
Real-World Deployment of a Hierarchical Uncertainty-Aware
Collaborative Multiagent Planning System

Martina Stadler Kurtz∗1, Samuel Prentice∗1, Yasmin Veys1, Long Quang2, Carlos Nieto-Granda2,
Michael Novitzky3, Ethan Stump2, and Nicholas Roy1

Abstract— We would like to enable a collaborative multiagent
team to navigate at long length scales and under uncertainty
in real-world environments. In practice, planning complexity
scales with the number of agents in the team, with the length
scale of the environment, and with environmental uncertainty.
Enabling tractable planning requires developing abstract mod-
els that can represent complex, high-quality plans. However,
such models often abstract away information needed to generate
directly-executable plans for real-world agents in real-world
environments, as planning in such detail, especially in the
presence of real-world uncertainty, would be computationally
intractable. In this paper, we describe the deployment of a
planning system that used a hierarchy of planners to exe-
cute collaborative multiagent navigation tasks in real-world,
unknown environments. By developing a planning system that
was robust to failures at every level of the planning hierarchy,
we enabled the team to complete collaborative navigation
tasks, even in the presence of imperfect planning abstractions
and real-world uncertainty. We deployed our approach on a
Clearpath Husky-Jackal team navigating in a structured out-
door environment, and demonstrated that the system enabled
the agents to successfully execute collaborative plans.

I. INTRODUCTION

We would like to enable a team of robots to carry
out collaborative missions autonomously in an unknown
environment. For example, consider the team of agents
navigating in the structured outdoor environment in Fig. 1-
a, modeled as the graph in Fig. 1-b. When the agents plan
collaboratively, they can take advantage of agent locations
and traits to reduce the time to complete the whole mission
as a team. In this example, the quicker Jackal robot senses
the traversability of an unknown edge for the slower Husky
robot. The observations from the Jackal enable the Husky
to avoid slow, expensive backtracking when the edge is
discovered to be untraversable, reducing the Husky plan cost
and the overall team traversal time as compared to a non-
collaborative baseline.

Unfortunately, generating good collaborative team plans
can be computationally intractable as the size of the environ-
ment and team increases, since generating high-quality team
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Fig. 1. a) In this work, we discuss the deployment of a collaborative
multiagent planner for a two agent team consisting of a Clearpath Jackal
and a Clearpath Husky in a real-world structured outdoor environment. b)
Consider the Jackal and Husky navigating from starts SJ and SH to goals
GJ and GH, respectively, given a navigation graph (green), where one edge
has unknown traversability (red). c) When the agents plan independently,
the Husky attempts to navigate to the goal via the unknown edge, senses
that the edge is untraversable, and then backtracks to the goal via a long,
traversable path (trajectory shown in yellow-orange); meanwhile, the Jackal
navigates directly to its goal (trajectory shown in blue-green). d) When the
agents plan to collaboratively minimize team makespan, the quicker Jackal
diverts from the shortest path to its goal to sense the traversability of the
unknown edge for the Husky, while the Husky waits in place for additional
information. After sensing that the edge is untraversable, both the Jackal
and the Husky navigate to their respective goals.

plans under uncertainty requires answering three questions:
what is useful to explore given the team objective(s), by when
does the team need the explored information to improve
planning performance, and who should explore. Answering
these questions directly requires a collaborative team to
reason over a Partially Observable Markov Decision Process
(POMDP) with large action and observation spaces, long
time horizons, and delayed rewards, which is unlikely to
be computationally tractable in real-world environments. To
enable tractable, online planning for deployments in complex
environments, we need to develop abstract models of the
planning problem that reduce planning complexity.

In prior work, we developed a method for collaborative
multiagent planning on abstract roadmaps, or motion graphs,
where some graph edges were assumed to be probabilistically
traversable [1]; the representation was selected to capture
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traversability uncertainty in unknown environments. First,
we developed multiagent macro-actions that efficiently repre-
sented good collaborative team behaviors under uncertainty.
Second, we developed a macro-action pruning scheme that
relied on an optimistic, Monte Carlo (MC) rollout-based
value function approximator to estimate the effects of can-
didate future beliefs on team planning performance. Using
the approach, we demonstrated the ability to find low-cost
team policies that actively balanced between reducing task-
relevant environmental uncertainty and efficiently navigating
to goals. However, there is a trade-off to make between
planning model complexity and real-world plan executability.
As our models become more abstract to enable more efficient
high-level planning, model properties that are needed to
represent plan execution can become abstracted away. The
challenges of executing abstract plans are exacerbated in
real-world deployments, where real-world uncertainty, timing
delays, and robot failures stress the relationship between the
planning abstraction and real-world robot actions. For exam-
ple, while the abstract motion graph model enabled efficient
team planning, the output of the planner was graph-based
macro-actions (i.e., sequences of motion, observation, and
wait actions in the graph) that were not directly executable
in a real-world environment.

To enable the real-world deployment of our collaborative
multiagent planner, we developed a hierarchical planning
system capable of generating abstract high-level plans and
converting them into executable motor commands for real-
world agents. The planner generated abstract, collabora-
tive team plans, single-agent macro-action-based plans, and
primitive action plans that could be directly executed on
robots, all while maintaining plan consistency throughout the
hierarchy and being robust to real-world uncertainty and dis-
turbances.Our system was designed to handle both the theo-
retical and practical challenges of field robotics deployments.
These challenges included grounding an abstract navigation
graph and a graph-based team in a real-world environment,
robustly executing abstract macro-actions in the presence of
real-world disturbances, and coordinating teammates during
the execution of variable-duration actions caused by both the
planning abstraction and real-world uncertainty. We deployed
our approach on a Clearpath Husky-Jackal team navigating
in a structured outdoor environment, and showed that our
system resulted in real-world collaborative team behaviors.

II. RELATED WORK

The Canadian Traveller’s Problem (CTP) has been used
as a tool to study the complexity of navigation on graphs
with stochastic edges [2]. Various extensions to the original
problem have been made, including to agents with remote
sensing [3], and to graphs with specific structures that admit
simple optimal policies [4]. Other approaches use approxi-
mation strategies to generate high-quality policies for general
CTP graphs [5]. Additionally, policies have been developed
for multi-trial CTPs [6] and multiagent CTPs [3] for limited
teams (i.e., teams where sensing agents have limited dynam-
ics and no independent tasks). Most recently, we developed

an approach for generating high-quality multiagent policies
for CTPs which minimize team makespans for one ground
vehicle/n air vehicle teams [1].

Concurrently, other approaches have been developed for
graph-based, risk-aware single-agent navigation under edge
cost uncertainty. For example, Murphy and Newman [7] de-
veloped an approach for generating stochastic graphs, given
overhead imagery, and for generating plans in the graphs
with bounded risk. Other approaches developed methods for
online planning with uncertain edge costs and online edge
cost sensing. Dey et. al. [8] used a Monte Carlo based
approach to generate agent policies given Gaussian process-
based edge cost assignments, and Chung et. al. [9] developed
a risk-aware search technique for planning with uncertain
edge costs and sensing.

Finally, this work relies on core robot autonomy capa-
bilities, including GPS-based state estimation, GPS-enabled
Omnimapper-based mapping [10], EASL-based global plan-
ning [11], and MPPI-based local planning [12]. While our
technique is not limited to the use of these specific tech-
niques, the importance of a capable, reliable base autonomy
system for field experiments cannot be overstated.

III. APPROACH

In this section, we briefly discuss the collaborative multi-
agent planning approach developed in [1]. Then, we discuss
the hierarchical planner developed for online, collaborative
team planning in the real-world, and highlight challenges and
opportunities from deploying the system.

A. Collaborative Multiagent Planning Under Uncertainty

In prior work, we formulated the problem of collaborative
multiagent planning under uncertainty as a POMDP. We
modeled the environment as a stochastic navigation graph
with unknown edge traversabilities. In the graph, nodes indi-
cated locations, edges indicated possible paths, and each edge
was assigned a traversability probability, or a probability that
the edge was traversable during a given planning trial1. The
true traversability of each edge in the graph was assumed to
be static throughout the planning trial, and could be observed
by navigating to a node adjacent to the edge. Historically, the
problem of planning on stochastic graphs was studied for
single-agent navigation, and state-of-the-art techniques used
Monte Carlo methods to generate high-quality agent policies
by approximating expected future plan costs and trading off
between exploring unknown, potentially low cost paths to
the goal, and exploiting the current best known path to the
goal [13].

The goal of our prior work was to generate collaborative
plans for teams navigating on stochastic graphs. Formally, the
planning objective was to minimize the expected makespan
for a team of agents navigating from individual starts to
goals in the graph. In this problem, agents not only had

1This graph is similar to the stochastic graph developed in the Canadian
Traveller’s Problem (CTP), which was designed to model route finding in
Canada; roads were assumed to be snowed in and impassable with some
probability.
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Fig. 2. Overview of of the hierarchical planning system. Multiagent
planning, which occurred at a centralized base station, generated macro-
actions for each agent in the team. The macro-actions were then sent to the
individual agents, where they were processed and executed as sequences
of primitive actions, using information from each agent’s individual core
autonomy pipeline.

to trade off exploring and exploiting paths to reach their
own goals, but they also had to reason about whether or
not they could sense information that would be helpful to a
teammate. To increase the tractability of solving this com-
plex multiagent POMDP, we designed collaborative macro-
actions, or sequences of primitive actions, that were capable
of representing good single-agent and collaborative plans in
the unknown environment. The macro-actions were designed
to capture intuitively useful agent behaviors in a single
planning step; for example, we developed a macro-action
that consisted of the actions an agent would take to navigate
to and sense an unknown edge in the environment (see Fig.
4). By representing the collaborative sensing behavior as a
single macro-action, we enabled the planner to reason about
the benefit of sensing in a single planning step. Without
macro-actions, the planner would have had to reason about
the collaborative value of an agent navigating one step in the
direction of the unknown edge, which is challenging because
the benefit of the action is only obvious after a number of
timesteps, when the agent reaches and senses the unknown
edge. Along with the macro-action that modeled an agent
navigating to sense the traversability of an edge, we also
developed macro-actions that modeled an agent navigating
via one or more known traversable edges to the goal, and
an agent waiting in place for information to be sensed by a
teammate.

While the macro-actions described reduced the depth of
collaborative multiagent planning, there were still a large
number of macro-actions to consider at every planning step.
Most of the macro-actions, like those that sensed edges that
were not on low cost paths to the goal, were unlikely to
improve team planning performance. We developed macro-
action-based value functions that enabled the planner to
quickly prune macro-actions that were unlikely to lead to
high-quality collaborative plans from the plan space. For
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a) The planer diverts the Jackal to 
sense the unknown edge.

b) When the edge is traversable, 
the planner selects the short 
Husky path to the goal.

GH
SH

c) When the edge is untraversable, 
the planner selects the long Husky 
path to the goal.

Fig. 3. An example collaborative team plan. The Jackal and Husky were
tasked with navigating from SJ and SH to GJ and GH, respectively, by
executing actions on a pre-defined abstract motion graph (green) where
some edges had unknown traversabilities (red). In collaborative plans, agents
took actions that were individually suboptimal to reduce the expected team
makespan. Here, the Jackal diverted from its optimal path to the goal to
sense and share the traversability of the unknown edge (a), while the Husky
waited for the edge traversability information. Then, the Husky used the
information to select the best traversable path to its goal, which reduced its
expected plan cost (b-c).

additional details about the approach, please refer to [1].

B. Real-World Planning System Overview

To deploy the system in the real-world, we developed a
hierarchical planning system; an overview of the system is
shown in Fig. 2. A stochastic navigation graph and agent
goals were provided as inputs to the collaborative planner,
which was run at a centralized base station. At each planning
step, the centralized planner generated a macro-action for
each agent to execute and communicated the macro-actions
to the agents. Then, the agents executed the macro-actions
onboard using a bi-level planner. At the higher planning
level, the agent sequenced primitive action goals based on the
macro-action, monitored primitive action outcomes, and had
some limited ability to adjust primitive action goals based
on primitive planning outcomes; for additional details, see
Section III-F. At the lower planning level, agents planned for
and executed primitive actions, which included navigating
along an edge, sensing the traversability of an edge, and
waiting in place for a specific amount of time. Each agent
also used a core autonomy pipeline, which included GPS-
based state estimation, GPS-enabled local mapping, and a
low-level controller capable of executing motor commands,
for primitive action execution. In the following sections,
we discuss each of the system components and associated
challenges in more detail.

C. Multiagent Collaborative Planning on Abstract Graphs

The first level of the hierarchical planning system was
collaborative team planning, based on an abstract motion
graph of the environment and pre-specified agent starts and
goals; an example collaborative plan is shown in Fig. 3.
Unfortunately, generating high-quality abstract graphs, which
must efficiently (i.e., sparsely) represent high-quality, real-
world agent traversals, but must also generate plans that
can be grounded by real-world agents, is an active area of
research [14]. In this work, we hand-generated an initial
graph of the environment based on overhead imagery, where
each node was associated with a GPS coordinate, and we
fine-tuned the graph in the field to account for offsets and
errors resulting from stale, low-fidelity overhead imagery.
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Fig. 4. An example macro-action (orange) that represents an agent first
navigating from node A to B to C, and then sensing the traversability of the
unknown edge C-D (gold star). The inlay depicts goal adjustment, which
enables an agent to navigate to a location close to the original GPS location
associated with the target node, if navigation to the target GPS location is
deemed infeasible. This adjustment enables the agent to be robust to various
types of uncertainty during planning, including minor pose drift, minor map
noise, and small changes in the environment structure.

Additionally, we added deterministic edges between nodes
where we expected that a valid, real-world traversal existed
(e.g., when nodes were connected via roads), and we also
added probabilistically traversable edges (with probability of
being untraversable ρ) where we expected that a valid, real-
world traversal may exist (e.g., when nodes were connected
via a forested area). While edges and traversability proba-
bilities were hand-defined in this work, we are interested in
auto-generating graphs from remotely available information,
like overhead imagery, in future work.

We also used GPS throughout the deployment to correlate
real-world agent locations with nodes in the graph. This was
especially useful on startup, as we used GPS coordinates
to define an initial alignment between team members in a
global reference frame. While using GPS was effective in
our GPS-enabled environment, we are interested in exploring
GPS-denied planning in the future. For example, it may be
possible to generate a common team reference frame based
on co-observed features on startup, or during planning using
a distributed multiagent SLAM pipeline (e.g., [15]).

D. Executing Macro-actions for Collaborative Planning

The second level of the hierarchical planner was the
macro-action planner, which translated agent macro-actions
into subgoals that could be executed in the real world.
The planner processed macro-actions into sequences of exe-
cutable primitive actions, monitored primitive action results,
and combined the results of primitive action sequences into
macro-action results (i.e., success or failure) that could
be processed by the high-level collaborative planner. An
example macro-action is shown in Fig. 4; the agent navigates
from its current location, node A, to nodes B and C, and then
to observe the traversability of the edge, C-D.

E. Primitive Actions

Finally, the lowest level of the planner consisted of prim-
itive action planners that generated executable robot com-
mands. Specifically, the planners enabled robots to navigate

along graph edges, sense the traversabilities of edges, and
wait in place for a specific amount of time.

1) Navigation Actions: First, we developed a planner for
navigating along a graph edge. Given the GPS coordinates
corresponding to the source and target nodes of the edge,
we set the agent navigation goal to be a region around the
GPS coordinate of the target node; in the field trials, we
used a circular region with a 3 meter radius. Then, we used
a global planner, the EASL planner [11], to generate a 2D
plan between the agent’s current location and the goal, where
the planner used the agent’s local occupancy map to avoid
obstacles. Finally, we used an MPPI planner [12] to generate
agent motor commands to follow the EASL plan to the goal.

The primitive navigation planner was designed to be robust
to various forms of real-world environmental uncertainty.
By not constraining the agent to directly navigate along
the graph edge (i.e., using a Euclidean path), we enabled
the agent to react to local environment changes that did
not impact global planning. For example, during field trials,
an agent was able to navigate around an overgrown bush
on the Euclidean path to its next node without impacting
other levels of the planner. Additionally, the hierarchical
approach enabled us to tune low-level planner parameters
for individual agents without impacting the higher levels of
the planning pipeline. This was especially useful for the
MPPI planner, which used various parameters related to
agent dynamics that varied across our vehicles.

2) Observation Actions: Second, we developed an ob-
servation action that enabled an agent to sense the local
traversability of an adjacent edge. We used the current agent
occupancy map and the EASL planner to generate a 2D plan
from the current agent location to a point 20 meters along
the unknown edge. Then, we the compared the EASL plan
cost to the Euclidean distance between the two points. If the
EASL plan cost exceeded 120% of the Euclidean distance
cost, the edge was marked untraversable; otherwise, the edge
was marked traversable. Intuitively, this method tested if an
agent could navigate along a graph edge without taking a
significant detour, based on its local occupancy map. While
the edge observation function used in our tests was primitive,
other functions that report binary edge traversability based on
local observations could be used in our pipeline. In future
work, we are interested in generating binary observations
based on other local traversability observation functions
(e.g. [16]). We are also interested in exploring semantically
informed observation functions (e.g., a function which marks
an edge as traversable unless a suspicious barrel is present
in the local map or agent camera images).

3) Wait Actions: Finally, we developed a wait action,
which caused an agent to wait in place for a specified
duration. This enabled an agent to wait in place to receive
traversability observations from a teammate before making
a decision about its next action. The wait action prevented
costly backtracking when an agent did not have sufficient
information to immediately make a high-quality planning
decision, but a teammate was able to inexpensively sense
the relevant information.
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Fig. 5. Examples of macro-action interrupts (received when the agents are
at the red Xs) and their impacts on planning. When an agent received an
interrupt message during primitive action execution, it completed its current
primitive navigation action and any directly succeeding sensing actions, then
terminated the current macro-action, communicated with the base station,
and waited to receive an updated plan.

F. Robust Macro-action Execution

Unfortunately, planning abstractions are often imperfect,
and discrepancies in planning abstractions at various levels
of the planning hierarchy can lead to various types of planner
failures. For example, a low-level planning failure could be
caused by the low-level planner, or it could be a result of
a poor abstraction, like a poorly chosen GPS coordinate for
a node (e.g., a coordinate that is in a bush). Hierarchical
planners that are not robust to failures at various levels of of
the planning system are likely to fail catastrophically.

In this work, after observing a number of primitive
waypoint-based navigation failures, we updated the macro-
action planner to be robust to such failures. Specifically,
we modified the macro-action planner to re-attempt similar
primitive navigation actions upon primitive action failure,
rather than directly marking the macro-action as failed and
reporting the failure to the abstract planner. The macro-
action planner defined four alternative navigation goals for
each node (x,y): (x+ δ ,y),(x− δ ,y),(x,y+ δ ), and (x,y−
δ ). If the agent failed to navigate to the original and all
alternative goals, we assumed the primitive navigation action
was unsuccessful, and the macro-action failed. However,
if the agent successfully navigated to the original goal or
any of the alternative goals, then the primitive action was
considered successful, and the macro-action continued2. In
the experiments, we let δ = 0.5m. While this macro-action
planner modification was simple, it reduced the number of
catastrophic failures experienced by the system, and demon-
strated the importance of robustness across planning layers
in hierarchical planning systems.

G. Variable-Duration Macro-Actions

Finally, we developed a method for coordinating team-
mates executing variable-duration macro-actions, like when
agents execute macro-actions that represent traversals of
graph edges with different weights. Unfortunately, it is not

2While this modification is similar to increasing the radius of the
navigation goal region, we found that it resulted in more stable MPPI plans.

obvious how the team should plan when one agent success-
fully completes a macro-action, but another teammate is in
the process of executing a macro-action.

We developed a planning approach that enabled the team
to execute variable-length macro-actions online. Specifically,
when any agent completed a macro-action, it sent the result
of the macro-action (navigation success or failure, current
state, and any traversability observations) to the centralized
planner at the base station. Then, all other agents received
an interrupt, or a message indicating that the agent should
terminate its current action as soon as possible, send action
results to the base station, and wait to receive a new plan.
If an agent received an interrupt message at the terminal
state of a primitive action, then the macro-action terminated
immediately, and the agent sent the macro-action result to the
planner. Otherwise, the agent completed its current primitive
navigation action and any observation actions that directly
succeeded the navigation action, and then terminated the cur-
rent macro-action and sent the action result to the centralized
planner. For example, consider the agent in Fig. 5 executing
the macro-action of navigating from node A to node C,
with the goal of sensing edge C-D. If the agent received
an interrupt message when navigating between nodes A and
B, the agent completed the primitive navigation action to
node B, then terminated the macro-action, communicated
with the base station, and waited for a replan. However,
if the agent received an interrupt message when navigating
between nodes B and C, the agent completed the primitive
navigation action to node C, sensed the traversability of edge
C-D, and then terminated the macro-action, communicated
with the base station (including the traversability observation
of edge C-D), and waited for a replan. Finally, once all
agents terminated their current macro-actions, the centralized
planner replanned for the entire team and sent new macro-
actions to each agent.

The interrupt scheme enabled the team to quickly react
to new information while ensuring that each agent remained
in a valid configuration in the abstract graph. If an agent
terminated its current action immediately after receiving an
interrupt, its state may not be valid in the graph, and it would
not be obvious how to generate a new graph-based plan for
the agent. In future work, we are interested in developing
methods that modify the abstract graph representation based
on agent locations during interrupts. For example, if an
agent is interrupted while navigating along a graph edge
to a waypoint, it may be possible to add a node to the
abstract graph at the agent interrupt location, and to split the
current graph edge into two edges that represent the traversed
and untraversed portions of the current edge, respectively.
Finally, while this work does not directly aim to address
the research problem of intermittent communications, the
interrupt-based planner is robust to minor communication
delays, and its lightweight messaging is tolerant of non-
catastrophic outages.
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Fig. 6. a) Graph-based plans selected by the non-collaborative baseline planner, visualized over the abstract navigation graph. The Jackal (blue) with start
SJ and goal GJ navigated directly to its goal, while the Husky (orange) with start SH and goal GH navigated to the unknown edge, sensed that it was
untraversable, and then backtracked to the goal via the long, traversable path. b) Graph-based plans selected by the collaborative planner, visualized over
the abstract navigation graph. The Jackal (blue) with start SJ and goal GJ diverted to the gold star to sense the unknown edge, and shared the untraversable
edge observation with the Husky. Then, the Jackal navigated to its goal. The Husky (orange) with start SH and goal GH waited to receive the edge
observation from the Jackal, then navigated directly to its goal via the long, traversable path. Note that some trajectories were hand-annotated from raw
agent outputs for clarity and due to agent/ground station communication drops.
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Fig. 7. Trajectories traversed by the Jackal (blue-green) and Husky (yellow-
orange) while executing the graph-based plans described in Fig. 6. Real-
world trajectories are similar to the graph-based plans. Trajectories, starts,
and goals are approximately scaled and hand-aligned on the overhead image.

IV. RESULTS AND EXPERIMENTS

We evaluated the system in real-world deployments in a
structured outdoor environment; an overhead image of the
environment is shown in Fig. 1-a. We evaluated our approach
on a heterogeneous, two agent team consisting of a Clearpath
Jackal and a Clearpath Husky. Both agents were equipped
with an Intel NUC11PH computer, a Microstrain 3DM-GX5-
AHRS IMU, and a u-blox M8U GPS module, which pro-
vided GPS-based agent position estimates during the trials.
Additionally, the Jackal was equipped with an Ouster OS1-32
LIDAR sensor, and the Husky was equipped with a Velodyne
VLP-16 LIDAR sensor. Both agents were equipped with a
core autonomy pipeline, which included GPS-based state
estimation and an Omnimapper-based [10], GPS-enabled
local mapping pipeline. All multiagent planning occurred
on a centralized base station laptop, and the base station
and agents communicated using a ROS multimaster system
over a Silvus radio network. Finally, it was assumed that the
Jackal speed was 8x faster than the Husky speed.

We evaluated the qualitative planning performance of
the agents in various trials. In Fig. 6, we compare the
graph-based macro-actions selected by the collaborative and
baseline planners during two successful planning trials. In
the baseline, non-collaborative planning trial, the Jackal
navigated directly to its goal, while the Husky attempted
to navigate to its goal via the unknown edge (red). After
the Husky arrived at the edge and sensed that it was un-
traversable, the Husky backtracked and navigated to its goal
via a long, traversable path. In the collaborative planning
trial, the Jackal diverted from the shortest path to the goal
to sense the traversability of the unknown edge (red) at the
gold star and relay the information to the Husky, while the
Husky waited for information about the edge. After receiving
the Jackal observation that the edge was not traversable, the
Husky navigated directly to its goal via the long, traversable
path. In Fig. 7, we plot the trajectories traversed by the agents
while executing the macro-action plans; trajectories, starts,
and goals are approximately scaled and hand-aligned over the
overhead image. Note that in the baseline trial, the Husky
became stuck navigating up a steep hill while attempting
to execute the final two edges to the goal. Also, in some
trials, MPPI became stuck while trying to navigate around an

Graph
Distance
traveled,
Husky (m)

Graph
Distance
traveled,
Jackal (m)

Husky
Wait
Time
(s)

Jackal
Wait
Time
(s)

Collaborative
Planner

156.71 100.04 10.0 0.0

Non-
Collaborative
Planner

257.97 25.83 0.0 0.0

TABLE I. AGENT WAIT TIMES IN SECONDS AND PLAN COSTS IN

METERS IN THE ABSTRACT GRAPH WHEN PLANNING USING THE

COLLABORATIVE AND NON-COLLABORATIVE PLANNERS.

Quantity Type
4 Low-level (EASL/MPPI) navi-

gation failure
1 Incorrect observation function

output

TABLE II. SUMMARY OF FAILED TRIALS.

obstacle (e.g. car, bush), and an operator briefly teleoperated
the robot to enable the robot to continue to make progress
towards completing the primitive action. For this reason, we
do not report the total execution time or distance traveled
for the agents. However, it is possible to compare the plan
costs for the agents in the abstract graph; we report the
graph distance of each agent’s planned trajectory, as well
as the durations of planned wait actions, in Table I. In the
collaborative trial, the Jackal travels further to sense the
edge for the Husky, significantly reducing the graph distance
traveled by the Husky. In the non-collaborative trials, the
Jackal graph distance traveled is very low, but at the expense
of a longer Husky trajectory. The results are consistent with
the understanding that optimizing a team makespan requires
a planner to trade off between the performances of the
different agents.

While we were able to demonstrate successful collabora-
tive multiagent planning, we also observed various failures
during testing. In Table II, we summarize failure types which
resulted in trial termination and their frequencies.

V. DISCUSSION

While abstract planning representations are often neces-
sary for efficiently solving complex planning problems, like
problems in large or uncertain environments, or problems
that involve teams of agents, significant challenges arise
when executing abstract plans on real agents in real-world
environments. First, building a representative abstraction of
a real-world environment that is efficient for high-level
planning, but that produces plans that can be translated into
real-world executions, is an open research question. We are
exploring methods for automatically generating abstract nav-
igation graphs from polygonal environment models [14] and
overhead images. While this will reduce operator burden, it is
unlikely that the auto-generated graphs, like our hand-drawn
graphs, will be fully representative of planning environments
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unless they have access to additional environment informa-
tion, some of which may only be available during planning.
We are exploring techniques to modify the navigation graph
abstraction online based on local sensor data.

This work also demonstrated that robust hierarchical plan-
ning systems can overcome some of the challenges that
arise from imperfect planning abstractions. Specifically, by
increasing the robustness of planners at different levels of
the planning hierarchy, we were able to overcome small
discrepancies in the planning abstraction (like having a
navigation waypoint in a bush next to a road, instead of
on the road itself) without causing catastrophic planning
failures. In future work, we are interested in exploring other
ways to make our hierarchical planning system more robust,
including reconsidering traditional definitions of plan failure
at each level in the planning hierarchy.

Finally, the proposed approach was developed for a cen-
tralized team with full communication. While our macro-
action message passing scheme was lightweight, and our
interrupt planner was capable of handling minor communi-
cation delays, in future work, we would like to modify the
approach to explicitly handle more challenging communica-
tion environments.

VI. CONCLUSION

As roboticists move towards deployments of bigger teams
in larger, more complex environments, it will be necessary
to develop abstract representations for complex planning
problems that are still amenable to robust plan execution
in real-world environments. In this work, we demonstrated
the ability of hierarchical planning systems to bridge the
gap between abstract planning and real-world execution.
We deployed a collaborative multiagent planner on a Jackal
and Husky team using a hierarchical planning system, and
demonstrated collaborative planning performance in a real-
world structured outdoor environment. In future work, we
are interested in improving methods for offline and online
abstract planning representation generation, exploring meth-
ods for generating hierarchical planners that are robust at
every planning level, and expanding our technique to more
complex communication environments.
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