithm can only prune a plan

if it executes the cycle [u/l] times (figure[8b). Unfortunately,
we cannot simply discard any abstract plan with a cycle: the
optimal plan may leave and return to an abstract state if the
state is non-convex, even if the state is connected (figure
. Often, this indicates a poor choice of abstraction, but
it arise even with natural choices of abstraction, especially
in domains with topologically complex configuration spaces.
We can deal with such edge cases while still avoiding cycles
with a minor modification to the algorithm.

We define an acyclic plan as any plan p that cannot be par-
titioned into two plans py o py such that Vi [po] =< Vi[p]
(algorithm [3). When we compute the successors of a plan p,
if we find the extension pey; would create a cyclic (i.e. not
acyclic) plan when propagated on top of BASE(p), we do
not add p o pext to the set of successors. Instead, we add
(BASE(P), Pext) to the set of deferred plans (algorithm
line [T2).

When any descendent of p is expanded, we consider acti-
vating any deferred extension of p by propagating it on top of
the descendent plan. If the resulting plan is no longer cyclic,
we add it to the set of successors (line [19). This ensures that
only acyclic plans will ever be added to the queue of plans,
while also ensuring all plans that are not pruned will eventu-
ally be considered.

Theorem 3. If the abstraction A is admissible and a feasi-
ble plan exists, then the acyclic angelic A* algorithm returns
a sequence of primitive operators with cost no greater than
c*({zs}, Xy) in finite time.

Corollary 2. If Ay ,, is asymptotically optimal, then
Ve >0, li_>m Pr(C[SEARCH(A,)] < (14 ¢€)c") = 1. (20)
Proof. See appendix [A] theorem 3] O

5.3 Approximate Angelic A*

Even with a good abstraction, finding an optimal solution
may be intractable for many problems. By modifying the
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Figure 6: Part of the plan tree constructed by AA* for the problem shown in figure[7] Each node represents a plan; edges link a node to its
predecessor. Nodes that are part of the optimal plan are highlighted in red. Branches of the tree not drawn are indicated with an ellipsis. The
act of opening the door is referred to as TOGGLE(S). Primitive motion operators are referred to as GO(z, y), where x and y are coordinates.
An abstract motion to a region R; through a region R; is referred to as GO(R;, R;). The top level operator is labelled ACT.



Algorithm 1 Angelic A*

9:
10:
11:
12:
13:
14:
15:
16:
17:

18:
: function SUCCESSORS(plan node p)
PoST(BASE(p)) = {s : (s,s',l,u) € V[BASE(p)]}

19

20:
21:
22:
23:

24:

25:
26:

27:
: function PROPAGATE(base node p, list pext)

28

1
2
3
4:
5:
6.
7
8

. function SEARCH(abstraction (S, A, R, V))

root = (&, &, &, {(zs, zs,0,0)})
p'=0
BOUND(%) = V[AcT]
Po = PROPAGATE(root, [ACT])
Q = {po}
while |Q| > 0 do
p = argmin{V[p]({z:}, Xy) : p € Q}
if PRIMITIVE(p™) and Vi [p*] < V1 [p] then
return p~
else
Q « Q\{p}
S < SUCCESSORS(Pp)
for p’ € Sdo
if Vy[p’] < Vi [p*] then
p P
Q+QuU{p €S:~Vulp] < Vi[pl}
return &

a = OPERATOR (HEAD(p))
S=o

forp’ : (a,p’) € R,3s € PosT(BASE(p)) : HEAD(p')N
s # @ do

Pref < PROPAGATE(BASE(p), p’ o EXT(p))
if Vi, [Pref] (75, X¢) < 0o then
S+ Su {pref}

return S

b+ p
while pex is not empty do
a <+ POP(pext)

if a is more primitive than OPERATOR(p) then

b+p
p < (a,p,b,V[poal)
if V[p] = @ then return

else if BOUND(pext) < Vz[p] then
return &

else .
BOUND(pext) <~ BOUND(pext) U V[p]

return A

Figure 7: The problem solved by the tree in ﬁgure@ The plan first
toggles the switch in the lower left hand corner, then moves through
the opened door to reach the goal. Primitive operators (edges) are
displayed as dotted lines, while the optimal plan is highlighted in
red.

‘ 0 2 0

@
x x .
Start
2
1
‘ Goal
()

(d) (e)

Figure 8: An illustration of the problems with cyclic paths. Many
natural operators in continuous domains have a cost with a lower
bound of zero and no upper bound. For example, deciding whether
the irregularly-shaped object (a) can reach the blue region requires
detailed geometric analysis. Since regions 0 and 2 touch, the great-
est lower bound on the cost of a plan in ap; o ai2 is the same as
the bound on ap1 © a12 o aip © ai12. Any number of repetitions of
the cycle aig o a1z will have the same cost, and so if ap; o a2 is
ever selected for expansion, the algorithm will only ever refine this
infinite sequence of cyclic plans. Separating the regions (b) elim-
inates the infinite recursion, but remains inefficient; each cycle of
aio o a2 adds only a small cost € to the lower bound, meaning that
if the next plan on the queue has a cost § greater, the planner will
consider [§/€] cycles before considering the next acyclic plan. We
cannot simply ignore these ‘cyclic’ plans; in some scenarios, the best
plan (c) or any feasible plan (d) is cyclic. This can occur even if the
regions defining our operators are connected in configuration space:
in the diagram in (e), although there is a feasible plan in a2 o agg,
the optimal plan is in a;2 0 a1 0 azg.



Algorithm 2 Acyclic angelic A*

1: function SUCCESSORS(plan node p)

2:

A A

> D is a global variable, initially set to &.

POST(BASE(p)) = {s’ : (s,s',1,u) € V[BASE(p)]}
S=g
a = OPERATOR(HEAD(p))

forp’ : (a,p’) € R,3s € PosT(BASE(p)) : HEAD(p')N
s # @ do

Pref < PROPAGATE(BASE(p), p’ o EXT(p))
if Vi [Pret] (25, X4) < oo then
if ACYCLIC(pref, @) then
S+ SuU {pref}
else
D <+ DU {(BASE(p), EXT(pret))}
Po < P
while BASE(PARENT(p,)) # @ do
Pa < BASE(PARENT(p.))
fOI‘ pext . (pa; pext) € D dO
Pref < PROPAGATE(BASE(D), Pext)
if ACYCLIC(pret, @) and Vi, [pre] < oo then
S+ Su {pref}

return S

Algorithm 3 Acyclic angelic A*

1:
2
3
4
5:
6
7
8
9

function AcycLIC(plan nodes p, p’)

if p = @ then

return true
else if p’ = @ then

p- < PREDECESSOR(p)

return ACYCLIC(p—, @) A ACYCLIC(p—, p)
else

p— < PREDECESSOR(p)

return —(Vz[p] < Vi[p']) A ACYCLIC(p_, @)

order in which plans are expanded and the conditions un-
der which the algorithm terminates, we can accelerates the
search process while still ensuring approximate optimality.
This modification is described in algorithm 4]

Often, admissible valuations are unduly optimistic: the
lower bound L[p] on the cost of a plan is much less than
the true optimal cost ¢*({zs}, Xy). This problem is well-
understood in the context of graph search, where it is often
mitigated by using an admissible heuristic that has been in-
flated, as in weighted A* ([Pohl, 1970]). WA* keeps a queue
of states, and expands the state minimizing

KEYwa~ (z;w) = g(x) + wh(zx), (1)

where g(x) is the estimated cost to reach a state x and h(x)
is an admissible estimate of the cost to reach the goal from a
state . This biases the search towards plans that pessimisti-
cally reach states close to the goal. If h(x) — c*({z}, X,) has
only shallow local minima, this will explore far fewer states
before finding a path to the goal than A* would. Moreover,
when a path to the goal is found, it will have cost less than
we* ({2}, X,).

Unfortunately, we cannot directly apply this computation
of an inflated priority in the context of angelic search. When
we use angelic semantics, we may not have a distinct cost
g(x) to reach a state; we only have bounds on the cost of
plans. In order to apply the idea of WA* to angelic search,
we need to compute a priority that satisfies the same proper-
ties as KEYwa~ (z;w). A naive approach, such as inflating
the lower bound on each operator, does not have the desired
effect: it would inflate the priority of all plans equally and
would not affect the order in which plans are expanded.

A more reasonable approach might be to inflate the lower
bounds on each nonprimitive operator, which would exactly
equal the priority computed by WA* for a flat abstraction—
but this approach does not properly take upper bounds into
account. Consider an operator a for which Vi[a](s,s’) =
(1 + e)L]a](s,s’) for some abstract state pair (s,s’). If ¢ is
zero, the operator would be treated as primitive and its lower
bound would not be inflated. If it is small but positive, it
would be treated as nonprimitive. This would artificially bias
the search away from operators that are almost, but not quite,
primitive.

To avoid this undesirable bias, we recursively compute a
priority KEY(p, w). If p_ = PREDECESSOR(p),

KEY(p; w) = min(KEY(p-) +w(V[p] - Vi[p-]), Vu [(92}2)5
with KEY(@; w) = 0. KEY(p; w) has several useful proper-
ties. For each plan p, KEY(p; w) is no greater than the upper
bound Ulp] or the inflated lower bound wL[p]. If w = 1,
then KEY(p;w) = L[p] For a primitive plan, KEY(p; w)
equals the cost of the plan. In a flat abstraction, KEY(p;w)
is precisely equal to the cost estimate used by WA*.

We refer to this approach as approximate angelic A*, and
present pseudocode in algorithm ] The pseudocode is sub-
stantially similar to algorithm |1} and identical subroutines
have been omitted. Changes are highlighted in red.

This algorithm is approximately optimal, in the sense that
any plan it returns has cost less than w times the cost of the



Algorithm 4 Approximate angelic A*

1: function SEARCH(abstraction (S, A, R, V), weight w)
2: root = (&, &, &, {(zs, zs,0,0)})
3 p'=9

4:  BOUND(®) = V[AcT]

5: Po = PROPAGATE(root, [ACT])
6: Q = {po}

7 while |Q| > 0 do

8: p = argmin{KEY(p,w) : p € Q}

9: if PRIMITIVE(p*) and Vis[p*] < V7 [p] then

10: return p*

11: else

12: Q« Q\{p}

13: S <~ SUCCESSORS(p)

14: for p’ € S do

15: if Viy[p'] < Vu[p*] then
16: p < p

17: Q+—QUS

18: return &

Algorithm 5 Approximate angelic search priority

1: function KEY(node p, weight w € R>1)
if p = @ then

return 0
else

pP- < PREDECESSOR(p)

return min(KEY(p_) + w(VL [p] — VL p-1), Vi [p])

AN A S

optimal plan. If we combine the acyclic generation of succes-
sor plans with the approximate search, the resulting algorithm
is approximately optimal even if there are zero-cost operators.

Theorem 4. If the abstraction A is admissible and a feasible
plan exists, then algorithm | returns a sequence of primitive
operators with cost no greater than w - ¢*({x}, X,) in finite
time.

Corollary 3. If Ay, is asymptotically optimal, then

Ve >0, lim Pr(C[SEARCH(A,)] < (1+€)w-c) = 1.
(23)

Proof. See appendix [A] theorem 4] O

If we use this idea in the angelic A* algorithm, rather than
the acyclic angelic A* algorithm, the same theorem holds
with the additional constraint that all operators must have a
strictly positive lower-bound.

6 Results

We implemented algorithms and the abstractions de-
scribed in sections [4.2] and in the Python programming
language. We then compared the performance of the planner
to the original angelic A* search algorithm ([Marthi e al.,
2008]l) and to a search without abstraction using A*.

In the navigation domain, we constructed a random dis-
cretization with 10? states. Examples of the search trees con-
structed by Ax and by algorithm [2] are given in figure [0} By
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Figure 9: The search trees constructed by A* (a) and by algorithm
(b). Note that the A* search needs to explore almost the entire space,
due to limitations of the Euclidean distance as a heuristic. In con-
trast, when provided with a decomposition of the world into nearly-
convex regions, angelic A* can find a path to the goal while explor-
ing far fewer states. By avoiding plans with cycles, our modified
angelic planning algorithm can explore these states while expanding
far fewer plans.

cost time  plans states
A* 33.430 42.119 11807 7948
Angelic A* 33430 160.256 25770 4758
AAA* (w=1.) 33.430 4.159 706 3068
AAA* (w=2.5) 35.586 0.697 48 1443

Table 1: Quantitative performance on a problem instance in the nav-
igation domain. The discretized state space includes 10* sampled
configurations. We see that abstraction and approximation result
expanding fewer plans and exploring fewer states, yielding a faster
search and optimal or nearly optimal results.

using the abstraction, the algorithm can avoid exploring large
parts of the configuration space. Our quantitative results bear
this out: using abstraction allows us to reduce the number of
states explored by a factor of three and the number of plans
considered by several orders of magnitude.

Using abstraction in the door puzzle domain resulted in
even larger speedups. Even in easy problem instances with
only a few doors, search without abstraction quickly became
infeasible (figure [T0). Using abstraction reduced the number
of states explored by orders of magnitude. However, the un-
modified angelic search spent a great deal of time exploring
plans with cycles. By deferring these plans, our algorithms
were able to reduce the number of plans expanded by an order
of magnitude. In fact, only our algorithm was able to solve
problem instances with more than ten doors. We were able
to find 2-optimal plans for instances with up to 32 doors and
10* sampled configurations (corresponding to a discretized
state space with approximately 40 trillion states). Unfortu-
nately, software limitations prevented us from experimenting
on states with more than 32 doors.

7 Related Work

There is a long history of using abstraction to solve robotic
planning problems [Nilsson, 1984; |Lozano-Pérez et al.,
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Figure 10: Quantitative evaluation on an easy instance of the door
puzzle domain with only two doors. More difficult instances could
not be solved by any algorithm considered except algorithm 2] The
abscissa measures the number of randomly sampled states in the dis-
cretization of the configuration space. The ordinate axes measure
the number plans expanded by each algorithm and the number of
distinct configurations explored during search.

1987]], and although our formulation is different from most
standard approaches to task or motion planning, many au-
thors [Alami et al., 1990; Siméon et al., 2004 have employed
our underlying approach of searching for paths through a
graph of configurations connected by feasible motion plans.
Practical algorithms often overcome the high computational
cost of searching these planning graphs using clever heuris-
tics. For example, aSyMov [Cambon ef al., 2009|] and FFRob
[Garrett et al., 2016] both employ the fast-forward heuristic,
augmented with information derived from the geometric and
kinematic computation. Like these approaches, our work is
built atop a heuristically-guided search; however, angelic se-
mantics allow us to define upper bounds which can be used
to prune away abstract plans, and allow for admissible hierar-
chies of arbitrary depth.

Our definition of abstract plans is closely related to the no-
tion of “plan skeletons” considered by several authors [Erdo-
gan and Stilman, 2013} |de Silva et al., 2013} |Lozano-Pérez
and Kaelbling, 2014]l. Plan skeletons fix a sequence of oper-
ators but leave continuous parameters undefined. There are
many approaches to determining the feasibility of a given
skeleton; for example, [Toussaint, 2015|] uses continuous op-
timization techniques to search for optimal values of the real-
valued variables. [Lozano-Pérez and Kaelbling, 2014] fix a
discretization of the continuous variables then find feasible
values by formulating and solving a constraint satisfaction
problem. [Lagriffoul et al., 2014] use linear programming to
find valid values of the free variables or prove that none exist.
The primary difference between our approach and these plan
skeletons is the choice of formalism. By defining our abstract
operators as implicitly defined sets of primitive motion plans,
we can reason about plans at varying levels of abstraction in
a unified way, which is essential to the generality of our guar-
antees.

Another approach to task and motion planning represents
geometric information in a way amenable to search using
classical Al search techniques. For example, [Dornhege e
al., 2010] model geometric information as predicates that can
be resolved by solving motion planning problems during the
task planning process. More recently, [Ferrer-Mestres et al.,
2017] show that by fixing a discretization, in some domains
all geometric information can be represented compactly in
planning languages more expressive than PDDL, avoiding the
need to make geometric queries during the planning process.
Other authors [Erdem et al., 2011; |Srivastava et al., 2013
Dantam et al., 2016] use the task planner as a partial or ap-
proximate representation of the underlying geometric task,
which can be improved during search. For instance, [Erdem
et al., 2011] use a high-level task planner to find an optimal
task plan, then use a motion planner to attempt to find a kine-
matically feasible primitive solution to that task plan. If no
feasible solution exists, additional kinematic constraints are
extracted from the motion planner and provided to the task
planner, and the process is repeated.

Many authors have devised planning algorithms tailored to
more specific task and motion planning domains. For ex-
ample, the problem of navigation among movable obstacles
has long been of practical interest, and probabilistically com-
plete solutions have been known since 2008 [Stilman and



Kuffner, 2008; Nieuwenhuisen et al., 2008]]. Planning for
non-prehensile manipulation has been addressed by [Dogar
and Srinivasa, 2011]] and by [Barry et al., 2013]. Our work
could provide a new analytical tool with which to study these
special classes of problems, and perhaps formulate new algo-
rithms with stronger performance guarantees.

8 Conclusions

We have defined conditions on an abstraction that allow us
to accelerate planning while preserving the ability to find
an optimal or near-optimal solution to complex motion plan-
ning problems. We motivate these conditions by deriving two
admissible abstractions and showing they improve the effi-
ciency of search without adversely affecting the quality of
the resulting solutions. We view this work as a proof of con-
cept, demonstrating that a good abstraction can render opti-
mal planning feasible even on large problems. The classical
planning community has developed several powerful families
of admissible heuristics [Haslum and Geffner, 2000]; by re-
formulating these heuristics to employ angelic abstractions,
we may be able to obtain optimal or near-optimal solutions to
practical manipulation planning problems.
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A  Proofs

Proposition 1. Define operator bounds

Vila](s,s") = inf{inf{V[p](s,s’) : s €'} : s €s} (24)
Vila)(s,s’) = sup{inf{V[p|(s,s’) : s’ € s’} : s € s}
(25)
Vilal(s,s') = inf{l: (so,s1,l,u) € Vl[a],
sNsy # 3,8 Nsy # T} (26)
Vulal(s,s’) = inf{u : (so,s1,l,u) € V]al,
s Csg,s’ Cs1}. 27

If Va] is admissible, then Vi |a](s,s') < Vi[a](s,s’) and

Vulal(s,s) < Vi[al(s,s) for all abstract state pairs s, .
Proof.
Ve cs o' €¢,
(s, 81,1, u) € V[a] : | < V[a](z,2'),z € s,2" € &'
(28)
TESANTESy = SNSy# D 29)
¥es'ANr' €sy = sSNs1 #D (30)
Vila]({a}, {2'}) < V[a](z,a") 3D
. Vila)(s,s’) < Vilal(s,s) (32)
Ve cs o' €¢,
Y(so,s1,,u) € V]a]:z €s,2’ €8 :u> V[a)(x,z')
(33)
sCspANreEs = x €5 (34)
s Csi Az’ €8s’ = §' €5 (35)
Vulal({z},{«"}) > V([a](z,2') (36)
Vir[a)(s,s") > Vislal(s, s) (37)
Then Vilal(s,s') < Vilal(s,s’) and Vyla)(s,s’) <
Vu[a(s, s’) for all abstract state pairs s, s’. O

Proposition 2. Suppose V [a] and V [a] are admissible. Then
the valuation bound

Viaoa] ={(s,s" 1+, u+u): (s,s 1,u) € V]al,
(s",8" 1" u') e V]a'],s' Cs"}U
{(s,8", 141" u): (s,8',1,u) € V[a],
(s",8"I',00) € V[a'],s' Ns" # @} (38)
is admissible.

Proof. Letpop be aplanln aoa’,wherep c aandp’ € a’.
Then because V[a] and V[a'] are admissible,

d(s,s’,l,u) € V]a] : p(0) € s,p(1) € s',1 < C[p] (39)

V[a
El(S//7 " l' /) c ‘7[ ] (0) c S//,p,(l) c S/”,l/ S C[p/]
(40)

Because p o p’ is continuous, s’ N's” intersect.
p(1) =p'(0) = s'ns" # o (41

Because the cost function is additive, [ + I’ is a lower bound
on the cost of po p'.

Clpop | =Clpl +Clp' T > 1+1 (42)

By construction, it follows that (s,s”, 1+, u+u') € V[ao

a’], and therefore
~Vpop' €aoa,(s,s,l,u) € Viaoa']:
p(0) €s,p(1) €8, 1 <Clpop']. (43)

Thus V[a o '] is an admissible lower bound.
Let x, z, x/ be primitive states.

Vi]aoca'|(z,z")

< Vl]aca'|(z,2) + Vlaoa'|(z',2") (44)
< ViaJ(z,2") + V[a'(2',2") (45)
< Vylal(s,s") + Viy[a'](s”,s")vs Cs” (46)
< Vylal(s,s") + Viy[a)(s”,s") (47)
vs' Cs’ xes ' €5, 2" es”
<u+u (48)

V(s,s',l,u) € Via] :
V(SH S/// l/ /) ¥

r€s,x’ €¢,

"

V[ N:2"es’ 2" €s

<inf{u: (s,s”,l,u) € V[aoa']} (49)
= Vylaoa'|(z,z) (50)
Thus V[a o &'] is an admissible upper bound. O

Proposition 3. If ‘A/[p} and V[p’ | are admissible, then V[p U

p'] = V[p| U V[p'] is admissible.

Proof. Observe that
VipUp'l(s,s)

Then

— min(V[p](s,5), V[p')(5.5)).  (51)

> Vulpl({s} {s}) (52
> V[pl(s, ") (53)
>V

[PUP'(s,s") (54)

Vulp Up|({s}. {s})

SO V[p U p'] is a valid upper bound. Note this argument ap-
plies to Vi [p]({s}, {s}') as well.
Then

Vi[pup']({s}, {s})

= min(Vz[p]({s}, {s}"), Ve [p')({s}, {5})) (55)

< min(V[p](s, s), V[p'l(s, s)) (56)
=V[pup(s,s) (57
so V[p U p'] is a valid lower bound. O



Proposition4. Let S = {R;} be a decomposition of the state
space X into N regions, such that UjenjR; = X. The re-
finement relation

R = U{(ACT, a;; o ACT), (ACT, aij)} U
{(aij, a o aij) : Cl(t) S RNt} U
{(ajj,a) : a(t) € R;Vt,a(l) € cl(R;)}

(58)

is admissible.

Proof. Choose any p € ACT. Because U;cn)R; = X, there
exists some R; such that p(0) € R;. If p(t) € R;Vt, thenp €
aii. Otherwise, there is some t' € [0, 1] such that p(¢') € OR;
and p(t) € R;Vt < t'. Because U ¢y R; = X, there exists
some R; such that p(¢') € cl(R;). Then we can partition p
into p; ops, such that py () € R;Vt and p2(0) € cl(R;). Then
p1 € a;; and ps € ACT, so p € a;; o ACT.

Choose any p € a;;. Because p € Aj, either we can par-
tition p into a o p/, or p = a. If p = a, then (a;;,p) € R.
Otherwise, p’ € a;j, so (a;j,ao0p’) = (a;;,p) € R. O

Theorem 2. Ifthe abstraction A is admissible and a feasible
plan exists, then algorithm/[l| returns an optimal sequence of
primitive operators in finite time, provided the lower bound
on the cost of every operator is greater than zero.

Proof. Define the condition [; (p) as

L(p) <= IpeQ:pepVVylp|<Vlp. (59

We will first show that if 11 (p) holds before line 12} it holds
after line If I (p) holds initially, there is a plan p € Q
such that p € p. If p # argmin{V;[p] : p € Q}, then
p € @ after line Otherwise, because the abstraction is
admissible, there is a plan p’ such that p € p’ and (p,p’) €

R. If P < p’, there is a plan p” € Q such that Vy[p”] <
V[p]. Otherwise, p’ will be added to the queue before line

Therefore if I (p) holds before line[12] it holds after line

Initially, @ = {ACT}. By construction, the operator ACT
contains every valid sequence of primitive operators. There-
fore the proposition Vp : I (p) holds after line [6} If I1(p)
holds at line [8] it holds before line[12} therefore Vp : I1(p)
holds every time line [9]is reached.

If Vp : I1(p) and Vi [p*] < VL[p]Vp € Q, then ¥VpIp* €
p* : V[p*] 2 V[p'] and thus there exists an optimal primitive
plan p* € p*. Then any time line |10|is reached, p* is an
optimal primitive plan. In other words, if algorithm |I|returns
a plan, that plan is an optimal plan.

If there is a feasible plan, it has finite cost, and therefore
the cost ¢* of an optimal plan is finite. Let N € N be the
number of plans with lower bound less than ¢*; because the
abstraction is finite and every operator has a positive lower
bound, N is finite. Each plan is added to the queue at most
once, and is therefore removed at most once. Then after N
iterations, the lower bound on any plan in @ is greater than
c*, and algorithm [T will return a plan.

O

Theorem 3. If the abstraction A is admissible and a feasi-
ble plan exists, then the acyclic angelic A* algorithm returns

a sequence of primitive operators with cost no greater than
c*({xs}, Xy) in finite time.

Proof. Define the parent of a plan as
PARENT(p') =p < (p,p’) € R). (60)
Define the ancestors of a plan recursively.

ANCESTOR(p,0) = p (61)
ANCESTOR(p,n) =

BASE(PARENT(ANCESTOR(p,n — 1))) (62)

ANCESTORS(p) = {ANCESTOR(p,n) : n € Z}  (63)

Define the condition I5(Q, D, p) as true if one of

e IJpc@:peEp,or
e JpeQ:Jp' € DEF(p,D) : v ep:p€E€op,or

e dp € Q: Vylp] < V[p]
is true.

First, we show that if I5 holds before removing a plan from
the queue, it holds after the successors to that plan have been
added to the queue. If I(Q, D, p) holds before removing a
plan p, then either

l.3p'#peQ:pep
2.3p'#peQ:p' <p

3. 3p’ € Q: 3p” € ANc(p/, D) : 3p”" € DEE(p”) : p €
BASE(p’) o p”’/, or

4. pep,or
5. 3p, € ANC(p,D) : 3p” € DEF(p’) : p € p' =
BASE(p) o p”

In cases 1, 2, or 3, p’ € @ after expansion and the invariant
holds. In case 4, because the abstraction is admissible, there
isaplan p’ such thatp € p’ and (p, p’) € R; this plan will be
considered for expansion. In case 5, the plan p’ = BASE(p)o
p”’ will be considered for expansion. If p’ is acyclic, then
either p’ € Q after expansion and the invariant holds, or p’ is
dominated by some plan already in ) and the invariant holds.
If p’ is cyclic, its extension will be added to DEF(PAR(p)).
Since there is at least one refinement of p that will be added
to the queue, there will be a plan on the queue with p as an
ancestor, and thus the invariant will hold.

Since I, holds initially, and holds after each expansion, it
holds until the algorithm terminates. If Vp : I2(Q, D, p) and
Vulp*] < VL[p]Vp € Q, then Vp3p* € p* : V[p*] X V[p/]
and thus there exists an optimal primitive plan p* € p*. Then
any time line [I0]is reached, p* is an optimal primitive plan.
In other words, if algorithm [2| returns a plan, that plan is an
optimal plan.

If there is a feasible plan, it has finite cost, and therefore the
cost ¢* of an optimal plan is finite. Let N € N be the number
of acyclic plans with lower bound less than c*; because the
abstraction is finite and every acyclic plan has a cost strictly
greater than its predecessor, N is finite. Only acyclic plans
are added to the queue; each plan is added at most once, and



is therefore removed at most once. Then after IV iterations,
the lower bound on any plan in () is greater than c*, and al-
gorithm [T will return a plan.

O

Theorem 4. If the abstraction A is admissible and a feasible
plan exists, then algorithm | returns a sequence of primitive
operators with cost no greater than w - c*({xs}, Xy) in finite
time.

Proof. Two invariants hold while the algorithm is running.
First, invariant I5 still holds; second, we know the minimal
lower bound of any plan on the queue is less than w times the
lowest priority on the queue.

vp : I2(Qa Dap) (64’)
KEY(p, w) < wV[p]Vp € Q (65)

When the algorithm terminates,

Vulp*](zs, X,) < KEY(p, w)¥p € Q. (66)
Consequently,
VU[p*](xs,Xg) < wVL[p](xs,Xg). 67)

Since the algorithm must terminate by the same argument as
for theorem 3] algorithm @] will return a w-optimal solution in
finite time. O
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