
Learning User Models with Limited Reinforcement: An Adaptive Human-Robot
Interaction System

Finale Doshi and Nicholas Roy
Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology,
32 Vassar St., Cambridge, MA 02139.

{finale|nickroy}@mit.edu

Abstract

Spoken dialog allows for very natural human-robot interac-
tion, but natural dialog can lead to considerable uncertainty
during the dialog as a result of ambiguous phrases or noisy
speech recognition. Planning algorithms such as the Partially
Observable Markov Decision Process (POMDP) have been
used successfully to overcome this uncertainty and generate
reasonable interactions during natural dialogs between peo-
ple and mobile robots. However, like all dialog systems, a
POMDP is defined by a large number of parameters that may
be difficult to specify a priori from domain knowledge. Even
with an online adaptive system, learning the parameters may
require a tedious training period from the user.

In this paper, we present an approach which lets the agent de-
cide when it needs more information to be an effective dialog
manager. If the agent feels that it is familiar with a situation,
it acts based on its current understanding of the dialog. How-
ever, when faced with an unfamiliar scenario, it will ask its
human user what he or she would do in the agent’s situation—
advice that we believe is relatively easy for humans to give.
Our approach avoids a training period of constant questioning
by allowing the agent to discover the consequences of a poor
decision without actually making mistakes. We demonstrate
our approach both in simulation and on a dialog manager for
a robotic wheelchair application.

Introduction
Spoken language allows for natural human-robot interac-
tion, and the ability for a robot to take verbal commands can
be especially useful when interacting with those who have
limited mobility. The role of a dialog management system is
to take dialog from a user—in our case, output from a voice
recognition system—and interpret it to determine what ac-
tion (if any) to take in response. In our work, we focus on a
dialog manager for a robotic wheelchair (see Figure 1). The
dialog manager’s goal is to discover where the user wishes
to go and command the wheelchair’s navigation software to
take the wheelchair to the desired location.

While navigating to a given location may seem to be a
well-defined task, several factors make the dialog manage-
ment challenging. First, the voice recognition system is
often noisy—for example, the system may hear the words

Figure 1: Our dialog manager allows for more natural hu-
man communication with a robotic wheelchair.

“coffee machine” when the user asks to go to “copy ma-
chine”. Even with perfect voice recognition, ambiguities
may occur when different people use different names for
the same location (such as “my desk” and “my office”) or
the same word for multiple locations (such as “elevator”
when there are multiple elevators). Finally, to make deci-
sions under uncertainty, the dialog manager must understand
the user’s preferences: How tolerant is the user of mistakes?
How likely is the user to be frustated by additional ques-
tions?

A good dialog manager must trade between asking ques-
tions to reduce its uncertainty (thus avoiding errors), andful-
filling the user’s request within a reasonable amount of time.
Partially Observable Markov Decision Processes (POMDPs)
provide a theoretical framework for making decisions un-
der uncertainty and have been successfully applied to dialog
management situations. The ability to manage dialog un-
certainty has made POMDPs attractive in assistive health-
care (Roy et al., 2000; Hoey et al., 2005) and dialog man-
agement domains (Williams and Young, 2005; Litman et al.,
2000), where the agent must reason about how to respond to
user requests. Unfortunately, such real-world problems typ-

ically require a large number of parameters that are difficult
to specifya priori.

One way to handle the problem of specifying the parame-
ters corresponding to vocabulary, word error rate, user pref-
erence, etc. is to learn the model parameters online. In par-
ticular, we have shown previously that reinforcement learn-
ing can be an effective way to learn dialog models online
while interacting with users (Doshi and Roy, 2007a). Re-
inforcement learning is a form of learning where the agent
receives numeric feedback (or “reward”) after every action,
and the agent learns to adjust its actions over time to maxi-
mize the reward it expects to receive.

While the reinforcement learning approach has been
demonstrated in a wide variety of problems, including
human-robot interaction (Litman et al., 2000), it has not met
with widespread adoption in dialog management systems
for several reasons. First, requiring the user to supply re-
ward feedback after each action may be tedious for the user,
leading to frustration and inaccurate results. Second, in the
reinforcement-learning framework, the dialog manager will
only learn about the consequences of a poor decision after
making a mistake and experiencing a large negative reward.
Experiencing a large penality allows for rapid learning but
quickly lead to user dissatisfaction with the overall system.
Finally, humans are notoriously bad at giving accurate nu-
merical feedback which can cause the system to learn to do
the wrong thing.

In this work, we present an alternative approach to on-
line learning of human-robot interaction in which the learn-
ing problem is to learn the right POMDP model from data,
not how to learn the right interaction strategy. The learned
model can then be used to decide the interaction strategy.
By having an explicit model, the interaction agent can as-
sess when it has confidence in its own decision making, and
when additional training is needed. Secondly, instead of a
reward signal after each interaction, we propose the use of a
meta-query, that is, a question about an action that the agent
should take. These meta-queries take an intuitive form:

“I think you definitely want me to go to the printer.
Should I go to the printer?”

The agent uses these queries to learn about the user’s prefer-
ences (for example, risk aversion) as well as discover infor-
mation about their word choice and voice recognition noise.
The agent asks a meta-query only if it is sufficiently con-
fused about what action to take next. This active learning
scheme limits the amount of feedback that is required, eas-
ing the training burden on the user. We show that such a
system can adapt to users in a real robotic wheelchair appli-
cation.

The remaining sections are organized as follows: Section
I describes the basic POMDP dialog model and Section II
describes how we incorporate the unknown model parame-
ters into a larger POMDP. We present our algorithm in Sec-

tion III and results in Section IV. Sections V and VI sum-
marize our results and relate them to other work in POMDP
model learning.

I. The POMDP Model
Formally, a POMDP consists of the n-tuple{S, A, O, T, Ω,
R, γ}. S, A, andO are sets of states, actions, and obser-
vations. In our wheelchair command-and-control scenario,
the states represent locations to which the user may wish to
go. The state of the user is hidden from the agent and must
be inferred from a set of noisy observations—in our case,
keywords from a voice recognition system. The actions rep-
resent physical locations to which the whelchair may drive,
as well as questions that the wheelchair may ask the user.
Figure 2 shows a cartoon of a simple dialog model.

start

Go to
Kitchen

Go to
Elevator

Go to
Office

...

done

reset

Figure 2: A toy example of a dialog POMDP. The nodes in
the graph are different states of the dialog (i.e., user intents).
Solid lines indicate likely transitions; we assume that the
user is unlikely to change their intent before their original
request is fulfilled. The system automatically resets once we
reach the end state.

The transition functionT(s′|s,a) is a distribution over the
states to which the agent may transition after taking actiona
from states. Similarly, the observation functionΩ(o|s,a) is
a distribution over observationso that may be seen in state
s after taking actiona. For example, the key word “cof-
fee” may be commonly heard if the user wishes to go to
the coffee machine. The reward functionR(s,a) specifies
the agent’s immediate reward for each state-action pair. For
example, the agent may incur a small negative reward for
asking a clarification question about where the user wishes
to go. Similarly, it may incur a large penalty for taking the
user to an incorrect location. Finally, the discount factor
γ ∈ [0,1) measures the relative importance of current and
future rewards.

Since the true state—the user’s intent—is hidden from the
agent, it must choose actions based only on past actions and
observations. In general, the optimal action to take now will
depend onall prior actions and observations; however, keep-
ing a history of the entire dialog to date can become quite
cumbersome. Fortunately, it is sufficient to store only a dis-
tribution over possible user intents—known as a belief—as

a sufficient statistic for the past history of actions and obser-
vations. If the agent takes actiona and hears observationo
from an initial beliefb, we can easily update the belief using
Bayes rule:

ba,o(s) =
Ω(o|s′,a)

∑
s∈ST(s′|s,a)b(s)∑

σ∈SΩ(o|σ,a)
∑

s∈ST(σ|s,a)b(s)
(1)

When the correct POMDP model parameters that describe
the user are available, then the agent can simply solve the
POMDP for the dialog management policy. The solution
to a dialog POMDP model is a policy that maps beliefs to
actions. If the goal is to maximize the expected discounted
reward, then the optimal policy can be found by solving the
Bellman equations:

V∗(b) = max
a∈A

Q∗(b,a), (2)

Q∗(b,a) = R(b,a)+ γ
∑
o∈O

Ω(o|b,a)V∗(ba,o), (3)

where the optimal value functionV∗(b) is the expected dis-
counted reward that an agent will receive if its current belief
is b andQ∗(b,a) is the value of taking actiona in belief b.
The optimal policyπ∗ : P(S) → A can be extracted from the
value function using

π∗ = max
a∈A

Q∗(b,a). (4)

The exact solution to equation 3 is PSPACE-hard but point-
based approximations (Pineau et al., 2003) can be used to
find high quality solutions efficiently.

II. Modeling POMDP Uncertainty
The problem with using a POMDP policy to compute a di-
alog policy is that some of the individual model parameters
{S, A, O, T, Ω, R, γ} are difficult to specify. It is reason-
able to assume that the parameter setsS, A, andO are fixed
and known before-hand. For example, in our dialog man-
agement task,S could represent all the places that a user
may wish to go based on some map initially provided to the
robot. The actionsA can be pre-specified clarification ques-
tions or movements the wheelchair may take, and the obser-
vationsO the keywords received from a voice recognition
system. However, determining the parameters inT, Ω, and
R is more difficult, as these parameters describe the user’s
preferences and the noise in voice recognition system.

However, just as the user’s true intent is hidden from the
agent, we can also represent the true parameters of the di-
alog model as hidden variables. We can therefore extend
our basic dialog model by including the model parameters
as part of the hidden state. We call this new representation a
“model-uncertainty” POMDP in which the state space con-
sists of both the user’s intent and the true dialog parameters.
In this new POMDP model, the state space becomes the set

S̃= S×M, whereS is the user space as before, andM is the
space of dialog models as described by all valid values for
the model parameters. We note that the new state spaceS̃ is
continuous and high dimensional.

Each state ˜s therefore describes a particular user intents
and a particular user modelm. The model componentm of
the state contains the probability distribution describing how
the user stateschanges, as in the standard POMDP. The ob-
servations and rewards received for taking a particular action
for a particular user intent now also depend on the hidden di-
alog model state. To generate policies tractably, we assume
that the model componentm itself is fixed, that is, the pa-
rameters of the user model do not change over time.

Figure 3(a) shows the standard POMDP process. The ar-
rows in the graph show which parts of the model are affected
by each other from timet to t +1, for instance, the reward at
time t is a function of the state at the previous time and the
action chosen by the dialog manager. The parameters defin-
ing this function are knowna priori although every part of
the model below the “hidden” line is not directly observed
by the dialog manager and must be estimated on-line. In
contrast, figure 3(b) shows the extended model. The reward
at timet is still a function of the state at the previous time
and the action chosen by the dialog manager, but the param-
eters are not knowna priori and are therefore hidden model
variables that must be estimated along with the user state.
Transition and Observation Uncertainty In the previous
section, we introduced the belief as a distribution over possi-
ble user states. In the model-uncertainty representation,our
belief is now a joint distribution over both the possible user
states and the possible user model parameters. Just as we
must specify an initial belief over user intents (for example,
in Figure 2 we assume that we begin in a “start” state before
the user has any intent), we must now specify an initial dis-
tribution over possible models. This Bayesian approach (the
initial distribution describes the Bayesian prior distribution
over possible dialog models) is attractive in the dialog set-
ting because we may have strong notions regarding certain
parameters, but the exact values for the full set of parame-
ters is typically difficult to specify. For example, we may not
know the exact probability of hearing the word “coffee” if
the user wants to go to the coffee machine, but we can guess
it is probably high. Similarly, we can guess that there is a
significant positive reward for driving to the right location
and a significant negative reward for driving to the wrong
location. We establish a prior distribution over the model
parameters to express our domain knowledge, and improve
the prior distribution with experience.

The need to represent the prior belief over models raises
the question of how to represent this belief. The user state
space is a discrete state space, so a standard histogram or
multinomial distribution can be used. However, the model
parameters such as the transition functionsT are continuous

Time t+1

State

Recognized
Keyword

Manager

Action Selected
by Dialog

User
State

Observed

Hidden

Reward

Time t

User

(a) Standard POMDP model

Time t+1

State

Recognized
Keyword

Manager

Action Selected
by Dialog

User
State

Observed

Hidden

User
Model

Reward

Time t

User

(b) Model-Uncertainty POMDP

Figure 3: (a) The standard POMDP model. (b) The extended POMDP model. In both cases, the arrows show which parts of
the model are affected by each other from timet to t +1. Not drawn are the dependencies from timet +1 onwards, such as the
user state and user model’s effect on the recognized keywordat timet +1.

a

b

c

.5

.2
.3

P(a) = .2
P(b) = .3
P(c) = .5

Figure 4: An example simplex for a multinomial that can
take three different values (a,b,c). Each point on the simplex
corresponds to a valid multinomial distribution; the Dirichlet
distribution places a probability measure over this simplex.

parameters of distributions themselves; a distribution overT
is effectively a distribution over distributions.

SinceT and Ω are collections of multinomial distribu-
tions, the Dirichlet distribution is a natural choice of prior.
The Dirichlet distribution places a probability measure over
the “simplex” of valid multinomials. Figure 4 shows an ex-
ample of such a simplex for a discrete random variableX
whereX can have three different outcomes with different
probabilities, e.g.,p(X) = [0.25,0.25,0.5]. Each value of
p(X) is a different point on the triangular simplex shown
in figure 4 and the Dirichlet gives a measure of the likeli-
hood of each such distribution. Ifp(X) is in fact a transi-
tion probability distributionp(X) = p(·|s,a), then each pos-
sible transition probability distribution (i.e., each possible
user model) is also some point on this simplex, with proba-
bility also described by the Dirichlet. As the model of user
behavior becomes increasingly certain, the probability mass
becomes increasingly concentrated on a single point.

Given a set of parametersα1...αm, the likelihood of the

discrete probability distributionp1...pm is given by

P(p;α) = η(α)

m∏
i

pαi−1
i δ(1−

m∑
i

pi),

whereη is a normalizing constant. The process for updating
Dirichlet estimate of the multinomial given additional data is
straight-forward. For example, suppose we are given a set of
observation parametersα1...α|O| corresponding to a particu-
lar s,a. If we observe observationoi , then a Bayesian update
produces new parameters(α1, . . . ,αi+1, . . . ,α|O|). Thus, we
can think of quantityαi −1 as a count of how many times
observationoi has been seen for the (s,a) pair. Initially, the
expert can specify an educated guess of the distribution—
which we take to be the mode of the distribution—and a
pre-observation total that represents the expert’s confidence
in his guess.

Reward Uncertainty Next, we must specify a distribution
over rewards. We fix a large positive reward value for driv-
ing the user to the correct location, and a small penalty for
confirming the correct location with the user (for the minor
inconvenience of having to communicate with the robot).
These two reward values set a scale for the remaining re-
ward values. We assume that the reward values are uni-
formly distributed between these ranges. The ranges are
expert-specified initially, but the range shrinks as the model
of user preferences becomes increasingly certain.

Model Learning The Dirichlet transition, observation and
uniform reward priors together specify a distribution over
possible POMDP models. The agent can learn some infor-
mation about the model through user interactions and im-
prove the certainty of the model distribution. For example,
suppose that the agent initially hears the word “printer,” and

user responds to the affirmative when the agent asks if the
user wishes to go to printer. Then the agent can increase the
probability that word “printer” is associated with the printer
location. However, if the user responds to the negative, then
the agent can infer that either the word “printer” is not asso-
ciated with the location printer, or that printer is a commonly
the output of a voice recognition error. Likewise, the agent
can discover what are the most popular places where the user
wishes to go (information about the transition model).

Active Model Learning Other information cannot be
learned through user interactions. If the agent is only lis-
tening for location keywords, it cannot determine the user’s
frustration due to a poor action or repeated questions. One
option would for the user to input such feedback into the
agent; however, even from a small set of user tests in our lab,
we found that it was often difficult to explain to users how to
input reward values that would lead to the desired behavior
from the wheelchair. Such training was also tedious. Thus,
we introduced an additional action to the dialog manager’s
options: the meta-query. For example, if the wheelchair is
fairly certain that the user wishes to go to the printer, it might
ask:

“I think you definitely want me to go to the printer.
Should I go to the printer?”

On the contrary, if the wheelchair thinks that the user may
want to go to the printer but is not very certain, it might ask:

“I think you may want me to go to the printer. Should I
go to the printer?”

The choice of adverb gives the user an intuitive sense of the
agent’s uncertainty. Thus, the user can advise the robotic
wheelchair based on their internal preferences. For example,
if the user is risk averse, they may respond “yes” to the first
question but “no” to the second question. If the user answers
a question to the negative, the wheelchair might follow up
with further questions such as,

“In that case, I think I should confirm that you want to
go to printer first. Is that correct?”

until it receives an affirmative response (assuming that the
observation space has been augmented with yes/no key-
words)1. These meta-queries are not perfect, since the user
cannot know the wheelchair’s true internal state and confu-
sion, but we believe they can provide a more natural way
for the human to instruct the robot. We therefore add a set
of meta-queries to the action set of the extended POMDP.
Each meta-query has a fixed probability of a “yes” or “no”
response for each model, which has the effect of changing
the model component of the current belief. For simplicity,
we fix the cost of each meta-query across all models.

1In our tests, we used an abbreviated form of the meta-queries
for simulation speed.

III. Solving the Model-Uncertainty POMDP
Augmenting the original state space with the model param-
eters provides a principled way of thinking about the actions
that result from uncertain dialog models. In Section IIIA, we
validate our approach in simulation by solving this model-
uncertainty dialog model directly when there are only a few
unknown, discrete parameters. Unfortunately, the increase
in the size of the state space will also lead to computational
intractability; in Section IIIB, we present an approximation
that allows us to scale to real-world problems.

IIIA. Solving the Model-Uncertainty POMDP
directly

In general, the parameters transition, observation, and re-
ward functions are continuous-valued, with an infinite num-
ber of possible models. As such, the model-uncertainty
POMDP is especially difficult to solve using standard meth-
ods. In special situations, however, uncertainty in the dialog
model may be expressed as a small, discrete set of possi-
ble models rather than a continuous distribution, making the
model-uncertainty POMDP much easier to solve.

For example, consider a scenario where we already have
accurate transition and observation models (say, from some
prior work with the voice recognition system), but a new
user’s preference model is unknown. The user’s exact pref-
erence model may not matter as long as the dialog man-
ager has roughly the appropriate pattern of behavior. In
an extreme case, we may decide to only characterize the
user’s frustration with an incorrect movement as low or high,
and similarly characterize the user’s frustration with an in-
correct confirmation aslow or high. The user model can
be described by two variablesWrongMovePenalty Wrong-
QuestionPenalty. The two variablesWrongMovePenalty
andWrongQuestionPenaltycan each take either values of
“high” or “low”, so that the model for a particular user might
be WrongMovePenalty= high, WrongQuestionPenalty=
low. This particular user would be conservative, with a pref-
erence to be asked questions repeatedly rather than risk be-
ing taken to the wrong location. With only four possible
dialog models, the state space is still discrete and small, and
we can now solve the model-uncertainty POMDP using a
standard algorithm (Pineau et al., 2003).

We show simulated results with this very simple scenario
of only four possible preference models in Figure 52. The
figure compares the performance of the policy without us-
ing meta-queries (left column) to the performance of the
policy with meta-queries. Each horizontal bar in the box
plot corresponds with the reward for a particular interaction.
As expected, the system which has the ability to ask meta-
queries can use the questions to gain information about the
user’s internal preference model. It is able to discern thatthe
user is very sensitive about incorrect movements, and there-

2This work previously appeared in (Doshi and Roy, 2007b).

No Meta−Actions With Meta−Actions

Effect of Meta−Actions On Total Reward

95

90

85

80

75

70

65

60

55

50

100

Figure 5: Boxplot of dialog manager performance with a
discrete set of four possible models. In this case, the user
is very intolerant to errors, but the learner does not initially
know this. Although the medians of the two policies are not
so different, the active learner (right) makes fewer mistakes
than the passive learner (left), leading to overall much less
user-annoying behavior.

fore it asks more confirmation questions before taking an
action. While the difference in medians is not extreme and
both learners do converge to a good policy, the reduction in
variance is substantial—which is particularly important in
dialog management, where users will likely find a system
that regularly makes mistakes annoying.

In Figure 6, we see similar improvements for the sce-
nario where the user is fairly tolerant to mistakes. Again,
the learning dialog manager outperforms the non-learner be-
cause it is able to determine the user’s internal preference
model and therefore ask fewer confirmation questions be-
fore acting.

Unfortunately, our approach of representing the user
model as discrete values (such asWrongQuestionPenalty=
low) does not scale well. Experimentally we found that
even a modest increase in the number of possible user mod-
els from 4 to 48 meant that the model-uncertainty POMDP
could no longer be solved using standard solution tech-
niques. While it may be possible to group the possible
combinations of user preferences into a few representative
models (since the effects of small changes to the preference
model may not be apparent to the user), discretizing other
parts of the user model such as vocabulary choices quickly
produces an exponential number of states. For example, for
each keyword the user might utter, we have to consider how
likely it is to be heard in each goal location. We therefore
turn to approximation techniques which will not only allow
us to represent a large set of possible user models, but will
also allow us to represent a continuous set of possible user
models.

without meta−actions with meta−actions
0

10

20

30

40

50

60

70

80

90

100

T
ot

al
 R

ew
ar

d

Effect of Meta−Actions on Total Reward,
 Forgiving User

Figure 6: Boxplot of dialog manager performance with a
discrete set of four possible models, lenient user. The effect
is not as dramatic, but again, the learning dialog manager is
able to adapt to the user’s preferences and outperform the
non-learner.

DIALOG MODEL LEARNING WITH BAYES RISK

• Sample POMDPs from a prior distribution over dia-
log models.

• Interact with the user:

– Use the dialog model samples to compute the ac-
tion with (approximately) minimum Bayes risk.

– If the risk is larger than a givenε, perform a meta-
query.

– Update each dialog model sample’s belief based
on the observation received from the user.

• Periodically resample from an updated prior over di-
alog models.

Table 1: Dialog model learning approach using Bayes risk
and meta-queries.

IIIB. Approximately Solving for a Dialog Policy

Instead of trying to solve for a dialog policy that incorporates
both the uncertainty of the user model and the uncertainty of
the user state, we separate the problem into two parts: first,
we use the current belief over models to establish a repre-
sentative set of candidate dialog models, and we solve for
the optimal policy in each model. We then use these models
to choose an action that has minimal risk; if the collection
of possible models decide that the risk of all other actions
is greater than the cost of asking a question, we ask a meta-
query to improve our estimate of the true user model and
reduce the risk of errors. As we interact with the user, we
update our collection of possible dialog models to reflect our
changing belief about the user model. Table 1 outlines our
approach for the continuous dialog parameter case.

Minimum Risk Action Selection If we know the correct
user modelm, then the optimal action to take (either con-
firming the user intent, or executing an action) isa∗. Let us
define a loss functionL(a,a∗), which describes the cost of
taking a different actiona. If we know this correct model
m then we can solve the model and compute the value of
each actiona using a standard POMDP solution algorithm
to solve equation 2. The loss function of can then be calcu-
lated asQ(b,a)−Q(b,a∗), wherea∗ is the optimal action.

We cannot calculateL(a,a∗) since we do not knowm, but
we do have a beliefpM(m) over models that allows us to
calculate the expected lossEM[L]. This expected loss is also
known as the “Bayes risk”:

BR(a) =

∫
M

(Qm(bm,a)−Qm(bm,a∗m))pM(m), (5)

whereM is the space of dialog models,bm is the current be-
lief over possible user intents according to dialog modelm,
anda∗m is the optimal action for the current beliefbm accord-
ing to dialog modelm. Let a′ = argmaxa∈ABR(a) be the
action with the least risk. If the riskBR(a′) is less than fixed
cost of a meta-query, that is, if the least expected loss is still
more than a certain threshold, we perform the meta-query,
otherwise we choose the actiona′.

Intuitively, equation 5 computes the potential loss due to
taking actiona instead of the optimal actiona∗ according
to dialog modelm weighted by the probability of model
m for all possible models. When we are sufficiently sure
about the model, the risk will be low; when we are unsure
about the model, the risk may be high but the series of meta-
queries will lead us to choose the correct action and avoid
the risk. We unfortunately cannot solve equation 5 exactly
because the integral is over the model parameters, and the
solution would require us to solve for the value functions
of an infinite number of POMDPs, but we can use numeri-
cal techniques to find an approximation. Our belief over user
states and user models gives us the probability of each model
p(m); if we draw sample models from this distribution, we
will draw many samples in regions wherep(m) is high and
few samples from wherep(m) is low. The more samples we
draw, the better the densities of the samples will represent
the distrubition from which they were drawn. Thus, we can
approximate equation 5 with the sum:

BR(a) =
∑

i

(Qi(bi ,a)−Qi(bi ,a
∗
i))wi , (6)

whereQi provides the value of taking actions from belief
states according to dialog samplei.

By drawing samples from the distributionp(m), we are
using the samples to approximate this distribution. The dis-
tribution over models will change over time, however, as the
wheelchair interacts with the user. It must therefore period-
ically update the sample of dialog models that it is using to
approximate its belief over models. If model samples are

drawn from the current distribution over models, the weight
wi of each model is simply1N , whereN is the number of sam-
ples. However, for computational reasons—since we must
solve every dialog model that we sample—it may be unde-
sirable to resample models every time some new information
changes our belief over possible models. In this case, the
original sample set of models can be re-used by changing
the weight of each model and representing the distribution
p(m) as a set of weighted samples. At each time step, the
weight of each model should be adjusted to be proportional
to the ratio of the previous likelihood of the sample and its
likelihood given new information. While it is possible to
provide formal bounds on the number of samples needed to
approximate the Bayes risk to a specified degree of accuracy,
these bounds are loose and in practice we found that fifteen
samples sufficed for our dialog management application.

POMDP Resampling In some cases, the set of weighted
samples may no longer accurately represent the true distri-
bution over models, requiring a new set of sample models
to be generated. The need for resampling may arise because
one of the models becomes far more likely than the other
dialog models in our sample set. If one model’s weightwi

is close to 1, and the rest are close to 0, then the risk will
appear to be quite small. This approximation is reasonable
when the risk is truly small, but we do not want the dialog
manager to become over-confident due to a poor set of can-
didate models. Another reason to resample models is that
an interaction may have provided information that made all
of the models in our current set very unlikely, and we would
like our sample set to reflect our current belief over the dia-
log parameters.

We have two sources of information when it is time to
update our sample set of dialog models. One source is the
history of the most recent dialog, which consists of action-
observation pairsh = {a,o}. Another source is the set of
meta-queriesQ = {(q, r,h′)}, whereh′ is the history of the
dialog from the initial belief to the query,q is the query, and
r is the user’s response to the query. Givenh and Q, the
posterior probabilitypM|h,Q over models is:

pM|h,Q(m|h,Q) = ηp(Q|m)p(h|m)pM(m) (7)

Note that if pM is a Dirichlet distribution, then
η′p(h|m)pM(m) also a Dirichlet distribution since the like-
lihood p(h|m) is product of multinomials. Recall that up-
dating the Dirichlet distribution corresponded to adding
counts—for example, if wheelchair observed the word
“printer” after asking the user where he wished to go when
the user truly wished to go to the printer, then we would
add 1 to the Dirichlet parameter for hearing “printer” given
a general query, true user goal is printer. The trouble is that
we never know the true user state—we only have actions and
observations.

Given a complete dialog, however, and assuming that it

is unlikely that the user switched their objective in mid-
dialog, it is possible to infer the most likely underlying states
from a history of actions and observations using the standard
forward-backward algorithm. We can use the output of this
algorithm to update the Dirichlet counts. This is a modified
form of the standard Expectation-Maximization algorithm,
and thus the prior will converge to some local optimal dia-
log model.

Incorporating meta-query information requires a different
approach, since each specific meta-query response provides
information about the dialog policy, not the dialog model
parameters. Unfortunately, we do not have a closed-form
expression forpM|h,Q, so we must use sampling to draw di-
alog model samples that are consistent with all of the meta-
queries that have been asked so far. Each query in the setQ
provides a constraint on the feasible set of dialog modelsM.
Dialog models are feasible if their policy is consistent with
the responses in the meta-query.

Computing this feasible set directly is intractable, how-
ever, given the setQ, we can check if a sampled dia-
log POMDP is consistent with the previous meta-query re-
sponses stored inQ. Thus, to sample POMDPs, we first
sample dialog POMDPs from the updated Dirichlet priors.
Next, we solve for the optimal policy of each model (which
can be done quickly, since each dialog model sample is dis-
crete and relatively small) and check if each diialog model’s
policy is consistent with the previous meta-query responses
stored inQ.

IV. Results
Simulation Figure 7 shows results from a simulated dia-
log manager for our wheelchair application. The states con-
sisted of locations where the user wanted to go, and the ob-
servations consisted of keywords extracted from utterances.
Actions included open-ended questions, confirming a partic-
ular state, and driving to a particular location. On the left, we
see the usefulness of the Bayes-risk approach (compared to
stochastic actions selection based on the weights of the sam-
pled models) when the reward model is known. In this case,
the Bayes risk action selection allows us to choose non-risky
actions.

The usefulness of our approach is even more dramatic
when the reward prior is uninformative (right). In this case,
the dialog manager can improve somewhat by simply pas-
sively updating its priors based on what it has heard. How-
ever, simply listening cannot provide the dialog manager in-
formation about the user’s preferences—something that the
passive dialog manager cannot do. Morever, since the sys-
tem asks the user for help whenever it is confused, the active-
learning system does not suffer from an initial dip in perfor-
mance. Initially, the dialog manager performs well because
it uses meta-queries to determine the correct course of ac-
tion. These meta-queries allow the system to learn the dialog
model and thus maintain a high level of performance.

0 5 10 15 20 25 30 35 40 45
−400

−350

−300

−250

−200

−150

−100

−50

0
Mean difference between optimal and system rewards when learning the observation spaces

m
ea

n
di

ffe
re

nc
e

in
 r

ew
ar

d

trial number

stochastic action selection

bayes−risk action selection

0 5 10 15 20 25 30 35 40 45 50
−12000

−10000

−8000

−6000

−4000

−2000

0

2000

trial number

m
ea

n
di

ffe
re

nc
e

in
 r

ew
ar

d

Dialog: Mean difference between optimal and system rewards when
learning both observation and reward spaces

no learning
passive learning
active learning

Figure 7: Dialog manager simulation results. Top: results
from learning only the observation model. Bottom: benefits
of active learning when learning both the observation and
reward model.

Robotic Wheelchair We also validated our approach on a
dialog manager for a robotic wheelchair with a simple user
study. The underlying POMDP, with 10 states, 38 observa-
tions, and 21 actions, used keywords from a voice recogni-
tion system output as observations. Initially, each state had
one strongly mapped observation (such as ‘printer’ for the
printer location). The remaining observations received uni-
form initial priors. Four users conducted 12-15 interactions
(20-25 minutes) with the system.

By asking meta-queries, the dialog manager was able to
successfully complete all 57 interactions without making a
serious error, that is, trying to drive the user to an incorrect
location. Table 2 shows that the proportion of dialogs with
meta-queries decreased significantly from the user’s initial
interactions with the system to his or her final interactions
with the system. The proportions are relatively high because
the users, being new with the system, asked for a variety
of locations or experimented with different vocabulary. In
Table 3, we see that the system often asked a meta-query
the first or second time a user asked to go to a particular
location, but there was a significant drop in the number of
meta-queries after the third time the user requested to go to
the same place. We note that our active-learning approach
allowed our dialog manager to determine the length of its

First half of interactions .79
Second half of interactions .48

Table 2: Proportion of dialogs with meta-queries by loca-
tion. The decrease in the number of meta-queries from the
second to the third time the location was asked for is statis-
tically significant at thep = 0.05 level.

How often place was re-
quested

First
time

Second
time

Third
Time

Total number of requests 29 15 8
Requests with meta-
queries

22 11 2

Proportion with meta-
queries

.76 .73 .25

Table 3: Proportion of dialogs with meta-queries. The
decrease in the proportion of queries is significant at the
p = 0.05 level.

training phase. Our trials were too small to draw strong con-
clusions from these results (especially since we were unable
to account for the effect of the novelty factor in the interac-
tions), but our quantitative analysis does show statistically
significant decreases in the number of meta-queries asked as
the dialog manager adapts to each user.

Next we present some sample dialogs to illustrate our sys-
tem’s learning. Table 4 contains a sample dialog where the
system used a meta-query to establish the meaning of a new
word. In the initial dialog, the word ‘forecast’ is new to the
system, that is, it has no prior on what that word may mean.
The system determines that the Bayes risk is great enough to
warrant asking for a policy clarification. As a result, future
dialogs are biased toward choosing POMDP samples that
satisfy the initial policy query request, which allows later
dialogs to avoid the same kind of training.

In Table 5, the system adapts to a situation where two
words, ‘coffee’ and ‘copy’ are often mistaken for each other
in the voice recognition system. We stress that at the begin-
ning of the dialog, the system was initialized to believe that
the word ‘coffee’ was most likely if the user wished to go to
the coffee machine, while the word ‘copy’ was most likely
if the user wished to go to the copy machine. The other key
words—“tea” and “kitchen”—-in this segment began with
uniform priors.

During the first conversation, the agent is confused by the
many new words. Even asking a meta-query, it is confused
that by hearing the word “copy,” even though the user seems
to want to go to the kitchen. After several interactions, it
goes to the correct location. We note that even in this tricky
scenario, the use of the meta-queries helped the agent fo-
cus on to the kitchen when the only word it recognized—
“copy”—seemed to indicate that the user wished to go to
another location. In the later dialog, we see the effect of

Early Conversation
ROBOT: How can I help you?
USER: Give me the forecast.
ROBOT: I’m confused. What action should I take
now?
The system pops up a meta-query window, and user
indicates action “show weather” is correct.
ROBOT: Showers.
Later Conversation (with the same user)
ROBOT: How can I help you?
USER: What’s the forecast for today?
ROBOT: Do you want the weather?
The system has partially the word “forecast” and con-
firms the correct state.
USER: Yup.
ROBOT: Showers.

Table 4: Learning a new word: The system learns the mean-
ing of a new word through a meta-query.

the learning: upon hearing the words “kitchen” and “copy,”
the agent correctly infers that the user wishes to drive to the
kitchen.

V. Discussion and Related Work
Prior work in POMDP learning has also considered incor-
porating the parameters of the POMDP as additional hid-
den states into a larger model-uncertainty POMDP. One ap-
proach, the Beetle algorithm (Poupart et al., 2006) solves the
problem analytically by casting an MDP with unknown pa-
rameters as a POMDP. However, this approach would be dif-
ficult to extend to the POMDP case as the state space would
now be doubly continuous and very high dimensional. Note
that our goal is policy learning, rather than explicitly learn-
ing a vocabulary as in (Lopes and Teixeira, 2000; Lopes and
Chauhan, 2007). We learn additional word models only as a
function of how they affect the policy.

An approach that is closer to ours is the Medusa algo-
rithm (Jaulmes et al., 2005). The Medusa algorithm also
samples POMDPs from a prior over model parameters, but
the actions are chosen stochastically and queries are made
to a state oracle, not for policy information. While the
Medusa approach can allow for faster learning, our action
selection criterion is more robust (something valuable for
dialog management applications with a robotic wheelchair)
and our queries provide a more natural way for the user to
provide feedback to the robot. To our knowledge, this is the
first example of using Bayesian reinforcement learning on a
real-world application.

VI. Conclusion
We developed an approach for active learning for dialog
managers that robustly adapts to different users. Meta-

Early Conversation
ROBOT: How can I help you?
USER: I want some tea from the kitchen.
ROBOT: How can I help you?
USER: The tea is in the kitchen near the coffee machine.
The system heard “copy” instead of “coffee” and is confused
about the new word “kitchen.”
ROBOT: How can I help you?
USER: Go to the kitchen.
ROBOT: I’m confused. What action should I take now?
The user indicates “Confirm the coffee machine area” is the
correct action.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
... The system asks a few more (non-meta) questions before
re-confirming the coffee machine state.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.
Later Conversation (with same user)
ROBOT: How can I help you?
USER: Take me to the kitchen.
The system hears a noisy combination of “nick” and
“kitchen” (mostly “kitchen”).
ROBOT: How can I help you?
USER: I want some coffee.
The system hears “copy” instead of “coffee,” but with its
learned observation model, it confirms correctly.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.

Table 5: Learning about observation noise: the system learns
new words for a noisy pair of states.

queries—questions about actions that the agent is thinking
of taking—and a risk-averse action selection criterion al-
lowed our agent to behave robustly even when its knowledge
of the POMDP model was uncertain. Moreover, we demon-
strated that this model could be successfully transferred to a
dialog manager on a robotic wheelchair.

References
Doshi, F. and Roy, N. (2007a). Efficient model learning for

dialog management. InProceedings of Human-Robot
Interaction (HRI 2007), Washington, DC.

Doshi, F. and Roy, N. (2007b). Efficient model learning
for dialog management. InTechnical Report SS-07-07,
Palo Alto, CA. AAAI Press.

Hoey, J., Poupart, P., Boutilier, C., and Mihailidis, A.
(2005). Pomdp models for assistive technology.IATSL
Technical Report.

Jaulmes, R., Pineau, J., and Precup, D. (2005). Learning
in non-stationary partially observable markov decision
processes. ECML Workshop.

Litman, D., Singh, S., Kearns, M., and Walker, M. (2000).

NJFun: a reinforcement learning spoken dialogue sys-
tem. InProceedings of the ANLP/NAACL 2000 Work-
shop on Conversational Systems, Seattle.

Lopes, L. S. and Chauhan, A. (2007). How many words
can my robot learn? an approach and experiments with
one-class learning.Interaction Studies, 8(1):53–81.

Lopes, L. S. and Teixeira, A. (2000). Human-robot inter-
action through spoken language dialogue. InProceed-
ings IEEE/RSJ International Conference on Intelligent
Robots and Systems(IROS), pages 528–534.

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based
value iteration: An anytime algorithm for pomdps.IJ-
CAI.

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. (2006).
An analytic solution to discrete bayesian reinforcement
learning. In ICML, pages 697–704, New York, NY,
USA. ACM Press.

Roy, N., Pineau, J., and Thrun, S. (2000). Spoken dia-
logue management using probabilistic reasoning. In
Proceedings of the 38th Annual Meeting of the ACL,
Hong Kong.

Williams, J. and Young, S. (2005). Scaling up pomdps
for dialogue management: The ”summary pomdp”
method. InProceedings of the IEEE ASRU Workshop.

