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Abstract

Ships often use the coasts of continents for navigation in
the absence of better tools such as GPS, since being close to
land allows sailors to determine with high accuracy where
they are. Similarly for mobile robots, in many environments
global and accurate localization is not always feasible. En-
vironments can lack features, and dynamic obstacles such
as people can confuse and block sensors.

In this paper, we demonstrate a technique for generat-
ing trajectories that take into account both the information
content of the environment, and the density of the people
in the environment. These trajectories reduce the average
positional certainty as the robot moves, reducing the likeli-
hood the robot will become lost at any point. Our method
was successfully implemented and used by the mobile robot
Minerva, a museum tourguide robot, for a 2 week period in
the Smithsonian National Museum of American History.

1 Introduction

One essential component of any operational mobile robot
system is the ability for the robot to localize itself; that is, to
determine its position in space consistently and accurately
from sensor data. Dead reckoning using only odometry
data does not solve this problem; small errors in odom-
etry build up quickly, eventually causing dramatic errors
in the robot’s belief of its position. Over distances longer
than a few meters, the robot must use information from

its environment to track where it is. There are many suc-
cessful localization methods that can determine the robot’s
position relative to a map using sonar, laser and camera
data [SD98, FBT98, FBTC98, KCK96].

However, most localization methods fail under common
environmental conditions. Proximity sensors such as laser
or sonar range-finders have finite range, which means that in
sufficiently wide-open spaces, they cannot see anything to
use as a reference point. Such sensors can also be fooled by
unmodelled or dynamic obstacles; people moving around
the robot are a very good example of unmodelled, dynamic
obstacles. Cameras can also fail in regions which lack suffi-
cient visual structure, such as blank walls or ceilings. Since
these environmental conditions are relatively common, a
mobile robot navigating reliably in the real world must al-
low for the potential failure of its localization methods.

Our solution to these problems is inspired by traditional
navigation of ships. Ships often use the coasts of continents
for navigation in the absence of better tools such as GPS,
since being close to the land allows sailors to determine with
high accuracy where they are. The success of this method
results from coast lines containing enough information in
their structure for accurate localization. By navigating suf-
ficiently close to areas of the map that have high information
content, the likelihood of getting lost can be minimized.

The coastal navigation technique1 consists of the follow-
ing:

1The term “coastal navigation was suggested by Thomas Christaller in
a private communication about the work reported here.



• Modelling the information content of the environment.
The model accounts both for sensor limitations and un-
modelled, dynamic obstacles.

• Planning trajectories that account for the information
content model of the environment and obstacle informa-
tion in the map, respecting localization uncertainty.

In the following sections, we first develop the coastal
navigation model of the information content of the environ-
ment, starting with the sensor limitations and then account-
ing for dynamic obstacles. Secondly, we develop a method
of combining the information content with the path planner
to generate plans that reduce the expected localization error.
Finally we show experimental results.

The framework that we use for navigation is a proba-
bilistic one. Figure 1 shows an overhead (bird’s-eye view)
of an example environment. This map is a probabilistic oc-
cupancy grid [ME85, Elf90]. This map is the National Mu-
seum of American History (NMAH), and was learned by
the robot Minerva as part of a demonstration of robot tech-
nology. The NMAH has two features relevant to developing
coastal navigation: large areas with minimal environmental
structure, and dynamic obstacles.

Figure 1: On the left is an example map of the National Museum of Ameri-
can History. The white areas correspond to open space, and the black areas
are walls, or occupied space. The size of this map is 53m by 67m. On the
right is Minerva, the robot used in the museum.

Figure 1 shows Minerva, the RWI B-18 base used in the
museum. The sensors used to generate this map were two
SICK laser range finders which provide 360◦ field of view
around the robot at 45cm height, with an angular resolution
of 1◦.

The primary result of this paper is that we were able to
reduce the average positional uncertainty on a real robot,
in a large, open and extremely dynamic environment (the
museum). We will show experimental results for trajecto-
ries in the museum, including a detailed case of a specific
trajectory. The coastal navigator in fact was in successful
operation in the adverse conditions of the museum, over a
long-term period of two weeks.

2 Previous Work

Developing motion planning algorithms based on po-
sitional uncertainty is not a new idea. Erdmann devel-
oped motion planning strategies with uncertainty [Erd84]

and probabilistic strategies. Nourbakhsh and col-
leagues [NPB95] developed probabilistic navigation tech-
niques on DERVISH, a robot similar in many respects to
Minerva.

Considerable work in in the field of partially observable
Markov decision processes (POMDPs) [CKL94, KS96] has
allowed many mobile robots to model positional uncertainty
explicitly. However, one drawback to the use of tradi-
tional POMDPs is that they can become computationally
intractable with a large number of states. Markov localiza-
tion, however, has been used successfully on multiple robot
platforms [KCK96, FBT98].

Work has been done on trajectory generation with re-
spect to positional uncertainty; Takeda et al. [TFL94] do
not use the localization process to generate the positional
uncertainty across space, but generate probability distribu-
tions based on an explicit model of the sensor. Furthermore,
the environment is assumed to be static, so the effect of dy-
namic obstacles on localization is not modelled.

3 Modelling Information Content

The motivation for coastal navigation is generating tra-
jectories for the mobile robot that reduce the likelihood of
localization error. For example, when a mobile robot fol-
lows a path through a wide-open space, such as outdoors,
or in a very large or crowded room, all reference points are
either outside the range of the sensors or blocked. There-
fore, the likelihood of the robot becoming lost as it moves
through the open or crowded space is high. We first develop
the general principles of the localization method and the in-
formation model in a statistical framework, before present-
ing the actual implementation of the algorithm.

3.1 Statistical Framework

The position, x, of the robot is given as the location
(x, y) and direction θ, defined over a space X = (X,Y,Θ).
Our localization method is a grid-based implementation of
Markov localization [FBT98, KCK96]. This method rep-
resents the robot’s belief in its current position using a 3-
dimensional grid over X = (X,Y,Θ), which allows for
a discrete approximation of arbitrary probability distribu-
tions. The probability that the robot has a particular pose x
is given by the probability p(x).

Markov Localization

Let the robot’s position be given by the initial probability
distribution, Px, defined over X = (X,Y,Θ). The robot
acquires a sensor measurement s, for example a set of range
data from a laser sensor. The localization process takes PX

and the sensor data, s, and returns the posterior probability
distribution PX|s = p(x| s), again defined over the space of
poses of the robot, (X,Y,Θ).



The probability p(x| s) is given by Bayes’ Rule:

p(x| s)=
p(s|x)p(x)

p(s)
(1)

where p(x) is the position distribution, and p(s|x) is com-
puted from the sensor model and the robot’s map of the en-
vironment.

The term p(s) is the likelihood of observing sensor data
s, and is computed from the prior position distribution, the
sensor model and the environmental map.

p(s) =

∫

X

p(s|x)p(x)dx (2)

Entropy Computation

The entropy, H(PX), of a probability function, PX, pro-
vides a good measure of the certainty with which the robot
is localized. The entropy of a probability distribution, PX,
is computed over the space of all possible poses (X,Y,Θ)
and is defined as:

H(PX) = −
∫

X

p(x) log(p(x)) dx (3)

This measure can be considered as the “purity” of the
probability distribution. If the distribution is highly focused
at a single pose (x = x, y, θ), then the entropy will be low.
If the distribution is spread over a wide space, then the en-
tropy will be high. The effect that a particular set of sensing
data has on the robot’s belief in its position can therefore
be measured in this way. Combining equations (1) and (3)
gives the entropy of the posterior distribution after sensing:

H(PX|s) = −
∫

X

p(x| s) log(p(x| s)) dx

= −
∫

X

p(s|x)p(x)

p(s)
log
(p(s|x)p(x)

p(s)

)
dx (4)

Equation (4) gives the entropy of the posterior distribu-
tion, given a particular set of sensor measurements. Re-
call that p(x) is the prior position distribution, p(s|x) is
the probability of the sensor measurement conditioned on
the position, computed from the sensor model and the envi-
ronmental map. p(s) is the prior distribution of the sensor
measurement, given by equation (2).

A particular location in the environment can result, with
different probability, in different sensor measurements. The
entropy is therefore averaged from all possible sensor mea-
surements, s, where each term is weighted by the likelihood
of the sensor measurement. Equation (5) computes the ex-
pected value of the entropy over all posterior distributions

P .

E(H(PX|S)) = −
∫

S

p(s)

∫

X

p(x| s) log(p(x| s))dxds

= −
∫

S

p(s)

∫

X

p(s|x)p(x)

p(s)
log
(p(s|x)p(x)

p(s)

)
dxds

= −
∫

S

∫

X

p(s|x)p(x) log
(p(s|x)p(x)

p(s)

)
dxds (5)

E(H(PX|S)) is the expected value of the entropy after
firing the sensors, computed over all possible sensor mea-
surements, given the initial position distribution PX.

For a particular pose distribution, we can compute the
information content, I , of the robot’s current position by
computing the difference between the expected entropy of
the positional probability conditioned on the sensor mea-
surement,E(H(PX|s)) and the entropy of the prior position
distribution, H(PX):

I = E(H(PX|S))−H(PX) (6)

Note that equation (7) inverts the intuitive sense of in-
formation content; the higher the quantity I , the lower the
information content.

Recall that the goal of measuring the information content
of the environment, is to be able to construct a map of areas
of the environment that have low and high information. The
algorithm for constructing this map is the following proce-
dure:

1. For each position x and initial probability distribution
PX, generate all possible sensor measurements, s and the
probability of these estimates, p(s) as in equation (2).

2. For each sensor measurement s, compute the entropy of
the posterior probability distribution given by Markov lo-
calization as in equation (4)

3. Compute the expected value of the entropy as in equa-
tion (5), and take the difference from the initial entropy,
as in equation (6).

In the above analysis, we have ignored the issue of the
prior probability distribution of the robot’s position. The
entropy computation is heavily dependent on the robot’s
prior belief in its position, p(x). Modeling robot naviga-
tion as a partially observable Markov decision process, or
POMDP, would be one method for handling this depen-
dency [CKL94]. However, the POMDP requires examin-
ing all possible prior probability beliefs and also all possible
paths leading up to the prior probability belief. This process
provides extremely accurate characterization of uncertainty.
However, for planning, the computation is intractable, as
it is exponential in the size of the environment. We have
therefore made some simplifying assumptions in the imple-
mentation of the algorithm which dramatically reduce the
complexity. One such simplification allows us to ignore the
problem of the prior positional distribution.



3.2 Implementation

The first simplification we make immediately is to use
a tracking assumption. The robot tracks its position using
internal odometry, which allows us to assume a Gaussian
prior probability distribution centered at the assumed loca-
tion of the robot, (x, y, θ), and limited to a small region of
the environment. The Gaussian nature of the distribution is
a result of the kinds of error that accumulate using odom-
etry. It is this simplification that makes our POMDP-style
approach tractable.

We also do not simulate every possible sensor measure-
ment s, but instead sample the sensor space, choosing only
the most likely sensor data sets for a particular position.
Furthermore, we do not in fact have a continuous distribu-
tion for the position of the robot, but a discrete grid. This
reduces the integration into a summation in equation (5).

Finally, we can use the fact that our particular robot has
360◦ field of view, to eliminate the dependence on θ. It is
important to note that in general, if the robot does not have
rotationally-invariant perceptions, then θ cannot be ignored;
indeed, coastal navigation is not very helpful if the sailors
only ever look out to sea.

The above simplifications change the information con-
tent into the following equation:

I(x, y) = −
∑

S

∑

X

p(s|x)p(x) log
(p(s|x)p(x)

p(s)

)
(7)

Figure 2 shows an example map of the information con-
tent of the same museum. The darker an area is, the less
information it contains. Notice that the darkest area is the
center of the large open space in the middle, and that the
lightest areas, with the lowest entropy are close to the walls.

Figure 2: An example map of the entropy, or information content, of the
National Museum of American History. The darker an area is, the less
information content it contains. The blackest areas of the map are the walls.

4 Dynamic Environments

Entropy as described above is useful for determining the
information content of a particular point in the environment,
however the model assumes a static environment. In a dy-
namic environment, the data gathered by the sensors can
be corrupted, for example by people blocking the proximity
sensors. We therefore must also account for the likelihood
that information can be corrupted.

In the example of the laser range sensors, the probability
that a given laser range measurement will be corrupted by
a person is modelled as a geometric distribution along the
length of the beam; the longer the beam, the more likely it
will be corrupted.

pcorrupt(s) = 1− γ‖s‖ (8)

s : 0 ≤ ‖s‖ ≤MaxRange is the particular range measure-
ment, ‖s‖ is its length and γ : 0 ≤ γ ≤ 1 is the probability
that any particular point in the environment is occupied by
a dynamic obstacle: for the case of museum, this is simply
the estimated number of people in the museum, divided by
the area of the free space of the museum.

In order to alter the information content computation to
account for this corruption model, we need to alter the ef-
fect that individual sensor measurements have on the total
information content. We make a simplifying assumption
that each component of the sensor measurement si(x, y) :
s(x, y) = {s1(x, y), . . . , sn(x, y)} is independent. This al-
lows us to compute the expected value of I(x, y) by aver-
aging over the information content, Ii(x, y) of each com-
ponent of the measurement. We make this independence
assumption for the sake of computational speed.2

Equation (7) gives the information based on data set s.
For a typical laser range scan, s contains 360 measurements.
We now consider the data as n individual successive mea-
surements, s1 . . . sn. The information content I(x, y) can
be computed for each si alone, giving I1(x, y) . . . In(x, y),
computed as in equation (7). The n measurements are av-
eraged, weighting each measurement by the probability that
the measurement was corrupted.

I(x, y) =
n∑

i=1

(Ii(x, y) · pcorrupti (x, y)) (9)

Ii(x, y) is the information content at (x, y) as in equa-
tion (7), based only on the i-th sensor reading. The prob-
ability pcorrupti (x, y) is the probability that the i-th sensor
reading is corrupted, computed from the distribution given
in equation (8).

2In reality, the range to an obstacle at direction θi is highly correlated
with the range θi+1 in most environments. However, we can make reason-
able conclusions about the information content of each position in the map
nevertheless, and this method has the advantage of being computationally
fast.



5 Path planning

Having computed the information content, or entropy,
for each position in the map, the path planner must use
the secondary map to generate trajectories with greater po-
sitional certainty. Traditional path planners choose a trajec-
tory by optimizing some criterion such as minimizing dis-
tance, time, or power consumption, or maximizing distance
to obstacles (for safety). The quantity minimized in the con-
ventional planner is the following sum [Thr98], along the
path given by the list of cells (xi, yi) from start to goal:

CostTotal =
∑

X,Y

c(xi, yi) (10)

The cost c(xi, yi) is the cost of crossing cell (xi, yi),
which increases with the probability that the cell is occu-
pied, from some minimum cost associated with travel. The
minimum CostTotal is found by dynamic programming
(also known as Viterbi or Dijkstra method) [How60].

An example trajectory is shown in figure 3(a). The tra-
jectory of the robot is the line through the large open space,
where the start position is the left end of the line, and the
goal is the right end. People are not depicted in this im-
age, but typically, visitors to the museum would occupy the
space on either side of the robot, effectively blinding it on
its two sides, reducing substantially the main sources of lo-
calization information.

The coastal planner, however, minimizes a sum of the
conventional cost and the information content:

CostTotal =
∑

X,Y

λ1c(xi, yi) + λ2I(xi, yi) (11)

The exponents λ1 and λ2 are weights, and were chosen
experimentally.

(a) Conventional path (b) Coastal path

Figure 3: Example trajectories using the conventional and coastal plan-
ners, in the National Museum of American History, for the same start and
goal positions. Note the motion of the robot along the wall for the coastal
planner.

Figure 3(b) shows a coastal plan for the same start and
goal as figure 3(a), where the robot does not travel di-
rectly through the open space, but instead moves along the
wall, increasing travel distance, but preserving the ability to

gather sensor data down its right side (travelling left to right
again).

It should be emphasized that the computation of the in-
formation maps is a one-time operation for any particular
environment. The information content is computed off-line,
and used by the path planner to construct a single static cost
function c(xi, yi). This cost function is used by the dy-
namic programming search; a typical path for the Museum
of American History took under 100ms to compute.

6 Experimental Results

Over the course of two weeks, our robot Minerva gave
tours of exhibits in the National Museum of American
History, shown in figure 1, using the coastal planner to
generate trajectories between exhibits. The total distance
by the robot covered was 44km, at an average speed of
38.8 cm/sec, interacting with 50,000 people during the two
weeks. The main motivations for developing the coastal
navigation technique were the large open space in the main
operational area for Minerva and the many people gathered
around the robot at any given time.

The sensor and localization data was recorded during the
operation of Minerva, and some statistics were gathered to
compare the performance of the coastal planner to the con-
ventional planner. The conventional planner was also used
for part of Minerva’s operation, in order to allow compari-
son of the two navigation methods. The most useful statistic
is the average entropy of the probability distribution of the
robot’s pose, as it travelled along the trajectories.

(a) Conventional trajectory (b) Coastal trajectory

Figure 4: The coastal and conventional paths, for the same start and goal.

In the best case, the robot followed trajectories that had a
measurably lower average entropy, which indicates the suc-
cess of the coastal navigation. Using a laser range finder
with a 3m max range, the coastal planner had an average
entropy of 3.3 ± .1, and the conventional planner had an
average entropy of 4.4 ± 2.5. The trajectories are given in
figure 4. The same start and goal were given to the robot, us-
ing first the conventional and then the coastal planner. The
robot travelled between the start and goal position 4 times,
to generate trajectories of length 87.0m (conventional) and
109.8m (coastal).

Figure 5 shows the performance of the coastal navigation
under different sensor abilities, in a static environment. As



the sensor range increases to 50m, the sensor is able to use
its entire field of view for localization at most points in the
museum, so the conventional planner generates paths that
are equally in localization ability as the coastal planner. The
use of the sensors of different scales illustrates that there
are different environmental conditions under which coastal
navigation is more or less useful.
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Figure 5: This graph shows the average entropy over trajectories of 87.0m
and 109.8m in the National Museum of American History.

7 Conclusion

In this paper, we have presented a method of generating
trajectories through environments where positional uncer-
tainty is likely to accrue. Localization methods can often
fail in environments that lack many reference points, for ex-
ample wide-open spaces with walls outside the range of the
sensors. Localization can also fail where the sensors are ob-
structed by dynamic obstacles, such as people. The solution
is to generate trajectories that minimize the probability that
the robot will fall victim to these problems, and become
lost. The method draws on ship-based navigation, where
ships lacking reliable global position estimation stay close
to known landmarks along shores.

The algorithm operates in two parts. The first part gener-
ates a map of the environment that contains the information
content of each position in the environment. This repre-
sentation includes the likelihood of the sensor data to be
corrupted by dynamic obstacles. Using this map, the path
planner generates trajectories that optimize over both dis-
tance and change in positional certainty. This path planner
was used for navigating in a highly dynamic environment
with large open spaces in the National Museum of Ameri-
can History successfully for 2 weeks.

This particular solution is a special case of a general
class of POMDP problems. However, POMDP problems
are computationally intractable for systems with large num-
bers of states. We reduce the complexity by making a num-
ber of assumptions such as the ability of the robot to track
its position, and the kind of the positional error that accrues.

One avenue for future research lies with the path plan-
ner. The dynamic programming technique currently used
for finding the minimum-cost trajectories demands a mono-
tonic integration of the entropy. Therefore, there is no way
to model actions that reduce uncertainty. Another direction
for future work lies in determining the planner parameters

appropriately. The weights λ1 and λ2 were set empirically,
as were the parameters of the geometric distribution de-
scribing the crowdedness of the environment. It would be
useful to have the planner choose different parameters based
on the perceived crowdedness of the environment, following
more coastal trajectories in highly crowded environments,
and more direct trajectories in mostly-static environments.
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